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Abstract

In this note we would like to give some remarks and open problems concerning com-
parison results for stochastic functional differential equations. Our starting point was the
paper of Halidias and Ren 2008 where one can find some wrong arguments in the compari-
son result. However, as we shall prove in this note, the results in that paper are true under
some more restrictive conditions on the data.

AMS Subject Classification: 60H10, 60H20, 60H30.
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1 Introduction

Let t0 be a positive constant and (Ω, F , P ) be a complete probability space with a filtration
{Ft}t≥t0 satisfying the usual conditions. Assume that B(t) is a Brownian motion defined on
(Ω, F , P ). Let C([−τ, 0];R) denote the family of bounded continuous R−valued functions ϕ
defined on [−τ, 0] with norm ||ϕ|| = sup−τ ≤θ≤0 |ϕ(θ)|. We denote by M2([−τ, 0];R) the family
of all Ft0 −measurable, R−valued process ψ(t) = ψ(t, ω), t ∈ [−τ, 0] such that E

∫ 0

−τ
|ψ(t)|2dt <

∞.
In this note we will study stochastic functional differential equations like the following,

d[X(t) − D(X(t))] = f(t,Xt) dt + g(t,X(t)) dB(t), t0 ≤ t ≤ T, (1)

where Xt = {X(t + θ) : −τ ≤ θ ≤ 0} could be considered as a C([−τ, 0];R)-value stochastic
process. We define the initial value of (1) as follows:

Xt0 = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} is Ft0 − measurable,
C([−τ, 0];R) − value random variable

such that ξ ∈ M2([−τ, 0];R).
(2)

Here, f : [t0, T ] × C([−τ, 0],R) → R, g : [t0, T ] × R → R and D : R → R and assume that are
Borel measurable.

We will study also the following stochastic functional differential equation of neutral type,

d[X(t) − D(Xt)] = f(t,Xt) dt + dB(t), t0 ≤ t ≤ T, (3)
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with the initial value defined as before. Here, D : C([−τ, 0];R) → R, f(t, x) : [t0, T ] ×
C([−τ, 0];R), are Borel measurable.

In the following two sections we prove comparison theorems for problems (1) and (3) with
initial conditions like (2). In section 4 we give some remarks and conclusions.

2 Comparison theorem for sfdes

Our goal here is to give a comparison result for problem (1),(2). So, consider the following
problems,

X(t) − D(X(t)) = ξ1(0) − D(X(t0)) +
∫ t

t0

f1(s,Xs)ds +
∫ t

t0

g(s,X(s))dB(s), t0 ≤ t ≤ T, (4)

X(t) − D(X((t)) = ξ2(0) − D(X(t0)) +
∫ t

t0

f2(s,Xs)ds +
∫ t

t0

g(s,X(s))dB(s), t0 ≤ t ≤ T. (5)

Theorem 1 Suppose that problems (4) and (5) have unique strong solutions, X(t), Y (t) re-
spectively. Suppose that f1(t, x) ≤ f2(t, x) for all x ∈ C([−τ, 0];R), ξ1(0) ≤ ξ2(0) and that
x → f1(t, x) or x → f2(t, x) is increasing, in the sense that if x ≤ y then f(t, x) ≤ f(t, y) for
x, y ∈ C([−τ, 0];R). Then, we have that X(t) ≤ Y (t) a.s. for all t > 0.

Proof.
For a discussion about the existence and uniqueness of strong solutions to problem like

(3) one can see Mao (1997).
We define now the following operator, p(·, ·) : C([−τ, 0];R) × C([−τ, 0];R) → C([−τ, 0];R),

with

p(x, y)(θ) = max
θ∈[−τ,0]

{x(θ), y(θ)}

It is clear that y → p(x, y) satisfies growth and Lipschitz conditions with constant one.
Suppose that f2 is increasing. Consider the following problem,

Z(t) − D(p(X(t), Z(t))) = ξ(0) − D(p(X(t0), Z(t0)) +
∫ t

t0

f2(s, p(Xs, Zs)) +

∫ t

t0

g(s, p(X(s), Z(s)))dB(s), t0 ≤ t ≤ T.

It’s clear that this problem has a unique solution noting that y → p(x, y) satisfies growth and
Lipschitz conditions. We shall prove that Z(t) ≥ X(t) a.s.

Suppose that this is not true. Then, the following stopping time, τ1

τ1 = inf{t ∈ [t0, T ] : X(t) − Z(t) > 0},

is such that τ1 < T . In this case we define another stoping time τ2 defined as

τ2 = inf{t ∈ [τ1, T ] : Z(t) − X(t) > 0},

Thus, we have produced the stochastic interval (τ1, τ2) in which X(τ1) = Z(τ1) and X(t) ≥
Z(t) on (τ1, τ2). For a discussion about stopping times and stochastic intervals one can see Mao
(1997) and Karatzas and Shreve (1998).

Then we have

X(t) − Z(t) = X(τ1) − Z(τ1) − D(X(τ1)) + D(p(X(τ1), Z(τ1))) + D(X(t)) − D(p(X(t), Z(t))) +
∫ t

τ1

(f1(s,Xs) − f2(s, p(Xs, Zs)))ds +
∫ t

τ1

(g(s,X(s)) − g(s, p(X(s), Z(s))))dB(s), t ∈ (τ1, τ2).
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It is obvious that,

D(X(τ1)) − D(p(X(τ1), Z(τ1))) = 0 because X(τ1) = Z(τ1),
D(X(t)) − D(p(X(t), Z(t))) = 0, because X(t) ≥ Z(t) on t ∈ (τ1, τ2)∫ t

τ1

(f1(s, Xs) − f2(s, p(Xs, Zs)))ds ≤
∫ t

τ1

(f1(s,Xs) − f2(s,Xs))ds ≤ 0, t ∈ (τ1, τ2)

∫ t

τ1

g(s, X(s)) − g(s, p(X(s), Z(s))))dB(s) = 0, t ∈ (τ1, τ2),

noting that always p(X(t), Z(t)) ≥ X(t).
Thus in fact we have equality, i.e. Z(t) = X(t). So, always Z(t) ≥ X(t) and thus Z(t) =

Y (t) the unique solution of (4).

3 Comparison theorem for neutral sfdes with additive
noise

In this section we consider the following stochastic functional differential equation of neutral
type,

d[X(t) − D(Xt)] = f(t,Xt) dt + dB(t), t0 ≤ t ≤ T,

with the initial value defined as before. Here, D : C([−τ, 0];R) → R, f(t, x) : [t0, T ] ×
C([−τ, 0];R), are Borel measurable. Our goal is to obtain a comparison theorem for this kind
of problem.

Let the following problems,

X(t) − D(Xt) = ξ(0) − D(Xt0) +
∫ t

t0

f1(s,Xs)ds + Bt − Bt0 , t0 ≤ t ≤ T, (6)

X(t) − D(Xt) = ξ(0) − D(Xt0) +
∫ t

t0

f2(s,Xs)ds + Bt − Bt0 , t0 ≤ t ≤ T. (7)

Theorem 2 Suppose that problems (6) and (7) have unique strong solutions. Suppose further
that x → f2(t, x), x → D(x) are increasing operators in sense that we have described before. If,
f1(t, x) ≤ f2(t, x) for all x ∈ C([−τ, 0];R) then X(t) ≤ Z(t) a.s. for all t.

Proof.
As before we consider the operator p(·, ·) : C([−τ, 0];R) × C([−τ, 0];R) → C([−τ, 0];R),

with

p(x, y)(θ) = max
θ∈[−τ,0]

{x(θ), y(θ)}

We consider the following problem,

Z(t) − D(p(Xt), Zt)) = ξ(0) − D(p(X(t0), Z(t0)) +
∫ t

t0

f2(s, p(Xs, Zs))) + Bt − Bt0 , t0 ≤ t ≤ T.

It’s clear that this problem has a unique strong solution. We are going to show that Z(t) ≥ X(t)
a.s. for all t > 0.

Suppose that this is not true. Then as before we can construct a stochastic interval (τ1, τ2)
in which X(τ1) = Z(τ1) and X(t) ≥ Z(t) on (τ1, τ2).
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Thus we have,

X(t) − Z(t) = X(t0) − Z(t0) − D(Xt0) + D(p(Xt0 , Zt0)) + D(Xt) − D(p(Xt, Zt)) +
∫ t

t0

(f1(s,Xs) − f2(s, p(Xs, Zs)))ds, t ∈ (τ1, τ2).

Arguing as before and noting that f2, D are increasing operators we have that X(t) ≤ Z(t) a.s.
for all t. But Z(t) = Y (t) the solution of problem (7), so we have done.

The proof of Theorem 2 is essential the same with that of Theorem 1. But the key difference
is that we have integrate over (t0, t) with t ∈ (τ1, τ2) in Theorem 2 while in Theorem 1 we have
integrate over (τ1, t) with t ∈ (τ1, τ2).

We can have another comparison theorem with different D. Assume that ξ = x0 ∈ R and
suppose that D1(x0) = D2(x0).

Consider the following problems,

X(t) − D1(Xt) = x0 − D1(x0) +
∫ t

t0

f1(s, Xs)ds + Bt − Bt0 , t0 ≤ t ≤ T, (8)

X(t) − D2(Xt) = x0 − D2(x0) +
∫ t

t0

f2(s, Xs)ds + Bt − Bt0 , t0 ≤ t ≤ T. (9)

Theorem 3 Suppose that problems (8) and (9) have unique strong solutions. Suppose further
that x → f2(t, x), x → D2(x) are increasing operators in sense that we have described before.
If, f1(t, x) ≤ f2(t, x) and D1(x) ≤ D2(x) for all x ∈ C([−τ, 0];R) then X(t) ≤ Z(t) a.s. for all
t.

We omit the proof because is the same as Theorem 2.

4 Remarks

There exists some open problems, for example what can we say if both D, g are functionals
depending on Xt = {X(t + θ) : θ ∈ [−τ, 0]}. We would like also to point out that the results in
Halidias and Ren 2008 does not hold as they are but are true if we assume further that d = 1,
x → f2(t, x) is increasing and that g is not a functional depending on Xt.
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