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Abstract

Surface Acoustic Wave (SAW) devices are currently used as passive remote-controlled sensors

for measuring various physical quantities through a wireless link. Amongst the two main classes of

designs – resonator and delay line – the former has the advantage of providing narrow-band spec-

trum informations and hence appears compatible with an interrogation strategy complying with

ISM (Industry-Scientific-Medical) regulations in Radio-Frequency (RF) bands centered around

434, 866 or 915 MHz. Delay-line based sensors require larger bandwidths as they consists of a

few interdigitated electrodes excited by short RF pulses with large instantaneous energy and short

response delays, but is compatible with existing equipment such as Ground Penetrating RADAR

(GPR). We here demonstrate the measurement of temperature using the two configurations, par-

ticularly for long-term monitoring using sensors buried in soil. Although we have demonstrated

long term stability and robustness of packaged resonators and signal to noise ratio compatible with

the expected application, the interrogation range (max 80 cm) is insufficient for most geology or

geophysical purposes. We then focus on the use of delay lines, as the corresponding interrogation

method is similar to the one used by GPR which allows for RF penetration distances ranging from

a few meters to tens of meters and which operates in the lower RF range, depending on soil water

content, permittivity and conductivity. Assuming propagation losses in a pure dielectric medium

with negligible conductivity (snow or ice), an interrogation distance of about 40 m is predicted,

which overcomes the observed limits met when using interrogation methods specifically developed

for wireless SAW sensors, and could partly comply with the above-mentioned applications. Al-

though quite optimistic, this estimate is consistent with the signal to noise ratio observed during

an experimental demonstration of the interrogation of a delay line buried at a depth of 5 m in

snow.

PACS numbers: 07.79-v

Keywords: GPR, SAW, buried sensors, passive wireless device

2



I. INTRODUCTION

Within the framework of wireless sensors, surface acoustic wave (SAW) piezoelectric

devices provide unique performances in terms of robustness and autonomy compared to

active devices (better temperature stability compared to Complementary Metal-Oxide-

Semiconductor – CMOS – devices, no need for on-board power supply), and larger in-

terrogation distance than Radio-Frequency IDentification – RFID – passive tags. The use

of piezoelectric delay lines and resonators for monitoring physical quantities such as tem-

perature, strain, torque and pressure have already been demonstrated1–5. As opposed to

CMOS based devices, acoustic sensors relying on a piezoelectric substrate do not exhibit an

incoming energy level threshold to work properly.

The operating principle of these devices is based on a first conversion of an incoming

electromagnetic wave to an acoustic propagating wave. As the latter is sensitive to its en-

vironment (and hence can be optimized to sense a specific physical parameter) its principal

characteristics, and mainly the phase velocity, are modulated according to the conditions

the sensor is submitted to. Finally, the acoustic energy stored in the sensor is converted

back to an electrical signal by direct piezoelectric effect and dissipated as an electromag-

netic radiation through the antenna. This signal is captured and analyzed to evaluate the

measured physical parameter.

The resulting interrogation range and compliance with existing RADAR systems (Ground

Penetrating Radar – GPR6) complements the identification capability already familiar to

passive IFF (Indentify Friend/Foe) systems used since the second world war, with measure-

ment capabilities7.

The short interrogation delay (microsecond to millisecond range) of such sensors en-

ables one for fast data refreshing. The SAW device itself is small (typical package size

10×5×1 mm3) but the associated radio-frequency (RF) antennas penalize the compactness

of the whole sensor, depending on its frequency operation and the nature of its environment.

For instance, operation in dense absorbing (organic) media or with metallic surroundings

still is a challenge for achieving large interrogation distance.

We have here investigated the use of SAW resonators and delay lines as buried sensors

for long term temperature monitoring: while interrogation speed is hardly an issue, the

interrogation distance will define the system efficiency and the range of use. For interrogation
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distances smaller than 1 meter, applications mainly concern concrete surface properties

monitoring8, road aging or near surface soil properties monitoring. However, the application

range is greatly enhanced if tens-of-meters-range interrogation distances can be reached9,

since deep soil properties then can be accessed. We report on the long-term monitoring of soil

temperature using the two above-mentioned sensor configurations. Although we demonstrate

long term stability and robustness of packaged sensors and signal-to-noise ratio compatible

with the expected application, the interrogation range (max 80 cm) is insufficient for most

geology or geophysics purposes. We then draw our inspiration from the literature concerning

Ground Penetrating Radar (GPR)6. The latter technique is widely used for monitoring

dielectric interfaces in buried structures, with penetration distances depending on the probe

electromagnetic pulse duration and dielectric properties of the soil. We focus on providing

complementary informations from sensors with interrogation techniques compatible with

GPR, following a strategy commonly known as cooperative target10. We particularly focus

on the use of delay lines, as the corresponding interrogation method is similar to the one used

by GPR which allows for interrogation distances ranging from a few meters to tens of meters

and which operates in the lower RF range, depending on soil water content, permittivity

and conductivity. Assuming propagation losses in a pure dielectric medium with negligible

conductivity (snow or ice), an interrogation distance of about 40 m is predicted which reveals

compliant with geology and geophysics purposes (temperature and stress monitoring for

instance). These results were experimentally tested, using a delay line designed to operate

around 100 MHz (the actual GPR working frequency) exhibiting a very simple time response

(3 bits) as coding was not a purpose of this work. The delay line has been buried in snow

and interrogated at various depths up to the maximum experimentally feasible distance of

5 m, which tends to validate the predicted interrogation distance.

II. BURIED RESONATORS AS PASSIVE TEMPERATURE SENSORS

A first set of experiments has been performed using resonator based sensors11–13. Three

434-MHz surface acoustic wave sensors were buried in clay after being connected to dipole

antennas. The length of these antennas is adjusted prior to installation in soil assuming a

relative permittivity of 10. The purpose of this experiment is to validate the operation of

sensors buried in soil and the evolution of the RF link quality over time, as a function of
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temperature or climatic conditions (for instance moisture level in soil).

Each sensor is made of two resonators connected in parallel, one reference frequency and

one measurement frequency within the 1.7-MHz wide European ISM band, with each res-

onator designed so that its frequency remains within one half of the allocated frequency band

(for temperatures ranging from -20oC to 160oC). Each sensor is packaged and hermetically

sealed in 5×5 mm2 ceramic packages. The gold-coated contact pads are tin-soldered to the

antennas made of 1.6 mm thick FR4 epoxy coated with 30 µm copper. Interrogating these

sensors is performed using a custom-designed monostatic pulse mode RADAR system acting

as a reflection-mode frequency-sweep network analyzer. The pulse mode operation improves

the isolation between the emission and reception steps and hence the interrogation distance,

typically a few meters in air14.

The first observation during installation of the experiment is that an interrogation unit

generating 10 dBm, with a detection limit of -70 dBm14, is unable to detect a usable signal

from devices buried only 30 cm deep, consistent with the tabulated electromagnetic propa-

gation losses in clay whose relative permittivity εr is in the [4..40] range and conductivity σ

is in the [2×10−3..1] S/m range of 1 to 300 dB/m15, as computed through the exponentially

decay loss α of a monochromatic electromagnetic plane wave at pulsation ω propagating in

a conducting medium

α =

√

√

√

√

√

εr

2





√

1 +
σ2

ε2ω2
− 1





where ε = ε0εr.

The read out distance is increased by inserting an electromagnetic waveguide (a simple

conducting wire) in the hole in the soil near the buried device (Fig. 1). It must be noted

that no electrical connection is provided between this metallic wire and the sensor on one

side, or the interrogation unit on the other side, meaning that this setup is resistant to soil

motion, oxidation or surface disturbances such a lawn mowing (Fig. 1). Another sensor is

then buried at a depth of 80 cm and soldered to a RG174 coaxial cable protruding from the

hole in the ground as an open feed connexion. All 10 cm diameter holes were refilled with

the same clay than the surrounding area and watered to avoid any air gap.

This setup provides relative temperature informations (Fig. 2) over time as the sensors had

not been calibrated prior to the experiment. Long term drift due to aging of the transduc-

ers is reduced through the differential measurement approach: although a single resonator
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frequency might drift over time due to surface contamination after packaging16,17, the dif-

ferential approach of measuring a frequency difference between two resonators submitted to

the same environment reduces this effect.

The evolution of the temperature provided by the buried sensors is consistent with a

sliding average over 9 days of surface temperatures as provided on the web site http:

//www.meteociel.fr/ (maximum of the cross-correlation between the experimental data

and the averaged values as a function of sliding window length). The result of this experiment

running for more than 500 days is exhibited in Fig. 2: the SAW sensors packaged in ceramic

housings are resistant to environmental corrosion, and no significant drift or signal loss was

observed during the experiment period. The error bars are consistent with a sub-kelvin

resolution, typically of the order of ±0.1 K. The efficiency of the wireless link was validated

during night-time measurements (no visual identification of the location of the sensor other

than by scanning the interrogation unit antenna over a ∼1 m2 area where the sensor was

supposed to be located until a usable RF signal was acquired) or when snow was covering

the measurement area.

However, due to the high duty cycle of resonator interrogation (typically 50% emission

and 50% reception and signal processing), peak and average RF power are both in the tens to

hundreds of milliwatt range, reducing the interrogation range if RF emission regulations are

met. On the other hand, ultra-wide band pulse mode RADAR exhibits very low duty cycles,

typically 0.1%, associated with high peak powers in the hundreds to thousands of watts. As

this interrogation mode is hardly compatible with resonator-based sensor operation, we have

considered the possibility of using wide-band SAW devices, i.e. delay lines built on lithium

niobate, to meet our goal. Hence, we consider in the next section the use of a commercially

available GPR unit as interrogation units for buried acoustic delay lines acting as sensors.

III. INTERROGATING DELAY LINES

A. GPR operation

Throughout this presentation, we will focus on the read out of a SAW sensor using a

Mal̊a Geoscience (Mal̊a, Sweden) RAMAC GPR equipped in a 100 MHz bistatic configura-

tion.
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The simplest implementation of RADAR interrogation units are designed to generate a

short – ideally single – pulse including as much energy as possible. This result is achieved

in the RF range by slowly loading a capacitor with a high voltage (provided by a switching

power supply for embedded designs) and “instantaneously” emptying this energy in an

antenna through an avalanche transistor when triggered by a clock pulse. The duration of

the energy transfer is defined by the antenna impedance, which is itself influenced by the

antenna dimensions and surrounding medium permittivity (Fig. 3). Hence, GPR operation

should be considered as fixed wavelength (defined by the antenna dipole dimensions) rather

than fixed frequency, since the soil permittivity affects the electromagnetic velocity and

hence the pulse central frequency.

In a classical mode of operation, the bistatic GPR unit operates as follows:

1. a radiofrequency pulse is generated by the emitter, for example by triggering the base

of an avalanche transistor and letting the current flow from a capacitor loaded with

a high voltage (360 V in the case of the RAMAC unit) to the emitting antenna. In

this particular case, the peak power in the dipole antenna load (70 Ω impedance at

resonance) is thus 2 kW.

2. the direct electromagnetic wave propagating on the surface, as well as all the echoes

reflected from the dielectric interfaces in the ground, are recorded by the receiving

unit at a sampling rate at least 10 times the nominal value of the emitted pulse (in

this case a nominal working frequency of 100 MHz), with a sampling triggered by the

same signal controlling the base of the avalanche transistor

3. equivalent time sampling reduces the receiving unit cost and bandwidth: the emitted

pulse is repeated at a rate slower than the inverse time needed for the pulse to reach

the maximum probing depth (10 µs repetition rate in the case of the RAMAC unit,

yielding a maximum probing depth of 850 m considering an electromagnetic velocity

in ice of 170 m/µs) and the returned signal is recorded after a time interval referenced

on the trigger signal and increased by time steps inverse of the wanted sampling

frequency. Hence, by delaying the recording time by an additional 250 ps with respect

to the trigger signal every new emitted pulse, an equivalent sampling rate of 4 GHz is

achieved even with much slower analog to digital converters and low communication

bandwidth between the receiving unit and the recording computer.
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For a given position of the GPR, a series of time domain return signals is called a GPR

trace. Presenting the returned signal power (trace) as a color or grey-scale map is called a

scan. Displaying multiple scans side by side for various positions of the GPR unit is called a

GPR profile. GPR profile usually maps the evolution over distance of a dielectric interface

or obstacle, for example a glacier bedrock (Fig. 3). Our GPR unit performed in agreement

with results found in the literature18, allowing for the identification of an usable signal more

than 150 m deep when used on ice to monitor the bedrock interface of a glacier (Fig. 3).

B. GPR for probing acoustic delay lines

Any impedance mismatch between the avalanche transistor output and antenna through

a balun will induce ringing and, in classical RADAR applications, unwanted additional

oscillations beyond the main pulse. This ringing may be suitable for interrogating delay

lines since more than a single pulse is necessary to efficiently load energy into SAW devices,

as their pass-band rarely overpasses 10% of their central operating frequency (related to

their electro-mechanical coupling). The extreme case is the resonator of quality factor Q

which needs Q/π periods (at 434 MHz, Q ≃10000 which yields about 3500 periods) to be

efficiently loaded. The quality factor of the antenna is usually much below this value, of

the order of unity, and hence a passive resonator (coaxial line) might be added between

the balun and the antenna to store energy and induce enough ringing when interrogating

resonators. Furthermore, it is wise to detune the antenna and the resonator to avoid too

strong a coupling between these elements19.

Hence, interrogating delay lines using a RADAR setup includes new challenges. The

number of oscillations of the emitted pulse as well as the central frequency are strongly

dependent on the permittivity of the surrounding medium. Indeed, the fixed quantity is

the emitted signal wavelength which is defined by the size of the dipole antenna of the

GPR, while the center frequency is induced by the equivalent permittivity of the air-soil

interface. Despite the impact of the environment on the emitted signal, we observe that the

emitted signal is so broad in the frequency domain that it will always overlay the relatively

narrowband response of the delay line (Fig. 4).
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C. Delay line design

The sensor we have designed includes a transducer made of 21 IDT pairs, three mirrors

also made of 21 IDT pairs located at distances from the transducer so that the reflected

echoes are detected 1.0, 1.3 and 2.8 µs after the excitation pulse. The acoustic wavelength of

λ = 40 µm yields a central frequency around 100 MHz, matching the pulse length generated

by the 100 MHz antenna of the RAMAC GPR unit. The 128-degrees Y-rotated black lithium

niobate (pyro-free) substrate was selected for its strong piezoelectric coupling as well as large

temperature drift, making it ideal for temperature measurement applications. The free

surface acoustic velocity of the Rayleigh wave is 3979 m/s: the delay line aluminum grating

parameters correspond to a metallisation ratio a/p = 0.5 and a relative height h/λ=2.5%

(1 µm thick aluminum layer) (Fig. 4, top-right)20. Although the acoustic sensor itself is less

than 1×1 cm2 in dimensions, the associated 100 MHz antenna is made of a 1 mm-diameter

copper-wire dipole of total length 75 cm.

Furthermore, the time stretching strategy used by GPR to achieve such high sampling

rates with rather basic electronics is interesting to develop21: successive pulses are generated

and the response of the environment is monitored after a programmable time delay, which,

in the case of a 500 MHz sampling rate, is increased by 2 ns steps at each interrogation

iterate. In the case of Mal̊a’s RAMAC GPR, the repetition rate is 100 kHz: this time delay

of 10 µs between each emitted pulse explains that under favorable conditions, some leftover

echo signal from the delay line (up to 10 µs after the excitation pulse has been received by the

sensor) is visible before the excitation pulse is emitted. This repetition rate also defines the

maximum time delay of the last echo generated by the delay line sensor. Most interesting

to our signal processing strategy, this measurement technique allows for fast sampling at

baseband of the received signal as opposed to a demodulated magnitude information which

might lack the phase information we will be using for determining accurately the time delay

between the emitted excitation pulse and received echoes.

Figs. 5 and 6 show, on the top-left chart, the time evolution of the reflected signal for

a sensor located at 50 cm (Fig. 5) and 1 m (Fig. 6) from the receiving antenna: the

sensor is located on the surface of a concrete area, away from the emitting antenna. These

sensors were heated up from room temperature to 80oC by a 3 Ω power resistor supplied

with a 1.5 A current: the temperature T was monitored using a Pt100 temperature probe
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glued next to the acoustic delay line. Since the delay lines were patterned on a (YXl)/128o

lithium niobate cut with an experimental temperature drift coefficient of -70±2 ppm/K, the

echo delay ∆τ variation is ∆τ = 70 × 10−6τ(T − T0) with T0 the reference temperature,

τ = 1.0 or 1.3 µs depending on the reflection delay τ under consideration. This time delay,

∆τ ∈ [5.5..6.7] ns, is observed as a magnitude signal shift of 3 pixels at most when sampled

at 500 MHz. However, as shown by Reindl & al.22–24, the magnitude information provides a

rough estimation of the temperature while the use of the phase in that purpose improves the

accuracy, although with a modulo 2π uncertainty. One full phase rotation is easily identified

in practical conditions: considering τ ≤ 2 µs, a phase rotation of 2π occurs, in our case,

when ∆τ=10 ns, which happens when ∆T = 71 K.

We have thus applied the following algorithm to extract the temperature information

from the RADAR recordings:

• roughly identify the echo location using a cross-correlation magnitude maximum be-

tween the emitted pulse and the received echoes. The first three maxima are considered

since we know our delay line is designed with three reflectors, while four echoes are

actually seen in the 0-3.5 µs time interval due to additional reflections on the edges of

the chip,

• perform the Fourier transform of the returned echo to identify the frequency range of

interest

• the accurate time delay deduced from the position of the whole echo burst position is

accessible through the phase of the short-term Fourier transform. This value is plotted

in the bottom-left graphs of Figs. 5 and 6, and compared to the Pt100 temperature

probe recording.

The absolute phase of the Fourier transform, i.e. absolute position of the echoes, depends

on the distance of the sensor to the receiving antenna, as can be seen at trace 400 of Fig. 6,

where the sensor was moved from 1 m from the receiving antenna to 50 cm. Not only does

the magnitude of the received signal increase, but more significantly the phase shift of both

echoes is affected by this signal change. Hence, the phase difference between the time delays

of the two echoes due to the two mirrors on a same delay line yields a reliable estimate of

the temperature variations, and absolute temperature when calibrated. However, since the
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noise of the two time delay estimates are uncorrelated, the noise level of the phase difference

is equal to the sum of the noises of each phase estimate: while each phase measurement

allows to estimate a temperature with sub-kelvin accuracy when the sensor is located at a

fixed position, the temperature recorded from a phase difference is accurate to a standard

deviation of 1.5 K when the sensor is located at a distance of 50 cm from the receiving

antenna. This figure degrades when the sensor is moved away from the receiving antenna,

to get above 3 K when the sensor is located at 1 m from the receiving antenna (Fig. 6,

bottom left, red). This short term noise is strongly reduced by stacking multiple estimates

in a sliding average, as can be seen in Fig. 6 where the green line is a sliding average over

10 samples of the red phase-to-temperature conversion from single measurements.

These experiments were performed on concrete, with the distance between the emitting

antenna and the receiving antenna equal to 1 m, and the sensor located 50 cm or 1 m

from the receiving antenna, away from the emitting antenna (which was thus located 1.5 to

2 m from the delay line sensor). Such a configuration is not favorable for efficient coupling

since the surface electromagnetic wave is weak with respect to the electromagnetic coupling

towards the soil thanks to its strong dielectric permittivity.

Hence, experimenting in a condition favorable to GPR with an environment of low con-

ductivity, provides convenient conditions to assess the practical usage range of these sensors.

We buried sensors in 5 m high snowdrifts close to Ny-Alesund (Spitsbergen, Norway) as a

representative environment of temperature monitoring of a glacier in a polar environment.

The signal to noise ratios up to this depth allows for extracting the echoes returned from

the SAW delay line, identifying the relative phase values and hence the temperature (Fig.

7).

D. Range estimate and sensor signal identification

The unusually long delay between the incoming pulse and the echoes returned by the delay

line – 1 to 2 microseconds would be associated with reflectors 85 to 170 m deep in ice – allows

in most situations for time domain multiplexing, with sensor-associated signals observed in a

time window inconsistent with dielectric interfaces. This method for identifying the source of

the signal – dielectric interface or acoustic sensor – is reminiscent of Time Division Multiple

Access (TDMA) classically user for sharing a single transmission canal amongst multiple
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applications.

Considering the usable reflections recorded from ice-rock interfaces more than

dinterface=100 m below the surface (Fig. 3), we wish to estimate the depth25 at which a

GPR-like interrogation scheme would be able to detect informations from a buried delay

line. Based on the reflection coefficient of the permittivity mismatch at the interface be-

tween the two layers and the typical insertion loss of delay lines, we can estimate the range

at which a delay line will provide the receiver of the RADAR with enough power for a

measurement:

• assuming a plane wave reaching an interface between ice and rock, the Fresnel reflection

coefficient R is computed using relative permittivities εice = 3.126 and εrock ≃ 5 as

R =
(√

εice−
√

εrock√
εice+

√
εrock

)2
. We deduce that in this case, the ice-rock interface exhibits an

ILinterface = 19 dB reflection coefficient

• the ice-rock interface hence presents a reflection coefficient much larger than the typical

delay line with a S11 insertion loss at 35 dB5 (Fig. 4), meaning that the delay line

must be close to the RADAR to provide a meaningful signal

• the Free Space Propagation Loss (FSPL27) calculation is adapted to the RADAR

configuration considering that the SAW target acts as a point like source. Hence, the

classical Friis formula stating that the electromagnetic power decays as the distance d

squared becomes a fourth power law, while the antenna aperture remains proportional

to the electromagnetic wavelength λ: FSPLRADAR(d) = 10 × log10

(

λ2

4π
× 1

(4πd2)2

)

=

10 log10

(

λ2

(4π)3d4

)

.

• in order to assess the range at which the delay line with ILSAW = 35 dB insertion

loss can be interrogated, we must identify the depth dSAW for which the received

power is equal to the one computed previously in the case of the reflection on the

bedrock: FSPLRADAR(dinterface)+ILinterface = FSPLRADAR(dSAW )+ILSAW yielding

a computation of dSAW independent on λ and numerical constants:

dSAW = dinterface × 10(ILinterface−ILSAW )/40

In our case, since ILSAW − ILinterface=16 dB, we conclude that the depth at which

the acoustic delay line echoes are of the same magnitude than the reflected signal from

an ice-rock interface is dSAW ≃ 40 m.
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The conclusion of this plane wave analysis is that a SAW delay line buried in ice at a

depth of 40 m should provide the same signal level than the dielectric interface at 100 m.

The delay line signature in an echo v.s. antenna position graphics (as shown in Fig. 7 for

example) is characterized by multiple hyperbolas translated in time towards greater depths

since the acoustic signal is an attenuated replica of the electromagnetic pulse delayed a

few microseconds in time. An inter-correlation between the various pulses thus allows an

accurate identification of the time delays within the delay line and hence identification of

the physical quantity affecting these delays.

Locating the sensor position during a GPR scan is possible through the identification

of the hyperbola summit: the reflected signal delay is minimum when the antennas are

positioned above the sensor. However, considering a homogeneous medium (in our case ice)

with a known electromagnetic velocity c, then the hyperbola equation of the two way time

travel 2t as a function of antenna position x on the surface is

4c2t2 − x2 = d2

for a sensor located at depth d. Hence, beyond the spatial position of the sensor obtained

by scanning the GPR instrument, the depth of the point-like sensor is indicated by the

hyperbola curvature equal to 1
d×c

. Furthermore, this curvature provides a unique signa-

ture response since the observed delay (including the acoustic delay of several hundreds of

nanoseconds, which would account for a depth of several tens of meters if it were due to

the electromagnetic propagation speed) is inconsistent with a dielectric reflector located at

depth d.

Finally, multiple sensors with different polarizations can be located in common view of

the GPR unit18: we have observed that the strong linear polarization of the pulse emitted by

the GPR dipole is able to select the response from a single sensor buried 2 m deep in snow

without interference from another similar sensor located about 4 m away and positioned

with an orthogonal polarization. This strategy is only possible in the far field range, at a

distance of several wavelengths (1.7 m at 100 MHz in ice) from the surface.
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IV. CONCLUSION

We have demonstrated that SAW resonators packaged in ceramic packages buried in clay

can operate for more than one year with no significant drift or signal quality degradation.

Systematic monitoring of these buried devices provides temperature evolutions consistent

with surface temperatures. We also have shown that an interrogation unit compliant with

the 434 MHz European ISM band allows for interrogating buried sensors at a depth of 80 cm

using a coaxial connection, and of 60 cm by promoting the electromagnetic field penetration

in soil using a simple conductive wire placed near the sensor and standing out the ground.

We have designed and fabricated a dedicated temperature sensor for use with a 100 MHz

ground penetrating RADAR (GPR) unit and demonstrated the ability to record echo signals

when the sensor is located at the surface 50 cm and 1 m away from the receiving antenna, as

well as buried more than 5 m deep in snow or ice. We have developed the signal processing

steps from raw GPR data to extract a temperature informations deduced from the time

relative time delay between successive echo pulses.

In order to improve the interrogation depth of sensors, we have analyzed the interrogation

strategy of ground penetrating RADARs (GPR), able to detect informations of reflected

electromagnetic energy at dielectric interfaces up to 100 m deep at 100 MHz in low loss

propagation media such as ice. We extend this result to an estimate of the depth at which

a SAW delay line might provide the same amount of reflected energy by compensating the

large insertion loss by bringing the sensor closer to the surface: a plane wave calculation of

Fresnel reflection coefficient hints a possible depth of 40 m, in agreement with the observed

signal to noise ratio achieved when the sensor is located 5 m under the surface.
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Supplementary material

Fig. 8 depicts the experimental setup for measuring the response of SAW delay lines

buried 5 m deep in a snowdrift. The sensor and the associated 70 cm long dipole antenna

are located in a 3 cm diameter tube filled with snow. The tube is inserted about 1.5 m deep

in snow while the GPR scans this area and records both dielectric reflections and echoes

from the SAW sensor as a function of antenna position. Although each absolute echo phase

with respect to the emitted pulse is dependent on the antenna position, the difference of the

phases of the echoes is independent on the antenna position and only depends on the acoustic

velocity, or in this case the temperature through the temperature coefficient of frequency

of the piezoelectric substrate. The data displayed in Figs. 7 and 8 were processed using

the Seismic Unix package (http://www.cwp.mines.edu/cwpcodes) with the application of

a normalization step and bandpass filtering in the 100±50 MHz band.

Analyzing the signal to noise ratio of the echoes returned – starting 1 µs after the emitted

pulse and for a duration of 3.3 µs – from the sensor buried 5 m deep in snow, one can estimate

16



the depth at which the minimum signal will be detectable. Considering a signal to noise

ratio above 1.7, the maximum readout distance should be 8 times further than the current

position (since 1.74 ≃ 8), consistent with the 40 m maximum depth estimated from the

classical GPR link budget presented in the main text.

Figures
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FIG. 1: Experimental configuration: the 30 cm and 60 cm deep devices are SAW resonators soldered

to a 2×5 cm long dipole, buried in clay with a conducting wire located in the hole but neither

electrically connected to the sensor nor to the interrogation unit. The 80 cm deep resonator was

soldered to an RG174 coaxial cable protruding from ground as an open-feed.
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FIG. 2: Evolution over more than two years of the temperature of buried sensors at depths between

30 and 80 cm. The sensors survived this environment for the duration of this experiment, with no

noticeable drift or loss in RF link quality, while providing data consistent with surface temperatures.

Only relative temperatures are provided by the sensors since no calibration was performed prior

to the experiment: the buried sensor temperatures have been shifted with respect to the averaged

air temperature for clarity, while qualitatively exhibiting similar trends after processing the mean

air temperature through a 9-day running average (thick solid line, maximum and minimum daily

temperature obtained from the web site referenced in the main text. Data quality is assessed

through the standard deviation of the 20-s dataset gathered during each measurement: a few

unsuitable data with excessive deviation are displayed for demonstration purpose (days 230 or 500

for example).
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FIG. 3: 100 MHz ground penetrating RADAR scans of the ice-rock interface: the signal is detected

for an interface deeper than 100 m. The raw RADAR signal were processed using Aslak Grinsted’s

processradar.m Matlab tool. Data acquired on the Austre Lovénbreen glacier (Spitsbergen, Nor-

way).
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FIG. 4: Frequency domain (top) and time domain (bottom) characterization of a 100 MHz, dual

mirror delay line. The blue lines are characterization on a Rohde & Schwartz network analyzer

under a probe station, with the time domain signal obtained as the inverse Fourier transform

of the frequency domain characterization. The red signal in the time domain plot (bottom) is

the RADAR echo observed when locating a sensor 50 cm away from the receiving antenna. The

red signal in the frequency domain plot is the power spectrum of the RADAR pulse, obtained

by Fourier transform of the emitted pulse: although the central frequency is dependent of the

dielectric environment of the emitting antenna, a large fraction of the emitted pulse overlaps the

frequency region of the delay line. Top-right inset: dimensions of the delay line, transducers and

mirror position (all dimensions in micrometers). One mirror is located to the left of the transducer,

two mirrors are located on the right. Each side of the IDT transducer is connected to one branch

of a dipole antenna through silver-epoxy bonding.
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FIG. 5: Top left: the raw color-coded time evolution of the recorded RADAR echo magnitude

between 1.0 µs and 1.3 µs after the excitation pulse was emitted. The sampling is performed at

500 MHz, or 5 times the frequency of the signal of interest. Top-right: identification of the frequency

component (index) representative of the delay line, here visible as a maximum of the magnitude

of the Fourier transform of the points from 0.9 to 1.1 µs (first echo) and 1.2 to 1.4 µs (second

echo). We observe that this frequency component of interest does not change with temperature

(i.e. is independent on the trace number). Bottom right: time-evolution of the unwrapped phase

of the Fourier transform at frequency abscissa 25 as identified from the top-right graph. Bottom-

left: time evolution of the phase difference between the first and second echoes, after scaling and

translation to match the reference temperature curve recorded with a Pt100 probe located next

to the delay line. During this whole experiment, the receiving antenna is located 1 m from the

emitting antenna, and the sensor is 50 cm from the receiving antenna away from the emitting

antenna.
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FIG. 6: The graph sequence and analysis is the same than the one described in the caption of

Fig. 5. Here, however, the sensor is first located 1 m from the receiving antenna, away from the

emitting antenna, and brought closer to 50 cm of the receiving antenna at trace number 400. This

distance change is observed as an increase of the magnitude of the signal of interest (top right graph,

magnitude of the Fourier transform of the echo), a phase shift in the bottom graph affecting both

echoes in the same way, and a decrease of the temperature estimate standard deviation (bottom-left

graph).
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FIG. 7: Signal acquired while scanning a 100 MHz GPR unit over a sensor buried 2.20 m deep

in snow. The emitted pulse exhibits ringing due to impedance mismatch, a condition degrading

depth resolution but favorable to efficiently load the acoustic delay line. The recorded signal clearly

displays four echoes, the first three being used to extract the physical quantity under investiga-

tion. The absolute phase with respect to the emitted pulse is dependent on antenna position and

constantly rises as the RADAR is brought close to the sensor, but the phase difference is indepen-

dent on antenna position and is representative of the physical quantity under investigation. As

expected, each echo is made of 21 oscillations, which is equal to the number of electrode pairs in the

transducer. The “inverted” hyperbola shape of the echoes is an aliasing artifact when displaying

the data.
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FIG. 8: Experimental setup for recording signals from a sensor while scanning a 100 MHz GPR

unit over a sensor buried 5 m deep in snow. The emitted pulse exhibits ringing due to impedance

mismatch, a condition degrading depth resolution but favorable to efficiently load the acoustic

delay line. The recorded signal clearly displays four echoes, the first three being used to extract

the physical quantity under investigation.
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FIG. 9: Fourier transform of the returned echoes for a sensor buried 5 m deep in snow: the spectrum

is given in linear arbitrary unit, exhibiting a signal to noise ration above 1.7. This measurement

indicates that the echo detection should be possible at a distance between the GPR unit and the

sensor of 40 m. Indeed, following the RADAR equation, and assuming only propagation loss, the

returned power decreases as the fourth power of the distance, and 81/4 ≃ 1.7.
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