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INVERSE POLYNOMIAL OPTIMIZATION

JEAN B. LASSERRE

Abstract. We consider the inverse optimization problem associated with the
polynomial program f∗ = min{f(x) : x ∈ K} and a given current feasible
solution y ∈ K. We provide a systematic numerical scheme to compute an
inverse optimal solution. That is, we compute a polynomial f̃ (which may be
of same degree as f if desired) with the following properties: (a) y is a global

minimizer of f̃ on K with a Putinar’s certificate with an a priori degree bound
d fixed, and (b), f̃ minimizes ‖f − f̃‖ (which can be the ℓ1, ℓ2 or ℓ∞-norm

of the coefficients) over all polynomials with such properties. Computing f̃d
reduces to solving a semidefinite program whose optimal value also provides
a bound on how far is f(y) from the unknown optimal value f∗. The size
of the semidefinite program can be adapted to to computational capabilities
available. Moreover, if one uses the ℓ1-norm, then f̃ takes a simple and explicit
canonical form. Some variations are also discussed.

1. Introduction

Let P be the optimization problem f∗ = min {f(x) : x ∈ K }, where
(1.1) K := {x ∈ R

n : gj(x) ≥ 0, j = 1, . . . ,m},
for some polynomials f, (gj) ⊂ R[x]. This framework is rather general as it encom-
passes a large class of important optimization problems, including non convex and
discrete optimization problems.

Problem P is in general NP-hard and one is often satisfied with a local minimum
which can be obtained by running some local minimization algorithm among those
available in the literature. Typically in such algorithms, at a current iterate (i.e.
some feasible solution y ∈ K), one checks whether some optimality conditions (e.g.
the Karush-Kuhn-Tucker (KKT) conditions) are satisfied within some ǫ-tolerance.
However, as already mentioned those conditions are only valid for a local minimum,
and in fact, even only for a stationary point of the Lagrangian. Moreover, in many
practical situations the criterion f to minimize is subject to modeling errors or
is questionable. In such a situation, the practical meaning of a local (or global)
minimum f∗ (and local (or global) minimizer) also becomes questionable. It could
well be that the current solution y is in fact a global minimizer of an optimization
problem P′ with same feasible set as P but with a different criterion f̃ . Therefore,
if f̃ is close enough to f , one might not be willing to spend an enormous computing
time and effort to find the global (or even local) minimum f∗ because one might
be already satisfied with the current iterate y as a global minimizer of P′.

Inverse Optimization is precisely concerned with the above issue of determin-
ing a criterion f̃ as close to f as possible, and for which the current solution y is an
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optimal solution of P′ with this new criterion f̃ . Pioneering work in Control dates
back to Freeman and Kokotovic [8] for optimal stabilization. Whereas it was known
that every value function of an optimal stabilization problem is also a Lyapunov
function for the closed-loop system, in [8] the authors show the converse, that is,
every Lyapunov function for every stable closed-loop system is also a value function
for a meaningful optimal stabilization problem. In optimization, pioneering works
in this direction date back to Burton and Toint and [3] for shortest path problems,
and Zhang and Liu [21, 22], Huang and Liu [7], and Ahuja and Orlin and [2] for lin-
ear programs in the form min{c′x : Ax ≥ b; r ≤ x ≤ s} (and with the ℓ1-norm).
For the latter, the inverse problem is again a linear program of the same form.
Similar results also hold for inverse linear programs with the ℓ∞-norm as shown in
Ahuja and Orlin [2] while Zhang et al. [23] provide a column generation method for
the inverse shortest path problem. In Heuberger [6] the interested reader will find
a nice survey on inverse optimization for linear programming and combinatorial
optimization problems. For integer programming, Schaefer [17] characterizes the
feasible set of cost vectors c ∈ R

n that are candidates for inverse optimality. It is
the projection on R

n of a (lifted) convex polytope obtained from the super-additive
dual of integer programs. Unfortunately and as expected, the dimension of of the
lifted polyhedron (before projection) is exponential in the input size of the problem.
Finally, for linear programs Ahmed and Guan [1] have considered the variant called
inverse optimal value problem in which one is interested in finding a linear criterion
c ∈ C ⊂ R

n for which the optimal value is the closest to a desired specified value.
Perhaps surprisingly, they proved that such a problem is NP-hard.

As the reader may immediately guess, in inverse optimization the main difficulty
lies in having a tractable characterization of global optimality for a given current
point y ∈ K and some candidate criterion f̃ . This is why most of all the above cited
works address linear programs or combinatorial optimization problems for which
some characterization of global optimality is available and can be (sometimes) effec-
tively used for practical computation. For instance, the characterization of global
optimality for integer programs described in Schaefer [17] is via the superadditive
dual of Wolsey [20, §2] which is exponential in the problem size, and so prevents
from its use in practice.

This perhaps explains why inverse (non linear) optimization has not attracted
much attention in the past, and it is a pity since inverse optimality could pro-
vide an alternative stopping criterion at a feasible solution y obtained by a (local)
optimization algorithm.

The novelty of the present paper is to provide a systematic numerical scheme for
computing an inverse optimal solution associated with the polynomial program P

and a given feasible solution y ∈ K. It consists of solving a semidefinite program1

whose size can be adapted to the problem on hand, and so is tractable (at least
for moderate size problems and possibly for larger size problems if sparsity is taken
into account). Moreover, if one uses the ℓ1-norm then the inverse-optimal objective
function exhibits a simple and remarkable canonical (and sparse) form.

1A semidefinite program is a convex (conic) optimization problem that can be solved efficiently.
For instance, up to arbitrary (fixed) precision and using some interior point algorithms, it can be
solved in time polynomial in the input size of the problem. For more details the interested reader
is referred to e.g. Wolkowicz et al. [19] and the many references therein.
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Contribution. In this paper we investigate the inverse optimization problem
for polynomial optimization problems P as in (1.1), i.e., in a rather general context
which includes nonlinear and nonconvex optimization problems and in particular,
0/1 and mixed integer nonlinear programs. Fortunately, in such a context, Puti-
nar’s Positivstellensatz [16] provides us with a very powerful certificate of global
optimality that can be adapted to the actual computational capabilities for a given
problem size. More precisely, and assuming y = 0 (possibly after a change of vari-
able x′ = x−y), in the methodology that we propose, one computes the coefficients

of a polynomial f̃d ∈ R[x] of same degree d0 as f (or possibly larger degree if desired
and/or possibly with some additional constraints), such that:

• 0 is a global optimum of the related problem minx{f̃d(x) : x ∈ K}, with
a Putinar’s certificate of optimality with degree bound d (to be explained
later).

• f̃d minimizes ‖f̃ − f‖k (where depending on k, ‖ · ‖k is the ℓ1, ℓ2 or ℓ∞-

norm of the coefficient vector) over all polynomals f̃ of degree d0, having
the previous property.

Assuming K is compact (hence K ⊆ [−1, 1]n possibly after a change of variable),

it turns out that the optimal value ρd := ‖f̃d− f‖k also measures how close is f(0)
to the global optimum f∗ of P, as we also obtain that f∗ ≤ f(0) ≤ f∗+ ρd if k = 1

and similarly f∗ ≤ f(0) ≤ f∗ + ρd
(
n+d0

n

)
if k = ∞.

In addition, for the ℓ1-norm we prove that f̃d has a simple canonical form, namely

f̃d = f + b′x+

n∑

i=1

λi x
2
i ,

for some vector b ∈ R
n, and nonnegative vector λ ∈ R

n, optimal solutions of
a semidefinite program. (For 0/1 problems it further simplifies to f̃d = f + b′x

only.) This canonical form is sparse as f̃d differs from f in at most 2n entries

only (≪
(
n+d0

n

)
). It illustrates the sparsity properties of optimal solutions of ℓ1-

norm minimization problems, already observed in other contexts (e.g., in some
compressed sensing applications).

Importantly, to compute f̃d, one has to solve a semidefinite program of size
parametrized by d, where d is chosen so that the size of semidefinite program asso-
ciated with Putinar’s certificate (with degree bound d) is compatible with current
semidefinite solvers available. (Of course, even if d is relatively small, one is still
restricted to problems of relatively modest size.) Moreover, when K is compact,

generically f̃d is an optimal solution of the “ideal inverse optimization problem”
provided that d is sufficiently large!

In addition, one may also consider several additional options:
• Instead of looking for a polynomial f̃ of same degree as f , one might allow

polynomials of higher degree, and/or restrict certain coefficients of f̃ to be the same
as those of f (e.g. for structural modeling reasons).

• One may restrict f̃ to a certain class of functions, e.g., quadratic polynomials
and even convex quadratic polynomials. In the latter important case and if the
gj’s that define K are concave, the procedure to compute an optimal solution

f̃(x) = b̃′x + x′Q̃x simplifies and reduces to solving separately a linear program

(for computing b̃) and a semidefinite program (for computing Q̃).
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The paper is organized as follows. In a first introductory section we present the
notation, definitions, and the ideal inverse optimization problem. We then describe
how a practical inverse optimization problem reduces to solving a semidefinite pro-
gram and exhibit the canonical form of the optimal solution for the ℓ1-norm. We
also provide additional results, e.g., an asymptotic analysis when the degree bound
in Putinar’s certificate increases and also the particular case where one searches for
a convex candidate criterion.

2. Notation, definitions and preliminaries

2.1. Notation and definitions. Let R[x] (resp. R[x]d) denote the ring of real
polynomials in the variables x = (x1, . . . , xn) (resp. polynomials of degree at
most d), whereas Σ[x] (resp. Σ[x]d) denotes its subset of sums of squares (s.o.s.)
polynomials (resp. of s.o.s. of degree at most 2d). For every α ∈ N

n the notation
xα stands for the monomial xα1

1 · · ·xαn
n and for every i ∈ N, let N

p
d := {β ∈ N

n :
∑

j βj ≤ d} whose cardinal is s(d) =
(
n+d
n

)
. A polynomial f ∈ R[x] is written

x 7→ f(x) =
∑

α∈Nn

fα xα,

and f can be identified with its vector of coefficients f = (fα) in the canonical basis
(xα), α ∈ N

n. Denote by St ⊂ R
t×t the space of real symmetric matrices, and for

any A ∈ St the notation A � 0 stands for A is positive semidefinite. For f ∈ R[x]d,
let

‖f‖k =







∑

α∈Nn
d

|fα| if k = 1,

∑

α∈Nn
d

f2
α if k = 2,

max {|fα| : α ∈ N
n
d} if k = ∞.

A real sequence z = (zα), α ∈ N
n, has a representing measure if there exists some

finite Borel measure µ on R
n such that

zα =

∫

Rn

xα dµ(x), ∀α ∈ N
n.

Given a real sequence z = (zα) define the linear functional Lz : R[x] → R by:

f (=
∑

α

fαx
α) 7→ Lz(f) =

∑

α

fα zα, f ∈ R[x].

Moment matrix. The moment matrix associated with a sequence z = (zα), α ∈
N

n, is the real symmetric matrix Md(z) with rows and columns indexed by N
n
d , and

whose entry (α, β) is just zα+β, for every α, β ∈ N
n
d . Alternatively, let vd(x) ∈ R

s(d)

be the vector (xα), α ∈ N
n
d , and define the matrices (Bα) ⊂ Ss(d) by

(2.1) vd(x)vd(x)
T =

∑

α∈Nn
2d

Bα xα, ∀x ∈ R
n.

Then Md(z) =
∑

α∈Nn
2d
zα Bα.

If z has a representing measure µ then Md(z) � 0 because

〈f ,Md(z)f〉 =

∫

f2 dµ ≥ 0, ∀ f ∈ R
s(d).
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Localizing matrix. With z as above and g ∈ R[x] (with g(x) =
∑

γ gγx
γ), the

localizing matrix associated with z and g is the real symmetric matrix Md(g z) with
rows and columns indexed by N

n
d , and whose entry (α, β) is just

∑

γ gγzα+β+γ , for

every α, β ∈ N
n
d . Alternatively, let Cα ∈ Ss(d) be defined by:

(2.2) g(x)vd(x)vd(x)
T =

∑

α∈Nn
2d+deg g

Cα xα, ∀x ∈ R
n.

Then Md(g z) =
∑

α∈Nn
2d+degg

zα Cα.

If z has a representing measure µ whose support is contained in the set {x :
g(x) ≥ 0} then Md(g z) � 0 because

〈f ,Md(g z)f〉 =

∫

f2 g dµ ≥ 0, ∀ f ∈ R
s(d).

With K as in (1.1), let g0 ∈ R[x] be the constant polynomial x 7→ g0(x) = 1,
and for every j = 0, 1, . . . ,m, let vj := ⌈(deg gj)/2⌉.
Definition 2.1. With d, k ∈ N and K as in (1.1), let Qk(g) ⊂ R[x] and Qd

k ⊂ R[x]d
be the convex cones:

Q(g) :=

{
m∑

k=0

σj gj : σj ∈ Σ[x] j = 1, . . . ,m

}

.(2.3)

Qk(g) :=

{
m∑

k=0

σj gj : σj ∈ Σ[x]k−vj , j = 1, . . . ,m

}

.(2.4)

Qd
k(g) := Qk(g) ∩ R[x]d(2.5)

We say that every element h ∈ Qk(g) has a Putinar’s certificate of nonnegativity
on K, with degree bound k.

The cone Q(g) is called the quadratic module associated with the gj ’s. Obvi-
ously, if h ∈ Q(g) the associated s.o.s. polynomials σj ’s provide a certificate of
nonnegativity of h on K. The cone Q(g) is said to be Archimedean if and only if

(2.6) x 7→M − ‖x‖2 ∈ Q(g) for some M > 0.

Let Psdd(K) ⊂ R[x]d be the convex cone of polynomials of degree at most d,
nonnegative on K. The name “Putinar’s certificate” is coming from the following
Putinar’s Positivstellensatz.

Theorem 2.2 (Putinar’s Positivstellensatz [16]). Let K be as in (1.1) and assume
that Q(g) is Archimedean. Then every polynomial f ∈ R[x] strictly positive on K

belongs to Q(g). In addition,

(2.7) cl

(
∞⋃

k=0

Qd
k(g)

)

= Psdd(K), ∀d ∈ N.

The first statement is just Putinar’s Positivstellensatz [16] whereas the second
statement is an easy consequence. Indeed let f ∈ Psdd(K). If f > 0 on K then
f ∈ Qd

k(g) for some k. If f(x) = 0 for some x ∈ K, let fn := f + 1/n, so that
fn > 0 on K for every n ∈ N. But then fn ∈ ∪∞

k=0Q
d
k(g) and the result follows

because ‖fn − f‖1 → 0 as n→ ∞.
In fact, by results from Marshall [13, 14] and more recently Nie [15], membership

in Q(g) is also generic for polynomials that are only nonnegative on K. And
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so Putinar’s Positivstellensatz is particularly useful to certify and enforce that a
polynomial is nonnegative on K, and in particular the polynomial x 7→ f(x)−f(y)
for the inverse optimization problem associated with a feasible solution y ∈ K.

Notice that one may also be less demanding and ask y to be only a global ǫ-
minimizer for some fixed ǫ > 0. Again Putinar’s Positivstellensatz is exactly what
we need to certify (global) ǫ-optimality by requiring f(·)− f(y) + ǫ ∈ Qk(g).

2.2. The ideal inverse problem. Let P be the global optimization problem f∗ =
minx{f(x) : x ∈ K} with K ⊂ R

n as in (1.1), and f ∈ R[x]d0
where d0 := deg f .

Identifying a polynomial f ∈ R[x]d0
with its vector of coefficients f = (fα) ∈

R
s(d0), one may and will identify R[x]d0

with the vector space Rs(d0), i.e., R[x]d0
∋

f ↔ f ∈ R
s(d0). Similarly, the convex cone Psdd0

(K) ⊂ R[x]d0
can be identified

with the convex cone {h ∈ R
s(d0) : h ↔ h ∈ Psdd0

(K)} of Rs(d0). So in the sequel,
and unless if necessary, we will not distinguish between f and f .

Next, let y ∈ K and k ∈ {1, 2,∞} both fixed, and consider the following opti-
mization problem P

(2.8) P : ρk = min
f̃∈R[x]d0

{ ‖f̃ − f‖k : x 7→ f̃(x)− f̃(y) ∈ Psdd0
(K) }.

Theorem 2.3. Let K ⊂ R
n be with nonempty interior. Problem (2.8) has an

optimal solution f̃∗ ∈ R[x]d0
. In addition, ρk = 0 if and only if y is an optimal

solution of P.

Proof. Obviously the constant polynomial x 7→ f̃(x) := 1 is a feasible solution with

associated value δ := ‖f̃ − f‖k. Moreover the optimal value of (2.8) is bounded
below by 0. Observe that ‖ · ‖k defines a norm on R[x]d0

. Consider a minimizing

sequence (f̃ j) ⊂ R[x]d0
, j ∈ N, hence such that ‖f̃ j − f‖k → ρk as j → ∞.

As we have ‖f̃ j − f‖k ≤ δ for every j, the sequence (f̃ j) belongs to the ℓk-ball

Bk(f) := {f̃ ∈ R[x]d0
: ‖f̃ − f‖k ≤ δ}, a compact set. Therefore, there is an

element f̃∗ ∈ Bk(f) and a subsequence (jt), t ∈ N, such that f̃ jt → f̃∗ as t → ∞.

Let x ∈ K be fixed arbitrary. Obviously (0 ≤) f̃ jt(x) − f̃ jt(y) → f̃∗(x) − f̃∗(y)

as t → ∞, which implies f̃∗(x) − f̃∗(y) ≥ 0, and so, as x ∈ K was arbitrary,

f̃∗ − f̃∗(y) ≥ 0 on K, i.e., f̃∗ − f̃∗(y) ∈ Psdd0
(K). Finally, we also obtain the

desired result

ρk = lim
j→∞

‖f̃ j − f‖k = lim
t→∞

‖f̃ jt − f‖k = ‖f̃∗ − f‖k.

Next, if y is an optimal solution of P then f̃ := f is an optimal solution of P with
value ρk = 0. Conversely, if ρk = 0 then f̃∗ = f , and so by feasibility of f̃∗ (= f)
for (2.8), f(x) ≥ f(y) for all x ∈ K, which shows that y is an optimal solution of
P. �

Theorem 2.3 states that the ideal inverse optimization problem is well-defined.
However, even though Psdd0

(K) is a finite dimensional convex cone, it has no simple
and tractable characterization to be used for practical computation. Therefore one
needs an alternative and more tractable version of problem P . Fortunately, we
next show that in the polynomial context such a formulation exists, thanks to the
powerful Putinar’s Positivstellensatz (Theorem 2.2 above).
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3. Main result

As the ideal inverse problem is intractable, we here provide tractable formula-
tions whose size depends on a parameter d ∈ N. If the polynomial f̃∗ in Theorem
2.3 belongs to Q(g) then when d increases the associated optimal value ρkd converges

in finitely many steps to the optimal value ρk of the ideal problem (2.8), and f̃∗

can be obtained by solving finitely many semidefinite programs. And in fact this
situation is generic.

With no loss of generality, i.e., up to some change of variable x′ = x−y we may
and will assume that y = 0 ∈ K.

3.1. A practical inverse problem. With d ∈ N fixed, consider the following
optimization problem Pd:

(3.1)

Pd : ρkd := min
f̃ ,σj∈R[x]

‖f − f̃‖k

s.t. f̃(x)− f̃(0) =

m∑

j=0

σj(x) gj(x), ∀x ∈ R
n

f̃ ∈ R[x]d0
; σj ∈ Σ[x]d−vj , j = 0, 1, . . . ,m,

where d0 = deg f , and vj = ⌈(deg gj)/2⌉, j = 1, . . . ,m.
The parameter d ∈ N impacts (3.1) by the maximum degree allowed for the s.o.s.

weights (σj) ⊂ Σ[x] in Putinar’s certificate for the polynomial x 7→ f̃(x) − f̃(0),
and so the higher d is, the lower ρkd. Next, observe that in (3.1), the constraint

f̃(x) − f̃(0) =

m∑

j=0

σj(x) gj(x), ∀x ∈ R
n,

is equivalent to stating that f̃(x)−f̃ (0) ∈ Qd0

d (g), withQd0

d (g) as in (2.5). Therefore,

in particular, f̃(x) ≥ f̃(0) for all x ∈ K, and so 0 is a global minimum of f̃
on K. So Pd is a strengthtening of P in that one has replaced the constraint
f̃ − f̃(0) ∈ Psdd0

(K) with the stronger condition f̃ − f̃(0) ∈ Qd0

d (g). And so

ρk ≤ ρkd for all d ∈ N. However, as we next see, Pd is a tractable optimization
problem with nice properties. Indeed, Pd is a convex optimization problem and
even a semidefinite program. For instance, if k = 1 one may rewrite Pd as:

(3.2)

ρ1d := min
λα≥0,f̃,Zj

∑

α∈Nn
d0

\{0}

λα

s.t. λα + f̃α ≥ fα, ∀α ∈ N
n
d0

\ {0}
λα − f̃α ≥ −fα, ∀α ∈ N

n
d0

\ {0}

〈Z0,Bα〉+
m∑

j=1

〈Zj ,C
j
α〉 =

{

f̃α, if 0 < |α| ≤ d0
0, if α = 0 or |α| > d0

Zj � 0, j = 0, 1, . . . ,m.

with Bα as in (2.1) and Cj
α as in (2.2) (with gj in lieu of g). If k = ∞ then one

may rewrite Pd as:
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(3.3)

ρ∞d := min
λ≥0,f̃ ,Zj

λ

s.t. λ+ f̃α ≥ fα, ∀α ∈ N
n
d0

\ {0}
λ− f̃α ≥ −fα, ∀α ∈ N

n
d0

\ {0}

〈Z0,Bα〉+
m∑

j=1

〈Zj ,C
j
α〉 =

{

f̃α, if 0 < |α| ≤ d0
0, if α = 0 or |α| > d0

Zj � 0, j = 0, 1, . . . ,m,

and finally, if k = 2 then one may rewrite Pd as:

(3.4)

ρ2d := min
λ≥0,f̃ ,Zj

∑

α∈Nn
d0

\{0}

λα

s.t.

[
λα f̃α − fα

f̃α − fα 1

]

� 0, ∀α ∈ N
n
d0

\ {0}

〈Z0,Bα〉+
m∑

j=1

〈Zj ,C
j
α〉 =

{

f̃α, if 0 < |α| ≤ d0
0, if α = 0 or |α| > d0

Zj � 0, j = 0, 1, . . . ,m.

Remark 3.1. Observe that in any feasible solution (f̃ , λ,Zj) in all formulations

(3.2)-(3.4), f̃0 plays no role in the constraints of (3.1), but since we minimize ‖f̃ −
f‖k then it is always optimal to set f̃0 = f0. That is, f̃d(0) = f̃0 = f0 = f(0).

Sparsity. The semidefinite program (3.1)-(3.2) has m+ 1 Linear Matrix Inequal-
ities (LMI’s) Zj � 0 of size O(nd), which limits its application to problems P of
modest size. However large scale problems usually exhibit sparsity patterns which
sometimes can be exploited. For instance, in [11] we have provided a specialized
“sparse” version of Theorem 2.2 for problems with structured sparsity as described
in Waki et al. [18]. Hence, with this specialized version of Putinar’s Positivstel-
lensatz, one obtains a sparse positivity certificate which when substituted in (3.1),
would permit to solve (3.1) for problems of much larger size. Typically, in [18] the
authors have applied the “sparse semidefinite relaxations” to problem P with up to
1000 variables! Moreover, the running intersection property that must satisfy the
sparsity pattern for convergence guarantee of such relaxations [11], is not needed

in the present context of inverse optimization. This is because one imposes f̃ to
satisfy this specialized Putinar’s Positivstellensatz.

3.2. Duality. The semidefinite program dual of (3.2) reads







max
u,v≥0,z

∑

α∈Nn
d0

\{0}

fα(uα − vα) (= Lz(f(0)− f))

s.t. uα + vα ≤ 1, ∀α ∈ N
n
d0

\ {0}
uα − vα + zα = 0, ∀α ∈ N

n
d0

\ {0}
∑

α∈Nn
d
zαBα � 0

∑

α∈Nn
d
zαC

j
α � 0, j = 1, . . . ,m,
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which, recalling the respective definitions (2.1) and (2.2) of the moment and local-
izing matrix, is the same as

(3.5)







max
u,v≥0,z

∑

α∈Nn
d0

\{0}

fα(uα − vα) (= Lz(f(0)− f))

s.t. uα + vα ≤ 1, ∀α ∈ N
n
d0

\ {0}
uα − vα + zα = 0, ∀α ∈ N

n
d0

\ {0}
Md(z), Md−vj(gj z) � 0, j = 1, . . . ,m.

Similarly, the semidefinite program dual of (3.3) reads

(3.6)







max
u,v≥0,z

∑

α∈Nn
d0

\{0}

fα(uα − vα) (= Lz(f(0)− f))

s.t.
∑

α∈Nn
d0

\{0}

uα + vα ≤ 1

uα − vα + zα = 0, ∀α ∈ N
n
d0

\ {0}
Md(z), Md−vj(gj z) � 0, j = 1, . . . ,m,

and the semidefinite program dual of (3.4) reads

(3.7)







max
z,∆α

∑

α∈Nn
d0

\{0}

〈

∆α,

[
0 fα
fα −1

]〉

s.t.

〈

∆α,

[
1 0
0 0

]〉

≤ 1, ∀α ∈ N
n
d0

\ {0}

〈

∆α,

[
0 1
1 0

]〉

+ zα = 0, ∀α ∈ N
n
d0

\ {0}
Md(z), Md−vj (gj z) � 0, j = 1, . . . ,m
∆α � 0, ∀α ∈ N

n
d0

\ {0}.

One may show that one may replace the criterion in (3.7) with the equivalent
concave criterion

max
z






Lz(f(0)− f))− 1

4

∑

α∈Nn
d0

\{0}

z2α






.

Lemma 3.2. Assume that K ⊂ R
n has nonempty interior. Then there is no

duality gap between the semidefinite programs (3.2) and (3.5), (3.3) and (3.6), and
(3.4) and (3.7). Moreover, all semidefinite programs (3.2), (3.3) and (3.4) have an

optimal solution f̃d ∈ R[x]d0
.

Proof. The proof is detailed for the case k = 1 and omitted for the cases k = 2 and
k = ∞ because it is very similar. Observe that ρ1d ≥ 0 and the constant polynomial

f̃(x) = 0 for all x ∈ R
n, is an obviously feasible solution of (3.1) (hence of (3.2)).

Therefore ρ1d being finite, it suffices to prove that Slater’s condition2 holds for the

2Slater’s condition holds if there exists a strictly feasible solution, and so for the dual (3.5), if
there exists z such that Md(z),Md−vj

(gj z) ≻ 0, j = 1, . . . ,m, and uα + vα < 1, ∀α ∈ N
n
d0

\ {0}.

Then from a standard result in convex optimization, there is no duality gap between (3.2) and
(3.5), and if the values are bounded then (3.2) has an optimal solution.
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dual (3.5). Then the conclusion of Lemma 3.2 follows from a standard result of
convex optimization. Let µ be the finite Borel measure defined by

µ(B) :=

∫

B∩K

e−‖x‖2

dx, ∀B ∈ B

(where B is the usual Borel σ-field), and let z = (zα), α ∈ N
n
2d, with

zα := κ

∫

K

xα dµ(x), α ∈ N
n
2d,

for some κ > 0 sufficiently small to ensure that

(3.8) κ

∣
∣
∣
∣

∫

xα dµ(x)

∣
∣
∣
∣
< 1, ∀α ∈ N

n
2d \ {0}.

Define uα = max[0,−zα] and vα = max[0, zα], α ∈ N
n
d0

\ {0}, so that uα + vα <
1, α ∈ N

n
2d \ {0}. Hence (uα, vα, z) is a feasible solution of (3.5). In addition,

Md(z) ≻ 0 and Md−vj (gj z) ≻ 0, j = 1, . . . ,m, because K has nonempty interior,
and so Slater’s condition holds for (3.5), the desired result.

If k = ∞ one chooses z such that

κ
∑

α∈Nn
d0

\{0}

∣
∣
∣
∣

∫

xα dµ(x)

∣
∣
∣
∣
< 1,

and if k = 2 then one chooses z as in (3.8) and ∆α :=

[
1/2 κα
κα 1

]

≻ 0, for all

α ∈ N
n
d0

\ {0}, such that

2κα := κ

∫

xα dµ(x), ∀α ∈ N
n
2d \ {0}.

�

Theorem 3.3. Assume that K in (1.1) has nonempty interior, and let x∗ ∈ K be

a global minimizer of P with optimal value f∗, and let f̃d ∈ R[x]d0
be an optimal

solution of Pd in (3.1) with optimal value ρkd. Then:

(a) 0 ∈ K is a global minimizer of the problem f̃∗
d = minx{f̃d(x) : x ∈ K}. In

particular, if ρkd = 0 then f̃d = f and 0 is a global minimizer of P.

(b) If k = 1 then f∗ ≤ f(0) ≤ f∗ + ρ1d sup
α∈Nn

d0

|(x∗)α|. In particular, if

K ⊆ [−1, 1]n then f∗ ≤ f(0) ≤ f∗ + ρ1d.

(c) If k = ∞ then f∗ ≤ f(0) ≤ f∗ + ρ∞d
∑

α∈N
n
d0

|(x∗)α|. In particular if K ⊆

[−1, 1]n then f∗ ≤ f(0) ≤ f∗ + s(d0) ρ
∞
d .

Proof. (a) Existence of f̃d is guaranteed by Lemma 3.2. From the constraints of

(3.1) we have: f̃d(x) − f̃(0) =
∑m

j=0 σj(x) gj(x) which implies that f̃d(x) ≥ f̃(0)

for all x ∈ K, and so 0 is a global minimizer of the optimization problem P′ :
minx{f̃d(x) : x ∈ K}.
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(b) Let x∗ ∈ K be a global minimizer of P. Observe that with k = 1,

f∗ = f(x∗) = f(x∗)− f̃d(x
∗)

︸ ︷︷ ︸
+ f̃d(x

∗)− f̃d(0)
︸ ︷︷ ︸

≥0

+f̃d(0)

≥ f̃d(0)− |f̃d(x∗)− f(x∗)|
≥ f̃d(0)− ‖f̃d − f‖1 × sup

α∈N
n
d0

|(x∗)α|

≥ f(0)− ρ1d sup
α∈Nn

d0

|(x∗)α|(3.9)

since f̃d(0) = f(0); see Remark 3.1.
(c) The proof is similar to that of (b) using that with k = ∞,

|f̃d(x) − f(x)| ≥
(

sup
α∈Nn

d0

|f̃dα − fα|
)

×
∑

α∈Nn
d0

|xα|.

�

So not only Theorem 3.3 states that 0 is the global optimum of the optimiza-
tion problem min{f̃d(x) : x ∈ K}, but it also states that the optimal value ρkd
also measures how far is f(0) from the optimal value f∗ of the initial problem P.
Moreover, observe that Theorem 3.3 merely requires existence of a minimizer and
nonemptyness of K. In particular, K may not be compact.

3.3. A canonical form for the ℓ1-norm. When K is compact and if one uses
the ℓ1-norm then the optimal solution f̃d ∈ R[x]d0

in Theorem 3.3 (with k = 1)
takes a particularly simple canonical form:

As K is compact we may and will assume (possibly after some scaling) that
K ⊆ [−1, 1]n and so in the definition of (1.1) we may and will add the n redundant
quadratic constraints gm+i(x) ≥ 0, i = 1, . . . , n, with x 7→ gm+i(x) = 1 − x2i for
every i, that is,

(3.10) K = {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m+ n},

and

Qd(g) =







n+m∑

j=0

σj gj : σj ∈ Σ[x]d−vj , j = 0, . . . ,m+ n






,

which is obviously Archimedean.

Theorem 3.4. Assume that K in (3.10) has a nonempty interior and let f̃d ∈
R[x]d0

be an optimal solution of Pd in (3.1) (with m+n instead of m) with optimal
value ρ1d for the ℓ1-norm. Then:

(i) f̃d is of the form

(3.11) f̃d(x) =

{
f(x) + b′x if d0 = 1
f(x) + b′x+

∑n
i=1 λ

∗
i x

2
i if d0 > 1,
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for some vector b ∈ R
n and some nonnegative vector λ∗ ∈ R

n, optimal solution of
the semidefinite program:

(3.12)

ρ1d := min
λ,b

‖b‖1 +
n∑

i=1

λi

s.t. f − f(0) + b′x+

n∑

i=1

λi x
2
i ∈ Qd(g), λ ≥ 0.

(ii) The vector b is of the form −∇f(0)+
∑

j∈J(0) θj ∇gj(0) for some nonnegative

scalars (θj) (where j ∈ J(0) if and only if gj(0) = 0).

Proof. (i) Notice that the dual (3.5) of (3.2) is equivalent to:

(3.13)







max
z

Lz(f(0)− f))

s.t. Md(z), Md−vj (gj z) � 0, j = 1, . . . ,m+ n,
|zα| ≤ 1, ∀α ∈ N

n
d0

\ {0}.
Next, since Md(z) � 0 one may invoke same arguments as those used in Lasserre
and Netzer [12, Lemma 4.1, 4.2], to obtain that for very α ∈ N

n
2d with |α| > 1,

Md(z) � 0 ⇒ |zα| ≤ max
i=1,...,n

{max[Lz(x
2
i ), Lz(x

2d
i )]}.

Moreover the constraint Md−1(gm+i z) � 0 implies Md−1(gm+i z)(ℓ, ℓ) ≥ 0 for all

ℓ, and so in particular, one obtains Lz(x
2k−2
i ) ≥ Lz(x

2k
i ) for all k = 1, . . . , d and

all i = 1, . . . , n. Hence |zα| ≤ maxi=1,...,n Lz(x
2
i ) for every α ∈ N

n
2d with |α| > 1.

Therefore in (3.13) one may replace the constraint |zα| ≤ 1 for all α ∈ N
n
d0

\ {0}
with the 2n inequality constraints ±Lz(xi) ≤ 1, i = 1, . . . , n, if d0 = 1 and the 3n
inequality constraints:

(3.14) ±Lz(xi) ≤ 1, Lz(x
2
i ) ≤ 1, i = 1, . . . , n

if d0 > 1. Consequently, (3.13) is the same as the semidefinite program

(3.15)







max
z

Lz(f(0)− f))

s.t. Md(z), Md−vj (gj z) � 0, j = 1, . . . ,m+ n,
±Lz(xi) ≤ 1, Lz(x

2
i ) ≤ 1, i = 1, . . . , n.

Let b1 = (b1i ) (resp. b
2 = (b2i )) be the nonnegative vector of dual variables associ-

ated with the constraints Lz(xi) ≤ 1 (resp. −Lz(xi) ≤ 1), i = 1, . . . , n. Similarly,
let λi be the dual variable associated with the constraint Lz(x

2
i ) ≤ 1. Then the

dual of (3.15) is the semidefinite program:






max
b1,b2,λ

n∑

i=1

(
(b1i + b2i ) + λi

)

s.t. f − f(0) + (b1 − b2)′x+

n∑

i=1

λi x
2
i ∈ Qd(g)

b1,b2, λ ≥ 0

which is equivalent to (3.12).
(ii) Let b, λ be an optimal solution of (3.12), so that

f − f(0) + b′x+

n∑

i=1

λi x
2
i = σ0 +

m+n∑

j=1

σj gj ,
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for some SOS polynomials σj . Evaluating at x = 0 yields

σ0(0) = 0; σj(0)
︸ ︷︷ ︸

θj≥0

gj(0) = 0, j = 1, . . . ,m+ n.

Differentiating and evaluating at x = 0 and using that σj is SOS and σj(0)gj(0) = 0,
j = 1, . . . , n+m, yields:

∇f(0) + b =

n+m∑

j=1

σj(0)∇gj(0) =
∑

j∈J(0)

θj ∇gj(0),

which is the desired result. �

From the proof of Theorem 3.4, this special form of f̃d is specific to the ℓ1-norm,
which yields the constraint |zα| ≤ 1, α ∈ N

n
d0

\ {0} in the dual (3.5) and allows its
simplification (3.14) thanks to a property of the moment matrix described in [12].

Observe that the canonical form (3.11) of f̃d is sparse since f̃d differs from f in at

most 2n entries only (recall that f has
(
n+d0

n

)
entries). This is another example

of sparsity properties of optimal solutions of ℓ1-norm minimization problems, al-
ready observed in other contexts (e.g., in some compressed sensing applications).
Moreover, it has the following consequence for nonlinear 0/1 programs.

Corollary 3.5. Let K = {0, 1}n and f ∈ R[x]. Then an optimal solution f̃d ∈
R[x]d0

of the inverse problem (3.1) for the ℓ1-norm, is of the form

(3.16) f̃d(x) = f(x) + b′x,

for some coefficient vector b ∈ R
n.

Proof. We briefly sketch the proof which is very similar to that of Theorem 3.4
even though K does not have a nonempty interior. For every α ∈ N, let ᾱ ∈ {0, 1}n
be such that ᾱi = 1 if αi 6= 0 and ᾱi = 0 otherwise. Then because of the boolean
constraints x2i = xi, i = 1, . . ., (3.13) reads







max
z

Lz(f(0)− f))

s.t. Md(z) � 0; Lz(x
α) = Lz(x

ᾱ), α ∈ N
n
2d

|zα| ≤ 1, ∀α ∈ N
n
d0

\ {0}.

But this combined with Md(z) � 0 implies that Md(y) can be simplified to Md(z)
with rows and columns indexed by only the square free monomials xᾱ, α ∈ N

n
2d.

Indeed, every non such column α is exactly identical to the column indexed by ᾱ.
Also, it is relatively easy to show that |Lz(x

ᾱ)| ≤ maxi[Lz(xi)] for all ᾱ, and so
(3.17) is equivalent to:

(3.17)







max
z

Lz(f(0)− f))

s.t. Md(z) � 0; Lz(x
α) = Lz(x

ᾱ), α ∈ N
n
2d

±Lz(xi) ≤ 1, i = 1, . . . , n.

Finally, let µ be a Borel measure with support exactly {0, 1}n, and scaled to satisfy
|
∫
xidµ| < 1, i = 1, . . . , n. Its associated vector of moment z = (

∫
xαdµ), α ∈ N

n,

is feasible in (3.17) and Md(z) ≻ 0. Hence Slater’s condition holds for (3.17), which
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in turn implies that there is no duality gap with its dual which reads:






min
b1,b2,λ,γ

n∑

i=1

b1i + b2i

s.t. f − f(0) + (b1 − b2)′x = σ0 +

n∑

i=1

σi(x
2
i − xi)

b1,b2 ≥ 0; σ0 ∈ Σ[x]d; σi ∈ R[x]d−1, j = 1, . . . , n.

Moreover, the dual has an optimal solution because the optimal value is bounded
below by zero, and so f̃d is indeed of the form (3.16). �

3.4. Structural constraints. It may happen that the initial criterion f ∈ R[x]
has some structure that one wishes to keep in the inverse problem. For instance, in
MAXCUT problems on K = {−1, 1}n, f is a quadratic form x 7→ x′Ax for some
real symmetric matrix A associated with a graph (V,E), where Aij 6= 0 if and only
if (i, j) ∈ E. Therefore, in the inverse optimization problem, one may wish that

f̃ in (3.1) is also a quadratic form associated with the same graph (V,E), so that

f̃(x) = x′Ãx with Ãij = 0 for all (i, j) 6∈ E.
So if ∆f ⊂ N

n
d0

denotes the subset of (structural) multi-indices for which f and

f̃ should have same coefficient, then in (3.1) one includes the additional constraint

f̃α = fα for all α ∈ ∆f . Notice that 0 ∈ ∆f because f̃0 = f0; see Remark 3.1. For
instance, with K as in (3.10) and k = 1, (3.2) reads

(3.18)

ρ1d := min
f̃ ,λα,Zj

∑

α∈Nn
d0

\{0}

λα

s.t. λα + f̃α ≥ fα, ∀α ∈ N
n
d0

\∆f

λα − f̃α ≥ −fα, ∀α ∈ N
n
d0

\∆f

〈Z0,Bα〉+
m+n∑

j=1

〈Zj ,C
j
α〉 =







fα, if 0 < α ∈ ∆f

f̃α, if α ∈ N
n
d0

\∆f

0, if α = 0 or |α| > d0
Zj � 0, j = 0, 1, . . . ,m+ n,

and its dual has the equivalent form,

(3.19)







max
z

Lz(f(0)− f))

s.t. Md(z), Md−vj (gj z) � 0, j = 1, . . . ,m+ n,
|zα| ≤ 1, ∀α ∈ N

n
d0

\∆f .

In problems where d0 is even and ∆f does not contain the monomials α ∈ N
n
d0

such that xα = x2i , or xα = xd0

i , i = 1, . . . , n, then f̃ has still the sepecial form
described in Theorem 3.4, but with bk = 0 if α = ek ∈ ∆f (where all entries of ek
vanish except the one at position k).

3.5. Asymptotics when d→ ∞. We now relate Pd, d ∈ N, with the ideal inverse
problem P in (2.8) when d increases.

Proposition 3.6. Let K be as in (1.1) with nonempty interior. For every k =

1, 2,∞, let f̃d ∈ R[x]d0
(resp. f̃∗ ∈ R[x]d0

) be an optimal solution of (3.1) (resp.
(2.8)) with associated optimal value ρkd (resp. ρk).

The sequence (ρkd), d ∈ N, is monotone nonincreasing and converges to ρ̂k ≥ ρk.

Moreover, every accumulation point f̂ ∈ R[x]d0
of the sequence (f̃d), d ∈ N, is such
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that f̂ − f̂(0) ∈ Psdd0
(K) and ‖f̂ − f‖k = ρ̂k. Finally, if f̃∗ − f̃∗(0) is in Q(g),

then ρkd = ρ̂k = ρk for some d.

Proof. Observe that the sequence (f̃d), d ∈ N, is contained in the ball {h : ‖h −
f‖k ≤ ρkd0

} ⊂ R[x]d0
, for some d0 ∈ N. So let f̂ be an accumulation point of (f̃d).

Since f̃d− f̃(0) ≥ 0 on K for all d, a simple continuity argument yields f̂ − f̂(0) ≥ 0

on K, i.e., f̂− f̂(0) ∈ Psdd0
(K). Moreover, the sequence (ρkd) is obviously monotone

nonincreasing and bounded below by zero. Hence limd→∞ ρkd =: ρ̂k ≥ ρk, and by

continuity ‖f̂ − f‖k = ρ̂k.

Finally, if f̃∗ − f̃(0) ∈ Q(g) then f̃∗ − f̃(0) ∈ Qd0

d (g) for some d, and so f̃∗ is a

feasible solution of (3.1) but with value ρk ≤ ρkd. Therefore, we conclude that f̃∗ is
an optimal solution of (3.1). �

Proposition 3.6 relates ρkd and ρk in a strong sense when f̃∗ − f̃(0) ∈ Q(g).

However, we would like to know how restrictive is the constraint f̃∗ − f̃(0) ∈ Q(g)

compared to f̃∗ − f̃(0) ∈ Psdd0
(K). Indeed, even though Psdd0

(K) = cl (∪∞
ℓ=0)Q

d0

ℓ

when K satisfies the assumptions of Theorem 2.7, in general an approximating
sequence (fℓ) ⊂ Q(g), ℓ ∈ N (with ‖fℓ − f̃∗‖k → 0), does not have the property
that fℓ(x)− fℓ(0) ≥ 0 for all x on K.

3.6. Q(g) versus Psdd0
(K). Therefore the question is: How often a polynomial

nonnegative on K (and with at least one zero in K) is an element of Q(g)? This
question can be answered in a number of cases which suggest that f ≥ 0 on K and
f 6∈ Q(g) can be true in very specific cases only (at least when K is compact and
Q(g) is Archimedean). Indeed f ≥ 0 on K implies f ∈ Q(g) whenever:

• f and −gj are convex, j = 1, . . . , n, Slater’s condition holds and ∇2f(x∗) ≻
0 at the unique global minimizer x∗ ∈ K; see e.g., de Klerk and Laurent
[4].

• K ⊆ {0, 1}n, i.e., for 0/1 polynomial programs, and more generally for all
discrete polynomial optimization problems.

• Q(g) is Archimedean, f has finitely many zeros in K and the Boundary
Hessian Condition (BHC) holds at every zero of f in K; see e.g. Marshall
[13, 14]. The BHC holds at a zero x∗ ∈ K of f if there exists 0 ≤ k ≤ n,
and a set of uniformizing polynomials h1, . . . , hn at x∗ (i.e., polynomials
hi satisfying: hi(x

∗) = 0, i = 1, . . . , n, and the determinant of the n × n

Jacobian J(x∗) = (
∂hj(x

∗)
∂xi

) does not vanish) such that hi ∈ Q(g), i =

1, . . . , k, and f can be written as a formal power series3 f = f0+f1+f2+· · ·
in R[[h1, . . . , hn]], where each fk is a homogeneous form of degree k, and

f1 = a1 h1 + · · ·+ ak hk with ai > 0, i = 1, . . . , k,

and

f2(0, . . . , 0
︸ ︷︷ ︸

k times

, hk+1, . . . , hn) is positive definite.

For instance, if all the (finitely many) zeros x∗ of f are in the interior of
K, one may take k = 0 and hi(x) = xi − x∗i for all i. Then f ∈ Q(g) if f2
is positive definite.

3The ring of formal power seres in t1, . . . , tn is denoted R[[t1, . . . , tn]].
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It turns out that under a technical condition on the polynomials that define K,
the BHC holds generically, i.e., the set of polynomials f ∈ R[x]d for which the
BHC holds at every global minimizer on K, is dense in R[x]d; see Marshall [14,
Corollary 4.5]. Finally, and in the same vein, a recent result of Nie [15] states that
if the standard constraint qualification, strict complementarity and second-order
sufficiency condition hold at every global minimizer of f on K, then f − f∗ ∈ Q(g).
Moreover this property is also generic in the sense that it does not hold only if the
coefficients of the polynomials f and gj, j = 1, . . . ,m, satisfy a set of polynomial
equations! In other words the three conditions hold in a Zariski open set; for more
details see Nie [15, Theorem 1.1, Theorem 1.2 and §4.2].

We will also see in Section §4 that one may also approach as closely as desired an
optimal solution of the ideal inverse problem (2.8) by asking y to be only a global
ǫ-minimizer (with ǫ > 0 fixed), provided that ǫ is small enough.

In addition, more can be said by looking at the dual of (2.8).

The dual of the ideal inverse problem P. We now provide an explicit inter-
pretation of the dual problems P∗

d in (3.5)-(3.6). Let M(K) be the space of finite
Borel measures on K. Then obviously (3.5) is a relaxation of the following problem:

(3.20)







r1 = max
µ∈M(K)

∫

K

(f(0)− f(x)) dµ(x)

s.t. ±
∫

K

xαdµ(x) ≤ 1, ∀α ∈ N
n
d0

\ {0},

which, denoting by δ0 the Dirac measure at x = 0, and by P (K) the space of Borel
probability measures on K, can be rewritten as

{
max

ν∈P (K),γ≥0
γ (δ0(f)− ν(f))

s.t. ±γ (ν(xα)− δ0(x
α)) ≤ 1, ∀α ∈ N

n
d0
; ν(K) = γ.

Similarly, (3.6) is a relaxation of the following problem:

(3.21) r∞ = max
µ∈M(K)







∫

K

(f(0)− f(x)) dµ(x) :
∑

α∈Nn
d0

\{0}

∣
∣
∣
∣

∫

K

xαdµ

∣
∣
∣
∣
≤ 1






,

or, again, equivalently,

max
ν∈P (K),γ≥0






γ (δ0(f)− ν(f)) : γ

∑

α∈Nn
d0

|ν(xα)− δ0(x
α)| ≤ 1; ν(K) = γ






.

Hence, in the dual problems (3.20) and (3.21) one searches for a finite Borel measure
µ which concentrates as much as possible on the set {x ∈ K : f(x) ≤ f(0)}, and
such that its moments up to order d0 are not too far from those of a measure
supported at {0} ∈ K.

In fact, and as one might have expected, (3.20) (resp. (3.21)) is the dual of P
in (2.8) with k = 1 (resp. with k = ∞). For instance, with k = 1, to see that weak

duality holds, let f̃ ∈ R[x]d0
and µ ∈ M(K) be an arbitrary feasible solution of
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(2.8) and (3.20), respectively. Then:
∫

K

(f(0)− f) dµ =

∫

K

(f̃(0)− f̃)dµ

︸ ︷︷ ︸

≤0

+

∫

K

(f̃ − f) dµ

≤
∑

α∈Nn
d0

\{0}

|f̃α − fα| ·
∣
∣
∣
∣

∫

K

xα dµ(x)

∣
∣
∣
∣
≤ ‖f̃ − f‖1,

i.e., weak duality holds and r1 ≤ ρ1. We even have the following:

Lemma 3.7. Let K in (1.1) be with nonempty interior and assume that Q(g) is
Archimedean. Let ρk be as in (2.8) with k = 1,∞, and let zd = (zdα) ∈ R

s(d) be a
nearly optimal solution of (3.5) (or (3.13)), e.g., with value Lz(f(0)−f) ≥ ρ1d−1/d,
for all d ∈ N.

If lim inf
d→∞

zd0 < ∞ then lim
d→∞

ρkd = ρk and (3.20) has an optimal solution µ∗ ∈
M(K) which is supported on the set of global minimizers on K of the optimal

solution f̃∗ ∈ R[x]d0
of (2.8) (which contains {0}). Hence either ρk = 0 in which

case 0 is an optimal solution of P, or ρk > 0 and f̃∗ has a another global minimizer
x̃ 6= 0 on K with f(x̃) < f(0).

Proof. The proof for the case k = ∞ is omitted as very similar to that of the case
k = 1. Consider the subsequence di, i ∈ N, such that lim inf

d→∞
zd0 = lim

i→∞
zdi

0 < ∞.

Using the Archimedean property (2.6) of Q(g), we proceed exactly as in the proof
of Theorem 3.2 in [10, p. 57–59 ]. There is a infinite sequence z∗ = (z∗α), α ∈ N

n,
and a subsequence (still denoted di for notational convenience), such that for every
α ∈ N

n, zdi
α → z∗α. Moreover, from the convergence zdi → z∗, Md(gj z

∗) � 0 for
every d ∈ N and every j = 0, 1, . . . ,m; hence by Putinar’s Theorem [16], z∗ is the
sequence of moments of a finite Borel measure µ∗ supported on K. Moreover, since
|zdi

α | ≤ 1 for all α ∈ N
n
d0

\ {0}, we obtain

|
∫

K

xα dµ∗| = |z∗α| = lim
i→∞

|zdi
α | ≤ 1 ∀α ∈ N

n
d0

\ {0},

which proves that µ∗ is feasible for (3.20). Finally, by monotonicity of the sequence
(ρ1d), d ∈ N, and using ρ1d ≥ ρ1 ≥ r1 for all d,

r1 ≤ ρ1 ≤ lim
d→∞

ρ1d = lim
i→∞

ρ1di
= lim

i→∞
Lzdi (f(0)− f)

= Lz∗(f(0)− f) =

∫

K

(f(0)− f)dµ∗,

which proves that µ∗ is an optimal solution of (3.20), and so r1 = ρ1.

Finally, since f̃∗(0) = f(0),

ρ1 =

∫

K

(f(0)− f) dµ∗ =

∫

K

(f̃∗(0)− f̃∗) dµ∗

︸ ︷︷ ︸

≤0

+

∫

K

(f̃∗ − f) dµ∗

≤ ‖f̃∗ − f‖1 = ρ1,

which implies µ∗({x : f̃∗(x) − f̃∗(0) > 0}) = 0, that is, the support of µ∗ is

contained in the set of global minimizers of f̃∗ (which contains {0}). Therefore, if
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ρ1 > 0 then necessarily there is another global minimizer 0 6= x̃ ∈ K of f̃∗ with
f(x̃) < f(0), otherwise ρ1 =

∫
(f(0)− f)dµ∗ = 0. �

3.7. Convexity. One may wish to restrict to search for convex polynomials f̃ ∈
R[x]d0

(no matter if f itself is convex). For instance if the gj ’s are concave (so
that K is convex) but f is not, one may wish to find the convex optimization
problem whose y ∈ K is an optimal solution and with convex polynomial criterion
f̃ ∈ R[x]d0

closest to f .
If d0 > 2 then in (3.1) it suffices to add the additional Putinar’s certificate

(3.22) (x,u) 7→ uT∇2f̃(x)u =

m∑

j=0

ψj(x,u) gj(x) + ψm+1(x,u)(1 − ‖u‖2),

with ψm+1 ∈ R[x,u] and ψj ∈ Σd−vj [x,u], for all j = 0, 1, . . . ,m. Indeed, (3.22)

is a Putinar’s certificate of convexity for f̃ on K, with degree bound d. As the
coefficients of the polynomial (x,u) 7→ uT∇2f̃(x)u are linear in the coefficients of

f̃ , (3.22) will translate into additional semidefinite constraints in (3.2).
If d0 ≤ 2, i.e. if f(x) = 1

2x
TAx+ bTx+ c for some real symmetric matrix A ∈

R
n×n, some vector b ∈ R

n and some scalar c ∈ R, then f̃(x) = 1
2x

T Ãx+ b̃Tx+ c̃

for some real symmetric matrix Ã ∈ R
n×n, some b̃ ∈ R

n and some c̃ ∈ R. In
that case, in (3.1) it suffices to add constraint ∇2f̃(x) = Ã � 0, which is just a
Linear Matrix Inequality (LMI). And therefore, again, (3.1) can be rewritten as a

semidefinite program, namely (3.2)-(3.4) with the additional LMI constraint Ã � 0.

Notice that for k = 1, 2, it also makes sense to search for f̃ ∈ R[x]2 even if f has
degree d0 > 2, i.e., if f(x) = c + bTx + 1

2x
TAx + h(x) where h ∈ R[x] does not

contains monomials of degree smaller than 3. This means that one searches for the
convex program with quadratic cost closest to f .

So for instance, in the case where one searches for f̃ ∈ R[x]2, and given y ∈ K

let J(y) := {j ∈ {1, . . . ,m} : gj(y) = 0} be the set of constraints that are active
at y. If the gj ’s that define K are concave then one may simplify (3.1). Writing

f̃ = 1
2x

TAx+ bTx+ c, and with k = 1, 2, (3.1) now reads:

ρk := min
Ã,b̃,λ

‖f − f̃‖k

s.t. Ã y + b̃ =
∑

j∈J(y)

λj ∇gj(y)

Ã � 0; λj ≥ 0, j ∈ J(y).

So, as we did in the previous section, and possibly after the change of variable
x′ := x − y, with no loss of generality one may and will assume that y = 0, in
which case (3.23) simplifies to

(3.23)

ρk := min
Ã,b̃,λ

‖f − f̃‖k

s.t. b̃ =
∑

j∈J(0)

λj ∇gj(0)

Ã � 0; λj ≥ 0, j ∈ J(0),
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which in turn simplifies to

(3.24)

ρ1 = min
Ã�0

‖Ã−A‖1 +min
λ≥0

‖b−
∑

j∈J(0)

λj∇gj(0)‖1

ρ∞ = sup



min
Ã�0

‖Ã−A‖∞ , min
λ≥0

‖b−
∑

j∈J(0)

λj∇gj(0)‖∞



 .

Observe that (3.24) can be solved in two steps. One first solves the problem
minλ≥0 ‖b−

∑

j∈J(0) λj∇gj(0)‖k, which is a linear program with finite value, hence

with an optimal solution. One next solves the problem minÃ�0 ‖Ã − A‖k which
computes the ℓk-projection ofA onto the closed convex cone of positive semidefinite
matrices (a semidefinite program with an optimal solution).

Lemma 3.8. Let K ⊂ R
n be as in (1.1) with gj being concave for every j =

1, . . . ,m. Then (3.23) has an optimal solution f̃∗ ∈ R[x]2 and 0 is an optimal

solution of the convex optimization problem P′ : min{f̃∗(x) : x ∈ K}.

Proof. Let (f̃ , λ) (with f̃ ∈ R[x]2) be any feasible solution of (3.23). The constraint
in (3.23) states that ∇L(0) = 0, where L ∈ R[x] is the Lagrangian polynomial

x 7→ L(x) := f̃(x) −∑j∈J(0) λj gj(x), which is convex on K because the gj’s are

concave, the λj ’s are nonnegative, and f̃ is convex. Therefore ∇L(0) = 0 implies

that 0 is a global minimum of L on R
n and a global minimum of f̃ on K because

(3.25) f̃(x) ≥ L(x) ≥ L(0) = f̃(0), ∀x ∈ K.

It remains to prove that (3.23) has an optimal solution f̃∗. But we have seen that
(3.23) is equivalent to (3.24) for which an optimal solution can be found by solving
a linear program and a semidefinite program. �

So in this case where the gj ’s are concave (hence K is convex), one obtains the
convex programming problem with quadratic cost, whose criterion is the closest to
f for the ℓk-norm.

4. Global ǫ-optimality

One may be less demanding and ask y ∈ K (or 0 ∈ K after a change of variable)

to be only a global ǫ-minimizer. That is, one searches for a polynomial f̃ ∈ R[x]d0

as close as possible to f and such that f̃(x) − f̃(0) ≥ −ǫ for all x ∈ K and some
ǫ > 0 fixed. Then we will see that one may approach as closely as desired an
optimal solution of the ideal inverse problem (2.8). With K ⊂ [−1, 1]n as in (3.10),
the analogue of Problem (3.1) reads:

(4.1)

ρkdǫ := min
f̃ ,σj∈R[x]

‖f − f̃‖k

s.t. f̃(x)− f̃(0) + ǫ =

m+n∑

j=0

σj(x) gj(x), ∀x ∈ R
n

f̃ ∈ R[x]d0
; σj ∈ Σ[x]d−vj , j = 0, 1, . . . ,m+ n.
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For instance, with k = 1 (3.2) now reads

(4.2)

ρ1dǫ := min
λ≥0,f̃ ,Zj

∑

α∈Nn
d0

\{0}

λα

s.t. λα + f̃α ≥ fα, ∀α ∈ N
n
d0

\ {0}
λα − f̃α ≥ −fα, ∀α ∈ N

n
d0

\ {0}

〈Z0,Bα〉+
m+n∑

j=1

〈Zj ,C
j
α〉 =







f̃α, if 0 < |α| ≤ d0
0, if |α| > d0
ǫ, if α = 0

Zj � 0, j = 0, 1, . . . ,m+ n.

while its dual reads

(4.3)







(ρ1dǫ)
∗ = max

u,v≥0,z
−ǫz0 +

∑

α∈Nn
d0

\{0}

fα(uα − vα) (= Lz(f(0)− f − ǫ))

s.t. uα + vα ≤ 1, ∀α ∈ N
n
d0

\ {0}
uα − vα + zα = 0, ∀α ∈ N

n
d0

\ {0}
Md(z), Md−vj(gj z) � 0, j = 1, . . . ,m+ n.

Again with no loss of generality and possibly after a change of variable, we assume
that y = 0 ∈ K.

Lemma 4.1. Let K be as in (3.10) and let ρk be the optimal value of the ideal
inverse problem P in (2.8). Then for every fixed ǫ > 0 there exists dǫ ∈ N such
that ρkdǫ ≤ ρk for all d ≥ dǫ.

Proof. Let f̃∗ ∈ R[x]d0
be an optimal solution of the ideal inverse problem P with

value ρk = ‖f− f̃∗‖k. Observe that the polynomial x 7→ f̃∗(x)− f̃∗(0)+ǫ is strictly
positive on K and so by Theorem 2.2 it belongs to Q(g); and so it belongs to Qd(g)

as soon as d ≥ dǫ (for some dǫ ∈ N). Hence f̃∗ is a feasible solution of (4.1) which
implies the desired result ρk ≥ ρkdǫ for all d ≥ dǫ. �

The following analogue of Theorem 3.3 shows that the optimal value ρkdǫ of (4.1)
is still helpful to bound the quantity f(0)− f∗ (where f∗ is the global optimum of
problem P).

Theorem 4.2. Assume that K in (3.10) has nonempty interior and let x∗ ∈ K be a

global minimizer of P with optimal value f∗. For every ǫ > 0 fixed, let f̃dǫ ∈ R[x]d0

be an optimal solution of (4.1) with optimal value ρkdǫ. Then:

(a) 0 ∈ K is a global ǫ-minimizer of the problem f̃∗
dǫ = minx{f̃dǫ(x) : x ∈ K}.

In particular, if ρkdǫ = 0 then f̃dǫ = f and 0 is a global ǫ-minimizer of P.

(b) If k = 1 then f∗ ≤ f(0) ≤ f∗ + ǫ+ ρ1dǫ.

(c) If k = ∞ then f∗ ≤ f(0) ≤ f∗ + ǫ+ s(d0) ρ
∞
dǫ.

The proof is omitted as being a verbatim copy of that of Theorem 3.3 and using

f∗ = f(x∗) = f(x∗)− f̃d(x
∗)

︸ ︷︷ ︸
+ f̃d(x

∗)− f̃d(0)
︸ ︷︷ ︸

≥−ǫ

+f̃d(0).

Concerning the canonical form associated with the ℓ1-norm we also have the fol-
lowing analogue of Theorem 3.4.
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Theorem 4.3. Assume that K in (3.10) has a nonempty interior and for every

ǫ > 0, let f̃dǫ ∈ R[x]d0
be an optimal solution of (4.1) with optimal value ρ1dǫ for

the ℓ1-norm. Then f̃dǫ is of the form:

(4.4) f̃dǫ(x) = f(x) + b′x+
n∑

i=1

λ∗i x
2
i ,

for some vector b ∈ R
n and some nonnegative vectors λ∗ ∈ R

n, optimal solution of
the semidefinite program:

ρ1dǫ := min
λ,γ,b

‖b‖1 +
n∑

i=1

λi

s.t. f − f(0) + b′x+
∑

i=1n

λi x
2
i + ǫ ∈ Qd(g), λ ≥ 0.

(And λ∗ = 0 if d0 = 1.)

We end up with the analogue of Proposition 3.6 for the asymptotics as d→ ∞.
For every ǫ > 0, let us call Pǫ the analogue of problem P (= P0), i.e.,

(4.5) Pǫ : ρkǫ = min
f̃∈R[x]d0

{ ‖f̃ − f‖k : x 7→ f̃(x) − f̃(y) + ǫ ∈ Psdd0
(K) }.

Proposition 4.4. For every ǫ > 0 fixed, Problem (4.5) has an optimal solution

f̃∗
ǫ ∈ R[x]d0

, and ρkǫ = 0 if and only if y is a global ǫ-minimizer of P.

The proof is similar to that of Theorem 2.8. Next, interestingly, we are able to
relate (4.1) and the ideal inverse problem (2.8) as ǫ→ 0.

Proposition 4.5. Let K in (3.10) be with nonempty interior. Let y = 0 ∈ K and

ρk be the optimal value of the ideal inverse problem P in (2.8) and let f̃dǫ ∈ R[x]d0

(resp. f̃∗
ǫ ∈ R[x]d0

) be any optimal solution of (4.1) (resp. (4.5)).
(i) Let ǫℓ > 0, ℓ ∈ N, be such that ǫℓ → 0 as ℓ → ∞. Then every accumulation

point f̂ ∈ R[x]d0
of the sequence (f̃∗

ǫℓ
) ⊂ R[x]d0

, ℓ ∈ N, is an optimal solution of
the ideal inverse problem (2.8).

(ii) If for every ǫℓ > 0, dℓ ∈ N is sufficiently large, every accumulation point

of the sequence (f̃dℓǫℓ) ⊂ R[x]d0
is an optimal solution of the ideal inverse problem

(2.8).

Proof. (i) As ‖f̃∗
ǫℓ
− f‖k ≤ ρk for all ℓ, the sequence (f̃∗

ǫℓ
) ⊂ R[x]d0

, ℓ ∈ N, has
accumulation points. So consider an arbitrary converging subsequence (still denoted

(f̃∗
ǫℓ
) for notational convenience) f̃∗

ǫℓ
→ f̂ ∈ R[x]d0

, as ℓ→ ∞.

Observe that f̃∗
ǫℓ
(x) − f̃∗

ǫℓ
(0) + ǫℓ ≥ 0 for all x ∈ K and all ℓ ∈ N. With x ∈ K

fixed, arbitrary, letting ℓ → ∞ yields f̂(x) − f̂(0) ≥ 0, and so x 7→ f̂(x) − f̂(0) ∈
Psdd0

(K). Moreover, ρkǫℓ ≤ ρk for all ℓ yields ‖f − f̂‖k ≤ ρk, which in turn implies

that f̂ is an optimal solution of the inverse problem (2.8). As the accumulation

point f̂ was arbitrary the result follows. The proof of (ii) is similar if one recalls

that by Lemma 4.1, ρkdǫℓ = ‖f − f̃dǫℓ‖k ≤ ρk for all ℓ and all d sufficiently large,
say d ≥ dℓ. �

Hence, by asking y (= 0) ∈ K to be only a global ǫ-minimizer, one may obtain

a polynomial f̃dǫ ∈ R[x]d0
as close as desired to an optimal solution of the ideal

inverse problem provided that ǫ is sufficiently small and d is sufficiently large.
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4.1. Illustrative examples and discussion. We here provide some simple illus-
trative examples and show that the representation of the set K may be important
for getting a Putinar certificate faster.

Example 1. Let n = 2 and consider the optimization problemP : f∗ = minx{f(x) :
x ∈ K} with x 7→ f(x) = x1 + x2, and

K = {x ∈ R
2 : x1x2 ≥ 1; 1/2 ≤ x ≤ 2 }.

The polynomial f is convex and the set K is convex as well, but the polynomials
that define K are not all concave. That is, P is a convex optimization problem,
but not a convex programming problem. The point y = (1, 1) ∈ K is a global
minimizer and the KKT conditions at y are satisfied with λ = (1, 0, 0) ∈ R

3, i.e.,

∇f(x)− λ1∇g1(x) = 0 with x = (1, 1) and λ1 = 1.

However, the Lagrangian

x 7→ L(x) := f(x)− f∗ − λ1 g1(x) = x1 + x2 − 1− x1x2,

is not convex and so (1, 1) is not a global minimum of L on R
2. This example just

illustrates the fact that even in the convex case where the gj ’s are not concave, the
KKT conditions do not provide a certificate of global optimality, contrary to “convex
programming” where since L is now convex, obviously using L(x) ≥ L(y) = 0
(because ∇L(y) = 0),

f(x)− f∗ ≥ L(x) ≥ L(y) = 0,

whenever x ∈ K, and so f(x) ≥ f∗ for all x ∈ K, the desired certificate of global
optimality.

Next, if we now use the test of inverse optimality with d = 1, one searches for a
polynomial f̃d of degree at most d0 = 1, and such that

f̃d(x)− f̃d(1, 1) = σ0(x) + σ1(x)(x1x2 − 1) +

2∑

i=1

ψi(x)(2 − xi) + φi(x)(xi − 1/2),

for some s.o.s. polynomials σ1, ψi φi ∈ Σ[x]0 and some s.o.s. polynomial σ0 ∈ Σ[x]1.
But then necessarily σ1 = 0 and ψi, φi are constant, which in turn implies that σ0
is a constant polynomial. A straightforward calculation shows that f̃1(x) = 0 for
all x, and so ρ11 = 2. And indeed this is confirmed when solving4 (3.5) with d = 1.
Solving again (3.5) with now d = 2 yields ρ12 = 2 (no improvement) and with d = 3
we obtain the desired result ρ13 = 0.

On the other hand, if now K has the representation:

{x : x1x2 − 1 ≥ 0; (xi − 1/2)(2− xi) ≥ 0; i = 1, 2 },
then the situation differs because in fact

x1 + x2 − 2 =
1

5
+

2

5
(x1 − x2)

2 +
4

5
(x1x2 − 1) +

2

5

2∑

i=1

(xi − 1/2)(2− xi),

i.e., f − f∗ has a Putinar’s certificate with degree bound d = 1. Hence the test of
inverse optimality yields ρ11 = 0 with f̃1 = f .

The above example illustrates that the representation of K may be important.

4To solve (3.5) we have used the GloptiPoly software of Henrion et al. [5], and dedicated to
solving the Generalized Problem of Moments whose problem (3.5) is only a special case.
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Example 2. Again consider Example 1 but now with y = (1.1, 1/1.1) ∈ K, which
is not a global optimum of f on K any more. By solving (3.5) with d = 1 we

still find ρ11 = 2 (i.e., f̃1 = 0), and with d = 2 we find ρ2 ≈ 0.1734 and f̃2(x) ≈
0.8266 x1 + x2. And indeed by solving (using GloptiPoly) the new optimization

problem with criterion f̃2 we find the global minimizer (1.1, 0.9091) ≈ y. With

d = 3 we obtains the same value ρ13 = 0.1734, suggesting that f̃2 is already an
optimal solution of the ideal inverse problem.

Example 3. Consider now the disconnected set K := {x : x1x2 ≥ 1; x21 +
x22 <= 3} and the non convex criterion x 7→ f(x) := −x1 − x22 for which x∗ =
(−0.618,−1/0.618) ∈ ∂K is the unique global minimizer. Let y := (−0.63,−1/0.63) ∈
∂K for which the constraint x1x2 ≥ 1 is active. At steps d = 2 and d = 3 one
finds that f̃d = 0 and ρ1d = ‖f‖1. That is, y is a global minimizer of the trivial

criterionf̃(x) = 0 for all x, and cannot be a global minimizer of some non trivial
polynomial criterion.

Now let y = (−0.63,−
√
3− 0.632) so that the constraint x21 + y22 <= 3 is active.

With obtain ρ11 = ‖f‖1 and f̃1 = 0. With d = 2 we obtain f̃2 = 1.26 x1 − x22. With

d = 3 we obtain the same result, suggesting that f̃2 is already an optimal solution
of the ideal inverse optimization problem.

Example 4. Consider the MAXCUT problem max{x′Ax : x2
i = 1, i = 1, . . . , n}

where A = A′ ∈ R
n×n and Aij = 1/2 for all i 6= j. For n odd, an optimal solution

is y = (yj) with yj = 1, j = 1, . . . ⌈n/2⌉, and yj = −1 otherwise. However, the first
semidefinite relaxation

max {λ : x′Ax− λ = σ +

n∑

j=1

γi(x
2
i − 1); σ ∈ Σ[x]1; λ, γ ∈ R}

provides the lower bound −n/2 (with famous Goemans-Williamson ratio guaran-
tee). So y cannot be obtained from the first semidefinite relaxation even though
it is an optimal solution. The inverse optimization problem reads: Find the qua-

dratic form x 7→ x′Ãx such that x′Ãx − y′Ãy = σ +

n∑

j=1

γi(x
2
i − 1), for some

σ ∈ Σ[x]1, λ, γ ∈ R, and which minimizes the ℓ1-norm ‖A − Ã‖1. This is an in-
verse optimization problem with structural constraints as described in Section 3.4
(since we search for a quadratic form and not an arbitrary quadratic polynomial

f̃2). Hence, solving (3.18) for n = 5 with y as above, we find that

Ã =
1

2









0 2/3 2/3 1 1
2/3 0 2/3 1 1
2/3 2/3 0 1 1
1 1 1 0 1
1 1 1 1 0









,

that is, only the entries (i, j) ∈ {(1, 2), (1, 3), (2, 3)} are modified from 1/2 to 1/3.

Conclusion

We have presented a paradigm for inverse polynomial optimization. Crucial is
Putinar’s Positivstellensatz which provides us with the desired certificate of global
optimality for a given feasible point y ∈ K and a candidate criterion f̃ . In addition,
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to some extent, the size of the certificate can be adapted to the computational ca-
pabilities available. Finally, and remarkably, when using the ℓ1-norm the resulting
inverse optimal criterion f̃ has a simple and explicit canonical form. We hope that
the concept of inverse optimization will receive more attention from the optimiza-
tion community as it could even provide an alternative stopping criterion at the
current iterate y ∈ K of any local optimization algorithm for solving the original
problem P.
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