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AN UNCONDITIONALLY STABLE UNCOUPLED SCHEME FOR
THE APPROXIMATION OF A TRIPHASIC
CAHN-HILLIARD/NAVIER-STOKES MODEL

SEBASTIAN MINJEAUDT

Abstract. We propose an original scheme for the time discretization of a triphasic Cahn-
Hilliard /Navier-Stokes model. This scheme allows an uncoupled resolution of the discrete Cahn-
Hilliard and Navier-Stokes system, is unconditionally stable and preserves, at the discrete level,
the main properties of the continuous model. The existence of discrete solution is proved and a
convergence study is performed in the case where the densities of the three phases are the same.
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1. Introduction. The complexity of multiphasic flows basically lies in the fact
that the time evolution of interfaces, whose position is an unknown of the problem,
may lead to their deformation, their break-up or coalescence. Moreover, interfaces
obey to physical phenomena where capillar effects play a important role.

The various domains of application, where multiphasic flows are involved, are gen-
erally complex; the experimentations and measurements are quite difficult, onerous
and most often not very accurate. For instance, in nuclear safety [18], the under-
standing of interaction between molten corium (lava-like molten mixture of portions
of nuclear reactor core) and concrete (last confinement barrier) is a major issue. An
approach using numerical direct simulations allows to access to instantaneous quan-
tities at each points of the flows.

Because of their ability to capture interfaces implicitly, diffuse interfaces mod-
els are attractive for the numerical simulations of multiphase flows. In this article,
we consider a model which couple the Cahn-Hilliard system and the Navier-Stokes
equations.

1.1. The Cahn-Hilliard model. In diffuse interfaces theory, the interfaces are
assumed to have a non-zero thickness £ (which here a constant parameter of the
model). Interfaces are considered as mixing areas and the phase i can be represented
by a smooth phase indicator ¢; called order parameter (which may be understood here
as the volumic fraction of the phase ¢). Thus, the system contains as many unknowns
¢; as phases. These unknows vary between 0 and 1 (values which correspond to pure
phases by convention) and are linked by the relationship >, ¢; = 1.

A complete derivation of this kind of model for diphasic flows is presented in
references [1], [2], [13] or [16]. Different extensions have been proposed for the sim-
ulations of three-phase flows in references [4], [10] or [15]. We consider in this paper
the triphasic Cahn-Hilliard model taken from reference [4]:

dci =div Mo(c) Vi |, fori=1,2,3,
ot hY
: (1.1)
Hi = fiF(C) - ZEEiAci y for i = 1,2,3,
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where My(c) is a diffusion coefficient which is called mobility and can eventually
depend on ¢ = (c1, c2,c3). The functions ff are defined by:

4% 1
0= (5 @ - 0r (). (12)
e —~\X;
J#i
L 3 1 1 1 . . .
where Y is given by — = — + = + ——. This system is a gradient flow for the
D7D S EEED DN I

following energy functional under the constraint of volume conservation:
- 12 3 o
fgjsll(cl, Co, (33) = / ?F(Cl, Co, 63) + gE Z Zi|Vci|2 dl‘, (13)
Q@ i=1

where  denote an open, bounded, connected and smooth domain of R? (d = 2 or
d = 3). The “intermediate” unknowns p;, called chemical potentials, are the functional
derivatives of the triphasic Cahn-Hilliard energy (1.3). The rather intricate expression
of fI is due to the use of a Lagrange multiplier to ensure the contrainst:

Cl+C2+Cg = ]. (14)

We introduce the hyperplane S = {(cl, c2,¢3) ER%¢1 + e +c3 = 1} of R3, to sim-
plify notation in the sequel.

The expressions of the triphasic Cahn-Hilliard potential F' and of the constant
triplet X = (X1, X9, X3) was derived in [4], so that the model can correctly take into
account the surface tensions values 012, 013 and oa3 prescribed between the different
pairs of phases and so that it is consitent with the two-phase situtations: the triphasic
model has to exactly reproduce diphasic situations when one of the three phases is
not present. The coefficient ¥; is given as a function of the surface tensions:

Y = 04 + Oik — Ojks Vi € {1,2,3}. (15)
and the triphasic potential F' is a polynomial function of c:

F(c) = o12¢ics + 013¢1c3 + oa3cics
+ crcac3(Xie1 + Baco + Yzez) + ciesca Ale), Vee S, (1.6)

where A is an arbitrary smooth function of c.

Note that, in the sequel, we do not assume that the coefficients ¥; are non neg-
ative, so that the model can handle some total spreading situations. However, as
it is proved in [4], the following condition is necessary to ensure that the system is
wellposed:

2120 4+ X123 + gdiz > 0. (17)

This condition is equivalent to the coercivity of capillary terms and ensure that these
terms brings a positive contribution to the free energy }'gjfh. This is detailed in the
following proposition:

PROPOSITION 1.1 ([4, Prop 2.1]). Let ¥ = (X1,%2,%3) € R%. There exists ¥ > 0
such that, for alln > 1, for all (&,,&5,€3) € (R™)® such that & + €4 + &5 = 0,

Suleal® + Tl + Dalésl” > T (160 + l6al + 1l
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if and only if the two following conditions are satisfied:
Yo+ 2123+ 2023 >0 et X;+ E]‘ >0, Vi 7& J- (18)

This proposition (which is not obvious only when one of the coefficient 3; is negative)
will be usefull in the sequel.

REMARK 1. OQuwing to expression (1.5) of coefficients ¥;, the second part of
condition (1.8) is always satisfied and consequently it is sufficient to assume that the
condition (1.7) holds, for application of lemma 1.1.

The existence of weak solutions for problem (1.1) together with initial and Neu-
mann boundary conditions (for order parameters ¢; and chemical potentials p;) was
proved in [4] (see [6] for an alternative proof based a numerical schemes) in 2D and
3D under the following general assumptions:

e the mobility My is a bounded function of C!(R?) class and there exists three
positive constants My, Mo and Mj3 such that:

VCES, 0 < M, gMo(C)gMg,
- (1.9)

e the Cahn-Hilliard potential F' is a positive function of C?(R?) class which sat-
isfies the following assumptions of polynomial growth: there exist a constant
By >0andareal psuchthat 2 < p< +ooifd=2o0r2<p<6ifd=3, and

VeeS, |F(c)|<Bi(1+]c?),
IDF()| < By (1+]eP ), (1.10)
<B

(
(1 1eP 7).

|D*F(c)|

1.2. Coupling with hydrodynamic. The coupling between the Cahn-Hilliard
and Navier-Stokes systems is obtained by:

1. adding a transport term u - V¢; in the evolution equation of each order
parameter ¢;, (i € {1,2,3}), that is the first equation of system (1.1).

2. defining the density and viscosity as smooth function of order parameters c.

3. adding a capillary force term Zg’zl 1;Ve; in the right hand side of the mo-
mentum balance (in the Navier-Stokes equations).

Furthermore, we adopt the form of the Navier-Stokes equations, initally proposed in
[12] (see also [5] and [16]), which ensures an energy balance without using the equation
of mass conservation. It relies on the following inequality:

d 1 0
S yemP s = [ |Veg(vaw + (eu- 9pu+ S ow| -ud.
0, 2 o Vot 2

the domain §2; being an arbitrary bounded smooth domain moving at the fluid veloc-
ity u [3].



Hence, the triphasic Cahn-Hilliard /Navier-Stokes, we study here, is constituted
with following equations:
aCi
ot

M,
+u- Ve = div (;V“i) . Vi=1,2,3,

4% 1
=S (g @F @ - 7)) - femide, vi-123,
g#i NI

\/@% (\/@u) + (Q(C)u . V)u + gdiv (Q(c)u) (1.11)

3
— div (Qn(c)D(u)) +Vp= Z wiVei + o(c)g,

=1

divu = 0,

where the vector g stands for the gravity; the density and viscosity are defined by:

S 0ihale; — 0.5) S22 miha(e; — 0.5) (1.12)
S22 ha(ei — 0.5) S22 hale; — 0.5)

where g1 (resp. 09, resp. o3) and 71 (resp. 72, resp. n3) are the values (assumed to
be constants) in phase 1 (resp. 2, resp. 3) and the function hy (A = 0.5) is defined
by:

ofc) = and  n(c) =

0 if <=,
1 1

) =3 3 (i +—sin (ﬁ)) if A<z <A (1.13)
1 if x> A

We supplement this system with Neumann boundary conditions for order param-
eters ¢; and chemical potentials p;, i.e. for i =1,2,3,

Ve -n=0and MoV, -n=0, onT, (1.14)
and with a homogeneous Dirichlet boundary condition for the velocity, i.e.
u=0surI. (1.15)

Owing to these boundary conditions (1.14) and (1.15), we introduce the following
functional spaces:

Ve =Vr = HYQ),
Vs = {c = (c1,c2,¢3) € (HY(Q))3;¢(x) € S for almost every x € Q},
d
ve = (1),
d
Vi = (1)
VP ={pe LQ(Q),/ pdx = 0}.
Q
Finally, we assume that the following initial condition holds:
ci(t=0)=c?, and wu(t=0)=u" (1.16)

where ¢ = (c?,c3,c9) € V§ and u® € V¥ are given.
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1.3. Outline of the article. In section 2, we describe the time and space dis-
cretization. The section 3 is then devoted to the two phase case. We then prove in
sections 4, 5 and 6, the inconditional stability of the scheme, the existence of solutions
and their convergence towards weak solutions of the Cahn-Hilliard /Navier-Stokes sys-
tem. In particular, we prove the following existence theorem by passing to the limit
in the numerical scheme in section 6:

THEOREM 1.2 (Existence of weak solution in the homogeneous case). Assume the
coefficients (X1, Yo, X3) satisfy the condition (1.7), the mobility satisfy (1.9), and that
the Cahn-Hilliard potential F satisfy the condition (1.10). Assume the densities of the
three fluids are equal, i.e. 01 = 92 = 03 = 00, 00 € R. Consider the problem (1.11)
together with initial condition (1.16) and boundary condition (1.14)-(1.15). Then,
there exists a weak solution (c, p,u,p) on [0,t¢[ such that

c € L>(0,tr; (HY(2))*) N CO([0,t4[; (LI(R))3), for all ¢ < 6,
p e L2(0,t5; (HY())?),
u e L*>(0,ty; (L2(2))3) N L2(0,tf; (HY(£2))?),

c(t,z) € S, for almost every (t,z) € [0,t7[x €.

2. Discretization of the Cahn-Hilliard/Navier-Stokes model.

2.1. Time discretization. Let N € N* and ty €]0,4o00[. The time domain

t
[0,tf] is uniformly discretized with a fixed time step At = Nf; we define t,, = nAt,

for all n € [0; N].

We assume that the function ¢ € V§ and u” € V§' (n € [0; N]) are given and
we describe the system we have to solve to compute the unknows ¢! € V§ and
u"tt e VI at time "1,

We first describe, in two distinct paragraphs, the schemes we use to discretize the
Cahn-Hilliard and Navier-Stokes equations without considering the coupling terms.
For more details on the time discretizations of the triphasic Cahn-Hilliard model,
the reader may refer to the article [6] (and reference therein). Several articles in the
literature are devoted to the study of discretizations of Navier-Stokes equations: we
refer in particular to the articles [12] and [17] which deal with variable density.

We then explain, in the two next paragraphs, the reasoning which led to the
discretization of the coupling terms before writting the complete scheme in the last
paragraph of this section.

2.1.1. Cahn-Hilliard system. We consider a time discretization of the Cahn-
Hilliard system of the form: for i = 1,2, 3,

1
ar —c transport g (MET G ner)
At term P

M?Jrl _ DZF(Cn, Cn+1) _ EEZiAC?JrB.
where ¢ = (1 — B)er + B+, B € [0.5,1], and M+ = Mo((1 = a)c™ + ac™t1);

the discretization of transport term is postpone to paragraph 2.1.3.
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This kind of discretizations was presented and studied in reference [6]. This is
out the scope of the article. We assume that the discretization D (c",¢™*1) of the
term f is of the form:

4y 1
Df(a™,a"*!) = —ET > (E- (df(a",a"“) — df(a",a”“))) , V(@ a" ) e 82,
g N

where df’ stands for a semi-implicit discretization of 9;F. We assume that the two
following basic properties hold for all i € {1,2,3}:

VceS, DI(c,c)=f(c). (2.1)

V(an,an-i-l) S 82, ‘df(an7an+1)’ < B (1 + |an|p*1 + }an+1|p71) 7
(2.2)
1D (df (a",-)) (") < By (1 +lanP }an+1|p—2) 7

the notation D means here the derivative of df" with respect to the second variable.
The assumption (2.1) is a consistency assumption and the assumption (2.2) is the
counterpart of the polynomial growth assumption (1.10) on F'. Many possible choices
for the discretization of the term df’ was presented in [6]. We consider here the
following expression:

n _n Ez n n n n n n
di*(a", a" ") = i [ai "+ a?] [(a ™ +ap ™) + (af +ak)?]
2 [ @] [ o ]
Xk

+7 (@™ + (@)’] [ + af ™ + af' + af]

1 n n 1 n n n n
S (@i)? + S (@) (a7 + (@) ()|

n 7_‘L+1 n 2 ny\2
safor 4] |@a? + 5 .

This scheme was built in order to ensure the following equality:
3
Fla™) — Fla") = 3 df (" ") (@l — af), V(a",a"+) € 82,
i=1

and consequently a discrete energy equality is which obtained by multiplying the first
equation of the Cahn-Hilliard system by M?H, the second one by c?“ — ¢}, writing
the equality of left hand sides and summing for i = 1, 2, 3.

2.1.2. Navier-Stokes system. We now present the time discretization of the
momentum balance of the Navier-Stokes system:

Vole) 5 (+/al@m) + (ele)u - V)u + Sdiv (o(c)u)
(€] (2

3
— div (2n(c)D(w)) +Vp = > mVei + o(c)g.
—_————— P
® '
We separatly present the discretization of the different terms (1), (2) and (3) involving

in the above equation; for each of them, we give their contibution to the energy balance
obtained at the discrete level by multiplying the equation by u™*!.
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Term (1): Using the formal equality
0 ou 10p
\/@& (\/@U—) = QE + 55117 (2.3)

we give two possible discretizations of term (1). The first (taken from [12]), which
takes advantage of the expression given in the left hand side of 2.3, reads:

Qn+1 /Qn+1un+1 _ \/QTHW, _ Qn+1un+1 _ /QnQnJrlun.
At At
Its contribution to the energy balance is:

/ VoY o"Hu ! — Voru" 0" da
o At

2

1 U Vo !

T 2A¢

(2
- Ve |L2(Q)

L2(Q
2
- ‘ Vorttut - Vgt 2(2)}
L2(¢

The second (taken from [17]), which takes advantage of the expression given in the
right hand side of 2.3, reads:

7 + n+1
unJrl —u® 1 n+l __ n %unﬂ - Q"u"
Qn + = Y 0 unJrl — 2
At 2 At At

Its contribution to the energy balance is:

+1 +1
/ Qniu" At_ Ul dy + / %LL At— T
0 0

1
- n—41q,n+1
2AL U Ve

2

(2
y Ve |L2(Q)

L2(Q

2
+[Ver (u"h —u") |L2(Q) :
~n+1un+1 _ énun
At
is either o, either some mean of o™ and ¢"*'. Indeed, the first form corresponds to
0"t = ol and §" = /0" 0" ! (geometric mean of " and o"*!); the second one
n+l _ o"+o" ! (
2

These two discretizations are of the form where g¢ (¢ =n or n+1)

n+1

corresponds to o arithmetic mean of ¢ and ¢"*') and " = ¢". The
discretization of coupling term that we present in the sequel involves the coefficient
0" in the Cahn-Hilliard system. Hence, we use the second form to avoid the presence
of a supplementary non-linearity throught ¢"*! (which is equal to o(c"*1)).
Term (2): The term (2) is linearized by using an explicit velocity for the transport:
un+1
(Qn+1un . V)un+1 + lev (Qn—&-lun).

Its contribution to the energy balance vanishes. Indeed, for all v* € V', we have:

1
/ (o" ™ - V)u" v da + / idiv (o"Ttu™)u" v da
Q Q
1

== [/ (o"Ttu" - V)u"tt . vt dr — / (o"Ttu" - V)t u" T da
2 LJa Q

7



In particular, when we take v = u™*!, the above term vanishes.
Term (3): We discretize the term (3) with an implicit scheme:
—div (27}"+1Du"+1).

Its contribution to the energy balance is:
/ 17"+1fDu"+1|2dx.
Q

Thus, we adopt the following discretization of the Navier-Stokes equations:
n+1l _ . n 1 n+l _ .n n+1
Qnu N u + 5 0 N 0 u™t! + (gnJrlun . v) ut! + u 5 div (gn+1un>

—div (77”+1Du"+1) +Vptt =

terme de force nal

capillaire &

div (u"*) =0,
the discretization of the capillary force term is described in the next paragraph.

2.1.3. Coupling term. We give in this paragraph the discretization of coupling
terms. That is the transport terms u - V¢; in the Cahn-Hilliard equations, and the
capillary force term in the momentum balance (Navier-Stokes equation). At the
continuous level, when writing the energy balance, the contribution of these two terms
counterbalance each other. At the discrete level, we saw that the energy balance is
obtained, for Cahn-Hilliard system, by multiplying the the transport terms by ,u?“
before summing up for ¢ = 1,2, 3 and, for the Navier-Stokes equations, by multiplying

the capillary force term by u™*!.

Consequently, it is easy to see that when all the terms mentionned above are
discretized with an implicit scheme (cf [11] for the diphasic case), i.e. u*! . Vert!
and Zle /L;L+1VC?+1, the balance is also true at the discrete level. Hovewer, this
discretization introduces a strong coupling between Cahn-Hilliard and Navier-Stokes
systems. The discrete system is difficult to solve in practice.

It is possible to uncouple the system (c¢f [14] for the diphasic case, [5] for the
triphasic case) by using an explicit velocity (i.e. the velocity at time ¢™) in the Cahn-
Hilliard equation: u™ - VC?H. However, the contributions of the transport terms in
the Cahn-Hilliard system and the contribution of the capillary forces in the Navier-
Stokes do not counterbalance when writing the discrete energy balance which contains
the additional term: (u™*!—u")- Z§:1 pitt et Tt is difficult to attribute a sign
to this term and the scheme stability is obtained only conditionnaly (cf [14], assuming
for instance that the ratio between the time step and the mesh size is bounded).

We first observe that it is possible to uncouple the resolution of Navier-Stokes
system and the taking into account of capillary forces. The taking into account of the
capillary forces is performed during a first step which provide an intermediate velocity
u* used in the Cahn-Hilliard system. The Navier-Stokes system is then solved in a
second step. The scheme reads:

(i) Taking into account of capillary forces:

*

nu un * > n+1 n+1
O —Ar +Vp :Zﬂi Ve,
i=1

div (u*) = 0.



(ii) Cahn-Hilliard system:

Gt = * 1 (Mgt 1
# +u - VC?+ = div TZ_VM” 5

3
pitt = DF(e™, et — ZeEiAc;H'ﬁ.

(iii) Navier-Stokes system:

un+1 —u* 1 n+l _ n un+1
Qn 4= 4 4 un+1 + (Qn+1un . V)un-‘rl + 5 div (Qn+1un)

At 2 At
—div (7" Du" ) 4 V(pt - p*) = 0" g,

div (u™™) = 0.

This discretization is inconditionnaly stable but the systems of step (i) (Darcy prob-
lem) is still coupled with the Cahn-Hilliard equations (system (ii)).

We propose to forget for a moment the divergence free contrainst imposed to u*
(and consequently the associated pression term Vp*) in the system of the step (i).
This leads to define:

* n 3

u —u

o" N — Z C?-HV/,L?—H.
i=1

This definition of u* is explicit and u* can be replaced by its expression in the Cahn-

Hilliard system eliminating the coupling with Navier-Stokes equations.

The problem is that u* is not divergence free. Nevertheless, note that the property
u* - n = 0 is still satisfied on I'. Now, the question is : is it possible to discretize the
transport term in Cahn-Hilliard equation in order to preserve its fundamental prop-
erties (volume conservation and the fact that the sum of the three order parameters
is equal to 1) ? The answer is given in the next paragraph.

2.1.4. Transport term in the Cahn-Hilliard system when the velocity
is not divergence free. In this paragraph, we are interesting in the form of the
transport term in the Cahn-Hilliard equation when the advection velocity, denoted
by u* is not divergence free but satisfy the boundary condition u*-n =0 on I

Preserving properties of the Cahn-Hilliard when the advective velocity is not di-
vergence free may be usefull in other contexts. For instance, when using a incremental
projection method (cf [8], [20]), the end step velocity is not divergence free.

The transport term may be written in conservative or non conservative form

(these two forms are not equivalent since a priori div (u*) # 0):

e non conservative form: u* - Vg,

e conservative form: div (¢;u”).
The conservative form ensures volume conservation (since u*-n = 0 on I'). This is not
the case for the non conservative form since a priori [, u* - Ve;dx # 0. Conversly,
when using the conservative form, a necessary condition to ensure that the sum of the
three order parameters ¢; remains constant equal to 1, is that div (u*) = 0. Neither
the conservative form nor the non conservative form ensure both volume conservation
and the fact that the sum of the three order parameters remains equal to 1.

9



We propose to use the following formulation:
div ((¢; — a;)u*),

where «; is a constant. This formulation allows to ensure the two desired properties
if 2?21 a; = 1. To guarantee the consistency with diphasic model, the constant «;
may be zero when the phase i is not present. In the sequel, we propose to choose:

o; = / & dz.
Q

This formulation allows to use an advective velocity which is not divergence free. The
term —a;div (u*) is added in the Cahn-Hilliard system, its role is to re-equilibrate
the values of each order parameters to ensure the fact that their sum remains equal
to 1. We prove in section 6 that this term is of order O(h + At) and so it does not
disturbe the consistency of the scheme.

Owing to this formulation of the transport term, it seems natural to adopt the
following definition for the capillary forces term in the Navier-Stokes equations:

3

- Z (ci — o) Vi

i=1

This is equivalent to changed the definition of the pressure by adding the term
Z?:l (Ci — Q) i

2.1.5. Time discretization of the Cahn-Hilliard/Navier-Stokes system.
Finally, the different considerations presented in previous paragraphs lead to propose
the following scheme:

PRrROBLEM 1.

e Step 1 : resolution of Cahn-Hilliard system
Find (™', u"t) € (VC)3 x (VM) such that, fori=1, 2 and 3,

n+l

% i <[C? - az} [un B %t :1(‘3? - aj)Vﬂ?HD

Mg+ :
:div( S w;l“), @4

K2

K2

3
pt = DF (e - Sneadt,

with o a constant : a; = / c? dx.

Q
e Step 2 : resolution of Navier-Stokes system
Find (u"™ p"*) € V& x VP such that,

un+1 —u” 1 Qn+1 _ Qn
i - n+1 n+l.n n—+1
0 A7 + 5 A U + (0" u" - V)u
un+1
+ div (0" ta") + div (2" Du™ )

2 (2.5)

3
+ VT = 0" lg 4+ () — )V,
j=1

div (") =0,
10



where "t = n(ci ™) and of = o(c?), for { =n and £ =n + 1.

In the above scheme, the discretization of the order parameters is explicit both
At 3 (Cn

on 24j=1\Cj

in the tranport term of Cahn-Hilliard equation: div ([ — az] [u” —

T

aj)Vu"HD and in the capillary forces term of Navier-Stokes equation: Z?Zl(cj —

n+1 n

aj)Vu”H. It is also possible to use an implicit version i.e. div ([ ai] [u —

At . 1(0"+1 - a])Vu”H]) and Ej (¢ ntl on)V,u"+1 but it introduces an

addltlonal non linearity in the Cahn—Hllhard system.

To finish this section, it is interesting to examine the scheme obtained for the
resolution of Cahn-Hilliard system when the velocity u™ vanishes:

n+1 n n+o
G TG . My n+1
Al iv ( >, \ )

+ div ([cf - ozl} [g i(c? - aJ)V,u;’H}), (2.6)

3
’u:ﬂrl DZF(Cn7Cn+1) i ZEiEAC?+B~

This scheme is different from the one presented in reference [6]: an additional diffusion
term (with coefficient of order At) appears. It remains possible to prove an energy
equality:

n+a

Fgfsh(cn+1) . J,—_-tnph + AtZ/
3

+At2/—‘z (cf — o) w”“‘ do + = (25—1 /Zz\vc"“ ver|? de

i=1

— |Vt de

12

[F(c" ™) = F(c") —d" (¢, c"t!) - ("' — )] da.
€ Jo

Thus, the additional term contributes to the energy decrease. In particular, the
scheme we propose allows to correctly compute equilibrium states.

2.2. Space discretization. For the space discretization, we use the Galerkin
method and the finite elements method. Let Vi, Vi', Vi* and V! be finite elements
approximation spaces of V¢, V¥ V" and VP respectively. Since the velocity satisfies
homogeneous Dirichlet boundary conditions on I', we define the following approxima-
tion space:

Vilo = {u;‘: eV vl =0sur F}.
To simplify the notation, we introduce also the following space:

Vis= {ch = (C1h, Can,C3n) € (Vﬁ)?’ ;cp(x) € S for almost every z € Q} .
11



The general assumptions required on approximation spaces are:

elecVy et 1eVi, (2.7)
S E Ve inf v = vl oy ;5 0 (2.8)
S eV Il ) 0 (2.9)
SVt VY int v = vl 0 (2.10)
o VP € VP, Vgréf}g|yp AT P~ 0, (2.11)

e There exists a positive constant 3 (independent of k) such that

/yﬁdivu};dm
gnfp “up : Q § > 8, (2.12)
VREVE vReVR ‘Vh‘LQ(Q)Wh'(Hl(Q))d

e there existes a positive constant C' independent of h such that

Iy (v°) [Vl () (2.13)

< O gy (2.14)

Vv e Ve,

<
HY(©)

Yok e Vi, Tk (uh)

HY(Q)
where TI}"is the L?(Q) projection on Vy,

e there exists a function C;,, of h such that
c c c|2 c12
Vi € Vi Whlie @) < Cinv (W51 (o) (2.15)
Vi C V. (2.16)

REMARK 2. In addition, to standard assumptions on the approximation spaces,
we assume that the appproximation space for order parameters satisfies the inverse
inequality (2.15). This property is (for instance) satisfied when the mesh familly is
quasi-uniform and the approximation spaces are associated to corresponding Lagrange
finite elements; in this case we can choose Ciny(h) = C(1 4+ In(h)) if d = 2 and
Ciny(h) = Ch=' if d = 3 where C is a constant which only depends on the mesh
reqularity (cf [7, 4.5.11 (p. 112) et 4.9.2 (p. 123)]). Furthermore, it is necessary that
approxzimation spaces for velocity and pressure satisfy the so-called inf-sup condition.

We begin with the definition of discrete functions ¢ € V¢ and u) € Vi'o at the
initial time:

ch(z) €S, Yh >0, for almost every x € 2 and ‘c;ol - CO{(HI(Q))S = 0, (2.17)
|y = 0°[ g1 (ya 2 O- (2.18)

h—0

These discrete functions c% and u?L can be obtained from initial conditions c? and u°
by H!(Q) projection, or as it is the case in pratice, by finite elements interpolation
provided that ¢ and u® are smooth enough.

Assume now that ¢ € Vg and uj € V), are given, the Galerkin approximation
of problem 1 reads:

PrROBLEM 2 (Formulation with three order parameters).

e Step 1: resolution of Cahn-Hilliard system
12



Find (cyth pupith) € (V,‘;S)S X (V}’f)3 such that vy, € Vi, Yvi' € Vi, we have,
fori=1, 2 and 3,

C?thl —C:-Lh m
Sih  Cihpp gy
/Q At
At

— /Q {c?h - aih} {UZ - ?Z g(c jh — aih)v/ﬂ#ﬂ Vo de (2.19)

n+a
= —/ Mo, Vit vl dr,
Q i h

3
/HZLh-i_lV}idx_/DF cp,c "+1)Vﬁdﬂf+/ EZiEVc?h—FﬁVVﬁdx,
Q

where oy, is the constant defined by ojp = / Cipdr.
Q

o Step 2: resolution of Navier-Stokes equations
Find (upt, ppth) € Vit g x VI such that Vv € Vi, Vb € VE,

u’rLJrl u'n, 1 n+1 n
/Q‘)h A h”5d$+2/ggh A v
1 1
5 [t Vv = 5 [ g V) v ap e

+/522772+1Du2+1 : Dvy dx—/pzﬂdiv (V) dx (2.20)
:/ n+1g Vy dx—/z h — Qjhn Vujh I/}'le.r,

/ Pdiv (up ) de = 0,
Q

where N = (et and of, = o(c}), for t =n and £ =n + 1.

2.3. Equivalence with Cahn-Hilliard system with two equations. In
practice, for the resolution of Cahn-Hilliard system, we only solve the equations sat-
isfied by (c1, ¢a, 11, o). Indeed, problem 2 is equivalent to the following one:

PROBLEM 3 (Formulation with two order parameters).

e Step 1: resolution of Cahn-Hilliard system
Pind (571 kL pmt undty € (V) x (V9?2 such that Vi € Vi, Yl € VI,
fori=1 and 2,

n+1
/Cm — Ci Vi da
Q At

- / [C?h a Oél} {uz - Aj 23:(0] )vﬂnJrl} -V dx
) o (2.21)

Mn+a
= —/ bt vl de,
o X

i

, 3 ., _
/M?hﬂl/; d:v—/DF Ch7cz+1)ugdm‘+/ﬂZEZ»aVcth”'BVu; da.

n+l __ n+1 n+l n+1 n+1
=(cly oo 1—df =),

13
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o We then define:

X DM
=L et and = (o gl )

e Step 2: the resolution of Navier-Stokes system remains unchanged; (cf prob-

lem 2).
REMARK 3. In system where only the unknows (cj;, pitt, ehft, ,u%t;'l

present, the notation CZ_H stands for the vector (c?}jl, cg;L"l, 1-— cﬁ"l - 1212—

The resolution of problems 2 and 3 are equivalent. The proof of this result which
is stated is theorem 2.1 below is very closed of the proof theorem 2.6 in the article
[6]. For the sake of brevity, we skip this proof.

THEOREM 2.1. Problem 2 is equivalent to problem 3. In particular, each solution

) are

(cp T, pptt unt Yy of problem 2 satisfies
3 3 Iup+1
et =1 and ) =0 (2.23)
i=1 i=1

3. Corresponding scheme in the diphasic case. Consider a system with
two components (denoted below with indexes 1 and 2) and assume that the evolution
of order parameters ¢;, (¢ = 1,2) and chemical potential fi;, (¢ = 1,2) associated to
these two phases are governed by the diphasic Cahn-Hilliard model:

%Cg =div (M(e1,c2)Viy), fori=1,2,
12

3
i = —Ulgf/(ci) — 580’12ACZ‘ fori=1,2,
9

(3.1)

where ¢ is the interface thickness, M (¢, ) the mobility and o1 the surface tension
between the two phases. The unknows are linked by the following relationship: ¢; +
02:1and/i1+/Z2=O.

The algebraic consistency of the triphasic model ensures that the triplet (cl, co =
1—c1,c3 = 0) is a particular solution of the triphasic Cahn-Hilliard model (1.1) (with
My(c) = 2012M (c1,¢2)) and for all choices of the values of the surface tensions o013
and os3 involving the third component. In this case, the triphasic chemical potentials

3.
are given by u; = 2—Zﬂi for i = 1,2 and ps = 0.
012
We give here the equivalent of this result at the discrete level. Let us consider

the following discretization of the diphasic model:
PROBLEM 4.
e Step 1: resolution of Cahn-Hilliard system
Find (50, et bl intly e (V) x (V) such that Yug € V5, Wl € VI,
fori=1 and 2, we have,

vl _en
/ ”LTt’hV,‘: dx — / (c?h - ai)uﬁ -Vl dx
Q Q

At
= —/ [M + —(cij — ai)z}Vﬂ?hH -Vl de,
e on (3.2)
[ ittvide = [ DE (g0 (i .00 da

3
+/ 2% eV Pvg di.
o4

14



e Step 2: resolution of Navier-Stokes system
Find (ap ™', ppth) € Vity x VI such that Vv € Vi, Vvl € VT,

+1 n n+1 n
uz —Up 1 / O — Oh_ n+1 u
/Q o AL h 2/)q At h h

1 U n n u 1 7 n n
+ 5 2 / Qh+1 (uy, - V) uh+1 vy dr — 5/ Qh+1 (u, - V)vp - ‘1inrl dx

_|_/ 2Pt DUl DU da — / prtdiv (V) do (3.3)
Q Q .
1 2
Q%
Jj=1
/ vidiv (up ) dr =0,
Q

where Tt = (et and of, = o(ch), for £ =n and £ =n+1.

In diphasic case, the essential difference between the scheme we propose and the
more standard scheme with an explicit velocity in Cahn-Hilliard systems (cf [14])

is the additional term %(cm — ;)2 in the mobility coefficient. This term can be
h

interpreted as an additional diffusion (proportional to At) which aimed at stabilizing
the scheme proposed in [14].

DIP
PropoSITION 3.1. Defining My = 2012 M, ,u"‘H =3 L ﬂfhﬂ fori=1,2 and

ughﬂ =0, we have the following results:

o if ((cﬁ'l,ﬂ?}fl) (032'1, ﬁg;f”) s a solution of the diphasic problem J then

((c?:l,u’f:l) (Bt b, (0, O)) is the solution of the triphasic problem 2.

o Conversly, if ((C?}Tl, ,u?,jl) (cgf[l, ug}fl) (0, 0)) is a solution of triphasic problem 2

then ((c’f,f%;]’fiﬂ (chrt, ﬁghﬂ)) is a solution of diphasic problem 4.
4. Inconditionnal stability of the scheme. We prove in this section the

energy equality which ensures the inconditional stability of the scheme.
PROPOSITION 4.1 (Discrete energy equality). Let cjy € V5 and uj € Vi,

Assume that there exists a solution (c "H,;J,ZH "'H,pZ‘H) of problem 2. Then, we

have the following equality:

riph/ _n 1 n n T n 1 n.n
[f;j’ (ch+1)+§/ﬂgh+l als dw] {fgygh(ch)+§/ggh\uh|2dm}

—l—Ati/ Mgl; ”+1| da:+At/ "+1|Du”+1| dz
; hIN

(4.1)
2,3—1 /ZZ|vcn+1_vthdg;-&-;/gh“unﬂ *_u2‘2:| s
12
= = [F(CZ‘H) - F(CZ) - dF(Ch,CZ""l) . (CZ-H_ CZ)] d:C+At/ n+1g un+1 d,
Q
where dF(.’ ) is the vector (dip(_’ Victos and
* At .

ut =ul — Z(th )V +1 (42)

@h
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Proof. The key point of the proof is the following observation: the Cahn-Hilliard
and Navier-Stokes system can be re-written using the function u* defined by (4.2).
Then, standard estimations for Cahn-Hilliard and Navier-Stokes systems are done
(step 1 and 3) and an estimation on the L? norm of u* gives the conclusion (step 2).

Step 1: Owing to the definition (4.2) of the function u*, we observe that the system
2.4 can be rewritten as follows:

ﬂ+1 Mn+a
/ Cih_— Vi da —/ el — apu* -Vl do = _/ —L Tt -V da,
9 At Q o X l

i

/,u?h“y,i de = / Df(cp, e} vy da +/ 2% eV PVg da.
0

Cin =

We take v}’ = ufhﬂ and vy = as test functions in this system. After some

standard calculation (see [6]), this yields:

n+a

FePepth) — FaP(cqt) +At2/ "+1| dz

3 n n
§ (28-1) / ZZ ’Vc L chh’ dr = At/ ; cin — az)Vulh'H dx (4.3)

+ = [ [P = F(el) = a" (el e ™) - (e —ch) ] da
Q

Step 2: It is possible to obtain an estimation of the first term of the right hand side
of the previous equality. By definition of u*, we have:

nat = g n+1
Op = \/OpUp — \F E : Hip -
h

Multiplying by /¢ju*, and integrating on £, yields:

1 1 1
5 [t Pae =5 [ gl g [ g - upf e
Q Q Q
3
= —At/ u*~Z(c;Lh—aJ VMJ‘H dx.
Q -
j=1

(4.4)

Step 3: The system (2.5) can also be re-written using the function u*:

nuﬁ-‘_liu* 1 n 1QZ+1 QZ
/QQhT”W+§/Q W i
1 n n n 1 n
g [t vyt e = [ o V) v e

—|—/ 2nt Duptt Duzdm—/

pptdiv (V) de = / oy lg v da,
Q
/ Vdiv (uptt) de = 0.

Q

16



We take v} = u't! et v = pi*! as test functions in this system. This yields:

1 1 1
o [t e [ o Pde g [ ottt - w
Q Q Q

+ At/ 2772”1 ’DuZJrl ‘2 dr = At/ gzﬂg . uZ“ dx.
Q Q

de

(4.5)

The conclusion is obtained by summing up the equations (4.3), (4.4) and (4.5). O

REMARK 4. An important difference with the work presented in [14] in the case
of homogeneous diphasic Cahn-Hilliard/Navier-Stokes model is that no condition is
required on the time step to ensure the stability.

5. Existence of solution for discrete problem. We prove in this section the
existence of solutions for the non linear discrete problem 2.
THEOREM 5.1. Given ¢} € Vg, up € Vi, we assume that
e the coefficients (X1,%9,33) satisfy (1.7), the mobility satisfy (1.9), and the
Cahn-Hilliard potential F satisfy (1.10),
e the discretization of non linear terms d¥ satisfy (2.2) and the following prop-

erty: there exists KICZ > 0 (eventually depending on c}) such that
/[F(aZ“) — F(cp) —d¥(cp,a)th) - (ap ™ —c)] dz < K vartt e g, (5.1)
Q

Then, there exists at least one solution (cZ'H7 [LZ+1, uZ"'l,pZ'H) to the problem 2.
The proof relies on the following lemma from the topological degree theory [9].

LEMMA 5.2 (Topological degree). Let W be a finite dimensional vector space,
G be a continuous function from W to W. Assume that there exists a continuous
function H from W x [0;1] to W satisfying

(i) H(-,1) =G and H(-,0) is affine,

(ii) R >0 s.t. Y(w,0) € W x [0;1], if H(w, ) = 0 then |w|y, < R,

(iii) the equation H(w,0) =0 has a solution w € W,
Then there exists at least one solution w € W such that G(w) = 0 and |w|, < R.

The idea is to link the non linear discrete problem to a more simple (linear)
problem (using an homotopy, function H of lemma 5.2) for which we are able to prove
existence of solutions (assumption (ii) of lemma 5.2). The topological degree theory
allows to deduce the existence of solutions for the non linear problem from a priori
estimates which are in our case deduced from the energy equality (4.1) proved in
proposition 4.1.

Proof. Proof of theorem 5.1. We first reformulate the problem 2 to enter in the
framework of lemma 5.2, before validating the assumptions (i), (ii) and (iii) of this
lemma.

Reformulation of the problem
Let W be a finite dimensional vector space (V¢)? x Q%% )? x Vito x VP. We define
the following norm on W: for all w = (c1p, Can, t1h,s 2, Un, Ph) € W,
2 2 2 2 2 2 2
lwlyw = leinli ) + le2nlim @) + 11l ) + [Benlm @) + [l ))e + [Prltz o)
and we introduce the function H such that
H:Wx|[0;1] =W
(™ H10) = (G e L 0) o (R R RY R RS RE)
17



where R§' and R§?, (resp. R§* and RL?, resp. RY, resp. RY) are defined with their
coordinates in the finite elements basis (Vf) 11 ;aim(ve)] (resp- (V7 ) rep dim (V)] T€SP.

(vP)ren sdim(Vye )] TSP (WD rep «dim(v?)]) of Vi (resp. Vi, resp. Vi, tesp. Vy):
VI €[1;dim(V})],

p+1 _an Mn-‘roz
(Rgtz) :/ Cih N Cin “dx+/ %hé \V/ Zj—l VV?d:L‘
Q [3

At
—5/ Cip, — Ozm uh — Z( s —ozjh)Vu”H] -V dx,
hs

VI €[1;dim(Vy)],
. 3
(R§')r = / g d:c_/ §D;( ch,CZH)Vfdx_/ ZEZ'EVC?:B'VV?W’
Q Q
VI €[1;dim(Vyo)],

ut — sur 1 ot — o
R = [ oyt e+ g [ 9 s

5 n n n 6 n n
5 [ eyt vpde = § [ gt V) vy oup

/277,1+1Du"Jr1 DV}‘d:r—/pZHdiv (vY)dx

/gZ;'lg vy dx+5/z b — Qn) Vm“ vy dz,
VI €[1;dim(VE)], (R{;)I:/Vfdiv(u;;“)dm,
Q

with Mt = Mo((1 — da)ell + dacy™), ofhs = o((1 — Seit+ éch) for £ = n or
¢=n+1and 75" =n((1—68)cy +dc) ™). The function G is defined by:

G:W-—->W
w +— H(w, 1)

The problem “Find w™*! such that G(w"!) = 0” is equivalent (by definition of the
function H) to the problem 2. To prove the theorem, we are going to prove that the
functions H et G satisfy the assumptions of lemma 5.2. The continuity of the function
H is obtained using the continuity of the different non linear functions (DI, ¢ and n)
and the Lebesgue’s theorem. The function H(-,0) is clearly affine by contruction.

Validation of assumption (ii) of lemma 5.2

Let (w"*1,8) € W x [0;1] such that H(w"*!,§) = 0. Note that H(w"*1,8) =0
is equivalent to say that w"t! = (cﬁrl7 03:17 /ff;rl, /L;;rl, uzﬂpzﬂ) is a solution of a
problem closely related to the problem 2. Thus, we can perform the same calculations

as in the proof of proposition 4.1. Indeed, defining

3

) At
uj = duj — 6—971 E (cih — ajh)Vu?,jl,
hdé —1
J

18



the equality H(w™!,8§) = 0 exactly means that we have: Vv)' € VI Vui € Vi,
Vv e Vi, Y € V7,

n+1 _.n Mn+a
/ i = Gk e g 5/ iy — ) uj - Vil do = —/ Z0hs g1 Gy d,
o Al 0 %

/M?thlV}cwdx*/éD ch, n+1)7/iczd$+/ﬂizisvczlh+ﬁ-Vy;cldz,

n+1 n—+1 7
n W, — U Ohs — COhs_  n+1l u
/thi hd + Tuh 'Vhde'
Q Q

X 5 (5.2)
/ P (uy - V) uptt vl de — 5/ op (up - V)vp - upt de
+/ ot DUt DUy da — / prtdiv (V) de = / oritg Vi dr,
Q Q
/ vPdiv (up ™) de = 0.
Q
ctl _en
We take v/ = 1l v = mTtm v =u}™ and v} = p"*? as test functions in

this system to obtain:

ri n 1 n n 2 ri n 1 n n
{f;:,f,ljs(chﬂ) +35 2 / Qh;r1| hH} d"f} - |:]:;:,§,}:S(Ch) + 5/ Qhé‘(suh‘de:|
Q
n+a
+At2/ —2 |V "+1| dx—i—At/ 217h§rl’DuZ+1’ dx
3 n+1 n |2
+3(28-1)e ZE Vet = Ve | da

1 w3 n * * n
+ 5 /Qh5 |:|uh+1 — U5|L2(Q + |I.I5 — 5uh|iz(ﬂ)] dz
Q

= At / oni'g: uz“da:+f5 / cith) = F(e) = a”(ch e ™) - (e —ef)| da,

12
where fgf% /5 F(c —I—Z —£; ’Vclh‘ dz. Using proposition 1.1, the

=1
fact that F' is non negative, the positive lower bounds gni, and 7y, for the density

and viscosity, the fact that the mobility is bounded from below , the Korn lemma (c¢f
[3, lemme VIIL.3.5]) and assumption (5.1), we obtain:

n Omin n 2
*EZZ ’VC +1’(L2 Q))d + 2 ’uh+1’(L2(Q))d

3

M XA
S 2o VA e+ 2800 OV (5.3)

max, ‘max (%))
i=1,2

iph 0 12 cn
< fgj?,é(c;zl) +— . |5uh|L2(Q) + At«QmaX|g| |Q‘ : |uh+1|L2 0)2 + 5?K1C} :
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Using the Poincaré and Young inegalities, since § < 1, yields:

3 5 n 2 len
§€Z; |vcih+1|(L2(Q))d +=5|u h+1|(L2 ))?

Mlet & n+1 n+1
Ir%a2x “max_(|%:]) Z Vi, ’(L2 aypa T Atmin Ci| Vi | (L2(9))
2
riph/ _n Qmax C Atgm x|g| |Q| cp
< FyPi(ep) + == |uh|L2(Q) + 47]m1?Ck "’ K "
; max Co At lolalQ 12 en
The constant K2h — glph<CZ) + Q | h‘L2(Q + p Qmax|g|2| | + 7K1h is
€ 4nminck 9
independent of § and w"*! and we have
Z |V ;Lh+1|(L2(Q))EL X Kc}l (54)
i=1
Z ‘vﬂz +1‘(L2(Q < tha (5.5)
n+1 ch
|uh |(H1(Q)) < Kgh, (5.6)
" ZD Kc;ll cy cyp %
n SKC;L n iI:naX (| % 2 n 2K Sh KSh
with Koh = =2 g = 2123 gl opax [ 2 2
3 E MIE Omin At’r]minck

We now use the discrete form a the volume conservation: m(ci™') = m(c},)
directly obtained by choosing v} = 1 in the system (5.2). Thus, thanks to Poincaré
inequality, there exists a positive constant K g - Cp (K ;Z + m(c?h)) independent of

§ and w™t! such that

‘an’Hl @ = KCh (5.7)

To estimate the mean m(u},T"), we take v§ =1 in the system (5.2). This yields:
mluyr?) = [ 6DF (e e da.

This can be bounded using |c”+1|Hl

) and |cZ|H1(Q) under the assumption (2.2).
Indeed, the polynomial growth (2.2) of d’ implies that there exists a positive constant

16X
Ci = 327: Bj such that

[DF (e e < O (1 e+ fei ).
Thus, since § < 1, and by using (5.7), we obtain

Lp-1

e\ P—1 -~ en
el (|Q +(K§) + |c;;g11> = Ko

20
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Thanks to the Poincaré inequality, we have
cl h,c} cp
|13 +1|H1(Q) Cp (K4h' + Ky h) = Ky (5.8)

The bound on pressure is obtained using the bound on the velocity (5.6) and the inf-
sup condition (2.12) which ensures (cf [7, 21.5.10, p. 344]) that there exists vi, € V},
such that

Yy e VP, /QyZdiv (vh)d:c:/ﬂz/hph'H dz and [va|g gy < |ph+1|L2 . (5.9)

Thus, taking v} = v}, in the system (5.2) yields:

onstopd! a* ! — orsul
‘ h+1’L2 :/ 2 hAt ho hvhda;—l—/ 20 Dul ! - Dvy, da
Q

) )
g [ e yuvde = [ 9w u e

/gzgrlg vhdx—l—é/z b — Qjin) V,u"+1 vy dx.

We use the Cauchy-Schwarz inequality, the upper bounds gpma.x and Mmax for the
density and the viscosity and the estimates (5.6), (5.7), (5.8) and (5.9) to obtain:

n Qmmx
p H}LQ(Q) [|uh|(L2 o)t up ™ |(L2(Q ]|Vh‘ L2(Q))¢

+ 277max|vuh+ ’(Lz(Q))d|vvh|(L2(Q))d
1) n 1
+ 5@max|uh|(L4(Q))d|vuZ+ |(L2(Q))d|vh|(L4(Q))d

6 n
+ 5@max|uh|(L4(Q))d|vvh‘(L2(Q))d’|uZ+1|(L4(Q))d

1
+ Qmax|Q‘ 2 |g|2|v|(L2(Q))d

3
n n+1
+5;|%—%h|@4(m>d Vi, ‘(Lz el Vlwa@)
1 Qmax o7
3B e ] i

n KSh Q2 3K K | |prt!
+Qmax|uh|(L4(Q))d 5" + Omax|9] |g|2Jr 6 8 |ph |L2(Q)‘

In conclusion, we have:

’ph+1|L2(Q) K;h7 (510)

. cp Qmax cp n cp 1
Wlth th - |:|uh‘(L2(Q))d +K :| +277maxK5h +Qmax|uh|(L4<Q))dK5h +Qmax|Q‘2 ‘g|2+
SKhKSH
Thus, by combining (5.7), (5.8), (5.6) and (5.10), we obtain a positive constant
K*°h independent of § and CZH such that
|wn+1 ‘W < KC;LL )
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Hence, taking R > K > 0 guarantees that for all (w,d) € W x [0;1], H(w,§) =
0= |w|y <R.

Validation of assumption (iii) of lemma 5.2

We have to show the existence of a solution to the linear problem H(w"*!,0) = 0.
This problem can be written as three problems Wthh are totally uncoupled:
(1-2) Find (¢ et pitt untly € (Ve)? x (V)? such that Vi = 1,2, Vol € VI,
Yvi € Vi,

a5 7 80) = [ et da.
Q
where

ai((c nel ), (i, v))) :/ {c?hﬂ Yo OhAtVu”'H Vuﬁ] dz
Q

+/ [ YeBVeRtt Vg — ,u?,fll/h} dz,
Q
with M, = My(c}).
(3) Find (up™,ppt!) € Vi, x VI such that Vit € VP, Vvl € VY,
n—1 7
/ LI — 5 + o ultt vl da +/ 2np Duy ! Do dx
Q Q

At P
n+1d- u . n u
*/ph W(Vh,)dx*/é’hg"/hdl",
Q Q

/Qz/hdlv( uy ) dz = 0.

Since the linear problems (1-2) are posed in finite dimension, it is sufficient to
prove that for all (ciy™, uFt) € Vg x Vi

(al(( i ), (i) =0, V(g vy € Vi x Vﬁ) = (e i) = (0,0).
Let (P! ulit1) € Ve x VI such that
(s (e ™), i vf)) =0, V(i) € Vi x V), (5.11)
Taking (v§,v)) = (it pit) in (5.11) yields:
/MO,LAt|Vul+1| dz + 255/ Vet da = 0.

Since the mobility satisfy (1.9), we obtain: V,u""'l = Vc?,j'l = 0. Hence, c?hﬂ and
pitt are constant. Using (5.11) then yields

(i iy ) = (0,0).

Cin

The problem (3) has a unique solution. Indeed, the lower bounds on density and
viscosity, the Korn lemma (cf [3, lemme VII.3.5]) allows to prove that the continuous
bilinear form

n—1
(u,v) € Vi —>/ Audj}jdaz—ﬁ—/ 2np Duy ™ Duda
Q

is coercive. The inf-sup condition (2.12) allows to conclude. O
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6. Convergence of discrete solutions in the homogeneous case. In this
section, we assume that g3 = g2 = g3 = 9o > 0. This implies that the function o(c) is
a constant function:

o(c) = o, YVc €S.

In this particular case, the problem 2 reads:
PROBLEM 5.
e Step 1: resolution of Cahn-Hilliard system
Find (cit pp™) € Vi 5 x (V}’f)3 such that vy, € Vi, s, Vv € V), we have,
fori=1, 2 and 3,

n+1 n
C; — C;
ih ih V’/lt dr
N

- / {c?h — az} [uZ _ At i(c? )Vu”“} -Vl dx
Q % 3 (6.1)

MnJra
= —/ %h Vit vl dr,
(9] [3

3 r
/M?hﬂl/ﬁdx_/DF cps € TH_I)V;Cldl‘-‘r/ EEiSVcZ.’fﬁvyﬁdx,
Q

with a; defined by a; = / c?h dx.
Q

o Step 2: resolution of Navier-Stokes equations
Find (up ™', ppth) € Vity x Vi such that Vv € Vi, Yl € VT,

utt —uy 1 !
/QOLTWMH*/%(ULZ-V)“T i de
Q ¢ 2 @
1
5 [t v
+/277h+1Du"+1 Du}jdx—/PZ“diV (k) da (6.2)
Q

/Qog vy dm—/z ”“ v dz,

/ Vdiv (up ) dr =0,
Q

where Nt = n(cp ).

The existence of solutions is given by theorem 5.1. For all N € N, we can introduce
the following functions of time ¢t € [0,]:

ety =ch(), it €ty tngal, (6.3)
e (t,) =), if t €]t tnri], (6.4)
tna1 —t t—tn , _
sz\ifz(t’ ) = %Cih(') + At Ci}j_l(')» if ¢ E}tnatn+1[' (6'5)
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For chemical potentials, for all N € N, we introduce the following piecewise (in
time) constant functions:

pin(t, ) =m0, if ¢ €Jtn, tnia[- (6.6)

And finally for the velocity, we introduce the following function of time ¢ € [0, ],
forall N e N:

ul(t, ) =ul(), if t €)tn, tnii], (6.7)
a () =up (), if t €]tn, tnyl, (6.8)
tpe1 —t t—tn . .
uhN(t7 ) = %uh(') + Tuhle('), if t E]tn7tn+1[. (69)

The convergence result is the following:

THEOREM 6.1 (Convergence theorem). We assume that assumptions of theorem
5.1 are satisfied, so that a solution (¢}, pub,ulY, pi) of problem 2 exist for all N € N*
and for all h > 0. We assume that 8 € ]%, 1], that the consistency property (2.1)
is satisfied and that there exists two constants C > 0 and Aty > 0 such that for all
At < Aty and for allm € [0; N — 1],

AT + / i+ ] - [f';sh poo [ il asl

AtZ/Q %h st dm—i— (28— 1)e /ZE IVc"“—Vc?h|2dx] (6.10)
=1

+At/ i Dup P da go/ o™ —uf | de < At@o/g ui de.

+C

Consider the problem (1.11), the initial conditions (1.16) and the boundary conditions
(1.14)-(1.15). Then, there exists a weak solution (c, p,u,p) defined on [0,ts] such that

¢ € L72(0, £ (H'(2))*) N CO([0, £ (LU(R))%), for all g < 6
€ L2(0,t 55 (H'(Q))?),
w e L0, 73 (L(Q))) N L2(0, 43 (H(©))),
c(t,z) € S, for almost every (t,z) € [0,t7[x €.

Moreover, for all sequences (hg)ken and (Ng)ken satisfying the following proper-
ties:

o hK—>O andNK—>+oo
K—+o00 K—4o00

o there exists a constant A (independent of K ) such that: (recall that the function
Cinv is defined by (2.15))

VK € N*, Ciny (hi) < AN, (6.11)
the sequences (cth)KeN*, (“hx Jkens and (u)) ) ken satisfy, up to a subsequence,
the following convergence when K — 400 :

chNIf — ¢ in C°(0,tr, (L9)%) strong , for all ¢ <6, (6.12)
uhNK — u in L2(0,ty, (L*)?) strong , (6.13)
uhK — pin L2(0, ¢y, (H')?) weak. (6.14)
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REMARK 5. The assumption (6.10) is obtained in practice by applying the propo-
sition 4.1 and bounding the term:

/ [F(ch™) = Fleh) — d¥ (e, ¢y ™) - (e = ¢f)] da,
Q

in the right hand side of (4.1). The way to obtain this bound is different depending on
the scheme DY (c",c" 1) which discretize the non linear terms of the Cahn-Hilliard
system. This was largely discutted in reference [6].

REMARK 6. In the statement of theorem 6.1, the inequality (6.11) is not a stat-
bility condition. It only means that to obtain convergence towards weak solution of
continuous problem, it is necessary that the time step goes to zero faster that the mesh
size.

The proof of theorem 6.1 is inspired from the references [11] and [14] which deal
with the homogeneous diphasic Cahn-Hilliard /Navier-Stokes system. Excluding the
fact that we are interesting in a triphasic model, the major difference with these work
is the taking into account of the transport term in the Cahn-Hilliard equation. We
have to prove that the additional term do not distirbe the consistency. This is true
provided that the time step goes to zero faster than the mesh size. This condition is
less restrictive than the stability condition introduced in [14] (¢f remarque 6).

Basically, the proof of theorem 6.1 is split in three step:
e first, the energy equality (6.10) allows to prove that the sequences (cflv - ) KeN*,

(H}Z:/:(()KGN* and (uhNi)KeN* are bounded in some suitable norms.
e it is then possible to apply compactness theorems to extract some convergent
subsequences.
e the third step consists in proving that the obtained limit is a weak solution
of problem (1.11).
We separatly detailed each of these three steps below.

In the sequel (section 6.1, 6.2 and 6.3), we assume that assumptions of theo-
rem 6.1 are satisfied and in particular the notation c}, uj, uy, py. .. denote solutions
of the discrete problem 2, and (C;Z:/::)KGN*; (N}IY;)KGN*, (uﬁ;)KeN*. .. the associated
sequences.

6.1. Bounds on discrete solution. In this section, we assume that K is fixed
and to simplify notation we omit the index K in the notation hx and Ng. The
first estimates stated in proposition 6.2 are directly derived from the energy estimate
(6.10).

PROPOSITION 6.2. We have the following inequality:

sup (|c;;|(H1(Q))3) + sup (|u;;|(L2(Q))d) < Ky, (6.15)
n<N n<N
N—-1 3 5 N—-1 5
n+1 n+1
(A3 ) (35 3 ) < 610
n=0 i=1 n=0
N-1 3 S n 2 N-1 )
At Y ALY ZhTtlh D Juptt - U oy | < K (6.17)
n=0 i=1 H!(Q) n=0

where K1, Ko and K3 are three constants independent of At and h.
Proof. This proof is very similar to the proof of proposition 4.2 in [6]. Never-
theless, it use additional ingredients (Korn lemma (c¢f [3, lemma VIIL.3.5]), the lower
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bound for the viscosity n(c) and the fact that the density is constant) to deal with
the terms which involve the velocity.

Let ¥, = min [¥;] and X3 = max [3;].
i=1,2,3 i=1,2,3

(i) First, the inequality (6.10) implies that, for all n € [0; N — 1],

i 1 ; 1
riph/ n riph/ n n|2
}—;f (c +1) + 29 / |uh+1| dx < }—55 (cp) + §Qo/g|uh| dx.

Thus, we have, for all n € [0; NJ,

ri n 1 n ri 1 2
FaPl (e + 590/Q | do < F P (ch) + 590/9 lup|” da. (6.18)

Furthermore, thanks to the assumption of polynomial growth (1.10) on F
and thanks to the definitions of ¢ and uf, the initial energy can be bounded
independently of h:

i 1 1
‘Fg,lgh(c%) + 5 AQQ’U%}Q dx g Bl <|Q| + |C0|;1)+ 2M|C0|f{1+ §QO|UO|H1(Q)
= KQ.

Since F' is a positive function and using the proposition 1.1, the inequality
(6.18) allows to deduce:

3 n n|2
Vn € [[O;N]], gEZ|VCh|(L2(Q))3 + |uh|(L2(Q))d < Ko.

The inequality (6.15) is obtained using the discrete volume conservation and
the Poincaré inequality.

(ii) We obtain (6.16) and (6.17) by summing the equations (6.10) for n from 0 to
N —1:

riph/ n= 1 n— 2 Lo 1
7™+ 5 [ i o] - [ 4§ [ ol
@ Q

N-1 o3 M7L+a
+C Z [At/ |V n+1’ dx + - (25—1 /Z Vet — VC?h|2dx]
n=0 i=1 Q
N-1 . 2 i
= {At/ D e+ g / oofup ™ — uj| dw] < ; At/Q oog - uj ™ da.

Since the discrete energy is positive, using the proposition 1.1, the lower
bounds for the mobility and the viscosity, we obtain:

N—

MY o
E;j Z t;}VﬂZH‘ +2 25—1522/Z|chh+1_chh| dm]

n=0

+ Z |:277minAt/Q }Du2+l‘2d‘r+igo/ }un-ﬁ—l _uZ‘le’:|
n=0
N—-1

1/2 n+1
< Ko + 00lgl, |9 / Z At|u " |(L2(Q))d'

n=0
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0

Using Poincaré and Korn lemma, using the Young inequality, we find:

N—-1 3

M2 nt1(2 , 3 = 2 n+1 n |2
Cl g S Ay v +§(25—1)5;Z/QZ\V% Ve da
n=0 =1 n=0 i=1

N-1 | N
+ Crcmin Y At/ IVup | da + 10 3 / g — | de
n=0 Q n=0 Q

2318511(Cy)*Cxe

Tlmin

< Ko +ty
This inequality gives both (6.16) and (6.17).

To pass to the limit in non linear equations (c¢f section 6.3), we need strong

convergence of the subsequences. For this reason, it is usefull to obtain more accurate
estimates.

PROPOSITION 6.3. There exist two constants Ky and Ky independent of h and

At such that:

2

N—-1 3 Cn+1 — 1 N-1 3 9
DAty [ ) + ( SN e = el > < Ki, (6.19)
<n=0 i=1 At (H1(Q)) VAL = (L2()
N—i—1 ) 2 R
> At —ut| < Ks(t)3, Vie[o;N —1]. (6.20)
n=0 (L2(2))¢
Proof.
(i) The estimate (6.19) is obtained from the first equation of Cahn-Hilliard sys-
tem.

(a) Consider v} € V}'. The first equation of (2.4) reads:

il en Mo
ih ih 1 _ Oh n+1 Iz
vy de = — —2_Vus;™ -V, dx
/Q At h /Q y, " Hin h

3
+/Q [cin — ai][uy, — g Z(th - ij)vlij}jl] ) VV;: dx.
j=1

Thus, the inverse inequality (2.15) yields:

n+1 n
C. — Cip
zhil,/;; dz
0 At

Mo
< [0+ Il + el ) s |
m

At 1L, 2 15 n
(el + G () Hefilgn ) D7 (1 Con (B2 e ) 185 g s

j=1

Finally, thanks to (6.11) and (6.15), we obtained that there exists a
constant K (independent of h and At) such that:

n+1 n

it — ¢

1 s Ly
0 At

We are now going to use this intermediate inequality to prove (6.19).

3
n n+1
<K |:|uhH1(Q) + Z |:uz‘h |H1(Q)] |VII:‘H1(Q)‘ (6'21)
=1
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(B) Let v € HY(Q). Let v} be the L? projection of v on VI'. Owing to (2.14),
we have:

|V}l:|H1(Q) < C‘V|H1(Q)'

Thus, using (6.21), we obtain

n+1 n n+1 n
Cin  — Cin _ Cinh —Cih
22 Py dx| = 2 ———vldr
Q At Q At

Since this inequality is true for all v € H*(£2), we have

1
(C?}:r — Cin 1/>
At L2()

< KC

3
|uZ|H1 + Z |/%7'Lh+1 ’H1:| |V‘H1~
=1

C?h“ — Cin - s
p
At a)y  venl(Q) V] (@)
3
1
< KC |uZ‘H1(Q) + Z |ﬂ?h+ |H%Q;| .
i=1
Consequently, using (6.16) yields:
N-1 3|+l _n (2
Aty | < 18K*C*Ko. (6.22)
;) = A ey

We now take v/ = At(c%T — ¢ ) in (6.21). This yields:
v h ih ih

3

>

=1

/ |c?h+1 — czﬂz dx
Q

=1

3 3
< KAt [umHl + Z ‘/"’?h+1’H1:| Z ’C?le —ci, i
i—1

and so, using (6.16) and (6.17), we have:

=

-1 3

Z |C?h+1 - C?h|i2(g) <2 V K2\/E\/E (623)

0 i=1

3
Il

The inequality (6.19) is readily deduced from equations (6.22) and (6.23) by
defining the constant K; = max(18 K2C?K,,2/3K2v/K3).

(ii) To obtain estimate (6.20), we begin with bounding the term: |uZ+i — uﬁ‘?m)d
forn € [0; N —i—1]. We choose v}} € V}!; such that
/ vidivepde =0, Vvl € VP, (6.24)
Q
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as function test in (6.2) and we sum up the equation to obtain:

,4 1 n+i—1
/ng(u;f” —up) - -vpdr+ 3 Z At/Q 00 (uﬁ . V) uZ’H -vpde
k=n

T
1 n+i—1 n4i—1
~3 Z At/ oo (uf - V)vp- it da + Z At/ 20y Duftt : Dy da
k=n Q k=n Q
T2 TB
n+i—1 n+i—1 3
= Z At [ pog- vy de — Z At Z(c?h - aj)Vp;‘f}J[l -vpde.
Q Q
k=n k=n j=1
T4 T5

We then separatly estimate each term of this inequality. For term 73, by
using the Hélder inequality and an interpolation inequality, we obtain:

1 n+i1—1
T < §Q0At Z ‘uk’(LB)d’uk+1’(H1)d‘V}lzl|(L6)d

k=n
n+i—1

ST DRSS P g
~X 2 h (Hl)d = (L2)d (Lﬁ)d (Hl)d'
Using the bound (6.15) and the Young inequality yields:
n+i—1
1 Loy 27 k3 k413
T < oKy VR myadt ) g[’u |arrye + [0 |(2H1)d}

k=n
We conclude by using the Holder inequality and the bound (6.16):
2 37300 3 iyt
T < §90K1 K3 vi] pya(ty) 5 () 7.
The term T5 is bounded in the same way:

1 n+i—1
Tz < oot ) [0 a8 gy [0 )

k=n
n+i—1

1 . 3 3
< §QO|Vh|(H1)dAt Z ’uk’fm)d’uk‘(zLG)d‘ukH‘(Hl)d

k=n
2 L3 4 3, 1
< 590K1 K3 Uil gnya (t) T (8) 7.

For the viscous term T3, we derive the following estimate:

n+i—1
T; < 277maxAt Z |uﬁ+1’(H1)d|VE‘(Hl)d
k=n
n+i—1 9 1
.1 ; 2
< 277max|u;nl|(H1)dAt v ( Z ‘u2+1|(Hl)d)
k=n

1 1 N §
< 2Nmax K5 |Vfl”(H1)d (t;)2 (t))3.
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It remains the terms Ty and T of right hand side:

) .
Ty < 00lgly |22 (V)| 21",

and
n+i—1 3
k . k+1 u
I5 < Z Aty [ef — ol H1|Vh|(L4)d
k=n j=1

3, u i1
<19[K + max ol | K5 3] oo (4.

Finally, we obtain the following result: there exists a positive constant K
such that, for all v} € V}!, satifying (6.24), we have

< K|wi ] grnya ()1

[t =g vido
Q

In particular, for v} = u}™* — u} (which satisfies (6.24) owing to (6.2)), we
find

- 2 ; i1
uZ'H - uZ|(L2)d < K’uﬁ*‘z — uZ’(Hl)d(tl)L

Thus, we obtain

N—i—1 ) 5
Z Atfuy ™ — um(L?(Q))d'
n=0

This leads to the conclusion with K5 = QKKQ(tf)%.

6.2. Compactness argument, convergence of subsequences. The esti-
mates proved in section 6.1 (proposition 6.2 and 6.3), allow to obtained (up to subse-
quences) the convergence of sequences: cg}f, Eévlf, gij}f, uﬁf, ug}f, ﬁth and gij}f
The following propositions give the space in which these convergences hold.

PROPOSITION 6.4. Up to subsequences, we have the following convergences when

K— 4 :

chE = inL(0,ty, (H'(2)%) weak-s, (6.25)
ps = p i L2(0,tg, (H'(Q)?) weak, (6.26)
8C;.LVK Jc 9 1
vl Q) 2
o~ L0, (H(Q)) weak, (6.27)
upt =~ in L2 (0,tg, (H'(Q))?) weak. (6.28)

Proof. The convergences (6.25), (6.26), (6.27) and (6.28) are direct consequences
of proposition 6.2. Indeed, it is easy to verify that the estimates stated in this propo-
sition prove that the sequences c,]lv =, ufzv =, 8tc§lv = and u,]lv & are respectively bounded
in the following norm: L°°(0, ¢, (H'(€2))?), L2(0,ts, (H'(Q2))?), L? (0, ¢y, (H*(2))'),
L2 (0.1, (H(2))). O
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The weak convergences we write above are not sufficient to pass to the limit in
the non linear terms of Cahn-Hilliard and Navier-Stokes systems. We prove in the two
next proposition that it is possible to obtain strong convergence for order parameters
and velocity in some suitable functional spaces.

ProproOSITION 6.5. Up to subsequences, we have the following convergences when
K — +oo:

chNI’: —c inC%0,ty, (L1(Q))?) strong, for all 1< q<+ooifd=2, (6.29)
or 1<q<6ifd=3,

chNIf —c in L%(0,ts, (L*(Q))%) strong, (6.30)

g" —c inL*0,ts,(L*(Q))?) strong, (6.31)

e —c  inL?(0,ty, (L*(R))*) strong. (6.32)

Proof. The sequence ch is bounded in L>°(0, ¢ 7, (H'(£2))?) and its time derivative

8tchIf is bounded in L? (0,¢7, (H'(£2))"). We obtain the strong convergence (6.29)
of order parameters by applying the Aubin-Lions—Simon compactness theorem [19].
From this convergence, we deduce the strong convergence (6.30), and then using the
inequality (6.17), the strong convergences (6.31) and (6.32) of functions ch X and € ch
0

To prove the result of strong convergence on the velocity, we need to apply a more
precise compactness result since we do not have any estimate on its time derivative.
We apply a compactness theorem du to Simon [19, Théoréme 5, p.84] in which the
condition on the time derivative is replaced by an estimation on time translates.

First, we write the term to estimate. This term is defined from the discrete
function uf which is piecewise constant (in time) and its time translate. We link
this term to the values u} of the function on each time intervals in order to exploit
estimates proved in section 6.1. To simplify the notation, we omit in this lemma, the
index K in the notation hx and Ng.

LEMMA 6.6. Let T €]0,t5[. We denote by i € [0; N — 1] the unique index such
that t* < 7 < t'+1. Then, we have:

(1) if T < At then

ty—T
N N
A ‘Eh (S + 7, ) uh ’(Lz Q))d =T Z ‘uh (Lz(ﬂ)) (633)

(ii) 4n all cases, we have:

tf—T
/0 lup (s +7,) =y (s, ’(L2 ay)e 8
e Ny 2 (6.34)
Z T Z Atfup ™ =g )0

Proof. Begin with writing the left hand side in the form:

ty—T ) N—i—2 nt+1 )
0 |Ei\,(5 +, ) - Qﬁ(S, ')|(L2)d ds = E |Ei¢\’(5 + 7, ) - Qg(sv ')|(L2)d ds
n=0 tn
ty—r N N 9
+ uif (s +7,) = uy (5,)| (2a ds.
N—i—1
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It only remains to identify the values of the translates of the function in the intervals
¢ for n € [0; N —i — 2] and [tV =71 ¢, — 7.

We introduce the real 7 defined by 7 = 7 — t*, we choose n € [0; N — i — 2] and
consider the two following cases:
o cither s € [t",¢" ! — 7], then we have t" "¢ <"+ 7 < s+7 < "M —F 7 L gntift
and so

uy (s +7,) =upti().
e cither s € [t"T! —7,t"*+1] | then we have t"FiHl <"l 47— F < s+ 7 <" T4 7 <
t"++2 and so
Eﬂv(s +7,) = uz+i+1(.)_

Finally, consider now the case where s € [tN=i=1 t; —7]. We have tV—i-1 <s< =i
and tN P VT4 F VT 4 7 Cs+ 7 < VL Thus, for all s € [PV 4 — 1],
we have

up (s +7,0) = uy ().

We deduce the following equality:

ty—r 9
/0 ’gijzv(s—’—,rv) _ghN(sﬂ')|(L2)d ds

N—i—1 9 N—i—2 9
_ = n+i __ ..n =|;n+i+l _ oon
= E (At 7')|11h W | 1,290 + E T|11h U |(p2)a-
n=0 n=0

We now examine the cases (i) and (ii) :
(i) if 7 < At then we have i = 0 and 7 = 7. the above equality exactly gives the
conclusion.
(ii) this second conclusion is also deduced from the above equality since 0 < 7 <
At.

We ca now state the proposition giving the strong convergence for the velocity.
PROPOSITION 6.7. Up to subsequences, we have the following convergences when
K — 400 :

w® s uin L2(0,ty, (L2(Q))?) strong, (6.35)
ws —u i 20,5, (L3(Q))%) strong, (6.36)
WK = in L?(0,t5, (L?(2))?) strong. (6.37)

Proof. The proof relies on a compactness theorem du to Simon [19, Theorem 5,
p.84] which state that the embedding

L2 (0.t (' (2)%) 0N (10,441 (L2@)7) < 12 (10, L, (L2(@)")
is compact. The Nikolskii space N§ (]O, tel, (L2 (Q))d) is defined by:
N5 (10,441, (12@))") = {v € 12(Jo, 1L, (2(@))");

1
3C' > 0,Vr E]O,tf[, ‘V( + 7, ) — V|L2(]0,tf7-r[,(L2(Q))d) <Crs },
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with the norm

v |N8 (10,¢5[,(L2(Q))4) <| |L2 (10,5 [,(L2(2))9)
1
2

1 2
+ (Sv+m) - ) )
o500, Ve ) =Vl goe —rrz@py )

Thus, since the sequence gi\]}’(‘ is bounded in the spaces L?(]0,¢;[, (H*(22))?) and
L2(]0, ¢4, (L3(22))?) (cf equations (6.15) and (6.16)), it is sufficient to prove that it is
bounded in the space NQ% (J0,t¢[, (L2(2))4), to obtain the conclusion. Let 7 €]0,¢[.
We still omit the index K in the notation hx and Ng.

(i) If 7 < At then owing to lemma 6.6, we have:

ty—r N-2
’H’JZ\T(S +7, ) - uh |(L2 Q))d ds =71 Z ’un—&-l uZ‘?}ﬁ(Q))d < KaT.

(ii) If 7 > At then owing to lemma 6.6, and then using the inequality (6.20), w
have:

ty—7 9
/O |E£LV(S+T’.) *E}]LV(SVH(LQ(Q))(,, ds

N—i—1 N—i—2 9
Z At‘un-i-z_ n‘ L) d_~_ Z At’un+z+l uZ L2

< K [(tl)i + ()] < K1+ 21}7%,

since we have ' < 7 and t'T1 = ¢ + At <

In all cases, we have obtained the existence of a p051tive constant Kg (independent
of h and At) such that:

ty—T 9 )
/0 ’ghN(s +7,)— ghN(s, ')|(L2(Q))d ds < Kgr%, V1 €]0,tf].

This concludes the proof of convergence (6.36). The convergences (6.35) and (6.37)
are then obtained thanks to the inequality (6.17). O

6.3. Passing to the limit in the scheme. The convergences obtained in sec-
tion 6.2 allows to pass to the limit in the discrete system.

For Cahn-Hilliard system (without the transport term), this work was already
done in details in reference [6]. We focus here on the transport term and on the
Navier-Stokes equation.

To simplify the notation, we still omit the index K in the notation Nx and hy
but when we say “convergence” it means K — +oo (and consequently Nx — 400
and hxg — 0).

6.3.1. Transport term in Cahn-Hilliard equation. Let v* € C*°(1Q) a given
function and 7 € C°(]0,¢s[). We define v} as the H' projection of the function v*
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on VI. We have to prove the following convergence:

b At &
/ / [Q% - ai} [g,ﬁv - — Z(gﬁ — aj)V,u%] Vol de 7(t) dt
0 e %= (6.38)

ty
—>// ozl u- Vvt de 7(t) dt.
Q

We proceed in two steps, separatly considering two terms of the left hand side:
the standard transport term and the additional term which ensures the inconditionnal
stability.

The following inequalities allows to identify the limit of the first term:

e —ay)up - Vol dz T(t dt—// UVV‘udl‘T()dt‘

tf

(ciy, — ci)uy -V (vi —v*) dz 7(t) dt‘
Q

ty ty

(Q% — ) (ghN u) - Vvtda 7(t dt’

M= c)u- Vtde T(t )dt‘

yn
< |7'|Loo(o,tf)|Vh - VulHl(Q)’Qih - ai|L2(0’tf’H1(Q))|Eh ‘LZ(O,tf,(Hl(Q))d)
N N
+ \T|Loo(o,tf)|VV#\L3(Q) |Qih - ai|L2(0,tf,H1(Q))|Hh o u|L2(0,tf,(L2(Q))d)

N
+ 171 0, VP lLao lin = €ilia o, 20y W2 0.0, ) )
— 0,

since ¢} is bounded in L2(0,t;, H'(2)), ul is bounded in L2(0,¢;, (H'(Q2))?), ¢}
(strongly) converges in L2(0, tf, L2(€2)) towards ¢; (cf equation (6.31)), ujy (strongly)
converges in L2(0, ¢, (L2(2))%) towards u (cf equation (6.36)) and, owing to assump-

tion (29), |VIL - V;LL|H1(Q) - lg‘f;u‘l/ - Vh|H1(Q) —> 0.
N

We now use the fact than the sequences c;j;, are ,uj]\g are respectively bounded in
L>°(0,t, H(Q)) and L?(0, ¢, H!(£2)) norm, the inverse inequality (2.15) and the con-
dition (6.11) on the sequences hx and Ng to show that the second term convergences
towards 0:

/tf/ [Q% - ai Af Z Vuﬂ,} -V dx T(t) dt
0o Ja

0 j=1

At ty 3
< E\V(Vﬁ - V“)}Lz/o i — il DIl = oyl |Vl () dt

Jj=1

At ts 5
+ ST /O e = aal e e — gl |l LT dt
j=1
At Ciny (B 5
< ﬁh‘ﬂ”ﬁ — V¥ ‘Q% - ai‘Lx’(Hl) Z |9% - O‘j|Loc(H1) |'u§\;l|L2(H1)
j=1

At
+ ?|T|L2WV |L°°|Czh 0‘1|L<>o (H!) Z| Cin — aJ’LW H1)|p’1h|L2 (HY)

— 0.
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Thus, we proved that the convergence (6.38) holds. Re-using (exactly as it is)
the reasoning presented in [6] allows to pass to the limit in the other terms of the
Cahn-Hilliard system.

6.3.2. Navier-Stokes system. Let v" € C2°(Q) satisfying div (") = 0 and
7 € C([0,¢¢]) such that 7(tf) = 0.
We introduce the space

Zy = {zh eV W eVy, /

div (zp,)vy do = 0}.
Q

The inf-sup condition (2.12) implies that the function v* € H}(£2) which is diver-
gence free can be “well approximated” with functions in Z;. This is detailed in the
proposition 6.8.
PROPOSITION 6.8 (Approximation of divergence free functions, [7, eq. 12.5.17]).
We have the following inequality:
1

f - ¥ f e . .
z}}lélZ}L|V 2l (@ ﬂuulenv;;0|y Vil @) (6-39)

Let v} be the H! projection of v" on the space Z;,. The proposition 6.8 and the
assumption (2.10) show that

vy — v, in (H'(Q))¢ strong. (6.40)

We use v} as a test function in the first equation of (6.2). We then multiply by

7(t), t €]t t" 1] integrate between ¢" and ¢"*1, and sum up for n from 0 to N —1 so
that we rebuilt a variational formulation on |0, ¢ f[xQ. The unsteady term is modified
by a discrete integration by part:

n+1_ tf _ _
/ /QO uh R 7790/ /uh () - vl dp T =T =AY () —r(t— At

At

¢n+1

—|—Qo/QuZ:N(LE)-I/z(£U) dx/o 7(ty — tAL) dt
fgo/ﬂug(:ryuﬁ(x) dac/0 T(At(t — 1)) dt.

Thus, we obtain the following formulation of the scheme in which we can pass to the
limit:

_go/tf/uh t,z) - vy de (1) — A( At)dt_g@/ﬂug(ﬂﬁ)"/z(fv)dﬁv/OlT(At(t—l))dt

T1 T2
tf tf N
/ /go uh v doT(t dt—f/ /QO uh uy, dzx7(t)dt
T3 Ty
tf tf
+/ / 2n(ey ) Dy, : Dvy der(t) dt :/ /Qog cvpdzT(t)dt
0 Jo 0 Jo
Ts
ty 1
/ / Z ;) )Vud, - vh dz T(t) dt — go/ u =N (z)  vi(z) de / T(ty — tAL) dt.
Q 0
T Ts
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The limit of the term T} is readily obtained from strong convergences (6.36),
7(t) — 7(t = At) b2 -
—Qxr towards 7’ in L*(0,ts) (obtained

for instance with dominated convergence theorem since the function 7 is in C* ([0, ¢4])):

(6.40) and those of functions ¢t —

tr
T1—>Q0/ /u~u“dw7’(t)dt.
0 Ja

The term T, allows to show that u satisfies the initial condition (1.16) in a weak
sense. The convergences (2.18), (6.40) and the uniform convergence on [0,ty] of the
function ¢ — 7(At(t — 1)) towards the constant function equal to 7(0) yields:

Ty — 0o /Q u’(x) - v*(x) dx7(0) dt.

Concerning the term T3, the following inequality allows to conclude:

ty ty
/ / (ghN-V) ﬁhN'VdeT(t)dt*/ / (u-V)u~u“me(t)dt‘
0o Jo 0o Jo

< Irlpee [[a v

uN u ﬁN
u h
" L2((L2)d)

[Wh — v h

2((g1)d 2((L4)yd + ‘g 2((H1)d |Uu|(L°°)d]
L2((H1)4) L2((L*)4) L2((H1)4)

+

[ [ ww@ w0l

— 0.

Indeed, since the sequences (ulY) and (uj’) are bounded in L2(0,#s, (H!(Q))?), the
convergences (6.36) and (6.40) shows that the two first terms of the above right hand
side tends to 0. And the last one (the term involving the integral), it also tends
to 0 by weak convergence of Vuj} towards Vu in L2(0,%s, (L*(2))9) (a raisonning
component by component gives the result since for all 1 < 4,5 < d, the function
(t, ) = wi(x)vH(z)7(t) is in L2(0, 5, L3(Q))).

The term T} is treated in the same way:

t tr
/ / (gﬁ-V) l/;;'ﬁl;:rdfle(t)dtf/ / (u-V)u“-ude(t)dt‘
o Jo o Jo

< Irlpoe [[uf "

—N —N
up u, —

|V;; - Vu|H1

‘VVU|(L3)d

+‘u u }
L2((L4)4) Lz((LhHd) 17 1L2((Ls)d) L2((L2)4)

N
“"Eh —u

L2(0,tf’(L2)d)|vuu‘(L3)d‘u|L2((L6)d)|T(t)‘L°°’
the conclusion being now obtained using the convergences (6.36), (6.37), (6.40) and
the fact that the two sequences ulY and @} are bounded in L2(0,#, (H!(2))9).

The limit of the term (5) is obtained using the following convergnence (up to a
subsequence):

n(ey ) —nlc) in L*(0,ty, (L2(Q))9) strong. (6.41)

This convergence is proved by using the dominated convergence theorem (the viscosity
7 is a bounded continuous function and €, strongly converge in L?(0,t, (L2(€2))?3),
so almost everywhere up to a subsequence).
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Thus, using the convergences (6.40), (6.41), the fact that the sequence uj is
bounded in L2(0,¢s, (H'(Q))?), and the weak convergence of Duj towards Du in
L2(0,t7, (L%(Q))?), we obtain

tf

tr
2n(en, ) Dy : Dvj der(t)dt — / / 2n(c)Du : Dv*" dz7(t) dt‘
Q o Ja

0
—N
< ‘uh

u u —N u
2maxl v} = % g yalTle + 2[n(El) = n(e) 192 | 0 Il

L2((H1)d |:

/tf/217 @y —u): Dv"dar(t) dt‘

L2(0,tf,L2)

By (6.40), the convergence of term Tg is immediate:

Ts — /Qog -vdrT(t)dt.
Q

The convergence of the capillary force term 77 is obtained as follows:

ty 3
/ /Z —a])V,u]h v dxT(t) dt — / /Zc]h—oz] Viusn - v dzr(t) dt
0 =
3
N
Hjh
<X (v

i —

— C — C; l/u oo oo
L2<<L2>d>[ ?lLee Lty 31 gy ¥ e 1T }

3
Z cin — )V (g, — py) - v dar(t) dt

— 0.

The two first terms of the right hand side tend to 0 thanks to convergences (6.31)
and (6.40) since the sequences (¢ ]h) and (,u]h) are bounded in L2(0,¢;, H'(2)) and
L>°(0,ts,H'(Q2)) respectively. The last term tends to 0 by weak convergence of Vu;\,fl
towards Vy; in L2(0,ty, (L2(22))9).

Finally, it only remains to prove that the residual term 75 tends to 0. This simply
comes from the fact that:

/ ul (z) - v (z) dz
Q

< ‘uhN(')‘Lz(Q)|VmL2(Q) < K1|VU|L2(Q)7

and

1
/ 7(ty — tAt) dt — 7(t5) = 0.
0

In conclusion, we proved that:

tr
—go/ /u-u“d:cr’dt—go/u0~1/“d1:7'(0)
0 Jo Q

+/0th %QO[(U-V)U-VU—(u~V)Vu-u} +2n(c)Du: Dv*dx 7(t) dt

ty ty 3
:/ /gog~v“dm(t)dt—/ /Z(Qj—ozj)v,uj-vude(t)dt.
0 JQ 0 Jei5



To finish, passing to the limit in the constraint equation yields:
div (u) = 0.

7. Conclusion. We proposed in this article an original scheme for the discretiza-
tion of the triphasic Cahn-Hilliard /Navier-Stokes model.

This scheme is inconditionnaly stable and preserves, at the discrete level, the
main properties of the model, that is the volume conservation and the fact that the
sum of the three order parameters remains equal to 1 during the time evolution.

We proved the existence of at least one solution of the discrete problem and,
in the homogeneous case (i.e. three phases with the same densities), we proved
the convergence of discrete solutions towards a weak solution of the model (whose
existence is proven in the same time).

The main perspective is the study of the convergence in the case where the three
fluids in presence have different densities. Even if the energy estimate (and the exis-
tence of discrete solutions) are still true in this case, it is delicate to obtain sufficient
estimates which would lead, by compactness, to strong convergence on the velocity
which is necessary to pass to the limit in non linear terms. Indeed, the Navier-Stokes
equations involves a term of the form:

uﬁtg

The time derivative of the density is not very smooth since it is a function of order
parameters whose time derivative is in L2(0, ¢, (H'(2))’).
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