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The one-dimensional fractional derivative Maxwell model (e.g. Palade et al. Rheol. Acta 35, 265, 1996), of importance in modeling the linear viscoelastic response in the glass transition region, has been generalized in Palade et al. Int. J. Non-Linear Mech. 37, 315, 1999, to objective threedimensional constitutive equations (CEs) for both fluids and solids. Regarding the rest state stability of the fluid CE, in Heibig and Palade J. Math. Phys. 49, 043101, 2008, we gave a proof for the existence of weak solutions to the corresponding boundary value problem. The aim of this work is to achieve the study of the existence and uniqueness of the aforementioned solutions and to present smoothness results.

Introduction

Fractional derivative constitutive equations (CEs) have been found to accurately predict, among others, the stress relaxation of viscoelastic fluids in the glass transition and glassy (high frequency) states. The experimental behavior of storage G ′ and loss G ′′ moduli (obtained upon using the time -temperature superposition principle -see [START_REF] Palade | Time-temperature superposition and linear viscoelasticity of polybutadienes[END_REF], [START_REF] Robertson | Unified application of the coupling model to segmental, Rouse, and terminal dynamics of entangled polymers[END_REF]) of a linear, narrow molecular weight series of polybutadienes is exceptionally well predicted by linearized fractional derivative models as can be reckoned from [START_REF] Palade | A modified fractional model to describe the entire viscoelastic behavior of polybutadienes from flow to glassy regime[END_REF]. Polybutadienes are of utter importance for the tire industry, for manufacturing certain solid propergols, etc. Similar excellent agreements between frequency sweep experimental data obtained on other polymers (e.g. polystyrenes) and theoretical predictions of linear fractional derivative models are reported in [START_REF] Friedrich | Relaxation Functions of Rheological Constitutive Equations With Fractional Derivatives: Thermodynamical Constraints[END_REF][START_REF] Kausch | Matériaux Polymères: Propriétés Mécaniques et Physiques[END_REF][START_REF] Mainardi | Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models[END_REF].

The object of study is the below given objective, fractional derivative viscoelastic (incompressible) fluid constitutive equation (CE) (see [START_REF] Palade | Anomalous stability behavior of a properly invariant constitutive equation which generalises fractional derivative models[END_REF])

S(t) + λ α F(t) t -∞ µ 1 (t -τ )F -1 (τ ) ▽ S (τ ) F -1 (τ ) T dτ F(t) T = Gλ β F(t) t -∞ µ 2 (t -τ )F -1 (τ )A 1 (τ ) F -1 (τ ) T dτ F(t) T (1.1)
Function S is the (objective) stress tensor and ▽ S its objective upper convected derivative defined by (with D/Dt denoting the material derivative and L the velocity gradient; see for example [START_REF] Huilgol | Fluid Mechanics of Viscoelasticity[END_REF], [START_REF] Morrison | Understanding Rheology[END_REF], [START_REF] Cleja-T ¸igoiu | Rheology and Thermodynamics, Part I -Rheology[END_REF]):

▽ S = DS Dt -LS -SL T , (1.2)
Function F is the strain gradient and A 1 = ∇u + (∇u) T = L + L T is the first Rivlin-Ericksen tensor. The model parameters are such that 0 < λ, 0 < α < β < 1. µ 1,2 (t) are two memory kernels given by:

µ 1 (t -τ ) = (t -τ ) -α Γ(1 -α) , µ 2 (t -τ ) = (t -τ ) -β Γ(1 -β) (1.
3)

The stability of the rest state is now investigated using the linearized theory. As shown in [START_REF] Palade | Anomalous stability behavior of a properly invariant constitutive equation which generalises fractional derivative models[END_REF] and [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF], it is first assumed that the stress tensor S = O(ǫ) and the deformation gradient F(t) = 1 + ǫJ(t) + O(ǫ 2 ). Since L = ḞF -1 (see for ex. [START_REF] Huilgol | Fluid Mechanics of Viscoelasticity[END_REF], [START_REF] Joseph | Fluid dynamics of viscoelastic fluids[END_REF], [START_REF] Morrison | Understanding Rheology[END_REF]), L = O(ǫ). Hence the velocity u = O(ǫ), and the first Rivlin-Ericksen tensor A 1 = O(ǫ) as well. Therefore, keeping only terms of O(ǫ), within the linear response theory eq.(1.1) reduces to :

S(t) + λ α t -∞ µ 1 (t -τ ) ∂S(τ ) ∂τ dτ = Gλ β t -∞ µ 2 (t -τ )A 1 (τ )dτ (1.4)
Next, assume the fluid is contained in a bounded volume Ω ⊂ R 3 whose boundary ∂Ω is sufficiently smooth, and set in motion at t = 0. The CE in eq.(1.4) then takes the form:

S(t) + λ α t 0 µ 1 (t -τ ) ∂S(τ ) ∂τ dτ = Gλ β t 0 µ 2 (t -τ )A 1 (τ )dτ (1.5)
The above may be re-written in condensed form using the Caputo operators D α t and I 1-β t as:

S(t) + λ α D α t S = Gλ β I 1-β t A 1 (1.6)
where for an absolutely continuous function f : R + → C:

D α t f (t) = 1 Γ(1 -α) t 0 f ′ (τ ) (t -τ ) α dτ (1.7)
and for f ∈ L 1 loc (R + ),

I 1-β t f (t) = 1 Γ(1 -β) t 0 f (τ ) (t -τ ) β dτ (1.8)
As shown in [START_REF] Palade | Anomalous stability behavior of a properly invariant constitutive equation which generalises fractional derivative models[END_REF][START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF], investigating the stability of the rest state is tantamount to studying the existence and the uniqueness of solutions to the following initial boundary value problem (IBVP):

∂u ∂t = -∇p + ∇ • S (1.9a) S + λ α D α t S = Gλ β I 1-β t A 1 , A 1 = ∇u + (∇u) T (1.9b) ∇ • u = 0, in [0, +∞[×Ω, Ω ⊂ R 3 (1.9c) u = 0, in [0, +∞[×∂Ω (1.9d) u(t = 0) = u 0 , S(t = 0) = S 0 (1.9e) (1.9f)
In the above system of equations we assume u :

[0, +∞[×Ω → R 3 , ∇ • u 0 = 0, p : [0, +∞[×Ω → R, S : [0, +∞[×Ω → M 3,3 (R), 0 < α < β < 1. Denote δ = β -α > 0.
A change of variables on (x, t) can be performed to eliminate the CE parameters λ and G (see [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]). This is carried out only for convenience; in no way the generality of this paper results is shrinked down. Therefore, from now on assume λ = G = 1.

At this stage recall that an existence result for the initial boundary value problem given in equations (1.9)was presented in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]. The present paper, which is a continuation of [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF], is organized as follows:

• Section 2 presents the weak formulation of the boundary value problem.

• Section 3 is devoted to proving the existence and uniqueness of the solutions. We further on use the existence theorem obtained in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF] to state a general existence and uniqueness result.

• Section 4 deals with the functional framework within which the solution continuity at t = 0 is proved.

• Section 5 presents the proof of the solution continuity at t = 0.

• Section 6 contains results on the solution smoothness.

Weak formulation of the IBVP

All time-depending functions involved in the current stability analysis, save for when stated otherwise, are causal functions (i.e. set equal to zero on R -). Hence the convolution in time is simply (f * g)(t)

:= t 0 f (s)g(t -s)ds.
We first present the weak formulation of the boundary value problem eqs.(1.9): find

u ∈ C 0 ([0, +∞[, L 2 (Ω) 3 ) ∩L 1 loc (R + , H 1 0 (Ω) 3 ), ∇ • u = 0, [S] ij ∈ C 0 (]0, +∞[, L 2 (Ω) ∩ L 1 loc (R + , L 2 (Ω))), i, j = 1, 2, 3, such that for any test-functions ∀θ ∈ (H 1 0 (Ω)) 3 , ∇ • θ = 0, ∀a ∈ (D(Ω)) 3 , ∀ψ ∈ C ∞ 00 ([0, +∞[),
where C ∞ 00 ([0, +∞[) denotes the space of C ∞ class functions that vanish in a neighborhood of +∞, the following equations hold true:

ψ(0) Ω u 0 (x) • θ(x)dx + +∞ 0 Ω u(t, x) • θ(x)ψ ′ (t)dxdt = +∞ 0 Ω (S(t, x) : ∇θ(x))ψ(t)dxdt (2.1) - +∞ 0 Ω ψ(τ ) Γ(1 -α)τ α [S 0 ] ij (x)[a] j (x)dxdτ - +∞ 0 +∞ τ Ω ψ ′ (t) Γ(1 -α)τ α [S] ij (t -τ, x)[a] j (x)dxdtdτ + +∞ 0 Ω [S] ij (t, x)[a] j (x)ψ(t)dxdt = - 1 Γ(1 -β) +∞ 0 t 0 Ω ψ(t) (t -τ ) β {(∇ • a) [u] i + [u • ∇a] i } (τ, x)dxdτ dt (2.2)
Summation over repeated indices is understood in equations (2.1) and (2.2) above. We now detail the functional framework. Let V = {h ∈ H 1 0 (Ω) 3 s.t. ∇ • h = 0} be the Hilbert space endowed with the inner product:

f|g V = 3 i,j=1 Ω ∂f i ∂x j ∂g i ∂x j (x)dx (2.3)
and denote V the corresponding norm. The closure of V in (L 2 (Ω)) 3 is denoted by H, the later space being endowed with the inner product:

f|g H = 3 i=1 Ω f i g i (x)dx (2.4) with H being the corresponding norm. Let 0 < λ 1 ≤ λ 2 ≤ . . . λ n ≤ . . . -→ n→+∞ +∞ and w i ∈ V, i ∈ N * ,
be the eigenvalues and the corresponding eigenfunctions of the Stokes operator in H, i.e.:

∀φ ∈ V, w k | φ V = λ k w k | φ H , where w k H = 1 (2.5)
To prove the solution uniqueness, we first eliminate S from equations (2.1) and (2.2).

Denote

L := {f ∈ L 1 loc (R + ) s.t. ∃M > 0, so that f e -M t ∈ L 1 (R + )} ⊂ L 1 loc (R + ). Next, let f ∈ L 1 loc,R + (R).
For any a ∈ R and α ∈]0, 1[, define D α t,a f by:

D α t,a f, ϕ = 1 Γ(1 -α) -a +∞ 0 ϕ(τ ) τ α dτ - +∞ 0 f (t) +∞ 0 ϕ ′ (t + τ ) τ α dτ dt (3.1)
for any test function ϕ ∈ D(R).

Observe that D α t,a f ∈ D ′ (R). Moreover, for any f ∈ L , one easily sees that x ≥ M, e -xt D α t,a f ∈ S ′ (R). The hat ( ) notation to be used below stands for the usual Laplace transform. Proposition 3.1. Let f ∈ L . Then, for ∀s ∈ C, with Re(s) large enough, one has D α t,0 f (s) = s α f (s).

Proof. Let M > 0 such that e -M t f ∈ L 1 (R + ). For any s ∈ C, Re(s) ≥ M and ϕ(t) = e -st , Eq.(3.1) -still valid for this particular choice of ϕ(t) = e -st / ∈ D(R) -gives:

D α t,0 f, e -st = - 1 Γ(1 -α) +∞ 0 f (t) +∞ 0 -se s+τ τ α dτ dt (3.2)
As +∞ 0 e -sτ τ α dτ = Γ(1 -α) s 1-α , for Re(s) ≥ M > 0 one gets:

D α t,0 f (s) = D α t,0 f, e -st = - s Γ(1 -α) +∞ 0 e -st f (t)Γ(1 -α)s α-1 dt = s α f (s) (3.3)
The following classical result (see [START_REF] Carpinteri | Fractals and fractional calculus in continuum mechanics[END_REF]) is stated here within our functional framework. Recall first that (see also equations 14 and 15 in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]):

W 0 (t) = sin(απ) π +∞ 0
e -rt r α-1 r 2α + 2r α cos(απ) + 1 dr, t ≥ 0 (3.4)

E α (t) = sin(απ) π ∞ 0
r α e -rt r 2α + 2r α cos(απ) + 1 dr, t > 0 (3.5) Proposition 3.2. Let F ∈ L . Then, for any a ∈ R and any α ∈]0, 1[, the equation

D α t,a f + f = F (3.6)
has a unique solution f ∈ L , given by f = E α * F + aW 0 .

Proof. Existence:

Assume F ∈ C 1 (R + ). Then, f = E α * F +aW 0 is a solution of Eq.(3.6) (cf [7]). Now, if one assumes that F ∈ L , then there exists (F n ) n∈N * , F n ∈ C 1 (R + ) such that F n -→ n→+∞ F in L 1 loc (R + ). Since E α ∈ L 1 loc (R + ), then f n = E α * F n + aW 0 -→ n→+∞ E α * (t) F + aW 0 in L 1 loc (R + ). Hence the equation D α t,a f n + f n = F n , for n → +∞, becomes D α t,a f + f = F . We must next show that f ∈ L . Notice first that aW 0 ∞ ≤ |a|W 0 (t). Therefore aW 0 ∈ L . Denote g = e -M t F ; choose M > 0 so that e -M t F ∈ L 1 (R). Then E α * (t) F = t 0 E α (t -s)e M s g(s)ds ≤ e M t E α * (t) g . Since g ∈ L 1 (R + ), and E α ∈ L 1 (R + ), then E α * g ∈ L 1 (R + ). Finally E α * F ∈ L and f = E α * F + aW 0 ∈ L .
Uniqueness: Let f, g ∈ L be two solutions of Eq.(3.6). Then D α t,0 (f -g) + (f -g) = 0, from which it follows that (s α + 1) f -g(s) = 0, for Re(s) large enough. Therefore f -g(s) = 0, thus f = g.

We shall use the following result to prove the uniqueness property:

Lemma 3.1. For any g ∈ L , I 1-β t g ∈ L .
Proof. Since g ∈ L , there exists G ∈ L 1 (R + ) and M > 0 such that g = Ge -M t . Therefore, for t ≥ 0 a.e., I 1-β

t g(t) ≤ K t 0 g(t -u) u β du ≤ K t 0 |G(t -u)| e -M (t-u) u β du ≤ Ke -M t |G| * u β e -M t . Now, G ∈ L 1 (R + ), u β e -M t ∈ L 1 (R + ) leads to |G| * u β e -M t ∈ L 1 (R + ). Therefore, I 1-β t g(t) ≤ e M t H(t), with H ∈ L 1 (R + ), which gives I 1-β t g ∈ L .
Making use of Proposition 3.2 and of Lemma 3.1, we get: Corollary 3.1 (Solution uniqueness). Let u 0 ∈ H and S 0 ∈ L 2 (Ω) 9 . The system of equations Eqs.(2.1)-(2.2) has at most one solution that belongs to the functional space

F := {(u, S) ∈ [C 0 (R + , H) ∩ L 1 loc (R + , V )]× C 0 (]0, +∞[, L 2 (Ω) 9 ), such that ∇u L 2 (Ω) 9 ∈ L , S L 2 (Ω) 9 ∈ L }.
Proof. Let (u, S) ∈ F be a solution to Eqs.(2.1)-(2.2). For any test function ϕ ∈ D(Ω) 9 , as a consequence of Eq.(2.2) and of the fact that u ∈ L 1 loc (R + , V ), one has

D α t, S 0 |ϕ L 2 (Ω) 9 S|ϕ L 2 (Ω) 9 + S|ϕ L 2 (Ω) 9 = I 1-β t A 1 |ϕ L 2 (Ω) 9 (3.7) However, S|ϕ L 2 (Ω) 9 ≤ S L 2 (Ω) 9 ϕ L 2 (Ω) 9 . Since S L 2 (Ω) 9 ∈ L and ∇u L 2 (Ω) 9 ∈ L , we infer that S|ϕ L 2 (Ω) 9 ∈ L , and A 1 |ϕ L 2 (Ω) 9 ∈ L . Now Lemma 3.1 implies I 1-β t A 1 |ϕ L 2 (Ω) 9 ∈ L ,

and Proposition 3.2 leads to

S|ϕ L 2 (Ω) 9 = E α * I 1-β t A 1 |ϕ L 2 (Ω) 9 + S 0 |ϕ L 2 (Ω) 9 W 0 = ρ * A 1 |ϕ L 2 (Ω) 9 + S 0 |ϕ L 2 (Ω) 9 W 0 (3.8)
Notice that Eq.(3.8) still holds true for ϕ ∈ L 2 (Ω) 9 . Let θ ∈ V , ψ ∈ C +∞ 00 ([0, +∞[). We deduce from (3.8) and (2.1) that:

ψ(0) Ω u 0 (x) • θ(x)dx + +∞ 0 Ω u(t, x) • θ(x)ψ ′ (t)dxdt = - +∞ 0 ρ * A 1 |∇θ L 2 (Ω) 9 + S 0 |∇θ L 2 (Ω) 9 W 0 (t)ψ(t)dt (3.9)
We search for u ∈ L 1 loc (R + , V ). In this case, for almost every t > 0, u can be expressed as

u(t) = +∞ q=1 α q (t)w q (3.10) the series being convergent in V . It follows, by taking θ = w k and ψ ∈ D(]0, +∞[) in equation (3.9), that α ′ k = -λ k (ρ * α k ) -b k √ λ k W 0 , with b k := Ω (S 0 : ∇w k ) (x)dx, the equality holding true in D ′ (]0, +∞[). Recall that α k = u|w k H ∈ C 0 (R + ). As W 0 ∈ C 0 (R + ), then necessarily α k ∈ C 1 (R + ).
However, (cf [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]) the Cauchy's initial value problem

α ′ k (t) = -λ k (ρ * α k ) (t) -b k λ k W 0 (t) (3.11a) α k (0) = α 0 k (3.11b)
has a unique solution in C 1 (R + ). The uniqueness of the solution u is thus proved, and that of S follows.

We now state an existence and uniqueness result. Denote

C 0 b (R * + , V ) := {u ∈ C 0 (R * + , V ) s.t. sup t≥1 u(t) V < +∞}. The functional space C 0 b (R * + , L 2 (Ω) 9
) is defined in a similar way.

Theorem 3.1 (First Existence and Uniqueness Theorem). Let u 0 ∈ H, S 0 ∈ L 2 (Ω) 9 . Then the boundary value problem given by the system of equations (2.1)-( 2.2) has a unique solution

(u, S) ∈ C 0 (R + , H) ∩ C 0 b (R * + , V ) ∩ L 1 loc (R + , V ) × C 0 b (R * + , L 2 (Ω) 9 ) ∩ L 1 loc (R + , L 2 (Ω) 9 ) (3.12) Moreover, u(0) = u 0 .
Proof. The existence of at least one solution 9 ) follows from Theorem 8.4 in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]. It remains to be proved that the solution (u, S) obtained in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF] satisfies

(u, S) ∈ C 0 (R + , H) ∩ C 0 (R * + , V ) ∩ L 1 loc (R + , V ) × C 0 (R * + , L 2 (Ω) 9 ) ∩ L 1 loc (R + , L 2 (Ω)
sup t≥1 u(t) V + sup t≥1 S(t) L 2 (Ω) 9 < +∞ (3.13)
This is essentially contained in the arguments presented in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]. Indeed, since u ∈ C 0 (R + , V ), we write

u = +∞ k=1 α k (t)w k , t > 0.
From equation 125 in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF] one gets

λ k |α k (t)| 2 ≤ M    1 t δ/2 + 1 t 1-δ/2 2 + tλ 1/(2-δ) k 2(1-δ/2) t 2(1-δ/2) e -2γtλ 1/(2-δ) k    |α 0 k | 2 + 1 t 2(1-δ) + (tλ 1/(2-δ) k ) 2(1-δ) t 2(1-δ) e -2atλ 1/(2-δ) k |b k | 2 (3.14)
In the above, δ = (α -β) ∈]0, 1[, a > 0, γ > 0, and

α 0 k = u 0 |w k H . Clearly u 0 ∈ L 2 (Ω) 3 , S 0 ∈ L 2 (Ω) 9 implies that +∞ k=1 |α 0 k | 2 < +∞ and +∞ k=1 |b k | 2 < +∞. Hence u 2 V = +∞ k=1 λ k |α k (t)| 2 ≤ M t inf(δ,2-2δ) -→ t→+∞ 0 (3.15) and u 0 ∈ C 0 b (R * + , V
). We use the equation that defines S given right below equation 137 in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]. Then: 9 (3.16)

S L 2 (Ω) 9 ≤ M +∞ k=1 λ k |ρ * α k (t)| 2 + |W 0 (t)| S 0 L 2 (Ω)
From (3.4) we see that

|W 0 (t)| -→ t→+∞ 0 (3.17)
Moreover, (see equation 130 in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF])

λ k |ρ * α k (t)| 2 ≤ M       1 t δ + tλ 1/(2-δ) k δ t δ exp -atλ 1/(2-δ) k    |α 0 k | 2 + 1 t 2ǫ + exp(-2at) |b k | 2    , ǫ > 0, a > 0 Hence +∞ k=1 λ k |α k (t)| 2 ≤ M t inf(δ,2ǫ) , for t ≥ 1 (3.18) Finally (see (3.16)-(3.18)): S L 2 (Ω) 9 -→ t→+∞ 0. It follows that S ∈ C 0 b (R * + , L 2 (Ω) 9
). The existence of at least one solution belonging to the functional space of (3.12) is thus proved.

The uniqueness of such a solution results from Corollary 3.1 and from the fact that

C 0 (R + , H) ∩ C 0 b (R * + , V ) ∩ L 1 loc (R + , V ) × C 0 b (R * + , L 2 (Ω) 9 ) ∩ L 1 loc (R + , L 2 (Ω) 9 ) ⊂ F .

Functional spaces

In order to prove the continuity of the (u, S) at t = 0 we recall several classical functional spaces (see also [START_REF] Lions | Problèmes aux Limites Non-Homogènes et Applications[END_REF] and [START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]).

Denote ǫ k = ∇w k √ λ k , k ∈ N * . Let Π : L 2 (Ω) 9 → L 2 (Ω) 9 be the orthogonal projection operator of L 2 (Ω) 9 onto [Vect(ǫ k ) k∈N * ] ⊥ , θ ≥ 0. For any f ∈ L 2 (Ω) 9 , denote f 2 D θ := +∞ q=1 λ θ q | f|ǫ q L 2 (Ω) 9 | 2 + Π(f) 2 L 2 (Ω) 9 . Let D θ := {f ∈ L 2 (Ω) 9 s.t. f D θ < +∞}. For any f, g ∈ D θ , denote f|g D θ := +∞ q=1 λ θ q f|ǫ q L 2 (Ω) 9 g|ǫ q L 2 (Ω) 9 + Π(f)|Π(g) L 2 (Ω) 9 . The functional space (D θ , | D θ ) is a Hilbert space. For any f ∈ H, let f 2 H θ := +∞ q=1 λ θ q | f|w q H | 2 . Next, let H θ := {f ∈ H, f H θ < +∞}. For any f, g ∈ H θ , f |g H θ := +∞ k=1 λ θ q f |w k H g|w k H . As the sequence (w k ) k∈N * is complete in L 2 (Ω) 9 , the functional space (H θ , | H θ ) is a Hilbert space. Remark that, for any 0 ≤ θ ≤ θ ′ ≤ 1 ≤ θ ′′ , one has: H = H 0 ←֓ H θ ←֓ H θ ′ ←֓ H 1 = V ←֓ H θ ′′ (4.1) L 2 (Ω) 9 = D 0 ←֓ D θ ←֓ D θ ′ ←֓ D 1 ←֓ D θ ′′ (4.2)
The above injections are dense; use of them will be often made from now on.

The following ∆ θ spaces are closely related to the D θ ones. Let P : L 2 (Ω) 9 → L 2 (Ω) 9 be the orthogonal projection operator from L 2 (Ω) 9 onto

+∞ k=1 ǫ k , ǫ T k ⊥ . Let θ ∈ R. For any element f ∈ L 2 (Ω) 9 , denote f 2 ∆ θ = +∞ q=1 λ θ q f|ǫ q L 2 (Ω) 9 2 + +∞ q=1 λ θ q f|ǫ T q L 2 (Ω) 9 2 + P (f) 2 L 2 (Ω) 9 (4.3)
For any θ ≥ 0, ∆ θ := {f ∈ L 2 (Ω) 9 s.t. f ∆ θ < +∞}. The functional space ∆ θ endowed with the inner product defined as:

∀f ∈ ∆ θ , ∀g ∈ ∆ θ , f|g ∆ θ = +∞ q=1 λ θ q f|ǫ q L 2 (Ω) 9 g|ǫ q L 2 (Ω) 9 + +∞ q=1 λ θ q f|ǫ T q L 2 (Ω) 9 g|ǫ T q L 2 (Ω) 9 + P (f)|P (g) L 2 (Ω) 9 (4.4)
is a Hilbert space. For any θ < 0, let ∆ θ denote the topological dual space of ∆ -θ , i.e. ∆ θ = (∆ -θ ) ′ . The space ∆ θ is the completion of (L 2 (Ω) 9 , ∆ θ ). Next, note that whenever 0 ≤ γ ≤ γ, the following injections 9 and (L 2 (Ω) 9 ) ′ are isomorphic to each other.

L 2 (Ω) 9 = ∆ 0 ←֓ ∆ γ ←֓ ∆ γ are dense. It results that ∆ -γ ←֓ ∆ -γ = (∆ γ ) ′ ←֓ (L 2 (Ω) 9 ) ′ ≃ L 2 (Ω) 9 = ∆ 0 ←֓ ∆ γ ←֓ ∆ γ , invoking the fact that L 2 (Ω)
Next, for any f ∈ H 1 0 (Ω) 9 , one has:

f 2 ∆ 1 = +∞ q=1 λ q f|ǫ q L 2 (Ω) 9 2 + +∞ q=1 λ q f|ǫ T q L 2 (Ω) 9 2 + P (f) 2 L 2 (Ω) 9 = +∞ q=1 ∇ • f|w q L 2 (Ω) 3 2 + ∇ • f T |w q L 2 (Ω) 3 2 + P (f) 2 L 2 (Ω) 3 ≤ K f 2 H 1 0 (Ω) 9 (4.5)
due to the Poincaré's inequality. Consequently H 1 0 (Ω) 9 ֒→ ∆ 1 and the restriction r :

∆ ′ 1 → H -1 (Ω) 9 , such that T r → T | H 1 0 (Ω) 9 is continuous. Lemma 4.1. Let θ ∈ R + . (a) The sequence (ǫ k ) k∈N * is orthogonal in D θ . Moreover, ǫ k D θ = λ θ/2 k . (b) The sequence (ǫ T k ) k∈N * is orthogonal in D θ . (c) The sequence (ǫ k + ǫ T k ) k∈N * is orthogonal in D θ , and ǫ k + ǫ T k D θ = (1 + λ θ k ) 1/2 .
(d) The sequence (w k ) k∈N * is orthogonal in H θ , and

w k H θ = λ θ/2 k . (e) Let f ∈ L 2 (Ω) 9 . Denote f = +∞ k=1 a k ǫ k + +∞ k=1 b k ǫ T k + P (f). Then: f 2 ∆ -θ = +∞ k=1 λ -θ k |a k | 2 + |b k | 2 + P (f) 2 L 2 (Ω) 9 .
Proof. Observe that (cf. eq.(2.5)) for any (k, q) ∈ N * 2 :

ǫ k |ǫ q L 2 = w k |w q L 2 = δ kq (4.6)
On the other hand, since ∇ • w k = 0,

ǫ k |ǫ T q L 2 = i,j Ω ∂(w k ) i ∂x j (x) ∂(w q ) j ∂x i (x)dx = Ω i ∂(w k ) i ∂x j (x) j ∂(w q ) j ∂x i (x) dx = 0 (4.7)
Hence:

ǫ k |ǫ T q L 2 = 0 (4.8)
The statements (a) to (e) result from Eqs.(4.6)-(4.8).

Except for the injection H 2k ֒→ H 2k (Ω) 3 (see below), the following description of the spaces will not be used in this paper.

Let first θ ∈ [0, 1].

Let Λ : V → H, such that Λ k∈N * a k w k = k∈N * a k λ k w k . Then, for any (u, v) ∈ V 2 , Λu|Λv H = u|v V , and H θ = D(Λ θ ) = [V, H] 1-θ
, where [V, H] 1-θ stands for the holomorphic interpolation of spaces V and H, and D(Λ θ ) for the domain of Λ θ . Denote H 0 0 (Ω) ≡ L 2 (Ω). Let the canonical injection 3 (the last continuous injection ֒→ boils down to an equality = whenever θ = 1/2). Let now γ n denote the normal-trace application. It is well known that H = {u ∈ H 0 (Ω) 3 , s.t. ∇ • u = 0, γ n (u) = 0}. From the preceding arguments it results that we have the continuous injection

H i ֒→ H 0 0 (Ω) 3 and V i| V ֒→ H 1 0 (Ω) 3 be its restriction. Then H θ = [V, H] 1-θ i| [V,H] 1-θ ֒→ [H 1 0 (Ω) 3 , H 0 0 (Ω) 3 ] 1-θ ֒→ H θ 0 (Ω)
H θ ֒→ H ∩ H θ 0 (Ω) 3 = {u ∈ H θ 0 (Ω) 3 , s.t. ∇ • u = 0, γ n (u) = 0}
, with the space H ∩ H θ 0 (Ω) 3 being endowed with the H θ 0 (Ω) 3 topology. Let now θ ∈ N * . As quoted on page 106 in [START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF], 3 ∩V . Also, invoking Agmon -Douglis -Nirenberg's Theorem as stated on page 832 in [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF], leads to

H 2 = D(Λ 2 ) = H 2 (Ω)
H 2k = D(Λ 2k ) ֒→ H 2k (Ω) 3 ∩ V , k ∈ N * . Here H 2k (Ω) are classical Sobolev spaces.
5 The continuity of the solution (u, S) at t = 0

From now on (u, S) denotes the solution to equations (2.1)-(2.2), with initial data (u 0 , S 0 ) ∈ H × L 2 (Ω) 9 (see Theorem 3.1). In order to prove continuity results we recall several representation formulas for u and S. First, functions α k , k ∈ N * , are defined by equations (3.11a)-(3.11b). Equivalently, for x ∈ R + (see [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]),

α k (t) = 1 2π lim A→+∞ +A -A T λ k (x + iy)e (x+iy)t dyα 0 k -lim A→+∞ +A -A (T λ k w)(x + iy)e (x+iy)t dy λ k b k (5.1) with T µ (s) = s 1-β (s α + 1) s 2-β (s α + 1) + µ , w(s) = 1 s 1-α (s α + 1) , µ ∈ R + , s ∈ C -R -, and 
α 0 k = u 0 |w k H , b k = Ω (S 0 : ∇w k )(x)dx.
Notice that eq.(5.1) is given in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF] only for x ≥ M. The general result (x ∈ R + ) follows from a simple use of the Cauchy formula; details are omitted. Regarding function S, recall the following formula from [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]:

S = +∞ k=1 (ρ * α k ) ⊗ (∇w k + ∇ T w k ) + W 0 ⊗ S 0 (5.2) Notation h = f ⊗ g means h(x, y) = f (x)g(y)
. As quoted in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF], the series in (5.2) converges in

C 0 (R * + , L 2 (Ω) 9 ) and in L 2 loc (R + , L 2 (Ω) 9 ). Here ρ = E α * t -β Γ(1 -β)
, and 0 < ρ(t) ≤ kt -δ (see [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]),

δ = β -α.
The following estimate will give the continuity at t = 0 of (u, S).

Lemma 5.1. For any µ 0 > 0, ∃M > 0, such that ∀(x, t) ∈ (R + ) 3 × R + , and ∀µ ≥ µ 0 , we have:

lim A→∞ +A -A T µ w(x + iy)e (x+iy)t dy ≤ +∞ -∞ |(T µ w)(iy)| dy ≤ M µ 1/(2-δ) (5.3) Proof. Whenever y > 0, |(T µ w)(iy)| = 1 |y| δ 1 µ + (ye iπ/2 ) 2-δ + (ye iπ/2 ) 2-β
. Therefore, µ + ye iπ/2 2-δ + ye iπ/2 2-β ≥ Im µe iπ(β-2)/2 + y 2-δ e iπα/2 + y 2-β ≥ -µ sin(πβ/2) + y 2-δ sin(πα/2) ≥ µ sin(πβ/2) -y 2-δ sin(πα/2) ≥ Kµ, for y ≤ µ 1/(2-δ) (5.4)

The constant K = sin(πβ/2)sin(πα/2) > 0 is independent of µ. Moreover,

µ + ye iπ/2 2-δ + ye iπ/2 2-β ≥ Im µ + ye iπ/2 2-δ + ye iπ/2 2-β = y 2-δ sin(π -πδ/2) + y 2-β sin(π -πβ/2) = y 2-δ sin(πδ/2) + y 2-β sin(πβ/2) ≥ Ky 2-δ , for y ≥ µ 1/(2-δ) 0
(5.5)

From the above estimates we infer that:

+∞ 0 |(T µ w)(iy)|dy = µ 1/(2-δ) 0 dy y δ µ + (ye iπ/2 ) 2-δ + (ye iπ/2 ) 2-β + +∞ µ 1/(2-δ) dy y δ µ + (ye iπ/2 ) 2-δ + (ye iπ/2 ) 2-β ≤ µ 1/(2-δ) 0 K µy δ dy + +∞ µ 1/(2-δ) K y δ y 2-δ dy ≤ M µ 1/(2-δ)
(5.6)

A similar estimate can be obtained for Denote, δ = β -α, ω = δ/(2 -δ) and notice that 0 < ω < δ < 1. From now on we shall sometimes write α k (u 0 , S 0 ) instead of α k ; of course α k is linear w.r.t. initial data (u 0 , S 0 ). Most of the following estimates are already proved in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF], save for those derived from Lemma 5.1.

Proposition 5.1. Let u 0 ∈ H, S 0 ∈ L 2 (Ω) 9 . Then exists ∃M > 0, such that, ∀t ∈ R + and ∀k ∈ N * , (i) |α k (t)| 2 ≤ M |α 0 k | 2 + λ -ω k |b k | 2 . (ii) λ k |α k (t)| 2 ≤ M |α 0 k | 2 t 2-δ + |b k | 2 t 2-2δ .
(iii) for any µ ∈ [0, 1] and any τ ∈ [0, 1],

|α k (t)| 2 ≤ M |α 0 k | 2 λ µ k t µ(2-δ) + |b k | 2 λ τ +(1-τ )ω k t 2τ (1-δ)
(iv) for any µ ∈ [0, 1] and any τ ∈ [0, 1],

λ k |ρ * α k | 2 (t) ≤ M |α 0 k | 2 λ µ-1 k t µ(2-δ)+2(δ-1) + |b k | 2 λ -(1-τ )(1-ω) k t -2(1-τ )(1-δ) Proof. (i)
Since α k is linear with respect to (u 0 , S 0 ), we have, by eq.( 121) in Theorem 8.1 in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF] and eq.(5.1):

|α k (u 0 , S 0 )| 2 ≤ 2|α k (u 0 , 0)| 2 + 2|α k (0, S 0 )| 2 ≤ M |α 0 k | 2 + +∞ -∞ (T λ k w)(iy)e iyt dy λ k b k 2 (5.7)
Invoking Lemma 5.1 we get

|α k (u 0 , S 0 )| 2 ≤ M |α 0 k | 2 + |b k | 2 λ k λ 2(2-δ) k (5.8)
which gives (i).

(ii)

Estimate (ii) is obtainable right away from eq.( 122) in Theorem 8.1 in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF], with M T instead of M. The proof that M can be chosen independently of T is deferred until Corollary 6.1 in Section 6. Hence we take here M independent of T and proceed further on.

(iii)

Notice first that (ii) above gives

|α k (u 0 , 0)| 2 (t) ≤ M|α 0 k | 2 λ k t 2-δ (5.9) 
and

|α k (0, S 0 )| 2 (t) ≤ M|b k | 2 λ k t 2-2δ
(5.10)

Next, combining eq.(5.9) and eq.(5.8) with S 0 = 0 on one hand, and eq.(5.10) and eq.(5.8) with u 0 = 0 on the other, making further use of eq.(5.7) leads to estimate (iii).

(iv) Since 0 ≤ ρ(t) ≤ K/t δ , estimate (iii) gives

λ k |ρ * α k | (t) ≤ λ k (ρ * |α k |) (t) ≤ M √ λ k |α 0 k | λ µ/2 k t µ(2-δ)/2+δ-1 + √ λ k |b k | λ [τ +ω(1-τ )]/2 k t τ (1-δ)+δ-1 ,
from which (iv) is obtained.

In order to work on spaces H θ and D γ , we need to reformulate Proposition 5.1. Let [ ] + denote the positive part of a real number. Lemma 5.2. Let u 0 ∈ H, S 0 ∈ L 2 (Ω) 9 , and 0 ≤ γ ≤ θ ≤ γ + 1. Then ∃M > 0, so that ∀t ≥ 0, (i)

λ θ k |α k (t)| 2 ≤ M λ θ k |α 0 k | 2 + |λ k | γ |b k | 2 t 2(1-δ)[(θ-γ-ω)/(1-ω)] + (ii) λ γ k λ k |ρ * α k (t)| 2 (t) ≤ M λ θ k |α 0 k | 2 t δ(θ-γ-ω)/ω + λ γ k |b k | 2 Proof. (i) Assume 0 ≤ γ ≤ θ ≤ γ+ω. Multiplying (i) of Theorem 5.1 by λ θ k leads to λ θ k |α k (t)| 2 ≤ A λ θ k |α 0 k | 2 + λ θ-ω k |b k | 2 . Since min k≥1 λ k > 0 and θ -ω ≤ γ, one gets λ θ k |α k (t)| 2 ≤ M λ θ k |α 0 k | 2 + λ γ k |b k | 2 .
Assume now that 0 ≤ γ +ω ≤ θ ≤ γ +1. Use part (iii) of Theorem 5.1 with µ = 0 and τ

= θ -γ -ω 1 -ω ∈ [0, 1]. A simple calculation leads to τ + (1 -τ )ω = τ (1 -ω) + ω = (θ -γ -ω) + ω = θ -γ. Henceforth: |α k (t)| 2 ≤ M |α 0 k | 2 + |b k | 2 λ θ-γ k t 2(1-δ)(θ-γ-ω)/(1-ω) which leads to (i). (ii) Assume 0 ≤ γ ≤ θ ≤ γ + 1. Letting µ = γ -θ + 1 ∈ [0, 1] and τ = 1 in part (iv) of Lemma 5.1, gives µ(2 -δ) + 2(δ -1) = (γ -θ)(2 -δ) + δ = -δ(θ -γ -ω)/ω. Hence λ k |ρ * α k | 2 (t) ≤ M |α 0 k | 2 λ γ-θ k t -δ(θ-γ-ω)/ω + |b k | 2
which gives (ii).

As a consequence, we have: In both cases, for any t ≥ 0,

Corollary 5.1. Let 0 ≤ γ ≤ θ ≤ γ + 1, u 0 ∈ H θ , S 0 ∈ D γ . Then u ∈ C 0 (R * + ,
u(t) H θ ≤ M u 0 H θ + S 0 Dγ t (1-δ)[(θ-γ-ω)/(1-ω)] + (5.11) S(t) Dγ ≤ M t δ(θ-γ-ω)/(2ω) u 0 H θ + S 0 Dγ (5.12)
Proof. We first prove that u ∈ C 0 R * + , H γ+1 . From (d) of Lemma 4.1 and (ii) in Proposition 5.1, we reckon that, for any

N ≤ M and t ∈ [T 1 , T 2 ], where 0 < T 1 < T 2 , M k=N α k (t)w q 2 H γ+1 = M k=N |α k (t)| 2 λ γ+1 k ≤ M T +∞ k=N λ γ k |α 0 k | 2 T 2-δ 1 + λ γ k |b k | 2 T 2(1-δ) 1
(5.13) Since γ ≤ θ, we have that u 0 ∈ H θ ⊂ H γ . Also S 0 ∈ H γ . Hence Eq.(5.13) implies that sup

t∈[T 1 ,T 2 ] M k=N α k (t)w q H γ+1 -→ N →+∞ 0 (5.14)
Finally, as α k ∈ C 0 (R + ), from (5.14) above we deduce that u

= +∞ k=N α k ⊗ w q ∈ C 0 R * + , H γ+1 .
Next we proceed with the rest of the proof. 

(ρ * α k ) (t) ∇w k + ∇ T w k 2 Dγ = M k=N |ρ * (t) α k | 2 (1 + λ γ k )λ k ≤ K +∞ k=N λ θ k |α 0 k | 2 t δ(θ-γ-ω)/ω + λ γ k |b k | 2 (5.15)
Since u 0 ∈ H θ , and

S 0 ∈ D γ , then +∞ k=1 (ρ * α k ) (t) ∇w k + ∇ T w k is uniformly convergent w.r.t. t on any compact subset [T 0 , T 1 ] ⊂ R * + , in D γ . Given that α k ∈ C 0 (R + )
, and that ρ ∈ L 1 loc (R + ) -and hence

(ρ * α k ) ∈ C 0 (R + ) -, we conclude that +∞ k=1 (ρ * α k ) ⊗ ∇w k + ∇ T w k ∈ C 0 ([T 0 , T 1 ], D γ ). As W 0 ∈ C 0 (R + ),
one gets that (see (5.2))

S = +∞ k=1 (ρ * α k ) ⊗ ∇w k + ∇ T w k + W 0 ⊗ S 0 ∈ C 0 (R + , D γ ) (5.16) 
The inequality Eq.(5.12) results from eq.(5.15) by letting N = 1, M = +∞, and from the fact that

W 0 (t)S 0 Dγ ≤ W 0 ∞ S 0 Dγ for any t ∈ R + , since W 0 ∈ L ∞ (R + ) ∩ C 0 (R + ). In a similar way we prove that u ∈ C 0 (R + , H θ ).
The inequality eq.( 5.11) is a consequence of (i) in Lemma 5.2 and of the fact that u ∈ C 0 (R + , H θ ). Finally, as H θ ֒→ H and lim t→0 u(t) = u 0 in H (see Theorem 8.4 in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]), lim t→0 u(t) = u 0 in H θ .

(b)

Whenever θ ≥ ω + γ, u 0 ∈ H γ+ω and S 0 ∈ D γ . The inequalities (i) and (ii) of Lemma 5.2, for θ ′ = ω + γ and γ ′ = γ, read

λ θ ′ k |α k (t)| 2 ≤ M λ θ ′ k |α 0 k | 2 + λ γ ′ k |b k | 2 λ γ ′ k λ k |ρ * α k | 2 (t) ≤ M λ θ ′ k |α 0 k | 2 + λ γ ′ k |b k | 2
The proof of (i) of Lemma 5.2 entails the uniform convergence (with respect to t on [0, +∞[) of

+∞ k=1 (ρ * α k ) (t) ∇w k + ∇ T w k in D γ . Therefore S ∈ C 0 (R + , D γ ). Moreover, as W 0 (0) = 1, we get (see (5.2)) S(0) = +∞ k=1 (ρ * α k ) (0) ∇w k + ∇ T w k W 0 (0)S 0 = S 0 .
Arguing as in (a) above one proves that: u ∈ C 0 (R + , H γ+ω ) and u(0) = u 0 .

In the case γ ≥ 0 and θ = γ + ω we get the continuity of (u, S) at t = 0: Theorem 5.1 (Existence Theorem). Let γ ≥ 0. Assume that u 0 ∈ H γ+ω and S 0 ∈ D γ . Then the system of Eqs.(2.1)-( 2.2) has at least one solution (u, S)

∈ C 0 (R + , H γ+ω ) ∩ C 0 (R * + , V ) ∩ L p loc (R + , V ) × C 0 (R + , D γ ), p ∈ [1, 2/(2 -δ)[. Moreover, ∃A > 0, such that ∀t ∈ R + , u(t) H γ+ω + S(t) Dγ ≤ A u 0 H γ+ω + S 0 Dγ
The statement (a) of Corollary 5.1 says that, for any 0 ≤ γ ≤ θ ≤ γ + ω, u 0 ∈ H θ , S 0 ∈ D γ , and S ∈ C 0 (R * + , H γ ). This does not ensure continuity at t = 0. Nevertheless, for 0 ≤ γ ≤ θ ≤ γ + ω, θ ≥ ω and still holding on the assumptions u 0 ∈ H θ and S 0 ∈ D γ , we have S 0 ∈ D θ-ω . Therefore (see Theorem 5.1) S ∈ C 0 (R + , D θ-ω ), and u ∈ C 0 (R + , D θ ).

From now on we shall focus on the case 0 ≤ γ ≤ θ ≤ ω < 1. Proceeding as previously we get:

Lemma 5.3. Assume that 0 ≤ γ ≤ θ ≤ ω ≤ 1, u 0 ∈ H θ and S 0 ∈ D γ .
Then ∃M > 0, such that for any t ≥ 0,

λ θ k |α k (t)| 2 ≤ M λ θ k α 0 k 2 + λ θ-ω k |b k | 2 (5.17)
and

λ θ-ω k (λ k |ρ * α k | 2 (t)) ≤ M λ θ k |α 0 k | 2 + λ θ-ω k |b k | 2 ) (5.18)
Proof. Eq.(5.17 

-δ) + 2(δ -1) = [1 -δ/(2 -δ)](2 -δ) + 2δ -2 = Henceforth, λ k (|ρ * α k | 2 (t)) ≤ M λ ω k |α 0 k | 2 + |b k | 2 which ends the proof. Hence: Corollary 5.2. Assume 0 ≤ γ ≤ θ, u 0 ∈ H θ and S 0 ∈ D γ . (a) whenever θ ≥ ω, u ∈ C 0 (R + , H θ ), and S ∈ C 0 (R + , D θ-ω ). Moreover, ∃A > 0 s.t. ∀t ≥ 0: u(t) H θ + S(t) D θ-ω ≤ A u 0 H θ + S 0 D θ-ω (5.19) (b) whenever θ ≤ ω, u ∈ C 0 (R + , H θ ), and S ∈ C 0 (R + , ∆ θ-ω ). Moreover, ∃A > 0 s.t. ∀t ≥ 0, u(t) H θ + S(t) ∆ θ-ω ≤ A u 0 H θ + S 0 ∆ θ-ω (5.20) Proof. (a)
The proof is a direct consequence of the discussion preceding Lemma 5. 9 ֒→ ∆ θ-ω , we get by Eq.(5.21) and Eq.(5.2) that

(ρ * α k ) (t) ∇w k + ∇ T w k 2 ∆ θ-ω = 2 N k=M λ θ-ω k λ k |ρ * (t) α k | 2 ≤ M N k=M λ θ k |α 0 k | 2 + λ θ-ω k |b k | 2 (5.21) Since u 0 ∈ H θ , S 0 ∈ D γ ֒→ L 2 (Ω)
(S -W 0 ⊗ S 0 ) ∈ C 0 (R + , ∆ θ-ω ) (5.22)
Moreover, W 0 ∈ C 0 (R + ) and S 0 ∈ D γ ֒→ ∆ θ-ω . Therefore, by Eq. (5.22), S ∈ C 0 (R + , ∆ θ-ω ). Inequality Eq. (5.20) follows right away after invoking Eq.5.17, Eq.(5.2), Eq.(5.21) with M = 1 and N = +∞, and that W 0 ∈ L ∞ (R + ) and S 0 ∈ ∆ θ-ω .

Remark 5.1. Using part (b) in Corollary 5.2 and by a density argument one may prove that, for u 0 ∈ H and S 0 ∈ ∆ -ω , the system of equations (1.9) has a weak solution (u, S) ∈ C 0 (R + , H) × C 0 (R + , ∆ -ω ). Of course the integrals have to be replaced by inner product functionals.

Corollary 5.3. Assume 0 ≤ γ ≤ θ ≤ ω ≤ 1, u 0 ∈ H θ and S 0 ∈ D γ . Then u ∈ C 0 (R + , H θ ), and S ∈ C 0 (R + , H -1 (Ω) 9 ). Moreover u(0) = u 0 , S(0) = 0 .

Proof. Corollary 5.2 states that S ∈ C 0 (R + , ∆ θ-ω ). Therefore (see Section 4), the mapping of R + into 9 , is continuous; the Corollary statement follows right away.

H -1 (Ω) 9 defined by R + S → ∆ θ-ω i ֒→ ∆ -1 r → H -1 (Ω)
Hence, to the first existence and uniqueness theorem, we can add the following conclusion: S ∈ C 0 (R + , ∆ -ω ) ֒→ C 0 (R + , H -1 (Ω) 9 ) and S(0) = S 0 .

We now give a second existence and uniqueness Theorem in H γ+ω × D γ spaces.

Theorem 5.2 (Second Existence and Uniqueness Theorem). Let γ ≥ 0. Assume that u 0 ∈ H γ+ω , S 0 ∈ D γ . Then the boundary value problem given by the system of equations (2.1)-( 2.2) has a unique solution

(u, S) ∈ C 0 (R + , H γ+ω ) ∩ C 0 b (R * + , V ) ∩ L 1 loc (R + , V ) × C 0 (R + , D γ ) ∩ L ∞ (R + , D γ ) (5.23)
Moreover, there exists A > 0, independent of u, such that, for any t ≥ 0, u(t) H γ+ω + S(t) Dγ ≤ A u 0 H γ+ω + S 0 Dγ (5.24)

Lastly, u(0) = u 0 , S(0) = S 0 .

Proof. The solution uniqueness is a consequence of the following inclusions: 

H γ+ω ֒→ H, D γ ֒→ L 2 (Ω) 9 , C 0 (R + , H γ+ω ) ∩ C 0 b (R * + , V ) ∩ L 1 loc (R + , V ) × [C 0 (R + , D γ ) ∩ L ∞ (R + , D γ )] ⊂ F ,
(R + , H γ+ω ) ∩ C 0 (R * + , V ) ∩ L 1 loc (R + , V ) × [C 0 (R + , D γ )
] follows from Theorem 5.1. In addition, the last estimate in Theorem 5.1 grants that S ∈ L ∞ (R + , D γ ). Next, that u(t) V -→ t→+∞ 0 was proved in the first existence and uniqueness Theorem presented above. Based on this fact, we infer that u ∈ C 0 b (R * + , V ), which ends the proof of solution existence. The estimate Eq.(5.24) is a consequence of Theorem 5.1.

6 The smoothness of solutions.

The following estimates will be used in proving the smoothness of solutions. They generalize those previously obtained in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF].

Proposition 6.1. ∃M > 0, s.t. ∀(τ, χ) ∈ [0, 1] 2 , ∀(x, t) ∈ R + , ∀µ ≥ λ 1 , one has: (a) lim A→+∞ +A -A T µ (x + iy)e (x+iy)t dy ≤ M µ χ/(2-δ) t χ (b) √ µ lim A→+∞ +A -A T µ w(x + iy)e (x+iy)t dy ≤ M µ [ω(1-τ )+τ ]/2 t τ (1-δ)
Proof. We only have to prove these estimates for χ = 0 and χ = 1, τ = 0 and τ = 1.

(a)

The case χ = 0 has already been addressed in Lemma 7.4 and Lemma 7.2 in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]. We now prove the case χ = 1. Lemma 7.4 and inequality 70 in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF] give, for suitable κ > 0 and B > 0,

lim A→+∞ +A -A T µ (x + iy)e (x+iy)t dy ≤ K +∞ 0 T µ (ze iπ ) -T µ (ze -iπ ) e -zt dz + e -κtµ 1/(2-δ) ≤ K +∞ 0 u 1-δ + λ -(1-δ)/(2-δ) 1 (u 2-δ + B) 2
e -utµ 1/(2-δ) du + e -κtµ 1/(2-δ) (6.1)

It implies that:

lim A→+∞ +A -A T µ (x + iy)e (x+iy)t dy ≤ K +∞ 0 e -utµ 1/(2-δ) du + 1 tµ 1/(2-δ) ≤ A tµ 1/(2-δ) (6.2)
which gives the statement in (a) for χ = 1.

(b)

The case τ = 0 is addressed in Lemma 5.1. The case τ = 1: from (iii) in Lemma 7.5 in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF] we get

√ µ lim A→+∞ +A -A T µ w(x + iy)e (x+iy)t dy ≤ K µt 1-δ + Ke -atµ 1/(2-δ) µ 1/2-δ ≤ M µt 1-δ (6.3) 
as sup

tµ 1/(2-δ) ≥0 tµ 1/(2-δ) 1-δ e -atµ 1/(2-δ) ≤ M < +∞.
As a consequence we have the following extensions of estimates (iii) and (iv) of Theorem 5.1.

Corollary 6.1. Let u 0 ∈ H, S 0 ∈ L 2 (Ω) 9 . Then:

(a) ∃M > 0, ∀T ≥ 0, , s.t. ∀γ ∈ [0, 1 2 -δ ], ∀τ ∈ [0, 1], ∀t ∈ [0, T ] and ∀k ∈ N * , |α k (t)| 2 ≤ M |α 0 k | 2 λ 2γ k t 2γ(2-δ) + |b k | 2 λ τ +ω(1-τ ) k t 2τ (1-δ) (b) ∃M > 0, ∀T ≥ 0, s.t. ∀γ ∈ [0, 1], ∀τ ∈ [0, 1 2 -δ ], ∀t ∈ [0, T ] and ∀k ∈ N * , λ k |ρ * α k | 2 (t) ≤ M |α 0 k | 2 λ 2γ-1 k t 2[γ(2-δ)+δ-1] + |b k | 2 λ -(1-τ )(1-ω) k t -2(1-τ )(1-δ)
Proof. (a)

The statement in (a) follows from (5.1) and Proposition 6.1 (with γ = χ 2 -δ

).

(b)

The statement follows from (a) above by convolution.

We deduce from Corollary 6.1:

Proposition 6.2. Let γ ≥ 0, η > 0. Then: (a) Assume u 0 ∈ H 1+γ+ω and S 0 ∈ D 1+γ . Then u ∈ C 1 (R + , H γ ). (b) Assume u 0 ∈ H 3+γ-ω+η and S 0 ∈ D 3+γ . Then u ∈ C 2 (R * + , H γ ) ∩ W 2,p loc (R + , H γ ), p ∈ [1, 1/(1 -α)[.

Proof. (a)

Based on eq.(3.11a) and W 0 ∈ L ∞ (R + ), we infer that:

λ γ k |α ′ k (t)| 2 ≤ λ 1+γ k λ k |ρ * α k | 2 (t) + λ 1+γ k |b k | 2 W 0 2 ∞ (6.4)
Now, Lemma 5.2 with θ = γ + ω, leads to

λ 1+γ k λ k |ρ * α k | 2 (t) ≤ Aλ k λ γ+ω k |α 0 k | 2 + λ γ k |b k | 2 (6.5)
From Eqs.(6.4)-(6.5),

λ γ k |α ′ k (t)| 2 ≤ A λ 1+γ+ω k |α 0 k | 2 + λ 1+γ k |b k | 2 (6.6) Since u 0 ∈ H 1+γ+ω and S 0 ∈ D 1+γ , λ γ k |α ′ k (t)| 2 < +∞. Hence +∞ k=1 α ′ k ⊗ w k converges in C 0 (R + , H γ ).
Since by Lemma 5.2

+∞ k=1 α k ⊗ w k converges in C 0 (R + , H 1+γ ), it also converges in C 0 (R + , H γ ). Finally u ∈ C 1 (R + , H γ ). (b) 
Observe that 1 + γ + ω ≤ 3 + γ -ω + η and 1 + γ ≤ 3 + γ. Consequently u 0 ∈ H 1+γ+ω , S 0 ∈ H 1+γ . Next, (a) above ensures that u ∈ C 1 (R + , H γ ). We now deduce several estimates for the second order derivatives. From eq.(3.11a) it follows that, for t > 0, α

′′ k (t) = -λ k (ρ * α ′ k ) (t) - √ λ k b k W ′ 0 (t) = λ 2 k (ρ * ρ * α k ) (t) + λ 3/2 k b k (ρ * W 0 ) (t) - √ λ k b k W ′ 0 (t) ∈ C 0 (R * + ) since α k ∈ C 0 (R + ), W 0 ∈ C 0 (R + ) ∩ C 1 (R * + ) and 0 ≤ ρ(t) ≤ kt -δ .
Let now ǫ > 0 be small enough. Part (a) in Corollary 6.1 with γ [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]), gives

= (1 -ǫ)/(2 -δ) ∈ 0, 1 2 -δ , τ = 1 and |W ′ 0 (t)| ≤ k t 1-α (see
λ γ/2 k |α ′′ k (t)| ≤ M T λ 2+γ/2 k t 1-2δ * |α 0 k | λ (1-ǫ)/(2-δ) k t 1-ǫ + |b k | λ 1/2 k t 1-δ + M T λ (1+γ)/2 k λ k t δ-1 + 1 t 1-α |b k | ≤ M T λ (3+γ)/2 k t δ-1 + λ (1+γ)/2 k t 1-α |b k | + M T λ 2-(1-ǫ)/(2-δ)+γ/2 k t 2δ-ǫ-1 |α 0 k | (6.7)
Observe that, for ǫ > 0 small enough, 2(3 + γ)/2 ≤ 3 + γ and 2(γ + 1)/2 ≤ 3 + γ. Also, for ǫ > 0 small enough, 2 [2 + γ/2 -(1 -ǫ)/(2 -δ)] ≤ 4 + γ -2/(2 -δ) + η.

Hence, by (6.7), and since u 0 ∈ H 3+γ-ω+η = H 4+γ-2/(2-δ)+η and S 0 ∈ D 3+γ , we get u ∈ C 2 (R * + , H γ ).

Proceeding as before (see Proposition 6.2) one obtains the following smoothness properties: Proof. (a)

We limit the proof to the case 0 < η < ω. Denote ω = ω -η; hence 0 < ω < ω < 1. Since u 0 ∈ H 2+γ-ω , S 0 ∈ D 2+γ-ω-ω , based on Theorem 5.1, we have that S ∈ C 0 (R + , D 2+γ-ω-ω ). Next, as 0 < ω < ω < 1 entails γ < 2 + γω -ω, one gets S ∈ C 0 (R + , D γ ).

Next we obtain an estimate for S ′ (t). Observe first that W 0 ∈ L ∞ (R + ) and that α ′ k (t) = -λ k (ρ * α k ) (t)-√ λ k b k W 0 (t). Therefore: Moreover, from [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF] we observe that W ′ 0 (t)S 0 Dγ ≤ K/t 1-α . It implies that W ′ 0 ⊗ S 0 ∈ L q loc (R + , D γ ) for any q ∈ [1, 1/(1 -α)[. Therefore

λ γ/2 k λ k |ρ * α ′ k | ≤ Aλ
λ k |ρ * α ′ k | (t) ≤ M T λ 1+γ/2 k λ k 1 t 2δ-1 * |α 0 k | λ 1/(2-δ) k t (2-δ)/(2-δ) + λ k 1 t 2δ-1 * |b k | √ λ k t 1-δ + |b k | t δ-1 ≤ M T λ 1+γ 

  µ w)(iy)|dy. Combining these results achieves the proof.

  H γ+1 ). In addition, (a) whenever 0 ≤ γ ≤ θ ≤ γ + ω, u ∈ C 0 (R + , H θ ), and S ∈ C 0 (R * + , D γ ); moreover, u(0) = u 0 . (b) whenever 0 ≤ γ + ω ≤ θ, u ∈ C 0 (R + , H γ+ω ), and S ∈ C 0 (R + , D γ ); moreover, u(0) = u 0 and S(0) = S 0 .

  that S ∈ C 0 (R * + , D γ ). For any N ≤ M, by (c) of Lemma 4.1 and by (ii) of Lemma 5.2, M k=N

  ) follows from part (i) in Proposition 5.1. Next, we use part (iv) in Lemma 5.1 with µ = 1 -ω and τ = 1. It gives µ -1 = -ω and µ(2

  u ∈ C 0 (R + , H θ ) is a consequence of part (a)of Corollary 5.1. Next, Lemma 5.3 and part (e) of Lemma 4.1 imply that, for any M ≤ N, N k=M

  and of Corollary 3.1. The existence of a solution (u, S) ∈ C 0

Proposition 6 . 3 .

 63 Let γ ≥ 0, η > 0. (a) Assume u 0 ∈ H 2+γ-ω+η , S 0 ∈ D 2+γ . Then S ∈ C 1 (R * + , D γ ) ∩ W 1,p loc (R + , D γ ), for any p ∈ [1, 1/(1 -α)[. (b) Assume u 0 ∈ H 4+γ-ω+η , S 0 ∈ D 4+γ . Then S ∈ C 2 (R * + , D γ ).

(γ+1)/ 2 k

 2 λ k (ρ * ρ * |α k |) + λ k (ρ * |b k |) (t) Now, part (a) of Corollary 6.1, with δ = 2ω/(1 + ω) < 2ω/(1 + ω) = δ, γ = 1/(2 -δ), δ ∈]0, δ[, and τ = 1, gives |α k (t)| ≤ M T |α 0 k | λ 1/(2-δ) k t (2-δ)/(2-δ) + |b k | √ λ k t 1-δ However, |ρ * ρ| (t) ≤ Kt 1-2δ . Also, since 0 < δ < δ, then (2 -δ)/(2 -δ) ∈ [0, 1[. One infers that λ γ/2 k

t 2 - 2 (

 22 2δ-(2-δ)/(2-δ) |α 0 k | + t 1-δ |b k | (6.8) Let a = 2 -2δ -(2 -δ)/(2 -δ) = 1 -2δ + (δ -δ)/(2 -δ), and b = 1 -δ > 0. Then:λ γ/2 k λ k (ρ * α ′ k ) t) ≤ M T λ 2+γ-ω k |α 0 k | 2 t 2a + λ 2+γ k t 2b |b k | 2 (6.9)Recall that -as stated in (c) of Lemma 4.1 -that ∇w k + ∇ T w k k∈N * is an orthogonal sequence of functions that belongs to D γ , and∇w k + ∇ T w k 2 Dγ = (1+λ γ k )λ k .Consequently, using the estimate given above and that u 0 ∈ H 2+γ-ω , S 0 ∈ D 2+γ , leads to the fact that+∞ k=1 (ρ * α ′ k ) ⊗ ∇w k + ∇ T w k converges in C 0 (R * + , D γ ). Next, from Eq in [15], W ′ 0 ⊗ S 0 ∈ C 0 (R * + , D γ ). Therefore +∞ k=1 (ρ * α ′ k ) ⊗ ∇w k + ∇ T w k + W ′ 0 ⊗ S 0 ∈ C 0 (R * + , D γ ). Hence S ∈ C 1 (R * + , D γ ).Whenever a ≥ 0, by Eq.(6.9),+∞ k=1 (ρ * α ′ k ) ⊗ ∇w k + ∇ T w k + W ′ 0 ⊗ S 0 belongs to C 0 (R + , D γ ), thus belongs to L p loc (R + , D γ ) for any 1 ≤ p < +∞. Now, whenever a < 0, -a-(1-α) = 2δ-2-(δ-δ)/(2-δ)-1+α = [-3-(δ-δ)/(2-δ)+(2δ+α)] < 0.We conclude that +∞ k=1 (ρ * α ′ k ) ⊗ ∇w k + ∇ T w k converges in L q loc (R + , D γ ), for any q ∈ [1, 1/(1 -α)].

, for any q ∈ [1, 1/(1 -α)[ and irrespective of whether a is positive or negative. Eventually S ∈ W 1,q loc (R + , D γ ) for any q ∈ [1, 1/(1 -α)[.

(b)

The proof is omitted.

From Proposition 6.2 we can infer the existence of smooth solutions to eqs.(1.9). Assume that u 0 ∈ H 5+ω and S 0 ∈ D 5 ∩ C 1 (Ω) 9 . Then, the solution (u, S) the existence of which is granted by Theorem 3.1 of Section 3, complies with the statement (a) of Proposition 6.2, that is u

). All the precedent arguments eventually lead to the conclusion that (u, S)

Final comments

Fractional calculus has a long history that parallels the classical analysis [START_REF] Miller | An Introduction to the Fractional Calculus and Fractional Differential Equations[END_REF][START_REF] Podlubny | Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications[END_REF][START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF]. It has long been used in modeling natural phenomena: for a quick glimpse see for example [START_REF] Adolfsson | Fractional derivative viscoelasticity at large deformations[END_REF][START_REF] Adolfsson | Nonlinear fractional order viscoelasticity at large strains[END_REF][START_REF] Adolfsson | On the fractional order model of viscoelasticity[END_REF][START_REF] Agarwal | A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions[END_REF][START_REF] Agrawall | Solution for a fractional diffusion-wave equation defined in a bounded domain[END_REF][START_REF] Baleanu | Fractional Hamiltonian analysis of higher order derivatives systems[END_REF][START_REF] Carpinteri | Fractals and fractional calculus in continuum mechanics[END_REF][START_REF] Douglas | Some applications of fractional calculus to polymer science[END_REF][START_REF] Douglas | Polymer science applications of path-integration, integral equations, and fractional calculus[END_REF][START_REF] Drozdov | Fractional differential models in finite viscoelasticity[END_REF][START_REF] Guyomar | Time fractional derivatives for voltage creep in ferroelectric materials: theory and experiment[END_REF][START_REF] Hanyga | Fractional-order relaxation laws in non-linear viscoelasticity[END_REF][START_REF] Kneller | Fractional Brownian dynamics in proteins[END_REF][START_REF] Koeller | A theory relating creep and relaxation for linear materials with memory[END_REF][START_REF] Lion | On the thermodynamics of fractional damping elements[END_REF][START_REF] Logvinova | A fractional equation for anomalous diffusion in a randomly heterogeneous porous medium[END_REF][START_REF] Makris | Three-dimensional constitutive viscoelastic laws with fractional order time derivatives[END_REF][START_REF] Özdemir | Fractional diffusion-wave problem in cylindrical coordinates[END_REF][START_REF] Podlubny | Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications[END_REF][START_REF] Robles-Vasquez | A composition rule to predict the linear viscoelastic properties of polybutadienes with varying microstructure[END_REF][START_REF] Seredyńska | Nonlinear differential equations with fractional damping with applications to the 1dof and 2dof pendulum[END_REF][START_REF] Tan | A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates[END_REF][START_REF] Xu | Analysis of nonlinear fractional partial differential equations with the homotopy analysis method[END_REF][START_REF] Yang | Start-up flow of a viscoelastic fluid in a pipe with a fractional Maxwell's model[END_REF][START_REF] Yin | Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model[END_REF], and references cited therein. In particular, fractional derivative CEs have been found to accurately predict stress relaxation of viscoelastic fluids in the glass transition and glassy (high frequency) states.

The results presented here enrich and complement the linear stability analysis within the framework of variational/weak solutions initiated in [START_REF] Heibig | On the rest state stability of an objective fractional derivative viscoelastic fluid model[END_REF]. We have proved results regarding existence, uniqueness, smoothness and continuity at t = 0 of the solution to the initial boundary value problem stated in Section 1. Moreover, this work is related to that of Shaw, Whiteman and co-workers on the well posedness, existence and uniqueness of weak solutions for similar in nature hereditary -type integral models (see for example [START_REF] Karamanou | Computational modelling of thermoforming processes in the case of finite viscoelastic materials[END_REF], [START_REF] Shaw | A posteriori error estimates for space-time finite element approximation of quasistatic hereditary linear viscoelasticity problems[END_REF], [START_REF] Shaw | Adaptive space-time finite element solution for Volterra equations arising in viscoelasticity problems[END_REF], [START_REF] Shaw | Applications and numerical analysis of partial differential Volterra equations: A brief survey[END_REF]), as well as to that reported in [START_REF] Palade | A new constitutive equation that models extensional flow strain hardening based on evolving natural configurations: stability analysis[END_REF], [START_REF] Palade | An integral constitutive law for viscoelastic fluids based on the concept of evolving natural configurations: stability analysis[END_REF], [START_REF] Voyiatzis | On Hadamard stability and dissipative stability of the molecular stress function model of non-linear viscoelasticity[END_REF].

The matter of the stability of the original nonlinear CE is an open question on which future work shall focus.
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