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The aim of this paper is to consider a parametric estimation problem for two-dimensional random motions at finite speed with an infinite number of directions (planar random flight). In particular we are interested in estimating the unknown value of the parameter λ, the underlying rate of the Poisson process, when the process is observed at n + 1 equidistant discrete times. We introduce three different estimators, based on the distance between two consecutive observed points. Furthermore, their empirical performance is analyzed by means of a Monte Carlo analysis for small sample size n.

Introduction

We consider the motion in the plane of a particle starting at arbitrary point (x 0 , y 0 ), moving with constant velocity c and taking directions uniformly distributed in (0, 2π]. The changes of direction are governed by a homogenous Poisson process with parameter λ > 0. Let N (t) be the number of Poisson events in the interval [0, t], the position at time t > 0 of a particle performing a random flight is

X(t) = x 0 + c N (t)+1
j=1 (s js j-1 ) cos θ j , Y (t) = y 0 + c N (t)+1 j=1 (s js j-1 ) sin θ j , where θ j are independent random variables uniformly distributed in (0, 2π], while s j , j = 1, ..., n are the instants at which Poisson events occur (s 0 = 0 and s N (t)+1 = t). Random flights in R 2 have been studied in [START_REF] Stadje | The exact probability distribution of a two-dimensional random walk[END_REF], [START_REF] Masoliver | Some two and three-dimensional persistent random walk[END_REF], [START_REF] Kolesnik | A planar random motion with an infinite number of directions controlled by the damped wave equation[END_REF]. De Gregorio and [START_REF] De Gregorio | Some results on random flights[END_REF] and [START_REF] Orsingher | Random flights in higher spaces[END_REF] analyze the random flights in higher spaces and derive their explicit distribution in R 4 .

The only references about the statistical inference of random motion at finite velocity consider estimation problem for the telegraph process which describes the motion of a particle on the real line. [START_REF] Yao | Estimation of Noisy Telegraph Process: Nonlinear Filtering Versus nonlinear Smoothing[END_REF] estimates the state of the telegraph process under white noise perturbation and studies performance of nonlinear filters. [START_REF] Iacus | Statistical analysis of the inhomogeneous telegrapher's process[END_REF] considers the estimation of the parameter θ of a non-constant rate λ θ (t). More recently, De Gregorio and Iacus (2008) introduce a pseudo-maximum likelihood estimator and a moment estimator for the parameter λ when the sample paths of the telegraph process are observed only at equidistant discrete times. The authors also analyze the same statistical problem for a geometric telegraph process particularly interesting in view of financial applications. For a telegraph process observed at discrete times, [START_REF] Iacus | Estimation for discretely observed telegraph process[END_REF] study the asymptotic (i.e. the mesh decreases to zero and the horizon interval tends to infinity) properties of two moment estimators and propose also an estimator consistent, asymptotically normal and asymptotically efficient.

The aim of this paper is the estimation of the parameter λ which governs the rate of change of direction of a random flight {(X(t), Y (t)), t > 0}. If the whole path of the process in observed, the parameter λ is estimated with N (T )/T (see [START_REF] Yu | Statistical inference for spatial Poisson processes[END_REF] and the estimation does not present problem. We assume that the process {(X(t), Y (t)), 0 < t < T } is observed only at n + 1 equidistant times 0 = t 0 < t 1 < .. < t n = T , where t i = i∆ n = i∆, i = 0, 1, ..., n. Since {(X(t), Y (t)), 0 < t ≤ T } is not markovian, it is not possible to explicit the likelihood function of the points observed as product of the transition densities. This fact implies that we can not use the tools developed for the diffusion processes (see [START_REF] Sørensen | Estimating functions for discretely observed diffusions: A review[END_REF][START_REF] Sørensen | Parametric inference for diffusion processes observed at discrete points time: a survey[END_REF]and Iacus, 2008, for an account of these estimation methods). The main idea of this paper is to consider the distance between two consecutive observed points which provides a sequence of independent and identically distributed (i.i.d.) random variables. In this way, we are able to propose a maximum likelihood estimator, based on the likelihood function of the distances, and moment type estimator as well. Furthermore, it is also possible to consider a statistic which counts the number of times in which the process doesn't change direction in the intervals [t i , t i+1 ), i = 0, 1, ..., n.

We believe that the statistical problems treated in this paper are interesting because the planar random flights seem to be useful, for example, in ecology and biology. In fact, [START_REF] Holmes | Are diffusion models too simple? A comparison with telegraph models of invasion[END_REF] and [START_REF] Holmes | Partial differential equations in ecology: spatial interactions and population dynamics[END_REF] consider these models to represent the displacements of the animals and microorganisms on a surface.

The paper is organized as follows. In Section 2 we describe the random motion considered here and calculate the exact value of the moments of the process R(t) = X 2 (t) + Y 2 (t). In Section 3 we introduce and study the estimators for the parameter λ. Their empirical performance is analyzed by means of a Monte Carlo analysis in Section 4.

Planar random flights: description and distance process

Let us consider a particle starting at the arbitrary point (x 0 , y 0 ) of the plane R 2 , moving with constant finite speed c. The initial direction is a random vector v = (cos θ, sin θ) uniformly distributed on the unit circumference, i.e. the random variable θ is uniformly distributed in (0, 2π]. The changes of direction are governed by a homogeneous Poisson process with parameter λ > 0. Therefore, when a Poisson event occurs the particle takes a new direction uniformly distributed on the unit circle, independently from the previous one.

We indicate the position of the particle at time t > 0 with the stochastic process (X(t), Y (t)), which is called random flight in the plane. At time t the particle is located in the disc

S 2 ct = {(x, y) : (x -x 0 ) 2 + (y -y 0 ) 2 ≤ c 2 t 2 }, (2.1) 
with probability 1. If no Poisson event occurs the particle is located on the circle

∂S 2 ct = {(x, y) : (x -x 0 ) 2 + (y -y 0 ) 2 = c 2 t 2 }, with probability P{(X(t), Y (t)) ∈ ∂S 2 ct } = e -λt .
The remaining part of the distribution lies in the interior of (2.1) and represents the absolute continuous component of the distribution P {X(t) ∈ dx, Y (t) ∈ dy} .

We note that the random flights have trajectories which assume the form of broken lines where the single steps have random length and are uniformly oriented in (0, 2π]. However, the total length for any sample paths at time t is ct. The density law of (X(t), Y (t)) (see [START_REF] Kolesnik | A planar random motion with an infinite number of directions controlled by the damped wave equation[END_REF]) is equal to

p(x, y; t) = λ 2πc e -λt+ λ c √ c 2 t 2 -(x-x0) 2 -(y-y0) 2 c 2 t 2 -(x -x 0 ) 2 -(y -y 0 ) 2 1 {(x-x0) 2 +(y-y0) 2 <c 2 t 2 } + e -λt 2πct δ(c 2 t 2 -(x -x 0 ) 2 -(y -y 0 ) 2 ), (2.2) 
with (x, y) ∈ S 2 ct and δ(•), 1(•) representing respectively the Dirac's delta function and the indicator function. Now, we put (x 0 , y 0 ) = (0, 0) and introduce the following distance process

R(t) = X 2 (t) + Y 2 (t), (2.3) 
i.e. the euclidean distance from the origin of the position reached by the moving particle at time t. It's clear that for 0 r < ct

P {R(t) r} = P (X(t), Y (t)) ∈ S 2 r = λ 2πc S 2 r exp -λt + λ c c 2 t 2 -x 2 -y 2 c 2 t 2 -x 2 -y 2 dxdy = 1 -exp -λt + λ c c 2 t 2 -r 2
where S 2 r is a disk with radius r. Then, the complete distribution of R(t) becomes

p R (r, t) = λ c r exp{-λt + λ c √ c 2 t 2 -r 2 } √ c 2 t 2 -r 2 1 {0<r<ct} (2.4) +e -λt δ(c 2 t 2 -r 2 ).
We note that the density (2.4) coincides with formula [START_REF] Iacus | Estimation for discretely observed telegraph process[END_REF] in [START_REF] Kolesnik | A planar random motion with an infinite number of directions controlled by the damped wave equation[END_REF], when we ignore the angular component. By taking into account the probability law (2.4), we are able to derive the moments of R(t).

Theorem 2.1. Let (x 0 , y 0 ) = (0, 0) and p ≥ 1, we have that

ER p (t) = (ct) p e -λt √ π 2 λt p-1 2 Γ p 2 + 1 I p+1 2 (λt) + L p+1 2 (λt) + 1 (2.5)
with modified Bessel function

I ν (x) = ∞ k=0 x 2 2k+ν 1 Γ(k + 1)Γ(k + ν + 1)
and modified Struve function

L ν (x) = ∞ k=0 x 2 2k+ν+1 1 Γ(k + 3 2 )Γ(k + ν + 3 2 )
Proof. In view of (2.4), we can write

ER p (t) = λ c e -λt ct 0 r p+1 e λ c √ c 2 t 2 -r 2 √ c 2 t 2 -r 2 dr + (ct) p e -λt . (2.6) 
Now, we work out the integral in (2.6). Hence

ct 0 r p+1 e λ c √ c 2 t 2 -r 2 √ c 2 t 2 -r 2 dr = ∞ k=0 1 k! λ c k ct 0 r p+1 (c 2 t 2 -r 2 ) k-1 2 dr = ∞ k=0 1 k! λ c k (ct) p+k+1 2 Γ p 2 + 1 Γ k+1 2 Γ k+1 2 + p 2 + 1 = √ πΓ p 2 + 1 ∞ k=0 1 k! λt 2 k (ct) p+1 Γ(k) Γ k+1 2 + p 2 + 1 Γ k 2 = √ πΓ p 2 + 1 (ct) p+1 ∞ k=0 λt 2 2k 1 2kΓ(k)Γ k + p+1 2 + 1 + ∞ k=0 λt 2 2k+1 1 (2k + 1)Γ k + p+1 2 + 3 2 Γ k + 1 2 = √ π 2 Γ p 2 + 1 (ct) p+1 2 λt p+1 2 ∞ k=0 1 k! λt 2 2k+ p+1 2 1 Γ k + p+1 2 + 1 + 2 λt p+1 2 ∞ k=0 λt 2 
2k+ p+1 2 +1 1 Γ k + p+1 2 + 3 2 Γ k + 3 2 = √ π 2 Γ p 2 + 1 (ct) p+1 2 λt p+1 2 I p+1 2 (λt) + L p+1 2 (λt) . (2.7) 
By inserting (2.7) into (2.6) we obtain the result (2.5).

Remark 2.1. We observe that

lim λ→∞ ER p (t) = 0, lim λ→0 ER p (t) = (ct) p .
In other words, if λ grows to infinity the changes of direction increase and consequently the distance from the origin decreases. Viceversa for λ → 0 the particle tends to achieve the edge of the disc S 2 ct .

Estimation for discretely observed planar random flights

We assume that the planar random flight {(X(t), Y (t)), 0 < t ≤ T }, with (X(0), Y (0)) = (0, 0), is observed only at n + 1 equidistant discrete times 0 = t 0 < t 1 < ... < t n = T, where t i = i∆ n = i∆, i = 0, 1, ..., n. We use the following notation to simplify the formulas:

(X(t i ), Y (t i )) = (X(i∆ n ), Y (i∆ n )) = (X i , Y i ).
The interest is the estimation of the parameter λ whilst the velocity c is assumed to be known. However, if in the interval (i∆ n-1 , i∆ n ] there are not changes of direction, then

(X i -X i-1 ) 2 +(Y i -Y i-1 ) 2 = c 2 ∆ 2 n .
If ∆ n is suitably small, there is high probability of observing N (t i ) -N (t i-1 ) = 0 and c can be calculated without error. Furthermore, by setting

R i = (X i -X i-1 ) 2 + (Y i -Y i-1 ) 2
we are able to estimate consistently the velocity c by means of the following estimator

ĉn = M n ∆ n , (3.1) 
where M n = max{R i ; i = 1, ..., n}. By noting that R i ≤ c∆ n with the equality holding if and only if N (t i ) -N (t i-1 ) = 0, we have that P {ĉ n = c} = (1e -λ∆n ) n → 0 as n → ∞. Therefore, if c is unknown the estimators below should be considered substituting c with ĉn . Analogously to the telegraph process, the random flights are not markovian. For this reason we cannot write the explicit likelihood function of the process in the form of product of transition densities as well as for diffusion processes. Nevertheless,

(X i -X i-1 , Y i -Y i-1 , θ i ), i = 1, ..., n
, where θ i is the angular direction (unobservable) of the particle at time t i , is a special hidden Markov model. However, to face the estimation problem we prefer to follow alternative arguments explained below.

The contrast function approach

In order to estimate λ, we introduce a suitable contrast function as follows. We observe that 

R 2 i = c 2    N (ti)+1 j=N (ti-1)+2 (s j -s j-1 ) 2 + j =k (s j -s j-1 )(s k -s k-1 ) cos(θ j -θ k )    therefore, while (X i , Y i ) are not independent, R i , i = 1, ...,
L n (λ) = L n (λ|R 1 , ..., R n ) (3.2) = n i=1 p R (R i , ∆ n ) = n i=1 λ c R i exp{-λ∆ n + λ c √ u n,i } √ u n,i
1 {un,i>0} + e -λ∆n δ(u n,i = 0) ,

where u n,i = c 2 ∆ 2 n -R 2 i . The densities p R (R i , ∆ n ) appearing in (3.
2) represent the distribution of the random distance between the position of a planar random flight at time t i-1 , namely (X i-1 , Y i-1 ), and one reaches at the instant t i , namely (X i , Y i ). The likelihood function (3.2) is equivalent to

L n (λ) = e -λ∆n(n-n + ) n + i=1 λ c R i exp{-λ∆ n + λ c √ u n,i } √ u n,i (3.3) 
where n + is the number of the planar random flights with at least one change of direction.

Remark 3.1. In the expression (3.3), the factor e -λ∆n(n-n + ) concerns the singular part of the densities p R (R i , ∆ n ), while the product contains the absolutely continuous components of the distributions of R i 's. Note that for increasing values of λ, the absolutely continuous component of (3.3) has a bigger weight than the singular component; viceversa for small values of λ.

At this point, it is quite natural to consider as estimator for λ, the maximum likelihood estimator (MLE) based on L n (λ) (contrast function). Formula (3.3) yields

F n (λ) = d dλ log L n (λ) = -n∆ n + 1 c n + i=1 √ u n,i + n + λ , (3.4) 
and the estimator is obtained by solving F n (λ) = 0. By taking into account the function (3.4) we derive the following MLE for the parameter λ

λn = arg max λ>0 L n (λ) = cn + cn∆ n - n + i=1 √ u n,i . (3.5) 
It is easy to see that d 2 dλ 2 log L n (λ) < 0 and the uniqueness of the estimator (3.5) holds. The following Theorem on the asymptotic properties of λn holds.

Theorem 3.1. The estimator (3.5) is consistent, asymptotically normal and asymptotically effcient

n∆ n ( λn -λ) d → N (0, λ) (3.6) for ∆ n → 0, n∆ → ∞ as n → ∞. Proof. Since n + = n i=1 1 {Ri<c∆n} , d 2 dλ 2 logL n (λ) = -n + λ 2 , we get that 1 n∆ n E d 2 dλ 2 logL n (λ) = - n n∆ n λ 2 (1 -e -λ∆n ) = - 1 λ 2 (λ + o(1)) → - 1 λ .
Then, the statements of Theorem follow immediately by the standard asymptotical theory for the MLE in i.i.d case.

A moment-type estimator

The random flights and the related process R(t) are not stationary. However, it's possible to use Theorem 2.1 to introduce a moment-type estimator based on the sample moments. Therefore, we consider the following estimator λn,p = arg min

λ>0 {m p -ER p (∆ n )} 2 , (3.7) 
where m p = 1 n n i=1 R p i and ER p (∆ n ) is given by (2.5). The estimator λn,p is unique. In fact the the function ER p (∆ n ) is monotonically decreasing respect to λ and the Remark 2.1 permits us to claim that lim λ→0 ER p (∆ n ) = (c∆ n ) p and lim λ→∞ ER p (∆ n ) = 0. Being m p in [0, (c∆ n ) p ] because 0 R i c∆ n , then λn,p is the unique solution to (3.7).

Estimators based on a counting function

As in [START_REF] Iacus | Estimation for discretely observed telegraph process[END_REF], we consider the following counting statistic

G n = 1 n∆ n n i=1 1 {Ri<c∆n} = 1 n∆ n n i=1
1 {N ([ti-1,ti))≥1} , which provides the average number of the intervals in which the direction has changed at least once (up the constants 1/∆ n ). It's easy to see that

E(G n ) = 1 -e -λ∆n
∆ n , then we introduce the following statistic

λn = - 1 ∆ n log (1 -∆ n G n ) (3.8)
which represents an unbiased estimator for the rate λ.

  n, is a sequence of i.i.d. random variables. By taking into account the distribution (2.4), we consider the following likelihood function
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Theorem 3.2. For n∆ n = T → ∞ and ∆ n → 0 as n → ∞ the estimator (3.8) is consistent, asymptotically normal and asymptotically efficient n∆ n ( λnλ) d → N (0, λ).

(3.9)

Proof. The result can be proved following the same steps of the proof of Theorem 3.1 in [START_REF] Iacus | Estimation for discretely observed telegraph process[END_REF].

Remark 3.2. Another advantage of the estimator λn is that it doesn't consider the probability law of (X(t), Y (t)) as (3.5). This fact permits us to estimate the parameter λ for a random flight performing its motion in R 

Monte Carlo analysis

We analyze the empirical performance of the estimators (3.5), (3.7) and (3.8) by means of a Monte Carlo analysis with n < ∞ fixed (small samples). In order to evaluate the estimator (3.7) we fixed p = 1 and considered the mean

We simulate 10000 sample paths of the planar random flights in the interval [0, T ], with T = 500, for different values of λ and c = 1. For any trajectories we have sampled n = 200, 300, 500, 1000 values subsequently used to estimate the unknown parameter λ. The results for the estimators λn , λn,1 and λn have been reported in the Table 1. Furthermore in the tables there is a column Bias representing the bias of the estimator and another one SE, which represents the values of the standard error. For example, for λn , these values are calculated as follows

where N = 10000 is the number of simulations. It emerges, as expected, that the bias and the standard error tend to zero when the sample size increases. It is clear that the true value of the parameter λ and the bias are correlated as well as the standard error. In fact, for fixed n, as the more λ increases the more Poisson events remain hidden to the observer. Furthermore, it is possible to compare the performance of the three estimators by means of the values obtained for SE. For each λ and n, from the Table 1 emerges that the standard error for λn is smaller than one for λn,1 and λn . Then we can conclude that the maximum psuedo-likelihood estimator seems to be the best estimator with respect to the variability of the estimates. 
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