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Abstract

This paper considers the separation and recognition of overlapped speech sentences

assuming single-channel observation. A system based on a combination of several

different techniques is proposed. The system uses a missing-feature approach for

improving crosstalk/noise robustness, a Wiener filter for speech enhancement, hid-

den Markov models for speech reconstruction, and speaker-dependent/-independent

modeling for speaker and speech recognition. We develop the system on the Speech

Separation Challenge database, involving a task of separating and recognizing two

mixing sentences without assuming advanced knowledge about the identity of the

speakers nor about the signal-to-noise ratio. The paper is an extended version of a

previous conference paper submitted for the challenge.
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 1 Introduction

There are currently two major approaches to speech enhancement. One ap-

proach assumes the availability of single-channel data (i.e., the speech and

noise are available only in a single mixed form), and the other assumes the

availability of multi-channel data (i.e., the speech and noise are available in dif-

ferent combination forms, from a set of two or more spatially-distributed trans-

ducers). Current single-channel techniques include optimal filtering, for exam-

ple, spectral subtraction, Wiener filtering, Kalman filtering, or subspace de-

composition (see, for example, Boll, 1979; Lim & Oppenheim, 1979; McAulay

& Malpass, 1980; Ephraim & Trees, 1995; Gannot, Burshtein & Weinstein,

1998; Jensen & Heusdens, 2007). Other existing single-channel techniques in-

clude optimal estimation, for example, minimum mean-square error or max-

imum a posteriori estimators (see, for example, Ephraim & Malah, 1984;

Ephraim, 1992; Sameti et al., 1998; Lotter & Vary, 2005; Hendriks & Mar-

tin, 2007). Most techniques produce estimates of short-time speech spectra by

filtering the noise components, based on knowledge about the statistics (e.g.,

power spectra, variances, or signal-to-noise ratio) of the noise and speech.

When statistics of the noise are not available, they are predicted using previ-

ous data without significant speech content (e.g., Martin, 2001; Cohen, 2003).

These algorithms work for stationary or slowly-varying noise, but less so for

speech-like or heavily nonstationary noise. This is because of the weak pre-

dictability of fast-varying noises.

In some applications (e.g., meeting-room or car environments), it is possible

to place several microphones to simultaneously record speech and background

sounds. Based on the multi-channel data, assuming mutual independence be-

tween the sources, it is possible to separate the individual source signals with-

out having to assume prior information. The approach, so called blind source

separation, has been studied in speech enhancement as a means of removing
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ACCEPTED MANUSCRIPT 
 the requirement for prior information about the noise (see, for example, Ci-

chocki & Ehlers, 2007). The multi-channel approach is not the focus of this

paper.

In this paper, we study the problem of separating and recognizing overlapped

speech sentences assuming single-channel data. In this research, the back-

ground noise is crosstalk speech. This problem is challenging not only because

the noise is nonstationary, but also because the noise has characteristics of

speech signals. It could be more difficult to separate this type of noise from

the targeted speech than for other non-speech noises. In the paper, we describe

an approach that combines several techniques as a possible solution. We de-

velop the approach on the Speech Separation Challenge database (Cooke &

Lee, 2008), involving a task of separating and recognizing two overlapped sen-

tences spoken by the same or two different speakers, assuming the availability

of only single-channel data. Our proposed system includes speaker dependent

and independent modeling for speaker and speech recognition, missing-feature

processing for crosstalk and noise robustness, Wiener filtering for speech en-

hancement, and hidden Markov models (HMMs) for speech reconstruction.

The remainder of the paper is organized as follows. Section 2 provides an

overview of the proposed system for the speech separation challenge, for sep-

arating and recognizing two mixing sentences given single-channel data. Sec-

tion 3 presents the details of the algorithms used to implement the system.

Speech separation experiments are described in Section 4, followed by a sum-

mary in Section 5.

2 Overview of Proposed System

Fig. 1 illustrates the structure of the proposed system. The input speech wave-

form is divided into short-time frames, denoted by wt. Each wt is a mixed signal
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 of target and masker, of unknown speaker identities and an unknown target-

to-masker ratio. For convenience, we note the sentence with a higher energy

ratio as the primary sentence, and the sentence with a lower energy ratio as

the secondary sentence. Here, the energy ratio between the two sentences can

be defined in the same way as conventional global signal-to-noise ratio, by

treating one sentence as speech and the other as noise. Our system separates

the two sentences in five steps, operating in sequence.

In Step 1, the system aims to identify the primary sentence by exploiting

its higher energy ratio and hence potentially higher recognition accuracy. In

the recognition, the lower energy secondary sentence is treated as noise. A

speaker-dependent (SD) recognition system is used to select and recognize

the primary sentence from the mixed signal. The SD system contains a set of

acoustic HMMs for each speaker, with each HMM modeling an appropriate

lexical unit for the speaker. For the speech separation challenge task, whole-

word HMMs are used. Each HMM is a subband union model (Ming, Lin &

Smith, 2006), which uses a missing-feature approach to improve the robustness

to the crosstalk noise. It is assumed that the HMM sequence for the primary

sentence, matching both the word sequence and speaker characteristics, is

likely to produce maximum probability due to the higher energy ratio (and

hence smaller distortion) of the primary sentence, and due to the speaker

discrimination and improved noise robustness of the HMMs. Thus, the SD

recognizer producing the highest probability HMM sequence is selected, with

the HMM sequence defining a most-likely primary sentence. This approach is

also applied to the situations in which the two mixed sentences have similar

energy ratios. As observed in our experiments, when the global signal-to-noise

ratio between the two sentences is 0 dB, the system chooses between the two

sentences randomly, depending on which sentence produces a higher global

probability.

In Step 2, the primary sentence recognized in Step 1 is reconstructed using
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 an algorithm exploiting the most-likely state sequence of the sentence. The

reconstructed speech process consists of short-time spectral estimates X̂<1>
t ,

and the corresponding waveform estimate x̂<1>
t . Here, we use the superscript

< 1 > to note the variables associated with the primary sentence. Likewise,

later we the superscript < 2 > to note the variables associated with the

secondary sentence. The short-time spectral estimates X̂<1>
t will be passed to

Step 3 for enhancing the secondary sentence, described below.

In Step 3, a Wiener filter is used to enhance the signal of the secondary

sentence by filtering out the primary sentence from the mixed signal. The

short-time spectral estimates for the primary sentence, produced in Step 2,

are used in the operation. The operation takes the short-time spectra of the

mixed signal Wt as input, and generates enhanced short-time spectra ˆW <2>
t

for the secondary sentence.

In Step 4, speech recognition is performed on the enhanced signal for the

secondary sentence. A speaker-independent (SI) system is used for the recog-

nition, which consists of an acoustic-linguistic HMM trained using data from

all the speakers. The SI system is again a subband union model, for improving

robustness to the residual noise in the enhanced signal. The use of an SI sys-

tem in place of the SD system is found to be important for the recognition –

for greater robustness to the distorted speaker characteristics in the enhanced

signal, caused by the Wiener filtering operation.

In Step 5, the secondary sentence recognized in Step 4 is reconstructed, us-

ing an algorithm similar to that for reconstructing the primary sentence.

Again, the reconstructed speech process consists of short-time spectral es-

timates X̂<2>
t and the corresponding waveform estimate x̂<2>

t .

By this process, the system produces speech recognition results for both the

primary and secondary sentences. The system therefore implements a “com-

plete” separation process: taking the mixed speech waveform as input, and

5



ACCEPTED MANUSCRIPT 
 producing separated target and masker waveforms as output, along with the

speech recognition results for both mixing sentences. In the following section

we describe each component of the system in more detail.

3 More Details of Proposed System

3.1 Subband union model for recognition

The subband posterior union model (Ming, Lin & Smith, 2006) is used to

build both the SD and SI recognition components. As shown in Fig. 1, they

have input yt and y<2>
t , respectively, both representing a short-time fea-

ture vector consisting of subband features. The union model is a missing-

feature approach, aiming to focus the recognition on uncorrupted subbands

thereby improving the robustness to crosstalk interference and/or noise. Let

y = {y(1), y(2), ..., y(B)} be a frame feature vector, consisting of B indepen-

dent subbands y(b), subject to crosstalk and/or noise corruption. The union

model is used to select the clean or usable subbands for recognition. Without

assuming prior information about the corruption, the reliable subbands may

be defined as the subbands that maximize the probability of the state for

frame y. Denote by ŷ an estimate for the reliable subbands, which is a subset

of y, then

ŷ = arg max
z⊂y

p(s|z) (1)

where p(s|z) is the probability of state s given subband feature set z. Using

Bayes’ Rules p(s|z) can be expressed as

p(s|z) =
p(z|s)p(s)

∑
s′ p(z|s′)p(s′)

(2)
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ACCEPTED MANUSCRIPT 
 where p(z|s) is the state-conditioned probability of z, p(s) is a state prior, and

the summation in the denominator is over all possible states for frame z. For

clean-data trained HMMs, clean data are most likely to produce maximum

probabilities for the correct states. Therefore, it is possible to find the clean

or reliable subbands by selecting the subbands that maximize the probability

of a potential state, as implemented in Eq. (1).

Searching for the optimal set of reliable subbands to maximize the state prob-

ability can be computationally expensive, of a complexity O(2B), for a system

using a large number of subbands B. This problem can be relieved by replac-

ing the probability p(ŷ|s), for the sought optimal set ŷ, with the probability of

the union of all subsets in y of the same size as ŷ. Assuming that ŷ contains Q

subbands, the union probability can be expressed as (Ming, Jancovic & Smith,

2002)

p(
⋃

z⊂yQ
B

z|s) ∝ ∑

z⊂yQ
B

p(z|s) (3)

where yQ
B is the collection of all subsets of Q subbands chosen from the full B

subbands in y, and the proportionality is due to ignoring the joint probabili-

ties between the different subsets. Since Eq.(3) contains marginal probabilities

of all possible feature subsets, it contains the marginal probability of the op-

timal feature subset that can be assumed to dominate the sum because of

the best data-model match. Therefore, Eq.(3) can be used in place of p(ŷ|s)
for maximum-probability based recognition. Note that the union probability

is not a function of the identity of ŷ but only a function of the size of ŷ.

Therefore, substituting Eq. (3) into Eq. (2) for p(z|s), we reduce the problem

of finding the optimal set of reliable subbands to finding the optimal number

of reliable subbands, but not the exact set, resulting in a lower complexity

O(B). This can be expressed as

Q̂ = arg max
Q

p(s|Q, y) (4)
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 where, by definition,

p(s|Q, y) =

∑
z⊂yQ

B
p(z|s)p(s)

∑
s′

∑
z⊂yQ

B
p(z|s′)p(s′)

(5)

As noted by us (Jancovic, 2002) and independently by Chan & Siu (2005),

assuming independence between the subbands, an efficient, recursive algo-

rithm exists for calculating the union probability Eq. (3) for Q from 1 to B.

The above model, named posterior union model, can be incorporated into an

HMM by replacing the conventional state-emission probability with the state

probability optimized for the number of reliable subbands, i.e., maxQ p(s|Q, y)

(Ming, Lin & Smith, 2006). Operating on a frame-by-frame basis, the optimal

subband selection offers robustness to nonstationary corruption.

3.2 HMM-based speech reconstruction

An algorithm is developed for reconstructing the short-time spectral sequences

X̂<1>
t , X̂<2>

t , and waveforms x̂<1>
t , x̂<2>

t , of the primary and secondary sen-

tences based on the recognition results from the SD and SI components (Step

2 and 5). In training the SD/SI subband HMMs, a prototype spectrum – suit-

able for speech reconstruction – is estimated for each HMM state or mixture

component using the training data frames assigned to the state or mixture

component. In the system, the average log FFT magnitude, taken over all the

training frames within the state or mixture component, is used as the proto-

type spectrum (codeword). Consider the SD recognition component. Denote

by Am,i the codeword for speaker m in state i. Given a mixed test sentence

wt, t = 1, 2, ..., T , the subband SD model produces an estimate for the pri-

mary speaker/sentence, which can be represented by m̂ for the speaker and

ŝt, t = 1, 2, ..., T , for the most-likely state sequence of the primary sentence

spoken by the speaker. The m̂ and ŝt can be used to retrieve a clean codeword

sequence Am̂,ŝt , t = 1, 2, ..., T , for reconstructing the spectra and waveform of
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 the primary sentence, thereby separating the sentence from the mixed signal.

Let ln X̂<1>
t = Am̂,ŝt represent the estimate of the short-time log FFT mag-

nitude of the primary sentence. The corresponding waveform estimate, x̂<1>
t ,

can be obtained from X̂<1>
t by an inverse FFT, assuming that the short-time

phase can be approximated by the phase of the mixed frame, Pt (Lim & Op-

penheim, 1979).

The above method, modified slightly, can be applied within the SI recognition

component for reconstructing the signal of the secondary sentence based on

the SI recognition result. The difference is that in the SI model a codeword is

estimated for each mixture component within each state, thereby obtaining a

good resolution for reconstructing the speaker individualities. Denote by Ak,i

the codeword for mixture component k in state i. The maximization described

in Section 3.1, for estimating the reliable subbands, can be moved inside the

state and applied over the individual mixture components, to obtain a most-

likely mixture component for each given frame for reconstruction. Let y<2>

denote an input frame consisting of subband features for the SI HMM system.

The maximized state probability, used as the state-emission probability within

the system, is defined as

max
Q

p(s|Q) =
∑

k

max
Q

p(s, k|Q, y<2>) (6)

where p(s, k|Q, y<2>) is the union-based probability of state s and mixture

component k given y<2>, defined similarly to Eq. (5) as

p(s, k|Q, y<2>) =

∑
z⊂(y<2>)Q

B
p(z|s, k)p(k|s)p(s)

∑
s′,k′

∑
z⊂(y<2>)Q

B
p(z|s′, k′)p(k′|s′)p(s′)

(7)

where p(z|s, k) is the probability of feature set z on state s and mixture compo-

nent k, p(k|s) is the mixture weight in state s, and p(s) is a prior probability of

state s. Given the most-likely state ŝt for frame y<2>
t , the most-likely mixture

component can be obtained by choosing the maximum-probability compo-
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 nent within the state: k̂t = arg maxk,Q p(ŝt, k|Q, y<2>). Therefore a codeword

sequence Ak̂t,ŝt
, t = 1, 2, ..., T , addressed jointly by the most-likely state se-

quence ŝt and most-likely mixture-component sequence k̂t, can be retrieved as

an estimate for the short-time log FFT magnitudes of the secondary sentence:

ln X̂<2>
t = Ak̂t,ŝt

. The corresponding waveform estimate x̂<2>
t can be obtained

from X̂<2>
t by an inverse FFT, using the short-time phase Pt from the mixed

input signal wt.

3.3 Wiener filtering for speech enhancement

Given the estimate X̂<1>
t for the primary sentence, we can obtain an estimate

Ŵ <2>
t for the secondary sentence by removing X̂<1>

t from the mixed input Wt,

assuming all three quantities in the same short-time FFT magnitude format.

The enhanced signal Ŵ <2>
t is then used as the input for the SI component for

recognizing the secondary sentence. In the system, a Wiener filter is used for

the enhancement: Ŵ <2>
t (f) = Ht(f)Wt(f). The short-time filter function has

a simple form:

Ht(f) =
PŴ <2>

t
(f)

PWt(f)
(8)

where PWt(f) is a smoothed periodogram of the mixed input signal wt, and

PŴ <2>
t

(f) is a smoothed periodogram of the secondary sentence estimated

using the following spectral subtraction

PŴ <2>
t

(f) = PWt(f) − [gX̂<1>
t (f)]2 (9)

where [X̂<1>
t (f)]2 is the codeword-based periodogram for the primary sen-

tence treated as noise, and g is a gain factor for matching the gain of the

codeword to the gain of the primary sentence in the mixed observation Wt(f).

In the system, g is decided on a sentence-by-sentence basis, by minimizing

10
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 the sentence-level mean square error between X̂<1>

t (f) and Wt(f) over all

periodogram bins and frames:

g = arg min
g′

T∑

t=1

∑

f

[Wt(f) − g′X̂<1>
t (f)]2 (10)

Solving Eq. (10) results in

g =

∑T
t=1

∑
f Wt(f)X̂<1>

t (f)
∑T

t=1

∑
f [X̂<1>

t (f)]2
(11)

It is assumed that PŴ <2>
t

(f) = αPWt(f) if the subtraction in Eq. (9) results

in a negative value, where α defines the maximum attenuation. An α = 0.3 is

used in the system.

4 Experimental Results

4.1 Database and acoustic-linguistic modeling

The above system has been tested on the Speech Separation Challenge data-

base (Cooke & Lee, 2008), containing a two-talker speech recognition task.

The database consists of 34 speakers (16 female, 18 male). The sentences

by each speaker have a command-like form, all of an identical grammatical

structure: <command:4> <color:4> <preposition:4> <letter:25> <digit:10>

<adverb:4>, where the number in the brackets indicates the number of choices

at each point. Of the six words forming a sentence, the color, letter and number

are defined as the keywords for recognition. For each speaker, 500 sentences

are available for training. For testing, pairs of sentences, one being treated

as “target” and the other being treated as “masker”, are mixed at different

target-to-masker ratios (TMRs) to form the test sentences. The database pro-

vides test data at 7 different TMRs: 6, 3, 0, -3, -6, -9 dB and clean, where
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 “clean” corresponds to the test data without masker speech. Each test TMR

condition contains 600 test sentences, of which, one third are masked by the

same talker, one third are masked by talkers of the same gender, and the

remaining are masked by talkers of different genders. By definition of the

database, of the two mixing sentences forming a test case, one will contain the

word “white”. This is the target sentence. The recognition task is to identify

the letter and number in the target sentence.

In our experiments, we use a 13-subband, 39-stream feature vector to represent

each frame. This frame vector is derived from the output of a 27-channel mel-

warped filter bank detailed as follows. The speech signal, sampled at 25 kHz,

is divided into frames of 20 ms at a frame period of 10 ms. Each frame is

analyzed by a 512-point FFT, followed by a 27-channel mel-warped filter bank

producing 27 log-scale energies. The 27 log filter-bank energies are then passed

to a high-pass filter H(z) = 1 − z−1 for decorrelation (Nadeu, Hernando &

Gorricho, 1995), resulting in 26 decorrelated log filter-bank energies (DLFBE).

The final frame feature vector, i.e., yt and y<2>
t , is formed by grouping the

26 DLFBE uniformly into 13 subbands, with the addition of the first-order

and second-order derivatives for each subband, resulting in a 13-subband, 39-

stream frame feature vector for modeling by the SD and SI union models for

recognition. The 257 short-time FFT magnitudes derived from the FFT are

used to form the codewords, associated with the states/mixture components

of the SD/SI model, for speech reconstruction.

Each word is modeled by a 14-state left-to-right HMM without state skipping,

with one mixture per state in the SD model (trained using speaker-specific

data) and 32 mixtures per state in the SI model (trained using all speaker’s

data). Each mixture component is a Gaussian density with a diagonal covari-

ance matrix. Both the SD and SI recognizers adopt a word bigram language

model applied to the Viterbi algorithm for finding the most-likely state se-

quence given a test signal. The language models reflect the grammatical con-
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 straint defined above for identifying the primary/secondary sentences; the SI

recognizer is additionally subjected to a no-repetition constraint in identifying

the secondary sentence, i.e., the keywords that have been recognized for the

primary sentence are not assumed to occur again in the secondary sentence.

This is indicated in Step 4, Fig. 1, as an additional input containing the dis-

allowed primary keywords into the SI component. To cope with the condition

that there may be only one sentence/speaker in the test signal, a silence state,

trained using data without speech and allowed to have an unlimited number

of self loops, is included in the SI model to absorb the signal from the Wiener

filter with the only sentence being removed from the input signal.

In the following we describe two separation experiments. The first shows the

system for recognizing the target sentence containing the specified keyword.

The second shows the system for recognizing and reconstructing both mixing

sentences.

4.2 Recognizing target sentence

Of the two mixing sentences, the target sentence contains keyword “white”.

The task is to recognize the remaining keywords, letter and number, in this

target sentence. We achieve this by simultaneously identifying the target sen-

tence and recognizing the target keywords using the system described in Fig. 1.

We run the recognition with two system configurations. In the first configu-

ration, the language model for the SD recognition component forces the word

“white” while the language model for the SI recognition component disallows

the word “white”. This produces two recognized sentences, with respective

probability scores pSD(w) (for the primary sentence from the SD component

with word “white”), and pSI(no w) (for the secondary sentence from the SI com-

ponent without word white). In the second configuration, the language models

for the SD and SI components are swaped, i.e., SD disallowing word “white”

13
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 while SI forcing word “white”. This produces two new recognized sentences,

with respective probability scores pSD(no w) (for the primary sentence without

word “white”), and pSI(w) (for the secondary sentence with word “white”).

Then a decision is made to choose either the first or second configuration re-

sult as output dependent on which of the joint probabilities, pSD(w)pSI(no w)

or pSD(no w)pSI(w), is greater. Table 1 presents the recognition results by the

system.

4.3 Recognizing and reconstructing both mixing sentences

The following describes further experiments of using the proposed system

to recognize and reconstruct both mixing sentences from the mixed signal.

The task is slightly different from the above task in that we do not aim a

specific sentence; instead, we aim to recognize the keywords for each of the

mixing sentences. In the experiments, we run the system only once for each

mixed test signal, using the more “general” language models described in

Section 4.1 without aiming a specific sentence. Also, we consider all three

keywords, color/letter/number, in the recognition instead of two keywords

in the above experiments. As described in Section 2, the proposed system is

capable of producing both speech recognition results and reconstructed speech

waveforms simultaneously for both mixing sentences.

For each test signal, the system produces two recognized sentences O1, O2. We

compare these two recognized sentences with the transcripts of the two input

sentences I1, I2. There are two possible matches between them: (1) O1 − I1,

O2 − I2, and (2) O1 − I2, O2 − I1. The match producing a higher overall word

accuracy rate is used to summarize the final results. Table 2 shows the word

accuracy rates for color/letter/number in the target and masker sentences,

respectively, produced by the system.

14
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 As indicated in Fig. 1, the proposed system uses the union model, Wiener fil-

tering, and speaker-independent modeling for improved separation and recog-

nition performance. To understand the contribution of each of these compo-

nents, we rerun a set of experiments from using a basic system without these

components, to using a refined system with these components added one after

another, till the final system. Table 3 shows the improvement on the word ac-

curacy rates for the target and masker sentences, averaged over all the talkers.

With reference to Fig. 1, the basic system uses the same speaker-dependent

models (in Step 1) for recognizing both the primary and secondary sentences;

it uses the full set of subband features for recognition and has no Wiener filter.

Therefore, it separates the two sentences by just disallowing repetition of the

primary keywords in the secondary sentence. The use of union model for the

speaker-dependent models allows the selection of optimal set of subbands for

recognition, which reduces the crosstalk noise and offers improved recognition

accuracy throughout all noisy conditions. The addition of Wiener filtering im-

proves recognition accuracy for the sentences with low signal-to-noise ratios.

For example, it increase the accuracy rate for the target sentences at TMR =

-9 dB, from 26.7% to 31.8%, and the accuracy rate for the masker sentences

at TMR = 6 dB, from 38.2% to 42.1%. The improvement, however, is smaller

for the sentences with high signal-to-noise ratios. This is because the filtering

operation tends to alter the characteristics of the speaker while removing the

crosstalk noise, thereby causing a mismatch between the speaker-dependent

model and the filtered signal for recognition. Replacing the speaker-dependent

model with a speaker-independent model may help reduce the mismatch and

thereby gain more benefit from the noise reduction. This is evident in Ta-

ble 3, which shows that the use of a union-based speaker-independent model

improves the recognition performance for the filtered signals.

Finally, Fig. 2 shows an example of the reconstructed signals for the target

and masker sentences, generated by the codeword-based algorithms described
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 in Section 3.2. More examples of the reconstructed signals in a WAV format

can be found in (Ming, Hazen & Glass, 2007).

5 Summary

This paper described a system for the separation and recognition of two over-

lapped sentences, given only single-channel data. The system was built upon

a combination of several different techniques, aiming to exploit simultane-

ously the speaker, energy ratio, language-model constraint, training data and

acoustic model information, enhanced by the missing-feature theory for ignor-

ing mismatches, to identify and separate the two mixing sentences. The system

was tested on the two-talker database from the Speech Separation Challenge,

and showed useful improvements. Some of the techniques used in the system

were applied earlier to speaker verification (Ming, Hazen & Glass, 2006).
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Fig. 1. Schematic diagram of the proposed system for speech separation.
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Table 1

Word accuracy rates (%) for recognizing the letter/number keywords in the target

sentences containing keyword “white”, for different target-to-masker ratios (TMRs),

and for two mixing sentences from the same talker (ST), same gender (SG), and

different gender (DG).

TMR (dB) ST SG DG Average

clean 95.17

6 73.08 85.75 86.75 81.42

3 61.54 80.45 82.25 74.08

0 52.49 65.36 72.75 63.08

-3 46.15 56.42 62.75 54.75

-6 38.24 41.89 49.25 43.00

-9 32.81 31.56 38.00 34.17
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Table 2

Simultaneous recognition of both mixing sentences, showing the respective word

accuracy rates for the target and masker sentences for the color/letter/number

keywords.

TMR Target Masker

(dB) ST SG DG Average ST SG DG Average

clean 96.94

6 79.94 89.01 90.00 86.00 48.72 55.87 55.50 53.11

3 70.44 83.79 87.17 80.00 55.35 67.04 69.83 63.67

0 60.03 74.67 80.50 71.22 57.92 74.86 80.83 70.61

-3 54.45 66.67 69.00 62.94 66.67 83.99 88.33 79.06

-6 48.72 54.38 58.50 53.67 75.57 89.76 94.00 85.94

-9 43.59 43.95 48.17 45.22 85.82 93.29 95.67 91.33
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Table 3

Contribution of individual techniques, showing improvement on average word ac-

curacy for the target/masker keywords (color, letter, number), from a basic system

to the proposed system with the additions of union model, Wiener filtering, and

speaker-independent modeling.

TMR (dB) Basic system + Union + Wiener filter + SI modeling

clean 97.44 96.72 96.67 96.94

6 77.78 / 26.89 84.11 / 38.28 83.89 / 42.17 86.00 / 53.11

3 66.22 / 35.72 76.00 / 48.72 76.39 / 53.44 80.00 / 63.67

0 52.78 / 47.78 63.28 / 62.72 66.06 / 65.22 71.22 / 70.61

-3 38.06 / 65.11 49.28 / 74.78 54.22 / 76.28 62.94 / 79.06

-6 28.89 / 77.89 36.39 / 84.11 40.78 / 84.22 53.67 / 85.94

-9 22.67 / 86.17 26.72 / 90.50 31.83 / 90.39 45.22 / 91.33
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Fig. 2. Separation and reconstruction of sentence t20-lwwd7n-m6-lrwe8a, TMR =

0 dB, DG. From top: mixed signal, reconstructed target sentence, reconstructed

masker sentence.
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