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Abstract

We define entropy weak solutions and establish well-posedness for the
Cauchy problem for the formal equation

∂tu(t, x) + ∂x

u2

2
(t, x) = −λu(t, x) δ0(x),

which can be seen as two Burgers equations coupled in a non-conservative
way through the interface located at x = 0. This problem appears as
an important auxiliary step in the theoretical and numerical study of the
one-dimensional particle-in-fluid model developed by Lagoutière, Seguin
and Takahashi [LST08].

The interpretation of the non-conservative product “u(t, x) δ0(x)” fol-
lows the analysis of [LST08]; we can describe the associated interface
coupling in terms of one-sided traces on the interface. Well-posedness is
established using the tools of the theory of conservation laws with discon-
tinuous flux ([AKR11]).

For proving existence and for practical computation of solutions, we
construct a finite volume scheme, which turns out to be a well-balanced
scheme and which allows a simple and efficient treatment of the interface
coupling. Numerical illustrations are given.
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1 Introduction

1.1 The problem

In this paper we focus on the following Cauchy problem:

{
∂tu(t, x) + ∂x(u

2/2)(t, x) = −λ u(t, x) δ0(x), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(1)

where λ > 0 and u0 ∈ L∞(R). A succinct account on problem (1) was presented
in [ALST10]; here we provide some further results and give detailed proofs.

1.2 Relation to a fluid-particle interaction model

Problem (1) derives from the model, studied in [LST08], for the interaction of
a particle with a fluid in space dimension one. The fluid is modelled by the
Burgers equation, the size of the particle is neglected, and the interaction takes
place via a drag force concentrated at the particle location:

∂tu+ ∂x(u
2/2) = λ D(h′(t)− u) δ0(x − h(t)), (2)

mh′′(t) = λ D(u(t, h(t)) − h′(t)). (3)

Here the two unknowns are u, the velocity of the fluid, and h, the position of the
solid particle. The drag coefficient λ and the mass m of the particle are positive
parameters. The function D which intervenes in the drag force is assumed linear
(D(v) = v). Quadratic drag force (D(v) = v|v|) also appears in modelling; it
leads to a simpler study. Problem (1) with the quadratic drag force (i.e., the
case where −λu|u|δ0 replaces the right-hand side of (1)) is briefly described in
Appendix B.

A natural approach for the theoretical study of the system (2)–(3) is the
fixed-point algorithm with decoupling of the two equations; the numerical coun-
terpart is a splitting scheme were the states u and h are updated alternatively.
Problem (1) appears as a step of the fixed-point argument aimed at existence
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of solutions to (2)–(3) (see [ALST10, ALST]). Indeed, our problem (1) corre-
sponds to equation (2) driven by the particle which is assumed to be at rest
(h(t) ≡ 0); moreover, if the particle moves along the straight line h(t) = V t,
then (2) also reduces to (1) by the simultaneous change of x and u into x− V t
and u − V , respectively. Thus establishing the adequate notion of solution
and proving well-posedness and continuous dependence estimates for (1) is a
building block for constructing solutions to the fluid-particle interaction model
(2)–(3). Furthermore, our goal is to provide a simple numerical scheme for (1)
(this means in particular that we want to avoid using the exact Riemann solver
at the interface); such a solver can be the basis for an efficient numerical scheme
for the coupled problem (2)–(3). We refer to the work [ALST10] of the authors
with F. Lagoutière and T. Takahashi for further numerical motivations, and to
[ALST10, ALST] for the application of the results of the present paper to the
theoretical study of the model (2)–(3).

1.3 Notion of solution and well-posedness

It should be stressed that definition of solution to (1) is not straightforward; as
a matter of fact, it requires a careful analysis carried out in the work [LST08]
of Lagoutière, Takahashi and the second author. Indeed, the right-hand side
of (1) involves a product of distributions, which is a priori not defined. In
[LST08], the authors regularize the Dirac measure present in (1) and determine
admissible left- and right-sided traces γ−u, γ+u of a solution u at {x = 0}. The
regularization consists in approximation of the Dirac measure by the derivative
of a locally smoothed Heavyside function, as initially introduced by LeRoux for
shallow water equations with jumps of topography [LeR99] (see also [CLS04],
[SV03] and [Bac05]). It is shown that if the smoothed function remains mono-
tone, then the set Gλ ⊂ R

2 of possible one-sided traces (γ−u, γ+u) of u at
{x = 0} is independent of the choice of the regularization profile. The following
definition of entropy solution is deduced:

an admissible solution to ∂tu+ ∂x(u
2/2) = −λu δ0(x)

is a Kruzhkov entropy solution away from the interface {x = 0}
such that the couple of left- and right-sided traces (γ−u, γ+u) of u
at {x = 0} belongs to Gλ.

(4)

Because existence of the one-sided traces of u on the interface is ensured by the
result of Panov [Pan07], this notion of solution makes sense. In particular, one
can deduce the existence and uniqueness of a solution of (1) for all Riemann data
u0(x) = ul1l{x<0} + ur1l{x>0}: the associated Riemann solver at the interface
{x = 0} is described in [LST08] (also a Riemann solver for the full problem
(2)–(3) is described).

Using the theory of admissible germs developed by Karlsen, Risebro and
the first author in [AKR11] (see also [AKR10]) in the context of conservation
laws with discontinuous flux, we will prove uniqueness, comparison and L1 con-
traction principle for (1), reformulate the above definition in terms of “adapted
entropy” inequalities, and use this second formulation in order to prove exis-
tence.
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1.4 A finite volume approach

Existence for (1) is justified by the classical approximation/compactness/passage-
to-the-limit approach. Although different approximation strategies for proving
existence can be employed (in particular, we mention in Section 4 that the
LeRoux regularization method for (1) converges), we focus on a classical fi-
nite volume method with monotone and consistent numerical flux (see, e.g.,
[EGH00]), where we modify the flux only at the interface in such a way that the
scheme remains well-balanced (namely, it preserves exactly some set of piece-
wise constant stationary solutions related to Gλ). The modification is strikingly
simple in view of the complexity of the interface Riemann solver for (1); and
the efficiency of the scheme is illustrated by numerical experiments. The proof
of convergence is rather short, it is based on the intrinsic properties of the germ
Gλ, on the well-balance property of the scheme, and on the local BV estimates
obtained by the technique of Bürger et al. [BGKT08, BKT09]. Moreover, we
hope that the insight from this scheme may carry on to the context of the full
problem (2)–(3) and to the multi-dimensional case.

1.5 On balance laws with distributed source

Equation (1) can also be interesting in view of the approximation by the well-
balanced Godunov scheme of the balance law

∂tu+ ∂x(u
2/2) = −u a′(x) (5)

where a is a given non-decreasing function. Such a scheme is based on a cellwise
constant discretization of a; and at each of so created interfaces, the Riemann
problem associated with the system

{
∂tu+ ∂x(u

2/2) + λu∂xH = 0
∂tH = 0

(6)

must be solved, where λ = ai+1 − ai and u0(x) = ui + (ui+1 − ui)1l(x). Such
equations have been deeply studied, and the associated Riemann problem is the
cornerstone of the construction of well-balanced schemes for balance laws with
a smooth source term: see in particular [GL96b, IT95, Gue04, AGG04] and also
[BJ97, AP05, BPV03, GL04, Vas02, BCG08, Bou06] for related issues. In all
these cases, the uniqueness of the solution of the Riemann problem fails and
the only way to recover uniqueness for the Cauchy problem is to let ai+1 − ai
tend to zero when ∆x → 0. As a consequence, the well-posedness and the
convergence of the numerical schemes have been obtained in the only case of
a smooth function a. In our case, the particular structure of the models (see
Remark 2 for more details) enables to recover uniqueness and convergence of
well-balanced schemes.

1.6 The outline of the paper

In Section 2, we give a description of the germs, which are the objects that govern
the interface coupling for the problem in hand. Section 3 gives a description
of the well-balanced scheme followed by consistency, stability and convergence
analysis. Some complements are presented in Section 4 and in Appendices.
Section 5 presents numerical illustrations for the scheme under study.
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2 Germs and entropy solutions

The subject of this section is to provide a natural definition of solution for (1).
This definition must be obtained using some modelling assumption, because the
singular source term involves a product of distributions. Here, we propose to
define this product as the limit of a regularization process, following [LST08].

2.1 Interface coupling and its properties

In order to define the behavior of the solution through the interface {x = 0}, we
follow [LST08] where a regularization process is used (see also [LeR99], [SV03],
[Vas02]). Actually, this method for defining solutions of PDE’s with singular
terms is equivalent to the one used in [IT95, GL04].

(0, 0)

u
−

u+

λ

−λ

G
1
λ

G
2
λ

G
3
λ

Figure 1: Representation of the admissiblity germ Gλ = G 1
λ ∪ G 2

λ ∪ G 3
λ .

The admissibility of weak solutions to (1) is governed by the germ Gλ (our
terminology is related to the one of [AKR11]) defined as follows.

Definition 2.1. The admissibility germ Gλ ⊂ R
2 (or germ, for short) associated

with (1) is defined as the union Gλ = G 1
λ ∪ G 2

λ ∪ G 3
λ , where

• G 1
λ = {(a, a− λ), a ∈ R}.

• G 2
λ = [0, λ]× [−λ, 0].

• G 3
λ = {(a, b) ∈ (R+ × R

−) \ G 2
λ , −λ 6 a+ b 6 λ}.

Notice that the partition of Gλ into the three parts is dictated by the subse-
quent analysis; while G 1

λ appears naturally in the proof of Proposition 2.2 below,
the separation of G 2

λ and G 3
λ will become clear in Section 3.2.2.

In our interpretation that goes back to [LST08], the germ Gλ determines the
interface coupling for problem (1). Indeed, let H denote the Heavyside function.
In the sense of distributions, (1) is equivalent to

∂tu+ ∂x(u
2/2) = −λu∂xH.
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We introduce Hε ∈ C 1(R) which is a non-decreasing function such that Hε(x) =
H(x) when |x| > ε. Since we are interested in understanding the behavior of
the solution through the stationary interface {x = 0}, we can study stationary
solutions. We then obtain the regularized equation for Uε(x) = u(t, x):

(U2
ε /2)

′(x) + λUε(x)∂xHε(x) = 0, (7)

which has to be understood in the weak sense.
The following proposition is shown in [LST08]:

Proposition 2.2. There exists a solution to ODE (7) with Uε(−ε) = a and
Uε(−ε) = b if and only if (a, b) ∈ Gλ.

It is worth noting that the statement is independent from the choice of Hε.

The modelling assumption we make is the following: the traces γ−u and
γ+u at {x = 0} of a solution u of Problem (1) are compatible if and only if
there exists an entropy weak solution to ODE (7) such that Uε(−ε) = γ−u ,
Uε(ε) = γ+u (these two boundary conditions must be understood in the strong
sense). Thus we interprete Proposition 2.2 as the coupling admissibility condi-
tion, namely, the germ Gλ is the set of couples (γ−u, γ+u) of possible traces at
{x = 0} (for a.e. t > 0) of the admissible solutions of (1).

Now, the dissipativity properties of the interface coupling in equation (1)
are encoded in the germ Gλ. Indeed, let us define Ξ: R2 × R

2 7→ R by

Ξ
(
(u−, u+), (v−, v+)

)
= Φ(u−, v−)− Φ(u+, v+) (8)

where Φ is the so-called Kruzhkov entropy flux Φ(u, v) = sgn(u− v)(u2− v2)/2.
Also set Φ±(u, v) = sgn±(u − v)(u2 − v2)/2 and define Ξ± as in (8), using Φ±

in the place of Φ.
Splitting the germ Gλ into three subsets (see Definition 2.1 and Fig.2.1), we

have

Proposition 2.3. The following properties hold:

(i) ∀(u−, u+), (v−, v+) ∈ Gλ,

Ξ
(
(u−, u+), (v−, v+)

)
> 0, moreover, Ξ±

(
(u−, u+), (v−, v+)

)
> 0.

(ii) If a pair (u−, u+) ∈ R
2 verifies:

∀(v−, v+) ∈ G
1
λ ∪ G

2
λ Ξ

(
(u−, u+), (v−, v+)

)
> 0, (9)

then (u−, u+) ∈ Gλ.

One can prove Proposition 2.3 directly, by a tedious case study; let us give a
shorter but indirect proof in the spirit of [AKR11]. Indeed, in the terminology
of [AKR11, AKR10], property (i) means that Gλ is a L1-dissipative germ; and
property (ii) means that G 1

λ ∪ G 2
λ is a definite germ of which Gλ is the unique

maximal extension.1

1To be precise, in [AKR11] the coupling was conservative, thus the Rankine-Hugoniot
condition at the interface was included into the definition of a germ. Here we work with
non-conservative coupling. Yet the definitions and the properties of germs stated in [AKR11]
(see also [AKR10]) remain meaningful for a non-conservative coupling.
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Proof. Property (i) (let us restrict our attention to Ξ+) stems from the Kato
inequality

∀ϕ ∈ C∞
c (R+ × R), ϕ > 0,
∫

R+

∫

R

(
λ(uε−vε)+∂xHε ϕ− (uε−vε)+∂tϕ− Φ+(uε, vε)∂xϕ

)
6 0 (10)

for entropy solutions uε, vε of the regularized conservation law

∂tu+ ∂x(u
2/2) = −λu∂xHε, (11)

ε > 0 (the Kato inequality is obtained from the standard Kruzhkov entropy
formulation of (11) and the fact that λ∂xHε > 0, so that λu∂xHε acts as an
absorption term). Indeed, it follows from Proposition 2.2 that the functions

u(t, x) := u−1l{x<0} + u+1l{x>0}, v(t, x) := v−1l{x<0} + v+1l{x>0}

with (u−, u+), (v−, v+) ∈ Gλ can be obtained as L1
loc limits, as ε → 0+, of

stationary solutions of (11); thus we inherit the Kato inequality

−

∫

R+

∫

R

(
(u−v)+ ∂tϕ+Φ+(u, v) ∂xϕ

)
6 0 ∀ϕ ∈ C∞

c (R+ × R), ϕ > 0.

Taking by approximation ϕ(t, x) = ϕh(x)ψ(t) with ψ > 0 and with

ϕh(x) := 1−min{1, |x|h }, (12)

letting h→ 0+, we prove (i) for the quantity Ξ+.

We have shown the germ Gλ is L1-dissipative. To prove property (ii) of
Proposition 2.3, we point out that, according to the analysis of [LST08] (the
case study is actually hidden in this result), all Riemann problem for (1) has a
solution u with traces (γ−u, γ+u) ∈ Gλ; thus, in the terminology of [AKR11], the
germ Gλ is complete. A complete L1-dissipative germ is maximal (see [AKR11,
AKR10]); the maximality of Gλ exactly means that

[
∀(v−, v+) ∈ Gλ Ξ

(
(u−, u+), (v−, v+)

)
> 0

]
=⇒

[
(u−, u+) ∈ Gλ

]
. (13)

Property (ii) is stronger than (13), but it suffices to show the following:

[
∀(v−, v+) ∈ G

1
λ ∪ G

2
λ Ξ

(
(u−, u+), (v−, v+)

)
> 0

]

=⇒
[
∀(v−, v+) ∈ Gλ Ξ

(
(u−, u+), (v−, v+)

)
> 0

]
. (14)

Indeed, from (13) and (14) one readily gets property (ii) .

In order to justify (14), given (u−, u+) that satisfies (9), we denote by G̃

the set of all (v−, v+) ∈ R
2 such that Ξ

(
(u−, u+), (v−, v+)

)
> 0. Because

G 1
λ ∪ G 2

λ ⊂ G̃ , we only need to show that G 3
λ ⊂ G̃ . Take (v−, v+) ∈ G 3

λ ; in
particular, v+ 6 0 6 v−. First, assume we also have u+ 6 0 6 u−; then

Φ(u−, v−) > 0 > Φ(u+, v+) because z 7→ z2

2 is increasing on R
+ and decreasing

on R
−. Therefore in the case u+ 6 0 6 u−, we have (v−, v+) ∈ G̃ .
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Now we show that the boundary of G 3
λ is included in G̃ ; it suffices to get

{(c−, c+) | c+=−c−+1, c−>1} ∪ {(c−, c+) | c+=−c−−1, c−>0} ⊂ G̃ .

Notice that, whenever (c−, c+) is in the above union of two sets, either the
point (c−,−c+) (when c+=−c−+1) or the point (−c−, c+) (when c+=−c−−1)
belongs to G 1

λ ; this is easily seen on Fig. 2.1. Let us focus on the first case.
Because −c+ > 0 > c+, we readily see that −c+1l{x<0} + c+1l{x>0} and the
constant u+ are two Kruzhkov entropy solutions to the Burgers equation; it

follows that Φ(u+,−c+) > Φ(u+, c+). From the fact that (c−,−c+) ∈ G 1
λ ⊂ G̃ ,

we get Φ(u+,−c+) > Φ(u+, c+); hence Φ(u−, c−) > Φ(u+,−c+) > Φ(u+, c+).

Therefore (c−, c+) ∈ G̃ . The second case is analogous.
Now we cut G

3
λ by the horizontal and by the vertical lines passing through

(v−, v+). Considering the intersection points with ∂(G 3
λ ), we see that there exist

v♭,♯+ (depending on v−), v
♭
+ 6 v+ 6 v♯+ 6 0, such that (v−, v

♭
+), (v−, v

♯
+) belong

to G̃ ; similarly, we can define v♭,♯− (depending on v+) with 0 6 v♭− 6 v− 6 v♯−,

and (v♭,♯+ , v+) ∈ G̃ . Let us show that if u+ > 0, (v−, v+) ∈ G̃ . Indeed, in

this case sgn(u+−v♭+) = sgn(u+−v♯+). Therefore, Φ(u+, v+) lies in between

Φ(u+, v
♭
+) and Φ(u+, v

♯
+). Thus the desired inequality Φ(u−, v−) > Φ(u+, v+)

follows as a convex combination of the true inequalities Φ(u−, v−) > Φ(u+, v
♭,♯
+ ).

In conclusion, (v−, v+) ∈ G̃ unless u+ < 0. Similarly, from consideration of c♭,♯−

we see that (v−, v+) ∈ G̃ unless u− > 0. But the case of u+ < 0 < u− has

already been resolved; we conclude that in all the possible cases, (v−, v+) ∈ G̃ .
This ends the proof of (14) and of property (ii). �

Remark 1. Unfortunately, statement (ii) of Proposition 2.3 is no longer true if
we further weaken (13) by taking (v−, v+) ∈ G 1

λ instead of (v−, v+) ∈ G 1
λ ∪ G 2

λ

in (9). This fact makes intricate the study of convergence of the numerical
schemes we introduce in the sequel, because our schemes are well-balanced only
with respect to the states in G 1

λ . In the case of a quadratic source term presented
in Appendix B, the set corresponding to G 2

λ can be omitted, which simplifies the
analysis of the associated numerical scheme (see Appendix B for more details).

Remark 2. Uniqueness does not hold true when focusing on the linear drag force
but with λ < 0. Consider the equation ∂tu+∂x(u

2/2)−u δ0 = 0 and the initial
condition u(0, x) = 0 for all x ∈ R. Of course u(t, x) = 0 for all (t, x) ∈ R+ ×R

is solution, but also

u(t, x) =






0 if |x/t| > α/2,

−α if − α/2 < x/t < 0,

α if 0 < x/t < α/2,

for any 0 < α 6 1/2. On the other hand, let us recall that in the resonant case
studied by Isaacson and Temple [IT95], up to three (self-similar) solutions may
coexist.

2.2 Entropy solutions: definitions, properties, uniqueness

As pointed out in the Introduction, (4) is enough to define admissible entropy
weak solutions of problem (1). This definition (together with Proposition 2.3(i))
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readily yields uniqueness, comparison and continuous dependence properties for
(1). Yet the explicit use of strong interface traces (see Panov [Pan07]) in (4) is a
drawback, because the stability of such notion of admissible solution under the
L1
loc convergence is unclear. Thus we are heading towards another definition, or

rather towards a series of equivalent definitions of admissible solutions to (1).

First, let us describe some elementary solutions of this problem: in the
context of (1), they play the role of the constants in the standard Kruzhkov
entropy formulation. Define piecewise constant functions c on R

+ × R by

c(t, x) = c−1l{x<0} + c+1l{x>0} =

{
c− if x < 0,

c+ if x > 0,
(15)

where c−, c+ ∈ R. Notice that c solves the Burgers equation away from the
interface {x = 0}. Therefore according to the modelling assumption of Sec-
tion 2.1, we consider that c(t, x) is an admissible solution of (1) (with u0 ≡ c) if
and only if (c−, c+) ∈ Gλ. As a consequence, making use of adapted Kruzhkov
entropies (cf. [BJ97, AP05, AMVG05, BKT09, AKR11, AGS10]), we can pro-
vide a natural definition of entropy solution for Problem (1):

Definition 2.4. Consider the Cauchy problem (1) with u0 ∈ L∞(R) and λ > 0.
A function u ∈ L∞(R+ × R) is said to be an entropy solution of (1) if for all
function c defined by (15) with (c−, c+) ∈ Gλ,

∀ϕ ∈ C∞
c (R+ × R), ϕ > 0

∫

R+

∫

R

[
|u− c| ∂tϕ+Φ(u, c) ∂xϕ

]
dx dt

+

∫

R

|u0 − c| ϕ(0, x) dx > 0. (16)

Remark 3. Notice that if u takes the form u(t, x) = u−1l{x<0} + u+1l{x>0}

with (u−, u+) ∈ Gλ, then u is an entropy solution of (1) (this means that
the elementary solutions that we have declared admissible are indeed entropy
solutions). In fact, in this case, by a simple integration-by-parts (16) reduces
to the inequality Ξ

(
(u−, c−), (u+, c+)

) ∫
R+ ϕ(t, 0) dt > 0; this is true thanks to

Proposition 2.3(ii) and because ϕ > 0.

Remark 4. In contrast with analogous definitions in [BKT09, AKR11, AKR10,
AGS10], it may seem to the reader that the above definition is only concerned
with the admissible coupling of u|x<0 and u|x>0 at the interface.

Yet it should be stressed that the above definition means in particular that u
is a Kruzhkov entropy solution of the Burgers equation away from the interface
{x = 0}. Indeed, it is sufficient to take ϕ with support in {x < 0} or in {x > 0},
and notice that both c− and c+ describe the set of all real numbers when (c−, c+)
describes the set Gλ.

Remark 5. As soon as we know that u is a Kruzhkov entropy solution of the
Burgers equation away from the interface {x = 0}, strong left- and right-side
traces γ±u on {x = 0} are well defined (see Vasseur [Vas01], Panov [Pan07]),

because the Burgers flux u 7→ u2

2 is non-linear on every subinterval of R.

Let us provide alternative characterizations of entropy solutions:

Proposition 2.5. A function u ∈ L∞(R+ × R) is an entropy solution if and
only if it satisfies any of the following assertions:
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[A] The function u verifies (16) for all non-negative function ϕ ∈ C∞
c (R+×R)

and for all function c defined by (15) with (c−, c+) ∈ G 1
λ ∪ G 2

λ .

[B] The function u verifies (4), i.e., the Kruzhkov entropy inequalities

∫

R+

∫

R

[
|u−κ| ∂tϕ+Φ(u, κ) ∂xϕ

]
dx dt+

∫

R

|u0−κ| ϕ(0, x) dx > 0 (17)

hold for all κ ∈ R and for all non-negative test function ϕ ∈ C∞
c (R+×R)

such that ϕ|x=0 = 0, moreover,

for a. e. t > 0
(
(γ−u)(t) , (γ+u)(t)

)
∈ Gλ. (18)

[C] The function u verifies (17) for all κ ∈ R and all non-negative function ϕ
of C∞

c (R+×R), moreover, for all (c−, c+)∈Gλ there holds

for a.e. t>0 Ξ
((

(γ−u)(t), (γ+u)(t)
)
, (c−, c+)

)
> 0. (19)

[D] There exists C = C(λ, ‖u‖∞, c±) > 0 such that the function u verifies

∀ϕ ∈ C∞
c (R+ × R), ϕ > 0

∫

R+

∫

R

[
|u − c| ∂tϕ+Φ(u, c) ∂xϕ

]
dx dt

+

∫

R

|u0 − c| ϕ(0, x) dx > −C dist
(
(c−, c+) , Gλ

)
(20)

for all function c defined by (15) with (c−, c+) ∈ R×R.

Characterization [A] will be used to prove convergence of the numerical
schemes presented in the next section, while characterization [B] will be used
for the proof of uniqueness. Characterization [B] is most intuitive, it goes back
to the modelling process of [LST08] and Section 2.1. Formulation [C] describes
explicitly the interface dissipation property of entropy solutions (the reader may
check that Gλ can be replaced with G 1

λ ∪ G 2
λ in the statement of [C]). Finally,

characterization [D] is a convenient generalization of Definition 2.4, it allows to
treat equation (2) of the full particle-in-Burgers model (see [ALST10, ALST]).

Proof. We show that Definition 2.4 ⇒ [A] ⇒ [B] ⇒ [C] ⇒ [D] ⇒ Definition 2.4.

Firstly, Definition 2.4 clearly implies [A].
Next, as in Remark 4, inequalities (16) of [A] still imply the Kruzhkov in-

equalities (17). Moreover, using the test functions ϕh of the form (12), for all
ψ ∈ C∞

c (R+), ψ > 0 we derive as h→ 0+ the inequalities

∀ (c−, c+) ∈ G
1
λ ∪ G

2
λ

∫

R+

(
Φ
(
(γ−u)(t), c−

)
− Φ

(
(γ+u)(t), c+

))
ψ(t) dt > 0.

Because ψ is arbitrary, making ψ concentrate at a Lebesgue point of the maps
t 7→ (γ±u)(t), we derive that (19) holds with (c−, c+) ∈ G

1
λ ∪ G

2
λ . By a simple

application of Proposition 2.3(ii), we deduce (18). Thus [C] holds.
Applying Proposition 2.3(i) one gets (19) from (18); thus [B] implies [C].
To get from [C] to Definition 2.4 and to [D], we split the test function ϕ as

ϕϕh + ϕ(1 − ϕh), where ϕh is defined by (12). Then we can write inequalities
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(17) with the test function ϕ(1−ϕh) which is zero on {x = 0}; the difference of
the left-hand side of this inequality with the left-hand side of (20) is the term

Rh :=

∫

R+

∫

R

[
|u−c| ∂t(ϕϕh)+Φ(u, c) ∂x(ϕϕh)

]
dx dt+

∫

R

|u0−c| ϕ(0, x)ϕh(x).

From the definition of ϕh and of the strong interface traces γ±u, we compute

lim
h→0+

Rh =

∫

R+

Ξ
((

(γ−u)(t), (γ+u)(t)
)
, (c−, c+)

)
ϕ(t, 0) dt.

Denote
(
(γ−u)(t), (γ+u)(t)

)
= (a−, a+). By (19), if we have (c−, c+) ∈ Gλ, we

find Ξ
(
(a−, a+) , (c−, c+)

)
> 0; hence inequalities (16) of Definition 2.4 follow.

More generally, for (c−, c+) ∈ R×R, we first take a closest to (c−, c+) element
of Gλ; denote it by (b−, b+). Then

Ξ
(
(a−, a+), (c−, c+)

)
> Ξ

(
(a−, a+), (b−, b+)

)

−
∣∣∣Ξ
(
(a−, a+), (c−, c+)

)
− Ξ

(
(a−, a+), (b−, b+)

)∣∣∣,

where the first term is non-negative by (19), and the second one is dominated by
a constant C = C(|a±|, |b±|, |c±|) times the distance from (c−, c+) to (b−, b+).
Hence we get [D], because |a±| 6 ‖u‖∞ and |b±| is estimated via |c±| and λ.

Finally, [D] trivially implies inequalities (16) of Definition 2.4. �

We are now in a position to state the result of L1 contraction, comparison
and uniqueness for entropy solutions of (1).

Theorem 2.6. Let u0 and v0 be two initial data in L∞(R) and let u and v be
the associated entropy solutions of Problem (1). Then for all R > 0,

for a.e. t > 0

∫ R

R

(u − v)+(t, x) dx 6

∫ R+Lt

−R−Lt

(u0 − v0)
+(x) dx (21)

where L = max{‖u‖∞, ‖v‖∞}. Consequently, if (u0 − v0)
+ ∈ L1(R), we have

for a.e. t > 0

∫

R

(u − v)+(t, x) dx 6

∫

R

(u0 − v0)
+(x) dx. (22)

In particular, for all u0 ∈ L∞(R), there exists at most one solution of Prob-
lem (1); and the map S(t) : u0 7→ u(t, ·) on its domain is an order-preserving
contraction for the L1(R) norm.

Later we will also prove existence of solutions to (1) for all L∞ datum u0.

Proof. The arguments of the proof are standard in the framework of conserva-
tion laws with discontinuous fluxes (see for instance [AMVG05, BKT09, AKR11,
AGS10]). Let us only provide a sketch of the proof.

Using the Kruzhkov inequalities with κ = ±‖u‖∞ we can replace |u−κ| and
Φ(u, κ) by (u−κ)± and Φ±(u, κ), respectively. Then with the classical doubling
of variables technique of Kruzhkov [Kru70] with non-negative test functions
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ϕ ∈ C∞
c (R+×R) such that ϕ = 0 on {x = 0}, we get the Kato inequality for

two entropy solutions u and v of (1):

∫

R+

∫

R

(
(u−v)+∂tϕ+Φ+(u, v)∂xϕ

)
dx dt+

∫

R

(u0−v0)
+ϕ(0, x) dx > 0. (23)

Take R > 0; set L = max{‖u‖∞, ‖v‖∞} (then L bounds the speed of character-
istics of the Burgers equation associated with solutions u and v). Introducing
the test function ϕϕh with ϕh of the form (12) and with ϕ approximating the
characteristic function of {(s, x) | 0 6 s 6 t, |x| 6 R + L(t− s)}, from (23) and
the strong trace properties we get for a.e. t > 0

−

∫ R

−R

(u− v)+(t, x) dx +

∫ R+LT

−R−LT

(u0 − v0)
+(x) dx

>

∫ T

0

Ξ+
(
(γ−u(t), γ+u(t)), (γ−v(t), γ+v(t))) dt. (24)

The pairs (γ−u(t), γ+u(t)) and (γ−v(t), γ+v(t)) both belong to Gλ, according to
the characterization [B] of entropy solutions to Problem (1). Using Proposition
2.3(ii), we deduce that the right-hand side in (24) is non-negative. This yields
the conclusion (21); then (22) follows as R → ∞. �

As a first application, let us give an L∞ bound on a entropy solution of (1)
in terms of ‖u0‖∞ and λ (notice that the maximum principle fails for problem
(1); indeed, according to [LST08] any constant data u0 ≡ c 6= 0 lead to a non-
constant solution of the Riemann problem). In particular, L in Theorem 2.6
can be bounded by the explicit constant λ+max{‖u0‖∞, ‖v0‖∞}.

Proposition 2.7. Let u0 ∈ L∞(R) and let u be the associated entropy solution
of Problem (1). Then for a.e. (t, x) ∈ R

+×R,

min{ess inf
R−

u0−λ , ess inf
R+

u0} 6 u(t, x) 6 max{ess sup
R−

u0 , ess sup
R+

u0+λ} (25)

Proof. Let us prove, e.g., the lower bound for u. If c+ denotes the left-hand side
of (25) and c− := c++λ, then (c−, c+) ∈ G 1

λ and (16) holds true; moreover, a.e.
on R we have u0(x) > c(x) := c−1l{x<0} + c+1l{x>0}.

By Remark 3, c(·) is a stationary entropy solution of (1). Therefore we can
apply the comparison property (22) to find that c(x) 6 u(t, x) a.e. on R

+×R; in
addition, λ being positive, from the definition of c(·) and c− we have c+ 6 c(x)
for a.a. x. Thus c+ 6 u(t, x) a.e.. �

3 Well-balanced finite volume schemes

We now focus on the numerical approximation of the solution of (1). We will
construct very simple numerical schemes which are able to maintain particular
steady states – they are well-balanced schemes. These numerical schemes do not
make use of any Riemann solver and converge to the entropy solution of (1) (this
provides the existence of the entropy solution). The following analysis relies on
a priori estimates in L∞ (of the same kind as in Proposition 2.7) and in BVloc

(following [BGKT08, BKT09]). Unfortunately, we need to impose an additional
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(and probably, purely technical) assumption on the numerical flux. In practice,
this assumption is not restrictive; it is fulfilled by standard monotone schemes:
Rusanov, Godunov, Engquist-Osher (see Appendix A).

Let us now define the generic form of the numerical schemes we propose.
For the sake of notational simplicity, we only consider uniform meshes; the
non-uniform case is analogous, provided the CFL condition is ensured. Thus,
let ∆x be the (positive) space step and define the interfaces of the mesh by
xi+1/2 = i∆x (the source term with the Dirac measure is then localized at the
interface x1/2). We also introduce the time step ∆t which will be subject to a
CFL condition related to the L∞ estimate of Proposition 2.7, and set tn = n∆t.
We use a classical finite volume discretization approach: we discretize the initial
data by

∀i ∈ Z u0i =
1

∆x

∫ xi+1/2

xi−1/2

u0(x) dx (26)

and look for discrete unknowns uni intended to approximate u near (tn, xi),
xi = (xi+1/2 + xi−1/2)/2:

∀i ∈ Z, n ∈ N uni ≈
1

∆x

∫ xi+1/2

xi−1/2

u(tn, x) dx (27)

(a precise meaning can be given to (27) after the convergence result of Theo-
rem 3.9 is established).

Starting from (u0i )i given by (26), the sequence of approximations (uni )i,n is
defined recursively by

∀i 6= 0, 1 un+1
i = uni −

∆t

∆x
(g(uni , u

n
i+1)− g(uni−1, u

n
i )); (28)

un+1
0 = un0 −

∆t

∆x
(g−λ (u

n
0 , u

n
1 )− g(un−1, u

n
0 )); (29)

un+1
1 = un1 −

∆t

∆x
(g(un1 , u

n
2 )− g+λ (u

n
0 , u

n
1 )). (30)

Here g : R2 → R is a numerical flux (see e.g. [EGH00]); as usual, we require
that g is locally Lipschitz, consistent (with the Burgers flux u 7→ u2/2), and
monotone (nondecreasing w.r.t. its first variable and nonincreasing w.r.t. its
second variable). Further, the two numerical fluxes g±λ must account for the
contribution of the singular source term in equation (1) at x = 0; they will
be described in the next section. Let us just stress here that the consistency
of such scheme with equation (1) is not a straightforward issue. One obvious
possibility would be to use, at the interface, the Godunov scheme obtained from
the Riemann solver described in [LST08]. We will see that a simpler choice
exists.

To condense the calculations, in the sequel we adopt the notation

∀i ∈ Z un+1
i = Hi(u

n
i−1, u

n
i , u

n
i+1), (31)

where Hi is defined by (28) for i 6= 1, 0, by (29) for i = 0, and by (30) for i = 1.

3.1 Reconstructed states and well-balanced properties

The basic idea of the well-balanced schemes is the exact preservation at the nu-
merical level of some selected piecewise constant stationary solutions [GL96b,
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GL96a]. According to the analysis of Section 2.1, the stationary solutions that
are of utmost importance here are of the form u(t, x) = c(x) with c(·) given
by (15), where the pair (c−, c+) belongs to Gλ. We will see now that Gλ fur-
nishes “too many” stationary solutions of this form. The well-balance property
becomes simpler to achieve if only solutions corresponding to a part G 0

λ of the
germ Gλ are preserved by the scheme.

Let us insert such a function c(·) with (c−, c+) ∈ Gλ as initial datum into
(29) and (30); assuming the well-balance property, the values uni do not change
with n, and we obtain (using the consistency of g)

c− = c− −
∆t

∆x
(g−λ (c−, c+)− (c−)

2/2) (32)

c+ = c+ −
∆t

∆x
((c+)

2/2− g+λ (c−, c+)). (33)

Again, because the flux g is consistent the preservation of the values for i 6= 0, 1
is evident. This yields the following sufficient condition for preservation of c(·):

∀(c−, c+) ∈ G
0
λ

{
g−λ (c−, c+) = (c−)

2/2

g+λ (c−, c+) = (c+)
2/2.

(34)

In order to make simpler the implementation of the scheme (28-30), we would
like that the fluxes g±λ be defined using the flux g. We look for the ansatz

g−λ (a, b) = g(a, ϕ−
λ (b)) and g+λ (a, b) = g(ϕ+

λ (a), b). (35)

The numerical flux g being consistent with the Burgers flux, it is easy to comply
with condition (34) if ϕ±

λ satisfies

∀(c−, c+) ∈ G
0
λ ϕ−

λ (c+) = c− and ϕ+
λ (c−) = c+. (36)

Because Gλ is not the graph of a bijective map, we are not able to define ϕ±
λ if

G 0
λ := Gλ (such a definition would lead to multivalued functions). Therefore, we

focus on the choice G 0
λ := G 1

λ , which is a bijective graph. Eventually, we define
the reconstructed states as follows:

ϕ±
λ (a) = a∓ λ. (37)

We see that the definition of g±λ via (35), (37) leads to the following property:

Proposition 3.1. Consider the numerical scheme (28-30) with

g−λ (a, b) = g(a, b+ λ) and g+λ (a, b) = g(a− λ, b). (38)

Then any initial datum u0 ≡ c with c given by (15) and (c−, c+) ∈ G 1
λ discretized

as in (26) is exactly preserved:

∀n ∈ N uni =

{
c− if i 6 0

c+ if i > 0
. (39)

In other words, the numerical scheme (28-30)-(38) is well-balanced w.r.t.
G 1
λ . Note that Proposition 3.1 can also be seen as a basic consistency property,

in the same way as consistent monotone schemes for conservation laws exactly
preserve constant solutions.
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3.2 Analysis of the well-balanced schemes

Let us now focus on the analysis of the numerical scheme (28-30)-(38). In all
the following, the time step ∆t agrees with the following CFL condition:

2M∆t 6 ∆x (40)

where M is the Lipschitz constant of the numerical flux g, e.g. on the interval
[ess infR u0 − λ, ess supR u0 + λ] (cf. Proposition 2.7).

It is well known that under the CFL condition (40) withM being a Lipschitz
constant for a monotone numerical flux g, for i 6= 0, 1 the functions Hi in (31)
are monotone non-decreasing in each of the three arguments. Since · 7→ ·±λ are
increasing monotone functions, also for i = 0 and i = 1 the monotonicity holds.
Thus, as far as (40) holds and the values uin stay in the prescribed interval, the
numerical scheme (28-30)-(38) for (un+1

i )i is monotone, i.e.

Hi in (31) is a nondecreasing function of each of its three arguments. (41)

3.2.1 Stability

Let us begin with the L∞ bounds that justify the applicability of the CFL
condition (40):

Lemma 3.2. Under the CFL condition (40), the numerical scheme (28-30)-(38)
satisfies for all n ∈ N and i ∈ Z

min{ess inf
R−

u0 − λ , ess inf
R+

u0} 6 uni 6 max{ess sup
R−

u0 , ess sup
R+

u0 + λ}.

Proof. The proof is the same as for Proposition 2.7; it stems from the comparison
argument with the stationary solution of our well-balanced scheme given by (39),
(c−, c+) ∈ G 1

λ , with the same choice of c± as in Proposition 2.7. We proceed by
induction in n; for n = 0 the claim holds. At each step, we use the monotonicity
(41) of H to derive the inequality un+1

i > ci := c−1li60 + c+1li>1. �

Next, we need some compactness techniques allowing for the passage to the
limit in the nonlinear scheme. It is easy to prove BV estimates on finite volume
approximations of the Burgers equation; but the action of the singular source
term at {x = 0} makes delicate to find uniform BV bounds on the numerical
scheme for (1). Indeed, it is easily seen that the scheme typically produces non-
constant solutions from constant initial datum. We will investigate global BV
bounds for solutions of (1) in the forthcoming work [ALST] with Lagoutière
and Takahashi. As alternatives, one can use compactification arguments due
to the nonlinearity of the Burgers flux, or seek to bypass strong compactness
arguments by using measure-valued (entropy-process) solutions (see [EGH00];
cf. [AGS10], in the context of discontinuous flux). Our approach is to deduce
compactness from BVloc estimates combined the Cantor’s diagonal argument.
Indeed, uniform BVloc bounds on any interval which does not intersect with
{x = 0} were obtained by Bürger et al. in [BGKT08, BKT09], in the context of
conservation laws with discontinuous flux; we reproduce their approach. Unfor-
tunately, here and also in Proposition 3.8 (discrete Kato inequalities) we need
the following additional assumption on the numerical flux g:

g(·+λ, b+λ)− g(·, b) and g(a+λ, ·+λ)− g(a, ·) are non-decreasing. (H0)
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This condition ensures that the scheme is dissipative at the interface. It is easily
seen that a sufficient condition for (H0) is

∂a(∂ag(a, b) + ∂bg(a, b)) > 0 and ∂b(∂ag(a, b) + ∂bg(a, b)) > 0; (H)

moreover, if we want (H0) to hold for every λ > 0, then (H) is an equiva-
lent requirement. Thus, we stick to assumption (H) in the sequel. Note that
the most classical numerical fluxes (Godunov, Rusanov, Engquist-Osher) fulfill
Assumption (H) (see Appendix A).

Lemma 3.3 (BVt bounds). Assume u0 ∈ BV(R). For T > 0, consider N ∈ N

and ∆t > 0 such that N∆t 6 T . Under CFL condition (40) and assumption
(H), the numerical scheme (26)-(28-30)-(38) satisfies for all n ∈ N

∆x

N−1∑

n=0

∑

i∈Z

|un+1
i − uni | 6 K (42)

where K is a positive constant only depending on |u0|BV(R), T , M and λ.

In the conservative case, the Crandall-Tartar lemma (see [CT80]) is suffi-
cient to provide (42), without assumption (H). Here, a remaining term at the
interface x1/2 must have the good sign in order to obtain (42) (see Lemma 3.4).

Proof. We use the notation ⊥ (resp. ⊤) to denote the min (resp., the max) of
two elements. With this notation, we have
∑

i∈Z

∣∣un+1
i − uni

∣∣

=
∑

i∈Z

(
un+1
i − uni

)+
+
∑

i∈Z

(
uni − un+1

i

)+

=
∑

i∈Z

[
un+1
i ⊤uni − uni

]
+
∑

i∈Z

[
un+1
i ⊤uni − un+1

i

]

=
∑

i∈Z

[
Hi(u

n
i−1, u

n
i , u

n
i+1)⊤Hi(u

n−1
i−1 , u

n−1
i , un−1

i+1 )−Hi(u
n−1
i−1 , u

n−1
i , un−1

i+1 )
]

+
∑

i∈Z

[
Hi(u

n
i−1, u

n
i , u

n
i+1)⊤Hi(u

n−1
i−1 , u

n−1
i , un−1

i+1 )−Hi(u
n
i−1, u

n
i , u

n
i+1)

]

6
∑

i∈Z

[
Hi(u

n
i−1⊤u

n−1
i−1 , u

n
i ⊤u

n−1
i , uni+1⊤u

n−1
i+1 )−Hi(u

n−1
i−1 , u

n−1
i , un−1

i+1 )
]

+
∑

i∈Z

[
Hi(u

n
i−1⊤u

n−1
i−1 , u

n
i ⊤u

n−1
i , uni+1⊤u

n−1
i+1 )−Hi(u

n
i−1, u

n
i , u

n
i+1)

]
;

here monotonicity (41) of Hi is used, due to the CFL condition (40). At this
stage, Crandall and Tartar [CT80] use the conservativity of the scheme, which
fails here at the interface x1/2. Yet it is easy to generalize the Crandall-Tartar
lemma under the sub-conservativity condition; namely, in the notation of the
Crandall and Tartar [CT80], one replaces the conservativity by the assumption

f > g =⇒

∫
(T (f)− T (g)) 6

∫
(f − g). (43)

For the sake of completeness, we will prove this version, for the concrete map
T given by (Hi)i∈Z. Condition (43) is available thanks to the following lemma.
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Lemma 3.4. Consider two sequences (ui)i∈Z and (vi)i∈Z. Assume that ui > vi
for all i ∈ Z. Let Hi be the fluxes defined in the beginning of the section (in
particular, (38) is used). Then, under assumption (H),

∑

i∈Z

(
Hi(ui−1, ui, ui+1)−Hi(vi−1, vi, vi+1)

)
6

∑

i∈Z

(ui − vi) (44)

Proof of Lemma 3.4. We have by definition of Hi (including the conservativity
of the fluxes except for the interface x1/2 = 0 and the choice (38) of g±λ )

∑

i∈Z

(
Hi(ui−1, ui, ui+1)−Hi(vi−1, vi, vi+1)

)
−
∑

i∈Z

(ui − vi)

=
∆t

∆x
(−g−λ (u0, u1) + g+λ (u0, u1) + g−λ (v0, v1)− g+λ (v0, v1))

=
∆t

∆x
(−g(u0, u1 + λ) + g(u0 − λ, u1) + g(v0, v1 + λ)− g(v0 − λ, v1)).

Since λ > 0 and ui > vi ∀i ∈ Z, the right-hand side is non-positive by assump-
tion (H), which gives (44). �

Continuing the proof of Lemma 3.3, we put ui = uni ⊤u
n−1
i with vi = uni and

then with vi = un−1
i in (44). We obtain by induction in n,

∑

i∈Z

∣∣un+1
i − uni

∣∣ 6
∑

i∈Z

[
uni ⊤u

n−1
i − un−1

i

]
+
∑

i∈Z

[
uni ⊤u

n−1
i − uni

]

6
∑

i∈Z

(
uni − un−1

i

)+
+

∑

i∈Z

(
un−1
i − uni

)+

=
∑

i∈Z

∣∣uni − un−1
i

∣∣ 6 . . . 6
∑

i∈Z

∣∣u1i − u0i
∣∣.

The right-hand side can be easily estimated: by (28-30), we have

∆x

∆t

∑

i∈Z

∣∣u1i − u0i
∣∣ 6

∑

i6=0,1

|g(u0i , u
0
i+1)− g(u0i−1, u

0
i )|

+ |g(u00, u
0
1 + λ)− g(u0−1, u

0
0)|+ |g(u01, u

0
2)− g(u00 − λ, u01)|

6 2M(|u0|BV(R) + λ).

Thus for T > N∆t, we get the required estimate

∆x
N−1∑

n=0

∑

i∈Z

|un+1
i − uni | 6 2N∆tM(|u0|BV(R) + λ)

6 2TM(|u0|BV(R) + λ) =: K,

which concludes the proof. �

Let us introduce the classical notation

u∆(t, x) =
∑

n∈N

∑

i∈Z

uni 1l(n∆t,(n+1)∆t)(t) 1l(xi−1/2,xi+1/2)(x). (45)

We are in position to provide BVloc (in space) bounds, following Lemma 4.2 of
[BGKT08] (see also [BKT09]):
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Lemma 3.5. Let T > 0 and A > 0. Assume that u0 ∈ BV(R) and ∆x is
small enough. Then, under the CFL condition (40) and assumption (H), the
numerical scheme satisfies

|u∆(T, .)|BV([A,+∞)) 6 |u0|BV([A,+∞)) +
K

A
(46)

with K only depending on |u0|BV(R), T , M and λ.
Analogous results hold on the interval (−∞,−A].

Proof. The idea is to use the uniform BV ((0, T );L1(R)) estimate of the func-
tions u∆ (given by Lemma 3.3) to deduce BV (0, T ) estimates on the functions
u∆(·, y∆) with y∆ ∈ (0, A) given by the mean value theorem. Then we in-
terprete the solution of our finite volume scheme as being the solution to the
monotone scheme of the Cauchy-Dirichlet problem set up in [y∆,+∞)× [0, T ];
both initial and Dirichlet data have controlled variation. By the well known
results for the Cauchy-Dirichlet problem, this yields bound (46). We refer to
[BGKT08, BKT09] for details. �

3.2.2 Consistency

We now investigate consistency of the well-balanced schemes with the entropy
inequalities (16). As far as monotone schemes and conservation laws are con-
cerned, discrete entropy inequalities are obtained and thanks to a Lax-Wendroff
kind theorem, one obtains the “continuous” entropy inequalities passing to the
limit. One of the main ingredients to obtain discrete entropy inequalities is the
monotonicity (41) of the scheme. Another ingredient, in the classical setting,
is the preservation of constant solutions. In our framework, the same role is
played by the solutions (15) with (c−, c+) ∈ G (these correspond to the adapted
entropies for equation (1), see Definition 2.4). We have constructed the numer-
ical scheme (28-30)-(38) in such a way that it preserves solutions of the form
(15) for (c−, c+) ∈ G 1

λ (see Proposition 3.1). Regarding the characterization
Proposition 2.5[A] of entropy solutions, we also need adapted entropy inequali-
ties with (c−, c+) ∈ G 2

λ . While the scheme does not preserve the corresponding
entropy solutions (15) exactly (see the numerical results in Section 5), we are
able to prove the asymptotic (as ∆x→ 0) preservation property.

Proposition 3.6. Let v∆ be the solution of the numerical scheme (26)-(28-30)-
(38) with the initial datum v0(·) = c(·) defined by (15) with (c−, c+) ∈ G 2

λ . Then
under the CFL condition (40), v∆ converge to c in L1

loc(R
+×R) when ∆x→ 0.

Proof. Discretizing the initial condition v0(·) = c(·), we have v0i = ci with

ci =

{
c− if i 6 0

c+ if i > 0
, (c−, c+) ∈ G

2
λ = [0, λ]× [−λ, 0]. (47)

By Proposition 39, the numerical scheme exactly preserves the stationary solu-
tion in the cases (c−, c+) = (0,−λ) and (c−, c+) = (λ, 0). As in the proof of
Lemma 3.2, using the monotonicity of Hi to compare v∆ with this preserved
solutions, we find

∀n > 0, vni ∈

{
[0, λ] if i 6 0

[−λ, 0] if i > 0.
(48)
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Note in addition that from the BVloc bounds of Lemmas 3.3, 3.5, we have the
L1
loc convergence (up to a subsequence) of the discrete solutions v∆, as ∆ → 0,

to some limit v. It remains to identify this limit to c (uniqueness of the limit
implies the convergence of the whole family v∆).

Indeed, we can also consider the numerical scheme on v∆ as the discretiza-
tion, with the monotone numerical flux g, of two initial-boundary value prob-
lems, the one on {x < 0} and the other on {x > 0}. As far as the problem
on {x < 0} is concerned, by the definition of g−λ the boundary datum in our
scheme is given by (bn)n := (vn1 +λ)n ⊂ [0, λ]; and the initial datum is the con-
stant c− ∈ [0, λ]. By the discrete maximum principle, the values of the discrete
solution (vni )n>0,i<0 lie within [0, λ]. Thus the limit v of v∆ is non-negative
in {x < 0}, and, by classical arguments (see e.g. [Vov02]), v is a Kruzhkov
entropy solution of the Burgers equation in the half-space in {x < 0}. Such
non-negative solution can be interpreted as the unique entropy solution of the
Cauchy-Dirichlet problem for the Burgers equation with data v|t=0,x<0 = c− and
v|t>0,x=0 = 0 (the boundary condition is inactive, because the characteristics
are outgoing at the boundary). Then we conclude that v|x<0 ≡ c−. Analogous
arguments permit to find v|x>0 ≡ c+. �

As suggested above, we intend to prove that the numerical scheme tends
to the entropy solution characterized by [A] (Proposition 2.5). Now we de-
duce discrete entropy inequalities for |u − c(x)| where c is defined by (15) and
(c−, c+) ∈ G 1

λ ∪ G 2
λ . We have the following “pointwise Kato inequalities”.

Proposition 3.7. Let (uni )i∈Z,n∈N and (vni )i∈Z,n∈N be two sequences defined by
the numerical scheme (28-30)-(38) and assume that the CFL condition (40) is
fulfilled. Then for all i ∈ Z and n ∈ N

|un+1
i − vn+1

i | − |uni − vni |

∆t
+
Gn−

i+1/2 −Gn+
i−1/2

∆x
6 0 (49)

where

∀i 6= 0 Gn−
i+1/2 = Gn+

i+1/2 = g(uni ⊤v
n
i , u

n
i+1⊤v

n
i+1)− g(uni ⊥v

n
i , u

n
i+1⊥v

n
i+1)

and Gn±
1/2 = g±λ (u

n
0⊤v

n
0 , u

n
1⊤v

n
1 )− g±λ (u

n
0⊥v

n
0 , u

n
1⊥v

n
1 ).

Proof. This proof follows the same guidelines as the proof of classical discrete
entropy inequalities (see for instance [GR91]). We use the standard decomposi-
tion |a− b| = a⊤b− a⊥b. First, we have

un+1
i ⊤vn+1

i = Hi(u
n
i−1, u

n
i , u

n
i+1)⊤Hi(v

n
i−1, v

n
i , v

n
i+1)

6 Hi(u
n
i−1⊤v

n
i−1, u

n
i ⊤v

n
i , u

n
i+1⊤v

n
i+1)

by monotonicity (41) of Hi. On the other hand, we have

un+1
i ⊥vn+1

i = Hi(u
n
i−1, u

n
i , u

n
i+1)⊥Hi(v

n
i−1, v

n
i , v

n
i+1)

> Hi(u
n
i−1⊥v

n
i−1, u

n
i ⊥v

n
i , u

n
i+1⊥v

n
i+1)

leading to

|un+1
i − vn+1

i | 6 Hi(u
n
i−1⊤v

n
i−1, u

n
i ⊤v

n
i , u

n
i+1⊤v

n
i+1)

−Hi(u
n
i−1⊥v

n
i−1, u

n
i ⊥v

n
i , u

n
i+1⊥v

n
i+1).

In view of the definitions of Hi and of Gn±
i+1/2, this boils down to (49). �
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Under the assumption (H) (which role is to ensure interface dissipation,
compensating for the lack of conservativity), we readily deduce the discrete
Kato inequality:

Proposition 3.8. Let (uni )i,n and (vni )i,n be as in Proposition 3.7. Let ϕ ∈
D([0, T )×R), ϕ > 0, and ϕn

i = ϕ(n∆t, i∆x). Assume the hypothesis (H) holds.
Then

∆t∆x
∑

i∈Z,n∈N

|un+1
i − vn+1

i |
ϕn+1
i − ϕn

i

∆t
+∆x

∑

i∈Z

|u0i − v0i |ϕ
0
i

+∆t∆x
∑

i∈Z∗,n∈N

Gn±
i+1/2

ϕn
i+1 − ϕn

i

∆x
+∆t∆x

∑

n∈N

Gn+
1/2

ϕn
1 − ϕn

0

∆x
> 0 (50)

Proof. We multiply each inequality (49) by the corresponding value ∆t∆xϕn
i ,

use the summation-by-parts argument and the conservativity of the fluxes for
i 6= 0. Denoting by S(ϕ) the sum of the first three terms in the left-hand side
of (50), we get the inequality

S(ϕ) + ∆t
∑

n∈N
(Gn+

1/2ϕ
n
1 −Gn−

1/2ϕ
n
0 ) > 0.

Add and subtract Gn+
1/2ϕ

n
0 under the sum sign; then we get the last term in

(50) plus the sum in n of the terms (Gn+
1/2 − Gn−

1/2)ϕ
n
0∆t. Assumption (H0)

(which follows from (H)) and the definition of Gn±
1/2 ensure that the first factor

is non-positive, while ϕn
0 is non-negative. Hence (50) follows. �

3.2.3 Convergence

Using the previous results, we easily prove the convergence of the numerical
scheme.

Theorem 3.9. Assume u0 ∈ L∞(R). Then, under the CFL condition (40) and
assumption (H), the numerical scheme (26)-(28-30)-(38) converges in L1

loc(R
+×

R) to the unique entropy solution to problem (1) when ∆x tends to 0.

Proof. In the first step, assume that u0 ∈ BV(R). The BVloc bounds of Lem-
mas 3.3, 3.5 and the Cantor diagonal extraction argument permit to extract a
(not relabelled) subsequence such that u∆ → u in L1

loc(R
+×R). By Proposi-

tions 3.1 and 3.6, for v0 = c with c given by (15) and (c−, c+) ∈ G 1
λ ∪ G 2

λ , the
associated solutions v∆ converge to v(t, x) := c(x).

This allows to pass to the limit in (50). Indeed, the finite difference approx-
imations in (50) of the derivatives ϕt, ϕx of a regular compactly supported test
function ϕ converge in L∞(R+×R); and it is well known (see e.g. [Vov02]) that
the consistency and Lipschitz continuity of the numerical flux g plus a (local)
uniform BVloc(R) estimate on u∆(t, ·) allow to conclude that

∑

i∈Z∗,n∈N

Gn±
i+1/21l(tn,tn+1]×(xi−1/2,xi+1/2]+

∑

n∈N

Gn+
1/21l(tn,tn+1]×(x

−1/2,x1/2] −→ Φ(u, v)

a.e, thus also in L1
loc(R

+×R) (the last term in the left-hand side is a bit spe-
cial, but it has no influence at the limit). Then (50) boils down to the family
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of adapted entropy inequalities (16) corresponding to the case [A] of Propo-
sition 2.5. Thus u is the unique entropy solution of (1) with datum u0; the
accumulation point being unique, the whole family u∆ converges to u as ∆ → 0.

For the general case u0 ∈ L∞(R), we first approximate u0 by two a.e. con-
vergent sequences of BV (R) functions (un0 )n (non-decreasing) and (un0 )n (non-
increasing) such that un0 6 u0 6 un0 . For each n ∈ N fixed and all ∆t,∆x
satisfying the CFL condition, the initial discretization (26) and the monotonic-
ity (41) imply that the associated numerical solutions fulfill

un∆ 6 u∆ 6 un∆, (51)

moreover, (un∆)n, (u
n
∆)n are monotone sequences uniformly bounded in L∞(R+×

R). Applying the previous convergence result as ∆x→ 0, we see that the limits
un, un of un∆, u

n
∆ are entropy solutions of (1) with data un0 , u

n
0 , respectively. Then

the monotonicity of the sequences and the L1
loc contraction property (21) in the

domain of dependence permits to conclude that un∆ and un∆ both converge to the
same limit u in L1

loc(R
+×R). Characterization (16) being stable by L1

loc(R
+×R)

convergence of sequences of initial data and entropy solutions, we deduce that u
is (the unique) entropy solution of (1) with the datum u0. From (51) we deduce
that u∆ converge to u, and the proof is complete. �

4 Complements and remarks

4.1 Convergence of the LeRoux regularization

Let us mention a different existence proof, that further justifies the approach
of [LST08]. Recall that in [LST08], the authors discussed solutions obtained as
limits of equation (11) (or, equivalently, of system (6) with H = Hε converging
to the Heavyside function), and deduced the possible trace couplings across the
interface (see Section 2.1). In this derivation, it was assumed that the solutions
to (6) are stationary. Actually, it was deduced that for all (u−, u+) ∈ G , the
associated stationary solution u(t, x) ≡ u0(x) := u−1l{x<0} + u+1l{x>0} is the
a.e. limit of the (stationary) solutions uε to (11) with well-chosen initial data.
These are the data given by the profile constructed in Proposition 2.2:

uε0(x) := u−1l{x<−ε} + Uε(x)1l{|x|6ε} + u+1l{x>ε}.

Now, we have the following observations. Given Hε, we have the Kato in-
equality (10). Consider any L∞ initial datum v0 and the corresponding solutions
vε. We know that the sequence is relatively compact in L1

loc(R
+ ×R) thanks to

the well known precompactness results for the Burgers equation; as usual, we
argue along a subsequence. Because ‖uε0−u0‖L1 vanishes as ε→ 0, uε converges
to u (both functions are stationary). Then the Kato inequality written for vε

and uε passes to the limit and it yields the adapted entropy inequality (16). We
deduce that the limit v of (a subsequence of) vε is the unique entropy solution
of (1). In this way, using regularization (11), ε → 0, with fixed initial datum
v0 (or using (6) with fixed v0 and with H0 nicely converging to the Heavyside
profile), we can pass to the limit and obtain the unique entropy solution of (1)
with initial datum v0.
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4.2 Moving sources, multiple sources, problem (2)–(3)

As it was already mentioned in the Introduction, equation ∂tu + ∂xu
2/2 =

(V −u)δ0(x−V t) reduces to (1) by the simultaneous change of u−V , x−V t into
u, x, respectively. Thus it is easy to write the corresponding numerical scheme,
provided one allows for non-rectangular space-time cells near the interface (see
[ALST10]).

Such a scheme can be also used in the case where several singular sources are
present. Intersections of the space-time lines carrying different sources present
no difficulty. Indeed, because the solutions are actually continuous in time with
values in L1

loc(R) (same arguments as for existence of the interface traces apply),
it is sufficient to restart the construction of solutions at the times of intersection.

Further, having in mind the coupled problem (2)–(3), one could consider
sources carried by curved particle path x = h(t). The notion of entropy solu-
tion (versions [B],[D] of Proposition 2.5) and the uniqueness techniques extend
readily to this case; construction of a solution can be done via the change of
variables y = x − h(t) or via piecewise affine approximation of h(·). These
and further generalizations can be found in [ALST10] and in the future work
[ALST].

Such analysis may also apply to the case of singular source

∂tu(t, x) + ∂x(u
2/2)(t, x) = −u(t, x) ∂xa(t, x),

provided a has the form a(t, x) =
∑

i∈N
ai(t, x)1lΩi(t, x) where (Ωi)i is a locally

finite partition of (0, T ) × R with Lipschitz boundaries, the functions ai are
absolutely continuous with respect to x (more precisely, ∂xai ∈ L1(Ωi)), and the
function a satisfies the one-sided Lipschitz condition: there exists α ∈ L1([0, T ])
such that

−∂xa(t, x) 6 α(t) in D′((0, T )× R).

Indeed, then the function −a only admits decreasing jumps along Lipschitz
curves, where the germ technique of Section 2 applies; and the remaining part
of ∂xa is absolutely continuous and can be treated as a combination of an
absorption term and of a Lipschitz source term.

5 Numerical results

First, let us illustrate Proposition (48), i.e. the non exact preservation of initial
data with (c−, c+) ∈ G 2

λ . We use the Rusanov numerical flux, set λ = 1 and
c− = c+ = 0. Fig. 2 represents the results at t = 20 for 10, 100 and 1000 cells.
One may see the presence of two numerical boundary layers on both sides of
{x = 0}, which vanish (in L1

loc) when the mesh is refined.
The second test consists in comparing two well-balanced schemes, the first

one being based on the Rusanov flux and the second one on the Godunov flux.
The initial condition is u0 ≡ 1/2, λ is set to 1 and the final time is 7. For
both schemes, the mesh contains 100 cells and the Courant number is 0.4.
The results are plotted in Fig. 3. Once again, the Rusanov scheme makes
numerical boundary layers appear on both sides from the interface. On the
contrary, the Godunov scheme provides exactly the good traces: γ−u(t) = 1/2
and γ+u(t) = 0.
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Figure 2: Initial datum with (c−, c+) ∈ G 2
λ for several meshes.
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Figure 3: Comparison between well-balanced schemes with the Godunov flux
(left) and with the Rusanov flux (right).

A Assumption (H) and numerical fluxes

Lemma A.1. The Godunov, Rusanov, and Engquist-Osher numerical fluxes
verify assumption (H) (a fortiori, they verify assumption (H0)).

Proof. Consider the Godunov scheme for f(u) = u2/2. The proof relies on a
case-by-case study of monotonicity of

∆(a, b) = 2(g(a+ λ, b+ λ)− g(a, b)).

If a < b, we have g(a, b) = mins∈[a,b] f(s). The following situations occur:

Case ∆(a, b) ∂a∆(a, b) ∂b∆(a, b)
a < −λ, b < −λ 2bλ+ λ2 0 2λ
a < −λ,−λ < b < 0 −b2 0 −2b
a < −λ, b > 0 0 0 0
−λ < a < 0, b < 0 (a+ λ)2 − b2 2(a+ λ) −2b
−λ < a < 0, b > 0 (a+ λ)2 2(a+ λ) 0
a > 0 2aλ+ λ2 2λ 0
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If a < b, we have g(a, b) = maxs∈[b,a] f(s). The following situations occur:

Case ∆(a, b) ∂a∆(a, b) ∂b∆(a, b)
f(a+ λ) < f(b+ λ) 2bλ+ λ2 0 2λ
f(a+ λ) > f(b+ λ), f(a) < f(b) (a+ λ)2 − b2 2(a+ λ) −2b
f(a+ λ) > f(b+ λ), f(a) > f(b) 2aλ+ λ2 2λ 0

In each case, one sees readily that ∂a∆(a, b) and ∂b∆(a, b) are non-negative.

In the Rusanov case, we have g(a, b) = (a2 + b2)/4− (|a|⊤|b|)(b− a)/2, thus

∂a∆(a, b) = (λ+ |a+λ|⊤|b+λ| − |a|⊤|b|)/2 + (a− b)(1l|a+λ|>|b+λ| − 1l|a|>|b|)/2.

Clearly, the map t 7→ |a+t|⊤|b+t| is 1-Lipschitz, so that the first term on the
right-hand side is non-negative. Also the second term is non-negative. Indeed,
if, e.g., a > b and |a| > |b|, we also have |a+λ| = a+ λ > |b|+ λ > |b + λ|; the
other cases are similar. Thus ∂a∆(a, b) > 0; similarly, we get ∂a∆(a, b) > 0.

Finally, in the Engquist-Osher case, g(a, b) = (a2 + b2)/4−
∫ b

a |w|/2 dw, and
∂a∆(a, b) = (λ+ |a+ λ| − |a|)/2 > 0, ∂b∆(a, b) = (λ− |b + λ|+ |a|)/2 > 0. �

Remark 6. Also the flux-splitting flux g(a, b) = ((a⊤0)2 + (b⊥0)2)/2 verifies
(H); but the following modified flux-splitting flux

g(a, b) =
(a⊤0)2 + (b⊥0)2

2
− (b3 − a3) (52)

does not satisfy assumption (H0), while it is monotone and consistent. In spite
of the fact that our convergence result does not apply to this case, numerical
experiments show convergence properties similar to those of the Rusanov scheme
(numerical boundary layers may appear on each side of the interface, see Fig. 4).
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Figure 4: Results with the numerical flux (52)

B The case of a quadratic drag force

We present in this appendix the same kind of results as in the previous sections,
for the case of a quadratic source term:

{
∂tu(t, x) + ∂x(u

2/2)(t, x) = −λ u(t, x) |u(t, x)| δ0(x), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(53)
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where λ > 0. Analysis (of which the details are omitted) follows the same
guidelines as for the linear drag force case, with one considerable simplification.

Following the same process of construction, we can describe the germ asso-
ciated to (53) as follows:

Definition B.1. The maximal germ Gλ ⊂ R
2 associated with (1) is defined as

the union Gλ = G 1
λ ∪ G 3

λ , where

• G 1
λ = {(a, ae− sgn(a)λ), a ∈ R}.

• G 3
λ = {(a, b) ∈ R

+ × R
−,−aeλ 6 b 6 −ae−λ}.

Here, G 1
λ ,G

3
λ play the same roles as for the case of the linear drag force;

and the part corresponding to G 2
λ can be skipped, which results in a simpler

convergence analysis for the scheme. This germ is maximal and L1-dissipative,

(0, 0)

u
−

u+

G
1
λ

G
3
λ

{u+ = u
−
e−λ}

{u+ = u
−
e+λ} {u+ = −u

−
e+λ}

{u+ = −u
−
e−λ}

Figure 5: Representation of the admissibility germ Gλ = G 1
λ ∪ G 3

λ .

and the part G 1
λ is a definite part of this germ (see [AKR11, AKR10]) in the

sense that the following properties hold:

Proposition B.2. Consider Ξ defined by (8). Then

i. ∀(u−, u+), (v−, v+) ∈ Gλ, Ξ±
(
(u−, u+), (v−, v+)

)
> 0.

ii. If a pair (u−, u+) ∈ R
2 verifies:

∀(v−, v+) ∈ G
1
λ Ξ

(
(u−, u+), (v−, v+)

)
> 0, (54)

then (u−, u+) ∈ Gλ.

Then the definitions of entropy solutions and the uniqueness theorem extend
quite directly to the case of the quadratic drag force. Further, in the numer-
ical scheme we make the following change into the numerical fluxes: (35) is
maintained, and (37) is substituted with

ϕ±
λ (a) = ae∓ sgn(a)λ. (55)

By construction, the corresponding scheme is well-balanced with respect to the
part G 1

λ of the germ. Thanks to Proposition B.2(ii), this is enough to establish
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the analogue of the formulation [A] at the limit of the scheme. Thus we have
the same well-posedness results for the linear and the quadratic drag forces.
Numerically, the main difference of behaviour with the case of a linear drag
force is that no boundary layer of the kind seen on Fig. 2 can appear.
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[EGH00] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods.
In Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal.,
VII, pages 713–1020. North-Holland, Amsterdam, 2000.

[GL96a] L. Gosse and A.-Y. LeRoux. Un schéma-équilibre adapté aux lois
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