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On some representations of the Iwahori subgroup

Stefano Morra,

ABSTRACT

Let p > 5 be a prime number. In [BL94] Barthel and Livné gave a classification for irre-
ducible representations of GLa(F) over F,, for F' a p-adic field, discovering some objects,
referred to as “supersingular”, which appear as subquotients of universal representations
7(r,0,1). In this paper we give a detailed description of the Iwahori structure of such
universal representations, in the case when F' is an unramified extension of Q,. We de-
termine a fractal structure which shows how and why the techniques used for Q,, fail and
which lets us determine “natural” subrepresentations of the universal object m(r,0,1). As
a corollary, we get the Iwahori structure of tamely ramified principal series.
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1. Introduction

Let p be a prime number and F a p-adic field. In the papers [BL94], [BL95] Barthel and Livné studied
a classification (recently generalized for general GL,,(F') by Herzig in [Her]) for the representations
of GLa(F') with coeflicients in an algebraic closure of F,,. Besides characters, principal unramified
series and special series, they found a new class of irreducible objects referred to as “supersingular”,
which are defined, up to twist, as subquotients of a universal representation, which we will note
7(r,0,1) for an f-tuple r = (ro,...,7¢—1), where f is the residual degree of F. The existence of
supersingular representations is assured by a Zorn-type argument (see [BL95], Proposition 11) and
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a complete exhaustive study for supersingular representations is a relevant open problem in the
emerging p-adic Langlands program. Indeed, in a conjectural mod p-Langlands correspondence it
is expected that the supersingular objects are intimately related to Galois representations arising
from elliptic curves with supersingular reduction.

This is actually the case if F' = Q, (when the universal representations are indeed irreducible).
Such result is due to Breuil [Bre03] where he reaches a complete classification of supersingular
representations thanks to direct computations on the ring of Witt vectors of F,,. If I’ # Q,, the
situation is not clear. For the time being, the problem of classifying supersingular representations
looks to be infinitely more involved compared to its Galois analogue (known from the works of Serre
[Ser72]). The methods of Paskunas [Pas| and Breuil-Paskunas [Br-Pa|, which associate an infinite
family TI(p) of supersingular representations to a single Galois object p, are a major progress in this
direction, but it is not clear, especially after the work of Hu [Hul], how to distingush in a canonical
way a privileged supersingular representation inside II(p). We remark that the methods of [Pas] and
[Br-Pa] have been improved by Hu’s canonical diagrams in [Hu2|; unfortunately canonical diagrams
are difficult to calculate explicitly.

Another approach to the problem has been treated by Schein in [Sch] where he studies the
universal representations for a totally ramified extension F'/Q,. He detects a natural quotient V._;
of m(r,0,1) which enjoys an universal property with respect to supersingular representations whose
GL2(OF)-socle respects a certain combinatorics conjecturally associated to suitable Galois repre-
sentations arising from elliptic curves with supersingular reduction (the modular weights introduced
in [BDJ] and generalised in [Schl])

In this paper we describe the Iwahori structure for the universal representation m(r,0,1) in
the case where F//Q,, is unramified, generalizing Breuil’s method. In particular, our result give the
irreducibility for ' = Q, and shows how and why the universal representations fail to be irreducible
otherwise. With “Iwahori structure” we mean that we are able to detect the Iwahori-socle filtration
for m(r,0,1) as well as the extension between two consecutive graded pieces. As a byproduct we will
deduce the Iwahori structure of principal and special series and the presence of a natural injection
c—Ind%’;ZV — 7(r,0,1). The reader will find out that, as soon as F' # Q,, the Iwahori-socle
filtration for the universal representation relies on an extremely complicated combinatorics.

The main result of this paper is to show that such combinatorics can be handled with the help
of some simple Euclidean data; such a method -a far reaching generalisation of the techniques of
[Bre03]- can be briefly described as follow. We detect a natural F,-basis % of m(r,0,1) as well as
an injection:

B s Z[F:QP];

as we will show, its image R is explicitely known. For v € & we define the set of antecedents &,
of v as the set of v/ € & such that v/ = v — e; where e, is the s-th element of the canonical base
of ZIF*Qrl. When we claim that the Iwahori structure for m(r,0,1) is described by R we mean the
following facts (see Definition 1.7 for a precise formalism):

i) the Iwahori-socle filtration {77([, 0,1) J} is obtained from R by removing successively the points
with empty antecedents;

i1) if vo,v1 € £ and J € N are such that v; is an eigenvector for the (J — i)-th graded piece
w(r,0,1)j—;/m(r,0,1)5_;—1 of the socle filtration of the universal representation, then the
linear space (vg,v1) gives a nontrivial equivariant extension of vy by wvg inside the quotient
w(r,0,1);/m(r,0,1);_2 if and only if vy is an antecedent of vy.

According to this terminology the main result is the following (see Proposition 5.18):
THEOREM 1.1. The Iwahori structure of the universal representations is described by fR.
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Beginning of the euclidean structure for RE]@R'I R'2

FIGURE 1: The picture represents part of the Euclidean structure associated to m(r,0,1), in the
particular case p = 5, f = 2, r = (2,1), according to the decomposition of 7(r,0,1) given by
Propositions 2.9 and 3.5. The axes let us parametrise certains elements of the compact induction
according to the immersions of F2 in Fp. The Iwahori-socle for m(r,0,1) is deduced by the points
having empty antecedent, according to Definition 1.7.

We give in Figure 1 the idea of such structure for the quadratic unramified extension of Q.
As annonced, we get some other byproducts as

THEOREM 1.2. Let 7 be a tamely ramified principal series and write w|; = 7™ @~ for the Mackey
decomposition deduced from the restriction of w to the Iwahori subgroup I. Then the Iwahori
structure of wt (resp. m~) is described by the lattice NIF:Qel naturally embedded in ZIF:Qvl.

and

THEOREM 1.3. Let r ¢ {(0,...,0),(p —1,...,p — 1)} and let x°* be the conjugate character of
(0,)VFa). There is a sub K Z-representation V < w(r,0,1)|xz isomorphic to the kernel of the
natural map

GL2(F,)
B(Fq)

and such that the map (induced by Frobenius reciprocity)

c—Ind%,V — 7(r,0,1)

L2(Fq) La(Fy)

Ind Xs/soc(Indg(Fq) XS)—»cosoc(Indg(Fq) x°)

is injective.
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We remark that the existence of such an injective morphism has already been discovered by
Paskunas in an unpublished draft.

Such results rely on an heavy formalism and they need preparation to be handled. In particular,
from section §4 we start using the Euclidean dictionary as a key tool to manage the combinatorics
of the representation under study. In order to guide the reader the statements and the proofs
are preceded by a detailed translation in Euclidean terms (otherwise they would sound as empty
exercises of combinatorics) and each section opens with an exhaustive description of the Euclidean
strategy adopted to reach our aims.

The reasons which make our strategy work are essentially three:

i) we detect a suitable basis & of the universal representation which is well behaved with respect
to the action of the Iwahori subgroup and the canonical Hecke operator T € Endg(c—IndIG( 207);

i7) the action of the Iwahori subgroup on the elements of # can be read through certain universal
Witt polynomials whose homogeneous degree is known;

iii) the correspondence between the elements of the basis % and integer points in RIQr] g
compatible with the homogeneous degree of the polynomials of 7).

The structure of the paper is then the following.

The first two sections §2 and §3 are formal and do not need the hypothesis F//Q, unramified.
Section §2 is essentially a dictionary which let us detect a natural equivariant filtration on the
K Z-restriction of the universal representation. We first introduce a family of K Z-representations
{R,}pen. Through some convenient Hecke operators T : R, — R,+1 we define inductively a
direct system of amalgamated sums (each of them endowed with a natural filtration) which leads
to an explicit isomorphism (Proposition 2.9):

7r(0’£’ 07 1)’KZ Z) h_I)Il (RO @R, - OR, Rn+1) D 1£>n (Rl/RO @R, " OR, RnJrl)'
nodd n even

We remark that such isomorphism was already drafted by Breuil in [Bre].

In section 3 we start from an Iwahori-splitting R,+1 = RZ 11 ©® R, to deduce, in the same
flavour of the preceeding section, an inductive system of amalgamated sums - -+ @ RE Rff 41+ Such
amalgamated sums are endowed with a natural Iwahori-filtration revealed by a short exact sequence

+ + + +
O—>---69R§72Rn_1—>---@R%RH1—>RYL+1/Rn—>O. (1)
The resulting inductive limits are related to the universal representation by the following
ProprosiTION 1.4. We have an exact Iwahori-equivariant sequence

0— <(U+7U7)>Fp - (h_]“}R(J)r Opy - Pry R:H) @ ( h_n}Ro_ Opr - Pr; R, ) —

n odd n odd
— (li_r>n Ro ®R, *+* ®R, Rnt1)|Kop) = 0
nodd

: £ + . .
where v4 € li)n Ry Ope -+ Dpt R, (and are explicitly known).

nodd
We have an analogous result in the even case.

It will therefore be enough to focus our attention on the inductive limits of section §3.
The Euclidean dictionary is developed in section 4. Thanks to the natural filtration on the inductive
limits, we are primarly concerned with the Iwahori structure of the representations Rf +1- We detect

a convenient F,-basis %#E, | (Lemma 2.6) and determine a natural way to identify the elements of

n+1
4



ON SOME REPRESENTATIONS OF THE IWAHORI SUBGROUP
%’iil with integer valued points of RIF'Qsl (see section 4.1.1 for details). If we write Z+ 41 to
denote the image of % 1 in the [F': Qp]-dimensional real Euclidean space (such an image looks as
a parallelepipoid of s1de p”+€(r +1) for € € {0,1} according to the cases R ,, R; ) then

PROPOSITION 1.5. The structure Z= i1 describes, according to Definition 1.7, the Iwahori structure
of Rn+1

Because of the geometry of the polytope % 1 we indeed see that the socle filtration can be de-
tected by successive cuttings by suitable hyperplanes (parallel to the antidiagonal Xo+---+X5_; =
0).

We similarly deduce the structure of tamely ramified principal series (Proposition 1.2). Unfortu-
nately, these results rely on a careful analysis of the behaviour of some universal Witt polynomials,
contained in the two appendices A and B.

Section §5 deals finally with the universal representation 7 (r,0,1). We are first concerned with
the graded pieces of the natural filtrations introduced in §3: it is the object of §5.1. Thanks to the
behaviour of the canonical basis % with respect to the Hecke operators of §3 we easily determine

a natural basis B~ 41 /n for each Rﬁ 1/ R and we associate an Euclidean structure %n 1 O it.

Such a structure is more complicated than the prev1ous HE +1 and can not be determined directely
by Proposition 1.5 but a suitable decomposition of %’ RYMELE! union of inreasing polytopes enable
us to state the

PROPOSITION 1.6. The structure %ri-l
ture of RX /R .

/n describes, according to Definition 1.7, the Iwahori struc-

An example, for r = (2,1), of the Euclidean image of % is given in Figure 2.

n+1/n
As a byproduct, the natural filtrations of section §3 and the previous description of the basis
+1 let us deduce Proposition 1.3.

The conclusion is in section §5.2 where we study the amalgamated sums - - - @® RE Rff 11+ Again, the

BE

behaviour of the canonical base %’i with respect to the Hecke operators let us deduce, by induction

on the exact sequence (1), an Euclidean structure, say %even odd" Such a structure has a regular

fractal nature, due to a convenient glueing of the blocks RE
of RE

even,odd’
let us deduce the main result of Theorem 1.1.

1/ Simple remarks on the geometry

as well as the fact that - - - @ p+ , Rf_l is a Iwahori-subrepresentation of - - - @ px Rfﬂ,

We introduce now the basic conventions and notations of the paper (we essentially use the
formalism and notations of [Bre03]).

Fix a prime ! p > 5 and let F be a finite unramified extension of Qy; let f EF Q] be the
residue degree. We write O to denote the ring of integers of F' and fix the uniformizer p € Op: let
kr be the residue field; it is a finite field with ¢ & p/ elements. We fix an isomorphism kp = F
as I is unramified, we deduce an isomorphism Or = W(F,) where W(F,) denotes the ring of
Witt vectors of F,. We will write [-] : Fy* — W (Fy)* to denote the Teichmiiller character (putting

(0] = 0). We finally fix an algebraic closure F, of Fy.

For any k € N the natural action of GL2(F;) on Fg lets us determine, by functoriality of the
k-th symmetric power, the GLy(F,)-representation SymkFg. It is isomorphic (up to a choice of

an F,-basis for Fg) to Fy[X, Y]}, the homogeneous component of degree k of the ring F,[X, Y],
endowed with the usual modular action:

[ Z Z ] XFY = (aX 4 YY) H(bX + dY).

'For a technical reason, the case p = 3 is slightly more delicate: see the note in Proposition 4.7.

5
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This is the
[1,Y]-block
r—

. . . Ry
Euclidean picture associated to —ot

n

(f=2,p=5r=(@2,1)

S =

This is the
[1,XE]-block

FIGURE 2: This is the structure associated to the quotient R: 1/ R, in the particular case p =5,
f =2, r = (2,1). The structure of such quotients is more complicated compared to R;{ L1 1t
is deduced from a delicate subdivision of R 1/ R into increasing subspaces, suggested by the

geometry of %; 1/

We recall that for s € N, (Fy[X, Y]Z)F rob® is the representation obtained by functoriality, in the
evident way, from the field automorphism x — zP° defined on F,.
For 7 € Gal(Fy/F,) and r-,t; € {0,...,p — 1} we consider the GLy(F,)-representation

i Q) (et @p, Sym"F) o, Fy;
7€Gal(F,/Fy)

such representations, called Serre weights, exhaust all irreducible GLa(F,)-representations with
coefficients in F, (and they are pairwise non isomorphic if we impose ¢, < p — 1 for at least one
element 7 € Gal(F,/F,)). A Serre weight is said to be regular if 1 < r; < p — 3 for all i (see [Gee],
Definition 2.1.5).

We fix once for all an immersion 7: F, — Fp. Such a choice determines, up to twist, a manifest
isomorphism

f—1
U{rf}v{t‘f'} = U(Tov'-wrffl) d:Cf (Fp[XS7 }/S]QS)FTObS
s=0
for a suitable r = (ro,...,rs—1) €{0,...,p— 1}/; such an isomorphism will be assumed to be fixed

once for all throughout the paper. We notice that the choice of another immersion acts on the right
hand side by a cyclic permutation on the indices s in the obvious sense.

def def

Write G < GLy(F), K < GLy(Op) and Z < Z(G). We write Ko(p) to denote the Iwahori
subgroup of K. The GLy(F,)-representation o, will be seen, by the inflation map K — GLa(F,),
as a smooth representation of K. By imposing p € Z to act trivially, the smooth K-action on
o, extends to a smooth action of KZ: by abuse of notation we will write o, to denote either the
GL2(F,), the K or the K Z-representation obtained by this procedure (or, as usual, the underlying

6



ON SOME REPRESENTATIONS OF THE IWAHORI SUBGROUP

vector space of ;).
Similarly, the character

Xr : B(Fy) — F;

a b Zf:lpsrs
[0 d} e

will be considered, by inflation as a character of any open subgroup of Ky(p). We write then X; to
denote the conjugate character of x,. We denote by a the character

Recall the compact induction:
c—Ind% 0,
defined as the F-linear space of functions f : G — o, compactly supported modulo Z, verifying
f(kg) = k- f(g) for any k € K, g € G} it is endowed with the smooth left action of G' defined by
right translations.

For g € G, v € 0, we define [g,v] € c—IndIG<ZUﬁ as the unique function f supported in K Zg~
and such that f(g~!) = v. Then we have

1

g [g,v] = [d'9,] for g’ € G
[gk:,v} = [g,k-v] for k € KZ.

Each function f € c¢—Ind% 0, can be written as a F,-linear combination of a finite family of
functions [g, v]; if g varies in a fixed system of coset representatives for G/KZ and v varies in a
fixed F,-basis of 0, the aforementioned writing is then unique.

We leave to the reader the task to adapt the previous definitions and remarks to such objects as

IndKO ®™)

Ko(pnt1)T

where Ko(p™t!) % Ko(p™) % K are the open subgroups of K defined by (3) and 7 is a smooth
representation of Ko(p"t1).

From [BL94], Proposition 8-(1) there exists a canonical Hecke operator (depending on r) T €
Endg(c—Ind% ,0,). It realizes an isomorphism between the F-algebra of endomorphisms Endg(c—Ind% 40,
and the ring of polynomials in one variable over F,. We then define the universal representation of
GL2(F) as the cokernel of the canonical operator 71"

7(r,0,1) = coker(T).
We recall some conventions on the multiindex notations. We write o & (ap,...,ap_1) to denote

an f-tuple o € NS, If a, 3 are f-tuples we define

Z) Q—i_éd:ef(ao—i_/g()r"?affl+/8f*1);
it) a > B if and only if ay > B, for all s € {0,..., f — 1}

def T7f—1 /ag
i) (3) 2T ()
For n € N we will write n < (n,...,n) € N/.
If a + B8 = r we define the following element of o;:
def -1 s S .
ngé = ®£:0X? Y;B )
7
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for A\ € F, and a € {0,...,p — 1}/ we put

A@ &\ s

For an integer n € N we define |n| € {0,..., f — 1} as the unique integer m € {0,...,f — 1}
congruent to n modulo f. Similarly, if n # 0 we define [n] € {1,...,¢ — 1} as the unique integer
m € {1,...,q — 1} congruent to n modulo ¢ — 1; we set [0] )

Let R be a smooth representation of Ko(p) over F,,. We recall the definition of the socle filtration
{socn(R)}nen on R: we set soco(R) = soc(R) (the maximal semisimple subrepresentation of R)
and, assuming socy (R) being defined, the submodule socy41(R) is defined to be the inverse image
of soc(R/socy(R)) via the natural projection R — R/socy(R). We set formally soc_;(R) = 0. We
therefore get an increasing, exhausting and separate filtration on R, with semisimple layers.

Throughout the paper we describe the socle filtration of R by means of subset Z C Z7 suitably
associated to R: this is a crucial formalism whose meaning we define precisely in the following
Definition.

DEFINITION 1.7. Let % be an F,-basis of R and P a bijection of % onto a subset % in Z/. Let
B C A be a subset and #' denote its image through the bijection P; for v € %' we define the set
of antecedents of v in %' as:

S, (#) = {we A st. P(w) =P(v) —esfors € {0,..., f—1}}
(where {eg, ...,ef_1} is the canonical basis of Z7).

1) We say that the socle filtration {socy(R)}nen of R is described by Z if the following holds:
there exists an increasing family {#n}nenN of subsets of % such that
i) for all N € N the family Ay is an F,-basis of socy (R);
ii) for all N € N an F,-basis for soc(R/socy_1(R)) is described as

{’I}G%\%N_l, S.t.GU(%\%N_l):Q}.

2) If the socle filtration of R is described by % we will say that the extensions between two graded

pieces are described by Z if the following holds true:

for all N € N and v € $Bn41 the Fy-linear subspace E, y of R/socy_1(R) generated
by v,&,(# \ Bn-1) is Ko(p)-stable and for each w € &,(# \ $n-1) the induced
extension

0—=w— Eyn/(6y(B\ BNn-1) \{wh)y, =70

is nonsplit (with the obvious meaning of w, U).

In Euclidean terms, the meaning of Definition 1.7 is the following:

1) the socle filtration of R is obtained from # by removing successively the points having empty
antecedent: a linear basis % for socg(R) is described by the points of # having empty an-
tecedent; assuming we have a linear basis Ay for socy(R) then a linear basis for socy41(R)
is given by the disjoint union of Ay and the points of P(# \ %y ) having empty antecedent;

2) the segments between v and the set of its antecedents let us detemines all the nonsplit extensions
between two graded pieces of the socle filtration.

By abuse of terminology, we will call lattice of R a subset of Z/ (the latter being naturally
embedded in RY) containing a linear base for R/. The subset % will be often callet the associated
lattice for the representation R.
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2. Preliminaries

As we outlined in the introduction, the main aim of this section is to describe the Iwahori-structure
of the universal representations 7 (r,0,1) of GLy(F) over F,,.

Such representations have a completely explicit description in terms of the Bruhat-Tits tree and
of the Hecke operator T given in [Bre03], §2 and their Iwahori structure can indeed be found by direct
methods. Nevertheless, the extremely involved combinatorics of such results leads us to introduce
an intermediary step -namely a suitable K Z-filtration- which lets us handle, in a reasonable way,
the high amount of technical computations. Precisely, we start (cf. definition 2.3) by introducing
the K Z-representations

def

Rn+1 = Indilgo(pn_'.l)o'(n*‘rl)

r

(where O'£n+1) is a Ko(p™'!)-representation obtained by twisting the action of Ko(p on 0| gy (prt1))-

Such objects are endowed with an action of suitable “Hecke” operators Tni : R, = R4 (cf. Lemma
2.7), with respect to which we are able to define (inductively) a direct system of amalgamated sums
-+ ®p, Rn+1 (cf. Proposition 2.8). Such amalgamated sums fit in a natural commutative diagram
(see Proposition 2.8) which lets us deduce a natural filtration on the resulting inductive limits.
The final result is then the isomorphism of Proposition 2.9, which relates the K Z-restriction of the
universal representation m(r,0,1)|xz to the inductive limits constructed above; in particular, we
have a natural K Z-equivariant filtration on the universal representation m(r,0,1).

In Lemma 2.6 we introduce a “canonical” basis for the representations R,11. Such basis is well
behaved with respect to both the action of the Hecke operators and the action of the Iwahori sub-
group: this will be the key observation which lead us to the description of the Iwahori structure for
m(r,0,1).

n—i—l)

We remark that the isomorphism of Proposition 2.9 does not rely on the fact that F/Q, is
unramified: the content of this section can be generalised in the evident manner for any finite
extension F' of Q.

Reminders on the universal representations 7(r,0,1). For n € N> we define

n—1
L (3PN for s € By}
7=0

def

and we put Iy = {0}. The sets I,, let us describe the Bruhat-Tits tree in the following way: if
n,m € N, X\ € I, and

0  def pn A 1 def 1 0
gn,)\ - 0 1 I gn,)\ - p)\ pn+1

we get a decomposition

KzZoa "KZ = [[ A EZ]] ] 9mnKZ (2)
Nl Aelpy—1

thus describing the vertex of the tree having distance m from K Z (where we have written « £ g&o).

The canonical Hecke operator T € Endg(Ind% ,0,), defined in [Bre03] §2.7, is then characterized
as follow:
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LEMMA 2.1. Forn € N5, A € I,, and 0 < j <1 we have:

T([gg,A,Xi_ZYiD = Z [92+1,)\+p"[/\n]7 (_)‘n)iXﬂ] + [92—1,[)\],1_1751,[()%—1)( + Y)K]
An€F,

T([gp 0 X5 2YI]) = 37 [gn i1 (A ZYT] + (g0 g, 10 55.0(X + A 1Y)
M €Fy
where [|p—1 : I, = I,—1 denotes the truncation of the (n — 1)-th p-adic digit.
If n = 0 we have

T([1e, X5Y]) = 3 (9 prgps (—A0)PXE] + [, 05, Y7
Mo €Fy

T([o, X2IYI]) = Z (91 s (FA)E2YE] + 16, 65,0 X7
)\1€Fq

Proof. A computation shows that the statement of Lemme 3.1.1 in [Bre03] has an obvious general-
isation for f > 1. The result follows then from [Ibid., §2.5. O

For n € N we define the F-subspace of Ind% 0,

def

W(n) = {f € Ind% ,0,, s.t.thesupport of f is containedin K Za "K Z}.

By Cartan decomposition the subspaces W (n) are K Z-stable for all n € N and therefore

LEMMA 2.2. There is a natural K Z-equivariant isomorphism

md% 4o, = @W(n)
neN

The representations R, ’s and the dictionary. Letn € Z-_;; we define the open subgroups
of K:

Ko(p™t) £y {g e K,st.g= [ “ b ] fora,b,c,d € ﬁ’p}. (3)

pn+1 c d
0 1
pn+1 0
representation which will be denoted as o’gﬂ (or simply o, if there is no risk of confusion). Explicitly,

As [ } normalizes Ko(p™*!), the representation o, s, (,n) induces, by conjugation, a Ko(p™*?)-

we have

n a b d c
o b, o =l iy o

We can therefore introduce the representations R, 41:

DEFINITION 2.3. Let n € Z>_;. The K-representation R, is defined as

def

K 1
Rn+1 = IndKO(pn+1)O'n+ .

r

We can extend the action of K on R,y to an action of KZ by letting p € Z act trivially; the
resulting representation will be denoted again by R, and we will pass from the one to the other
without commentary.

Thanks to the decomposition (2) we get the following, elementary, description of the R,,:
LEMMA 2.4. Let n € Z>_; Then:
10



ON SOME REPRESENTATIONS OF THE IWAHORI SUBGROUP

i) right translation by o™*'w induces a bijection
K/Ko(p"™ 5 KZa " 'KZ/KZ;
1) we have a decomposition
— Al n+1 1 0 n+1y.
k=] [1 O}Ko@ LI |y 5 | motm:
Aelpnt1 NeT,
Moreover, if 1 < m < n we have a decomposition
Ko™ = JI | v | Ko™
pm)\/ 1 )
Alelnﬁ»lfm

iii) the family

Al i 1 0 i '
{[[1 o]’X JY]]’[[pX 1}’X JYj]forAGInH,XeImOs<r}

defines an Fp—basis for the representation R, 1. Moreover, if 1 < m < n, the family

{l [ N } XTIV for A € L1, 0< j <1}

defines an Fp—basis for the representation Indfgg Z?l)aﬂ .

Proof. Omissis. O

The relation between the representations R, and the compact induction Ind%zaﬁ |z is then
described by the following

PROPOSITION 2.5. Let n € Z>_1. We have a K Z-equivariant isomorphism
Py W(n+1) > Ry
such that

L. A1 o
Pt ([gn10 XEIYI]) = | [ Lo } Xty ]

®py1([gn o, XELYI]) = | [ 1o ] , XIyr=i]

pN 1
for n > 0 and
®o([1e, X2IY7]) = Xyl

for n = 0.
In particular, we have a K Z-equivariant isomorphism

IndIG<ZU2 — EBR”
neN

Proof. Elementary (see for instance [Mo], Proposition 3.4, whose proof generalizes line by line). [J

We introduce now a convenient F-basis for the representation R,1. Thanks to the transitivity
™)

IndKO (p

m m+1
Ko(pn+1)0r %Indgg(p ) Ind%o® )aﬂ

(pm+1) Ko (pntl)

(where 0 < m < n) we see that a Vandermonde argument together with an immediate induction
give us the following:

11
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LEMMA 2.6 (Definition). Let n € N. An F,, basis for the K-representation Ry1 is described by
the elements

- L 1 0
B ) 530 3 O w[ % ] [1, X*nyten]

L1seenslyy P /\iqu pi[)\ipz] 1

0,n de [, A 1 1n
F( )l (ln—i-l) = Z )‘00 [ [10] 0 ] [1’FL(1,..~,)Z (én-&-l)]

é())'“),n “n
M €EFy
for I; € {0,...,p— 1}/ (where i € {0,...,n}) and ;1 < r, with the obvious conventions that if
n = 0 we have
F@(LO) (él) d:ef [1’ Xﬂ*ln.»ﬂyl,ﬁ*l] .
For notational convenience we define

R0 l) # (~1)xtoy =l

RV @) E vy,
Such basis will be denoted by %,+1.
The subset B, | C Bn+1 described by the elements of the form F;E)OT); (1,,4+1) will be referred to

as the set of positive elements of R, 11; the Fp—linear subspace generated by the positive elements
will be denoted as R:Lr 11

Similarly the subset %, C %41 described by elements of the form Fl(ll’n) (ly4q) will be

ol

referred to as the set of negative elements of R, 1; the Fp—h’near subspace generated by the negative
elements will be denoted as R, ;.

Hecke operators on the R,.1. Let n € N. Thanks to Lemma 2.1 the W (n)-restriction of the
operator T gives the Fj-linear morphism

Tlwmy: W(n) = W(n—-1)@W(n+1).

Such restriction is K Z-equivariant (by Cartan decomposition) and composition by the natural
projections gives us the K Z-equivariant operators

Tr:W(n)— W(n+1) T, :W(n) - W(n-—1).
By transport of structure (via the isomorphisms of Lemma 2.5) we get morphisms
TY:R,— Ryy1 T, :Ry— Ry

(where we used the same notations for the operators on W(n) and R,,). Their description in terms
of the canonical basis of R, is immediate, following from Lemmas 2.1 and 2.5:

LEMMA 2.7. Let n > 0 € N. The K Z-equivariant operators T, ,T); are characterized by

TF: R, — Ron1

L 0
(1, X7yl ] s (D)l Y (A ) [ 1 ] 1, X]
An€F, 1
Tn_ Ry — Ry
r—L,yL, Op1, [1,YT] if > 1
[1, X" Y] { R N

12



ON SOME REPRESENTATIONS OF THE IWAHORI SUBGROUP

For n = 0 we have
Ro — R1

r— r—lg\ T A 1 T r
X+ LOYéO = )\; (_1)7 LO)‘O 0 I: [10] 0 :| [17X7] +61079[17X7}'
0 q

Moreover, the operators T, are monomorphisms for all n € N and the operators T, are epimor-
phisms for all n € N>.

Proof. The characterisation of the operators 7. follows by the explicit descriptions given in Lemmas
2.1 and 2.5.

As T;F maps the basis %, into a subset of %1, the operator is injective for n > 1. As [1, Yf]
(resp. Y1) is a K-generator for R, 1 (resp. Ry) for n > 2 (resp. n = 1), the operator T, is
surjective. O

We identify R, with a K-subrepresentation of R, via the monomorphism 7,7 without any
further commentary. For any odd integer n > 1 we use the Hecke operators T’y to define (inductively)
the amalgamated sum Ro ®r, R2 @R, - - DR, Rpy1 via the following co-cartesian diagram

n

T
Rn( Rn+1
—pran—10Ty, Prot1
Y
Ry ®Rr, R2 ®ry -+ ®Rr,_», n—1 > Ry ®r, R2 @R, -+ ®r,, Rnt1

(where we define pro to be the identity map). Similarly we define the amalgamated sums Ry /Ry ®g,
-+ @R, Rp+1 for any positive even integer n € N+. The following result is then formal

ProposITION 2.8. For any odd integer n € N, n > 1 we have a natural commutative diagram

ying

0 R, Rn+1 Rn—i—l/Rn —0
¢—prn,10Tn_ ¢prn+1 H
0—= Ry @R, - ®R,_» Rn1 —= Ro ®R, - - ®R, Rug1 == Ruj1/Ry —0

with exact lines.
We have an analogous result concerning the family

{R1/Ro @R, - ®Rr, Rut1}ncon{0}-
Proof. Formal. See for instance [Mo], Proposition 4.1. O
The following result let us complete the dictionary

ProrosiTION 2.9. We have a K Z-equivariant isomorphism

(07,0, 1)z = lim (Ro @r, - ®r, Rny1) & lm (R1/Ro Ok, - Or, RBnt1). (4)
nodd n even
Proof. The proof is formal and identical to [Mo], Proposition 3.9. O

REMARK 2.10. We can give analogous (in the evident way) definitions in the case where F' is any
finite extension of Q,: we would then get a statement completely similar to Proposition 2.9.

13
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3. First description of the Iwahori structure

The goal of this section is to give a first, general description for the Ko(p)-representation 7 (r, 0, 1)| k, (p)-
The endpoint is Proposition 3.5, which is the “Iwahori analogue” of Proposition 2.9 of the preceed-
ing section. More precisely, for each n € N the block R, ;1 has a natural Ky(p)-equivariant splitting
(by Mackey decomposition)

Rosi =Ry, &R,
which is compatible with the Hecke operators T/ in the obvious sense (cf. Lemma/Definition 3.2).
This will enable us to repeat the constructions of §2, i.e. the construction of the inductive family of
amalgamated sums - - - @ px RE 1, endowed with a natural filtration (cf. Lemma 3.4) .

Thanks to Proposition 3.5 we see that we can content ourselves to the study of the amalgamated
sums - -+ @ pa Rf 1+ actually we have a Ko(p)-equivariant surjection

(@"'@RIR:{JA)@(M_I}H”'@R; R;+1)€B(h_r>n"'®R;‘{RZ+1)@(11_I>H”'®R; R.1)

n odd n odd neven n even

1
™, 0, Dl ko p)
whose kernel is “small” (and explicitly determined).

The following elementary result will be crucial.

LEMMA 3.1. Let a € {0,...,q— 1}. Then

Z)\a: 0 ifCL?éq—l
-1 ifa=qg-—1.

AeF,

Proof. Omissis. O

The representations Rf 1 and the Hecke operators (TF)Pos:nee. Fix n € Nj the Fy-linear
decomposition given by Lemma 2.6

Rpq1 = RZH SR, (5)

is easily checked to be Ko(p)-equivariant (realising the Mackey decomposition for Ry 1|k, p)) and
we clearly have a Ky(p)-equivariant isomorphism

Ko(p) n+1

R, = IndKO(an) -

We moreover define the following Ky(p)-representations:

Rf“ Ry, Ry ™ (Mg, (Ri/Ro)" L Im(Rf — Ry Ri/Ro).

The decomposition given in (5) and the description of Lemma 2.7 lets us define 2 the Hecke
operators (T;F)P%°¢ on the representations RE it
LEMMA 3.2 (Definition). Let n € N3;.

i) The restriction of the Hecke operator T,f on the Ky(p)-subrepresentations R}, R, of R,
induces two Ky(p)-equivariant monomorphisms,

(TP : R} < R},
(T;F)™®: R, < R,

2We apologize to the reader if the notation (T)P°® "% looks heavy. We believe it is convenient if we want to be
precise and keep track of the various parameters on which depend the representations we deal with.

14



ON SOME REPRESENTATIONS OF THE IWAHORI SUBGROUP

i1) The restriction of Hecke operator T, on the K(p)-subrepresentations R, R,, of R,, induces

n
two Ko(p)-equivariant epimorphisms,
(T,)P® Ry — Ry 4
(T,)"®: R, - R,_,
Proof. Except for the operator (T} )P, the result follows immediately from the decomposition

Rl ko (p) = R} @ R, and the properties and characterisations of the Hecke operators ..
Concerning (77 )P* : R{ — Ry we notice that

(TP (Fy) = SoXEY D A0
I<T Xo€Fy
and the result follows from Lemma 3.1. 0
COROLLARY 3.3. The natural K(p)-equivariant map
Ry — (R1/Ro)*
is an epimorphism.

Proof. Omissis. O

Amalgamated sums and first description of the Iwahori structure. Using the Hecke o-
perators defined in Lemma 3.2 we can introduce the following amalgamated sums, analogously to
the constructions of §2.

Let n € N be odd and e € {4+, —}. We can define inductively a natural Ky(p)-representation
RS @Ry -+ ©re R} 1 together with canonical morphisms pry ,¢;_; via the co-cartesian diagram

(T)*

Ry Ry 1
—(prn—1)%o(Tn)*® 3 (prov1)®
L[ [ ] L’:Lil [] v [ ]
RE ©Rs - @pre_, R} = > R} @ps -+ ®Ory, R} 4.

(with the convention that (Tjj[)Jr 4 (Tjj:)pos and (Tji)_ = (Tji)neg).

For n € N even and e € {+, —} we can define the amalgamated sums (R1/Ro)*®gg- - Ors R}, 11,
together with canonical morphisms pry  ;, ¢y _; in the evident analogous way (with the convention
that (Rl/Ro)_ = Rf)

The following result is similar to Proposition 2.8:

LEMMA 3.4. Letn € N beodd, e € {+,—}. Then ;_, is a monomorphism, pry, | is an epimorphism
and we have a Ky(p)-equivariant commutative diagram with exact lines:

(Tn+ ). Tn4+1

0 Ry ’:L+1 ;LH/RZ —0
|-
1 Prag

&pT:Lfl
0—= RY @py - Bpre_, RY_| > R ®py - Bps Ro,y —>= RS, /R —=0.

We have an analogous result when n € N~ is even.

15
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T)* (Ty)*
Proof. The proof is identical to Proposition 2.8, using that the maps R} N R and RS 2
(R1/Ro)® are epimorphisms. O

In order to give a first description of the Ko(p)-representation 7 (r,0, 1)|x,(,) we are now left to
determine the relations between the amalgamated sums --- ®re Rp | and the restriction (--- @g,

Rn—l-l)‘Ko(P)'
We will treat in detail the analysis of the limit ( th Ry ©R, *+* ©R, Bn+1)|Ko(p)- The case n

n,odd
even is proved in a similar way and is left to the reader.

PROPOSITION 3.5. The decomposition Ry |, = R, ® R, induces the following Ko(p)-equivariant
exact sequences:

0,—1 1,-1 . . _
0— <(FQ§ )(9)7_1?% )(@)»E = (1 R Spe -+ Spe Riy) & (lim By @p o @y Ryyy) =

nodd nodd
— (h;n Ro ©R, -+ ©R, Rnt1)lKop) = 0
nodd

and

0= (FVQ).~F O, = (lm (B1/Ro)* @pp - @ Ri) © (lim B 6o O Biiy)
— (lim (Ry/Ro) ®r, -+ @R, Rns1)|ro() = 0.

n even

Proof. Let us assume n odd, leaving the case n even to the reader (the proof being analogous). The
functor lim is exact if the index category is filtrant and the forgetful functor For : Repg, ) —
—>

Vectfp commutes with h_rr)l It is therefore enough to show that we have an inductive system of exact

sequences

0,—1 1,-1 - -
0= (Fy> 2(0), —F" D 0))g, = (B ©pr -+ @ Bl & (Rg ©p - O Rypyy) =

— (RQ ®Dr, - DR, Rn+1)|K0(p) —0

with the natural morphisms Rf ©gs -+ - ©rs R} 1 — Ro @R, - ®r, Rnt1 being injective. The proof
will be an induction on n.
Let ® € {4, —}. By the universal property of the push out we deduce the following commutative

diagram
0—|—= R - _,Ra Dre RS — R3/R} —=0
0 — Ro (Ro @, R2)lro(p) Ry /Ry 0

and the morphism f, is injective by the four Lemma applied to the “bottom” diagram: recall that
(T5h)* is injective and we check easily the injectivity of the morphism R$/R} — Ra/R;. We deduce

16
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the commutative diagram with exact lines

0——R§ & Ry — (R§ @ps B3) © (Ry ®p- Ry) — (RS /R]) © (R /Ry) —=0 (6)

| | |

0 Ry (Ro ®r, R2)|K0(p) Ry/ Ry

The isomorphism (Ry /R{) @ (R; /Ry) = Ra/R; and the exact sequence
0= (B Q). ~F" (@) = RS © Ry — Bo =0

give the result, via the snake Lemma applied to the diagram (6).
We treat now the inductive step. By the inductive hypothesis and the definition of the Hecke
operators (7, nj[)l’os’neg , we dispose of the commutative diagrams

ReC n
1.1—1C Rp—1

| |

Ry ©pe - ®pe_, R _|“— Ro @R, - ®R,_, Rn—1

(our inductive hypothesis giving the injectivity of the lower arrow) from which we deduce the
following commutative diagram with exact rows

L] L]
Rpy1/Bp =0

n+1
0 Rn, Rpi1 Rpi1/Rn —— >0
0 R® R® —> R® R® —0
Ore_,fin—1 ORre Bni1 nt1/Bn
fo
!
£

0= (&R, oBn Vg, = (&g —————— Rpy1/Rn ——>0.

n2 Fnt DIKg (p)

Again, the morphism f, is injective by the four Lemma and we deduce as well the following com-

17
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mutative diagram

(Ry Opr - @Rg_l RY )@ (Ry Bp- 6935_1 R, ) (Ro ®R, *+* ®R, 1 Bn—1)|Ko(p)

(Rg @Rj e GBR:»FH R;t-i-l) ©® (RJ EBR; @R;H R;-H) (RO @R, - OR, Rn-‘rl)’Ko(p)
(Rys1/RE) @ (R /Ry) R i1/Ry
0 0.

As the natural morphism (R, ,/R}) @ (R, /R,) = Rn+1/Ry is an isomorphism, the conclusion
follows by applying the snake Lemma and using the exact sequence

0,~1 1,-1 - -

0= ((Fy"2(0), —F" D 0))g, = (B ©pr -+ @pe  RE )& (Ry Gp o @ Ry y) >

— (Ro @R, - DR,,_» Rnfl)’}(o(p) — 0.

—2
coming from the inductive hypothesis. O

4. Representations of the Iwahori subgroups

In this section we introduce the fundamental techniques which let us describe easily the Iwahori
structure of the representations R;—L 11, appeared in §3, in terms of simple Euclidean data. Appro-
priate refinements of such methods let us, later on, describe more complicate objects, such as the

representations Rf 1/ R or the universal representations 7(r,0,1) appearing in §5.

We hope that suitable improvements of the ideas and techniques presented here will eventually
lead to the detection of the “good” supersingular representations which should appear in a mod p
local Langlands correspondence (see also Remark 4.3).

We focus our attention on the representations Indﬁggz ,)L H)l: the description of Rf_ﬂ can be

obtained with identical techniques (cf. sections §4.1.3 or 4.2). The Iwahori structure of such objects
-given by Proposition 4.2- may look complicated, but the key point is that its combinatorics can be
controlled by an easy Euclidean method which we outline as follows.

First of all we detect a “canonical” F-basis 4 for the representation Indgg 25 2L+1) 1 (definition 4.1).
We see that each element Fl(ll,m,)Ln € A is parametrized by a family of f-tuples I, € {0,...,p — 1}/,
family which can be used to define a point (in the naive sense) (zo,...,z7—1) € R/~1. In this way,
we can associate, bijectively, the elements of the basis Z to the integer points of an f-hypercube
R, of side p” — 1 embedded in Z/~1: this is detailed in paragraph 4.1.1.

The following step (§4.1.2) consists in veryfing that the Euclidean lattice Z describes the Iwahori

structure of Indgggg 7)1+1 )1, in the sense of Definition 1.7. As & is an f-hypercube, this means that

Ko(p)
Ko(pn+1

with the antidiagonals Xo + --- + Xy_1 = constant (see also Figure 3), i.e.:

the Iwahori socle filtration of Ind )1 is deduced by successive intersections of the lattice %

18



ON SOME REPRESENTATIONS OF THE IWAHORI SUBGROUP

\ The squares with thicker lines

N are the F(i:l}—hlocks.

N

\x0+x]— N

F1GURE 3: The Euclidean picture of Indgg EZ ::21)1 for p =5, m < n—1. The N-th composition factor
for the socle filtration is described by the points of #Z lying below the line Xy + X; = N. Each point

should be interpreted as a F; (n_lin)—block; the square with thicker lines are then the F;:)—blocks.

én_ly

(»)

i) a linear basis for the N-th composition factor of the socle filtration of Indgg (i 4 +1)1 is given by
the point lying below the hyperplane X +---+ Xy 1 = N

i1) a linear basis for the N-th layer of the socle filtration is given by the points lying on the
hyperplane Xo +---+ Xy_1 = N.

This is the content of Proposition 4.2, the technical heart of the methods introduced in this
paper. We verify, via the delicate estimates on Witt vectors of Appendices A and B, that the
behaviour of the canonical elements Fl(llf)lf ) fits the previous Euclidean picture.

The interested reader is invited to see the beginning of section 4.1.2 for further details concerning
the general techniques and phenomena appearing in the proof of Proposition 4.2.

As annonced the same techniques let us detect the Ky(p)-structure for the representations Rf E
the involved combinatorics can be handled with the help of a simple Euclidean picture (an f-
parallelepipoid). The precise statements are Propositions 4.10 and 4.11 which deal with R, and
R} 1 respectively.

The constructions and computations of this section let us, as an application, determine the
Twahori structure for principal and special series: this is the object of §4.3. Again, in terms of
Euclidean space, we see that the successive layers for the Ky(p)-socle filtration are detected by the
intersections of N/ (the “hypercube” associated to such series) with the hyperplanes Xo + - +
Xy_1 = constant.
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4.1 The negative case.

Let 1 < m < n be integers. In this section we examine the Ky(p)- socle filtration (and the extensions
07 whore o)
F; is a smooth character of Ko(p"*1) (i.e. the inflation of a character of the finite Borel B(F,) by
the morphism Ky(p"™') — B(F,)). Thanks to the canonical isomorphism :

between two consecutive graded pieces) for the representations Tnd®

Indigp(p ) x = (Ind o 1) @ x

we can assume that y = 1 is the trivial character. Finally, let {e} be an F,-basis for the underlying
vector space associated to the character x.

(™)

We introduce now the canonical base of Ind Ko(p Ko(pn+ )1 and its interpretation in terms of lattices
of Rf.

DEFINITION 4.1. For j € {m,...,n} let |; = (lj(o),...,lj(-f_l)) € {0,...,p— 1}f be a f-tuple. We

define the element F (m, 7?)1 € IndKOEpn+)1)1 as®

1 0
m n) def ]
,mv 7n Z Z >\p [ [)\p%] 1 ] [1’6]'
Jj=mX\;€F, J
. . (n+1,m) def def
For a notational convenience, we define F) = [1, e] and l, 1 =
—n+1’ in
The set

@““{Fwﬂﬁelmﬁ“ﬂﬁgmuz ,%)e{m,ndy-uff+1m}

Linseos Ko(
is an F,-basis for Indggg Z?l)l.
The fact that £ is an F basis for Ind E ") )1 is again an induction together with a Vander-
monde argument as for Lemma 2.6.

4.1.1 Interpretation in terms of lattices. As anticipated in the introduction, each element
of % can be seen as a “point” of a Z-lattice in the standard Euclidean f-dimensional space Rf:
such correspondence is given by the injective map

2L R (7)

W L <Zp7 ml (Li-m)) ""ij_mlj(lf_lﬂ_mb)

j=m
whose image will be denoted by %. We notice that Z is a f-hypercube of side p"~™*! — 1, with a
natural recursive structure in the following sense: for an f-tuple ¢, € {0,...,p — 1}/, the subset of
functions whose last p-adic digits are fixed to be equal to ¢,,, i.e
{F(:’n?ln o €A ;€ {0,...,p—1}f, forméjén—l},
corresponds to an f-sub-hypercube of Z of side p~"" — 1 via the bijection P. It will be referred to
as the Fz(n)—block of Z. The hypercube Z is then obtained as the juxtaposition of the Fz(n)—blocks

1
3As remarked by the Referee, if \; runs over F, so does )\p and the expression for Fl(m")l may be simplifid.

Nevertheless we find our writing well adapted when we need to manipulate the (pseudo- )homogeneoub degree of
universal Witt polynomials in a coherent way, see for instance the note in Proposition 4.4.
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for varying t,, € {0,...,p— 1}/. This is visualized, for instance, in Figure 3, where the squares with
thicker lines correspond to the F( ")_blocks. The notion of block can be adapted in the evident way
if considering the functions Where the k last p-adic digits are fixed (with 1 < k < n—m+1): we
get this way a f-sub-hypercube of Z of side p*~™+1=F — 1.

We are therefore allowed to apply the terminology of real Euclidean spaces to the elements of 4,
meaning their image through the map P. In particular if e; o (00,3, ---,07-1,4) € {0, 1}/ we define

Bty B
Fm,n — 0 1fP<_( (F}mfb_’l ) 61) _(Z]
Lseoil) e the only element of P“(P(Fm " 1) — ei) otherwise.
In order to give the statement concerning the Kg(p™)-structure of Indggg :l+)1)X we still need
some notation. If ({,,,...,[,,)isa (n+1— m)f—tuple, we define
-1
Ny - .. defZl +p szH (ST
s=0
f—l -1
(s 1) = QP I -+ Q_p°IY);
s=0 5=0

in particular any F( )l lies on the antidiagonal Xo + -+ 4+ X;_1 = Nypn(Lyys -5 L)

7rL7 Zn

Let N € N. We define the F-linear subspace

Ko(p™ e m,m
(Indi 2 )N E(E™" € B st Nppnlls -2 1y) < N ;

Smoeobin

it is the subspace generated by the functions lying strictly below the antidiagonal Xo+... Xy = N.
We refer the reader to Figure 3 to have the Euclidean interpretation in the case f = 2.

Let (,,,---,l,) be a fixed -tuple. For s € {0, ..., f — 1}, we define

— def

Zs = {CL S {m, . ,n}7 s.t. l£8+a7mj ” 0}
and we set
aer [ min(=Z) if= #0
ao(s) = { n+1 otherwise.

The Euclidean meaning of ag(s) is clear: if we consider the F(GO(S) ) -block then the function

ao(S)’ sl

F( ’n)l lies on its s-th face (which is a (f — 1)-hypercube of side p® ()= — 1),

The Ky(p™)-structure of Ind E ) F1)X is then given by the following

PROPOSITION 4.2. Let r & (ro,...,rs—1) €{0,...,p— 1}/=1 be a f — tuple, m,n be integers such

that 1 < m < n and let Fl( ...)l € Indgggﬁl)xz be as in definition 4.1. If a, b, ¢, d € O are integers

def | @ b m
such that g { Ve d } € Ko(p™) we have
-1
gF"") = alo b (g) (B = Y@@ TR L )
s=0
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K m
), we have y € (Ind"°0") 5y,
In particular, the Ko(p)-socle filtration, as well as the extensions between two consecutive graded

pieces, of Indgggi :21) Xy is described by the associated lattice % .

where, putting N & Nonn Ly - -1

r=n

We emphatise again the meaning of Proposition 4.2 in terms of lattices in R/: the socle filtration
of Indggg Z:L)l) X is given by cutting up the hypercube # by the antidiagonals Xo +---+X;_; = N
(precisely, socy is obtained from the cutting by the antidiagonal Xo+---+X_; = N); the extensions
between two consecutive graded pieces are visualized by the segments of length 1 obtained from the
cutting of # by two consecutive antidiagonals Xo+---+ X;_1 =N, Xo+ -+ X;_ 1 =N — L.
Here below an example for f = 2.

A
s_—1
prtl—m_g . x50 8
xpa~ P

2
1 pxee?

X7 LT

1 2 ... . prtl=m_g

Here, each “point” in the lattice corresponds to a function Flm’n ;€ % according to the map

boyseesly,

P described in (7). The N-th composition factor socN(Indggg :21)1) of the socle filtration can be

read as the intersection of R with the semispace Xo + --- + X;_; < N, and the N-th graded
piece socN(Indgggzzzl)l)/soc]\f_l(Indgggzﬂl)l) as the intersection with the antidiagonal Xg+-- -+

X1 = N. Finally, a “point” of coordinates (Z?:mpj_mlgu_m”, Z?:mpj_mlg.tlﬂ_m”) should be
understood as the character XZae(lm"“’én).

REMARK 4.3. We hope that suitable improvements of the techniques introduced here could lead to a
better understanding of some important representations of the Iwahori subgroup (Rff 1 Rf 1/ R,f,
the universal representations...). For instance, our result shows that for a fixed point P € % lying
on the hyperplane Xog +---+ Xy_1 = N, the Ky (p)-subrepresentation generated by P lives inside
the linear space generated by P, the elements P —e; fori € {0,..., f —1} and some elements lying
strictly below the hyperplane Xo+---+ X;_y = N — 1. In particular, it is not clear (and probably

false) that the Ko(p)-subrepresentation generated by P = (xo,...,x¢—1) lives in the subspace
Xo<xoN---NXp_1 <wp_y.

An answer to this question would be of great importance in understanding supersingular represen-
tations for GLa(F).
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4.1.2 Proof of Proposition 4.2. 'The section is devoted to the proof of Proposition 4.2. It
is the technical part of the paper and the methods rely on a careful analysis of suitable invariants
associated to certain universal Witt polynomials. Such invariants, together with the choice of the
“natural” linear basis %, lead us to the following key phenomena:

i) the elements of the canonical basis # are “well behaved” with respect to the action of g €
Ky(p), i.e. one can naturally describe gFl(l’n)l

219 kn

as a linear combination of elements of Z;

)

i1) the parameters describing the elements appearing in the linear development of gFl(l{filn depend

on some universal Witt polynomyals, whose (pseudo-)homogeneous degree is known (see section
6.4 for the precise definition of pseudo-homogeneity).

iii) the correspondence between the elements of # and the points in the associated hypercube is
well behaved with respect to the homogeneous degree of the universal Witt polynomials.

It is here that we need the results of the Appendices A, B, which deal with certains invariants
of some universal Witt polynomials; throughout the proofs of Propositions 4.4, 4.5, 4.7 we make
use of some notations introduced in such appendices, in particular §6.2, 6.3 and 6.4.1 (we will give
precise references in the proofs as well).

Thanks to the decomposition

Ko(pm):H_[l ﬁp][1+pﬁp 0 H 1 0]

0 1 0 1+pOp || pmop 1 (8)

for m > 1 we are led to study separately the actions of lower unipotent, diagonal and upper
unipotent matrices on the elements of the canonical basis 4: this will be the object of the next
three paragraphs.

The action of lower unipotents matrices. We study here the action of the closed subgroup

{ pmlﬁp (1) ] of Ko(p™) on Ind Ep " 21)1; we first need to introduce a family of Fp—subspaces of

IndKngjl)l.
Let F(m n)l € % and set (xo,...,Tf_1) e P(Fl(m"% ) € %. We define the F,-subspace
W .1 of Indgggﬂl)l as follows
P .1)) (.. &' _1) €A s.t.itexists k > 0for which
f-1
E(p—1) < Z(ws —zy) < (k+1)(p—1)andz} < z; + kforallj =0,...,f -1}
s=0
The image P(2 .1)) C R/ looks as a snowflake: in Figure 4 an example for f = 2 (and p = 5).
It is immediate to check that if F(m n)l, €W .. then QU@;M )y € W .., The action

m”

1 0. . . .
of [ Op 1 } is then described in the following

PROPOSITION 4.4. Let F{™") € %, and write N = Ny (L, ... ,1,). Let g = [ L0 }

{ 1 (1) ] for ¢ € Op. Then we have

p"OF
f—1
(my;n) [stao( m] ~(m,n)
Fm7 7ln m’ 7 n Z laO(S ’ F(Lm7,,,7ln)—65 + y
s=0
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Euclidean structure associated
to the subspace W, ¢ via the map P
M, ..., &N

I\ . (m.n)

fm,....In

AN

%\

FIGURE 4: Euclidean interpretation of 2, ;) for p = 5. By Proposition 4.4 the representation

L
generated by Fl(m’n)l under the action of lower unipotent matrices lives inside the linear space

bonsreensby

generated by 2 ;). Notice the fractal structure due to the behaviour of Witt polynomials.
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for a suitable y € (Ind E ngl)l)N,l. More precisely, via the projection

K pr Ko(pm™ Ko(pm
Indj277) 1 % Indf0®7), 1/ (Ind 0P 1) ),

the image of the element y is contained in the image of the subspace W ;.

. 1 . .
Proof. As the action of [ Oy 1 ] is continuous, we can assume that ¢ belongs to a set of
F
1
topological generators (for the additive structure) of &p; in particular, we can assume ¢ = [ur™ ]

for p € Fy,.
Using the notations of §6.2, we can write the following equality in p" @ /p" 1 Op:

]+ Y] = Zpu‘” 57 )

A direct computation describes* the action of g on the function Fl(m’n)l :

byseesly,

n—1 ) . - . ~ i 1 0
- <?J><—so<soym>2<x;“>%%(—sj_m(Sj—mm““>”“[ N

/\j EFq

As deg(sj 1( ;) < p? for each j € {1,...,n —m} we can apply Proposition 7.3 (with T,,+; =
Sj— 1(5 )) to conclude that

F(m n)l _ F mn) + ZBsF(m ,n)

m7 =n m’ 7n m?* 7n) €s

+ty

Ko(p™)

where y € IndKO(pn +1)1 is the element described in the statement, for suitable elements 35 € F,.

We are now left to prove that s = —(uﬁ)p3152230(5)_mj.

(0),s _(b)

We use the notations of Proposition 7.3 (in particular, we need the quantities Koy Ko used
in its proof) and we recall that, for b = m + 1,...,n, a polynomial —sp_, 1(Sp—n(X,Y)) is
homogeneous of degree p*~™ if X, has degree p®, Y degree p° (and Sy =Y).

If we pick an element

dof S Lo e 1o
R [pm[m 1]"'Z(A") [ 3 1][”

Am€F, An€EF,

(m n)

appearing in the development of gF ", we have, for b e {m+1,...,n},

b—1
pafmﬁl(lb),s _ Z-l(ys)pbfm o al(;S)

a=—m

where il()s) (pm—1) > l() ) > z'l(]s) is the exponent of Y in the fixed monomial of —sb_l_m(gb_m)il(75>

(recall that any monomial Y° Hb 1= " X" with ¢ =0 or > a; = 0 appears in the development of

4Tt is in such situations that Definition 4.1 turns out to be useful, as it let us handle in a coherent way the exponents

AT ~ TN
of the \; in the development of ()\JPJ Yo 74 (=85 (S gy 1) PITT )+,
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m). Considering that p >

+ pn_m 5(/€n) <

3 the inequalities

5Ly — i) + 5P R o s(plm M ey 4
Ap(8(Lst — dmsr) + (P! “””)) cs(plm Ly
T (g — dn) + s R ) + (5L, — 4) <
f—1
< 8Ly — i) + Y s(REHD) 4
s=0
f—1
m m—+42
DUy — 1)) + O (RGP 4 ps(xlri 7)) +
s=0
f-1
+ (O (6(65%) + ps(sly3) + -+ s(60)) + " s, — ) <
s=0
n f—1
Zp sl — i)+ Y () — > alY)
b=m+1 s=0

have to be equalities if we furthermore require our element to lie on the hyperplane Xo+---+Xy_1 =

N —1; in particular we must have il()s) = 0 for all couples (b,s) € {m,...,n} x{0,..., f—1} except
one and only one, say (b, so), for which we must have ig‘;o) =1.
We notice that for by # m we require furthermore that oy, = 1 i.e. the exponent of Y appearing

in the fixed monomial of _Sbo—m—l(gbo—m) is 1. Thanks to Lemmas 6.3 and 6.4 we check that

€Tr =

L )psO (l|_s+a0(s)—mj )F(m ,n)

_(Mp ao(s) n—es,

=mrti=

as required.

We are going to study the action of the subgroup

1+ pOr 0 ]
0 1—|—pﬁp_

The action of diagonal matrices.

on the elements of #. If z € p™ O /p" T OF, an elementary computation shows that

1+ pa 0 1 0] [1 0 b
0 1+ pd z 1| |71
where £ € Ko(p"*!) is upper unipotent modulo p and 2’ € p™ O /p"*t'1 0 is determined by the
condition

= (1 4+ pa)~ (1 4 pd)z mod p" . (10)
We can therefore content ourself studying the action of an element of the form z o [ (1] 1 —if)pa }
for o € OF.
PROPOSITION 4.5. Let g € 1 +é)ﬁF 1 +(])7ﬁF and fix Fé(:n)l € B; write N & Ny -5 1y)-
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ON SOME REPRESENTATIONS OF THE IWAHORI SUBGROUP

We then have the equality
g- F(mn)l —anl +y

m>o 2“n m7 =n

where y € Ind E ngl)l)N_l.

More prease]y, via the projection

% T Ko(p™ Ko(p™
I d O(p ) —»Ind 0(pn-21)1/(IndKSEz"’el)1)N7(pf+2)’

Ko (p”“) Ko(p
the image of y Is contained in the image of the subspace 20 ;) and writing
y= BF"
i€l

(for a suitable set of indices I and scalars (3; € F; ) we have that each function Fl("z;;) L () which
is not in the kernel ker(pr) lies on an hyperplane

Xo+-+Xp 1 =N-tp-1)
for some t € N.

Proof. The proof is completely analogous to the proof of Proposition 4.4. As remarked above, it

1 0
0 1—|—pa] where o = 7% Op][

1
pJ

is enough to consider the case z = [ |. Using the notations of

§6.3 we see that

A+pa) Y- PN =Y PN + QY modp !

n—1 1 1 0
l; N ~ i n
=Y 5 (7) @ [ o LEPT
j=mi;<l; 7 XEFR pj[AJ ] 1 N
=0
(with the obvious conventions if n € {m, m+1}). As each polynomial (—g;— 1(@])) Fplhms-o o Ajmi—ml,

for 1 < j < n —m is homogeneous of degree p/ (in the shifted grading for which Amth 18 homoge—
neous of degree p” for h > 0) we can apply Proposition 7.3 with Ty,4; = (—qj— 1(Q])) to get the
first part of the statement.

We are left to prove 2). Consider an integer t € N and an hyperplane § : Xo+... X;_; = N —t.
Following the proof of Proposition 7.3, a necessary condition for an element

1 1 0 L 1 0
AR )m B AP )k 1 1,e
Z ( ) [pm[Aﬁl’"] 1] Z ( ) [pn[)\g"] 1 ] [ ]

Am€F, An€F,

appearing in the developement of (11) to lie in ) is then
Z P =N —tmodp — 1.

Again, as each polynomial (—qj_l(Qj)), for 1 < j < n — m is homogeneous of degree p’, and
s(h) = hmodp — 1 we deduce that inequalities (25), (26), (27) and (28) appearing in the proof of
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Proposition 7.3 are actually equalities in Z/(p — 1) so that we get
n
ijimﬁ(lij) =N —5(ip) modp — 1= N.
j=m
The conclusion follows. O

The action of upper unipotent matrices. We are left to study the action of the closed sub-

group [ (1) ﬁ;F ] on the elements of #. We recall that the action of Ky(p™) is continuous on
Ko(p™) 1 O . . . .
Ind Ko(pn +1)1 and the natural topology on 0 1 coincides with the topology induced (via the

natural immersion) by Ko(p"). Thanks to the isomorphisms of abelian topological groups

o ey

where the latter isomorphism is determined by the choice of a primitive element o € Fy of F, over

F, (cf. Serre [Ser|, Proposition 16 Ch.I) it is enough to study the action of elements g € [ [1) ﬁ;F }

of the form g = [(1] [T] ] for p € Fy.

We start with an elementary computation:

LEMMA 4.6. Let z € p™Op /p" ' OF and p € F,. We have the following equality:

I L

where £ € Ko(p"!) is upper unipotent modulo p and 2’ € p™Or/p" 1O is uniquely determined
by the condition

N
"= 21+ 2[u) " modp™t = (1) 1)) mod p !
j=0
for N & [l
Proof. Omissis. O

We are now left to use Lemma 4.6 and the results of §6.4 in order to describe the required action
of 1 Or |
0o 1 |

PROPOSITION 4.7. Let g € [ (1) ﬁl ] and fix F(m ”)l € B. Write> N =

mo L

def

Nopn(lops - -+ 1,). In the

quotient space 6

Ind n+1)1/(1nd ) )1)N—(pm—2)+1

5Of course, this N does not have anything to do with N = Lof L";lj We believe this conflict of notations will not give

rise to any confusion, as the meaning of N will be clear from the context.

5Tt is here that the assumption p # 3 is important: indeed, for p = 3, m = 1 the quotient space is
Indio(z n 31)1 / (Indﬁogz " +1)1) ~ which is too small to deduce interesting information about the action of upper unipo-

tent matrices.
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ON SOME REPRESENTATIONS OF THE IWAHORI SUBGROUP

we have the equality

(mn)  _ pa(min)

Liseesly bmreeosly

(1]
0 1

Using Lemma 4.6 and the results (and notations) of §6.4.1 we get the following equality in
Or/(p"t):

Proof. As remarked at the begining of this paragraph, we can assume g = ] where 1 € Fy.

N n a1 s
S (=) =Y P + U Jmod p™ !
§=0 j=m

so that, inside Indggg Z)l)l, we have:
n-! I L o 1 0
, bj TN —i. 7 i
it =5 5 (5) S 0P peun@E e |
J

j=mi;<l; =17 X;€F,
i, =0

nT In

and we recall that [7]' =0 for m < j < 2m — 1. As for each 2m < j < n the polynomial —uj_l(ﬁj)
is pseudo-homogeneous of degree p? — p™(p™ — 2) the conclusion follows from Proposition 7.4, with
Vi = —uj-1(Uj)- O

Proof of Proposition 4.2. The last step in order to complete the proof of Proposition 4.2 is
immediate:

(m;n)

PROPOSITION 4.8. Let F, ", € % and let a,d € F,. We then have the following equality in
Ko(p™) . .
Inng(an)l.
[a] O m,n) SO [a] 0 (m.n)
[ Fmm - = qelmrol)( | VBT

Liseeslp Liseeslp

In particular

[ [g] [2] }Fl(m,n)l _ ae(lm,..-,ln)—ps([ [g] [0 ])Fl(mv”)l

bypreesby —€s d] ,mw"a,n*es.

Proof. We just remark that for z = Z?:mpj[)\j] € p"Orp/p"t O we have

5w 1YL V]S ]

n

zlatd) =Y pi[Ai(atd)).

Jj=m

and that

O
Finally, for a,b,c,d € O as in the statement of Proposition 4.2, we recall the matrix equality
a b| [[a 0 1 0 1+ px 0 1y
pme d| | 0 [d] p"z 1 0 1+ pw 0 1

where z,y,z,w € O are suitable integers verifying z = c¢d—!. The result follows now from Propo-
sitions 4.4, 4.5, 4.7 and Lemma 4.8. O
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REMARK 4.9. We note that the bijection (7) depends on the immersion T : F, — F,, fixed in
the introduction and should be noted as P,. As another immersion 7" : F, — Fp is obtained
by composing T with a power ¢ of the frobenius on F, we see that the map P, is obtained by
composing P, with a power ®*, where ® € End(RY) is defined by ®(e;) = e|s41]- Hence, as the

antidiagonal is fixed under ®, Proposition 4.2 does not depend on T.

4.1.3 The structure of the representations R, . Fix an integer n € N. We describe here
the socle filtration (and the extensions between two consecutive graded pieces) for the Koy(p)-

representations R, ;. Again, we can identify the negative elements of R, ; with the points of a
lattice of R/ according to the following injective map

#r— R
n+1
1,n a— s+a—
Fl(l,‘..,)ln(én—i-l) = (ZP Hlet u)se{o,...,ffl}
a=1

whose image will be denoted by %, ,; we define in the evident way the subspaces (R, ;)n for
N e N.

The structure of R, is then sumarized in the following

def

PROPOSITION 4.10. Let n € N, Fl(llff)l (lyy1) € %, and let a,b,c,d € OF be such that g =

n

pc d
We have the equality

[ @ b } € Ko(p). Define finally the integer N = Nipg1(lys o lgq)-

I
—

S
9F ") (L) = oo be) () (BT () = Do (@@ P (1) oom BN (1) + )

llv"pn — llv"pn O(S) 21 in

w
I
o

where y € (R, |)N—1.
In particular, the Ko(p)-socle filtration of R, ;, as well as the extensions between two consecutive
graded pieces, are described by the associated lattice %, ;.

Proof. We notice that we have a Ko(p"*!)-equivariant monomorphism

K, n+1
ag”l) — InnggnH;Xz
r—1 ! ! T\ 1 0
XE 1Yot o (—1)mn Z (Ang1 )t gl [y PPFT [1,e].

Ant1€F, A P
By transitivity and exactness of the induction functor Indigg 7)1 +1)(o) we get a Ko(p)-equivariant
monomorphism

- Ko(p)
R, = Inng(sz)Xz
1, l Ln+1
By ) = (IR BTG

The conclusion is now immediate from Proposition 4.2. ]

4.2 The positive case

This section is again divided into two parts. We begin with the study of the Ky(p)-representations
R:H, for n € N: they are described in Proposition 4.11. We subsequently switch our attention
introducing other Ky(p) representations (the representations (Indﬁ0 (pn+1)xs)+ defined in §4.3) which
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ON SOME REPRESENTATIONS OF THE IWAHORI SUBGROUP

will let us describe the Ky(p)-restriction of principal and special series (see §4.3).

The philosophy is completely analogous to the one of the previous paragraph: we verify by a
direct computation on the ring of Witt vectors that the Ky(p)-structure of such objects can be
described in terms of f-parallelepipoids in the Euclidean space R/.

Fix n € N. We introduce the injective map

B =R

n+
0, i (Ls+i
lﬁiv7in(£n+1)+4>(j£:zflfb D) setors1)
i=0
which lets us interpret the positive elements of R 41 as points in a convenient lattice of R/. The

image of such map (which is a parallelepipoid of 51de p" T (rs+1) — 1) will be denoted as %, 41 We
still need the following notations (see also §4.1.1):

i) for a (n+ 2)f-tuple (ly,...,l,1) € {{0,....,p— l}f}nJr2 define the integers

n+1
Nogs1(los -1 lyy1) = Zp%@a)
f-1
def s s7(S
6@07 c v£n+1) = (Z l ZP l§L+1
s=0

ii) for N € N we define the F,-linear subspace
(RF, ) & <Flffjf?}ln (Lpsr) € By ste Nopsi(los o loir) < N> :
FP
iti) for a fixed (n + 2)f-tuple ({y,...,l,,1) and s € {0,..., f — 1}, we define
Zs = {ac{0,...,n+1}, st it 2o}

and we set

ao(s) & { min(Z;) if =5 #0

0 otherwise.

For a given positive element F;(Sf??ln (Ly4+1) we define the subspace 20
way.

Lok 1) 110 the evident, similar
The structure of R:{ 41 1s then given by
def

PROPOSITION 4.11. Let n € N, Flgoff)l (lyt1) € Bt and let a,b,c,d € Op be such that g =

[ ];Lc Z } € Ko(p). Define finally the integer N = No ni1(lo, - - Lyiq). We then have

~
[asy

G (L) = (@) ot Dy, () (B (L) = D (bd P IS (1) 000 B0 (1,,0) + )

lO7 L QO(S) 20070 in

W
Il
=)

where y € (Rn+1)N 1.
In particular, the Ky(p)-filtration, as well as the extensions between two consecutive pieces, is
described by the associated lattice %:{ 11

Proof. The proof is analogous to the proof of Proposition 4.2, using this time Lemma 6.17 and
Proposition 7.5. The details are left as an exercise to the reader. O
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4.2.1 On some other Ky(p)-representations. As announced in the introduction, we define
and study some Kj(p)-representations (denoted as (Indﬁo(pnﬂ) X)T) which naturally appear when
dealing with the Iwahori structure of principal and special series. The reader will realize soon that
the behaviour of the representations (Indg0 (pr+1) X)" can be treated with the same methods of §4.2
and 4.1; the proofs will be therefore omitted.

Fix an integer n € N, a smooth character y : Ko(p"t!) — F; and an F,-basis {e} for the
underlying vector space of x. The Ky(p)-representation (Indﬁo(pnﬂ) X)" is defined as the Ky(p)-

subrepresentation induced by Indﬁo(pnﬂ) x on the F,-subspace

zl 1
<[ [ [1] 0 } ,e] c Indﬁo(pnﬂ)x, z € In+1>Fp
(the Ko(p)-stability of such F,-linear space is immediately verified). Again, we have the

DEFINITION 4.12. Let j € {0,...,n} and let [; € {0, ... ,p—1} be a f-tuple. We define the following
element of (Indgo(pwl)x)+

n 1 1 0
Dn def )\lo |: AO 1 :| )\pj lj 1 ]-7 .
lo, iy Z Z A7) P 1 1.

M €Fy J=1X;€Fy
The family
Bt d:cf{@gjf}én € (Indf i)t L €{0,...,p—1} forallj€{0,...,n}}

is an Fp—basis for (Indﬁo(pnﬂ)x)jL'

O )l of %’* will be read as a point in a

Exactly as we did for R, ,, each given element F

n+1°
convenient lattice Z of R/ and the integers ag(s) (for s E {0, .. — 1}) can be assigned. More-
over, if N € N, the subspaces ((Indflgo(pnﬂ)xﬁ) ~ are defined in the similar, evident way (see the

introduction of §4.2 for details).

=n

The structure of the representations (IndgO (pr+1) X)" is then described in the next

PROPOSITION 4.13. Let r € {0,...,p — 1} be an f-tuple, n € N an integer and let a,b,c,d € Op
be such that g < [ ];Ic Z ] € Ko(p). Fix an element Fl(oof)l € B" and set N d:efNom(LO7 ce )
Then

f—1
0,n —1\e(ly,... 0,n T s+ag(s N
s=0

+
where y € (Indﬁo(pnﬂ)xi IN—1-
In particular the Ko(p)-socle filtration of (Indgo(pnﬂ) x;)t, as well as the extensions of two
consecutive graded pieces, are described by the associated lattice Z.

Proof. Omissis. O

4.3 The Iwahori structure of Principal and Special Series

We are now able to describe easily the Iwahori-structure of principal and special series for GLa(F').
Such result is essentially a formal consequence of the previous sections §4.1 and §4.2.1.
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For A\ € F; and r € {0,...,p — 1}/ we consider the smooth parabolic induction

GLa(F
IndB(ég ),u,\ ® Wy —1
where w denotes the mod p cyclotomic character and p) the unramified character verifying py(p) =
A. It is well known that for (r,\) ¢ {(0,£1), (p — 1,%1)} such inductions are irreducible, while, if
(r,\) € {(0,£1), (p — 1,+1)} they have length 2 and a unique infinite dimensional factor, the Stein-
berg representation (see also [BL94]). Thanks to the Iwahori decomposition and Mackey theorem
we have

GL2(F) GL2(0F)

Ind B(F) iy @ Wy 1]K—>Ind( o) Xr

and, since the elements f € IndG%Qg ) Qw1 are locally constant functions and B(Or)\GL2(OF)

is compact we have a natural isomorphism
GL2(0OF) ~ . K
Ind (2 )F Xy — h_n}IndKO(an)X;.
neN
Again, we can use Mackey decomposition to deduce

s ~ K ; -
I e X5l o)~ I (i0)X5 © (NG ey x2)

so that, by the exactness property of filtrant inductive limit, we get

GLy(F r ~ K s : s
Indi A" px @ W pis |1y )~ (i Indg ), xg) @ (lim (IndfS ) ™). (12)
neN neN
The isomorphism (12) lets us reduce to the case of the finite inductions Ind KO g 7)1 1)X5s (IndﬁO (p+1) xg)T,

whose structure is completely described in Propositions 4.2 and 4.13. Therefore
THEOREM 4.14. Let A € F; andr € {0,...,p— l}f an f-tuple. For any m € N~ we write
FQ(mBO) € IndGL2§F) 1y @ whny—1

to denote the characteristic function of Ko(p™).
The Ky(p)-restriction of the parabolic induction admits a natural splitting

GLy(F ~ K .
Indp 2y 13 © wHin Lo — (BmIndige®) 1) x3) & (lim (Indf ) X3) ).
neN neN
Moreover an F-basis %~ for liLnIndgngiH)Xz (risp. B+ for h;n(lndgo(pnﬂ)xz)*) is described by
neN neN

the elements

(Loo)  der
D D

A EFq

=g =
S~—
L~
—
S
> =
B =
— O
| I |
2
~—~
>
Eﬁ
=
3
—
s
3
:?/
Eﬁ"“
—_
| I |

(risp. the elements
OOO de: 1 % ]‘ 0
L G BT g I
Ao€Fq An€Fy P [An

for a varying sequence (,)nen. € {0,...,p — 1}0>) (resp. (I, )nen € {0,...,p— 1}(N)).
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If we associate the elements of such basis to points in R/ according to the law

o0
1, i i—1
FL(170?£)77, 7777 = (sz 1ll_s+z J)SE{Oavfil}
1=1

B Zp et se{o,...,f—l}

and write Z~ (resp Z7) to denote the image of = (resp. #8") by this map, then the Ky(p)-socle
filtration for @Indgggi ZL +1)Xi (resp. for h_n}(Inng(an)Xi)Jr), as well as the extentions between

neN neN
two graded pieces, is described by the associated lattice Z~ (risp. Z7).

The Iwahori structure of irreducible principal series follows.
As far as the Steinberg representation is concerned, we just need to notice the following fact:

LEMMA 4.15. Assume r € {0,p — 1} and let n € N. We have a K(p)-equivariant exact sequence

0 1,0 st K s s
0= (B, M) — nd s @ Indi ) g — (Indf o xa/ () ko) = -

Proof. The proof is an induction on n, the case n = 0 being well known (cf. [Br-Pa], Lemma 2.6).
For the general case, we leave to the reader the easy task to check that we have a natural
commutative diagram with exact lines

0 0
K s + )
Indj ) x5 & IndlE v (Indf, X2/ (1)
K +
IndKOEZ)%‘H)XE S Indﬁo(pnﬂ)xi (Indgo( nt1) Xr/< ))

1%

K S K S S S S S
(Indgep 7)1y x3 /M) (7)) X3) @ (IS ) X32) /(G ) x3)F) Indjg, )X/ () X

0 0
and the snake Lemma together with the inductive hypothesis gives us the exact sequence
0 1,0
0= (B, Fy"™)) = Idff " @ Indi ) x5 = (Indfg ey 3/ () iy ) = 0
This ends the proof. O

5. The structure of the universal representation

In this section we show how the technical results of §4 concerning the representations Rf 41 and
the formalism of §3 let us describe the Iwahori structure for the universal representation = (r,0, 1).
Again, we develop an Euclidean dictionary which enable us to handle the involved combinatorics
of 7(r,0,1)|k,(p): the conclusion is then Proposition 5.18, which loosely speaking shows that the
required structure is obtained by a juxtaposition of the blocks Rf 41 in a fractal way. As a byproduct,
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This is the
[1,Y]-block
r—

R},
Euclidean picture associated to —o.

n

(f=2,p=5r=(2,1))

S =

This is the
[1,XE]-block

FIGURE 5: Euclidean structure for Rn+l/R in the case f =2, p =5, r = (2,1). It is obtained as
the set theoretic difference of the stuctures associated to R 11 and RjE

we will exhibit a natural injective map
c—Ind%,V < 7(r,0,1)

where V' < 7(r,0,1)|xz is a convenient K Z-subrepresentation of 7(r,0,1)|xz. We remark that a
similar injective map has been detected independently by Paskunas in an unpublished draft.

We give here a more precise description of this section. Thanks to Proposition 3.5 we can content
. . + + . — —
ourselves to the study of the representations h_rn R; EBRT. @ gy R, and h_H} Ry @Rl_ - @p= R, .,

nodd nodd
As seen in Proposition 3.4, such Ky(p)-representations have a natural filtration whose graded pieces

are isomorphic to the quotients R, | /R, R, /R, respectively.
Such quotients are studied in §5.1. As we did in sections §4.1.3 and §4.2 -concerning the Ko( )-
structure of R tnt1 and R ;- we introduce a natural correspondence between a “canonical” F -base

BE 1 /n for Rn 1/ R and a convenient lattice (denoted as R* et 1/n ) in R/, Thanks to the behav10ur
of the canonical Hecke operator (7, )P°*"°¢ with respect to the elements of %’f 1/ WE See that such

a lattice is in fact the set-theoretic difference of the lattices %= i1 and Z (cf. Lemma 5.1): Figure
5 shows this phenomenon for f = 2.

As we did in §4, we need to check that the Euclidean structure %2+ et 1/n describes the Iwahori

structure of the quotient Rn 1/RE in the sense of Definition 1.7. Unfortunately, we can not use
directly the results of section 4 to concude that the Ko(p)-structure of Rn 1/ R is predicted by the
lattice #+ 1/ For instance, if v € %, 41 lies on the antidiagonal Xo+---+ Xy_1 = N, Proposition
4.11 describes the Ko (p)-representation generated by v modulo the subspace Xo+---+Xr_1 < N—2,
while the combinatorics of the lattice %Zl In shows that we need of a much finer knowledge of
(Ko(p) - v): loosely speaking, the socle filtration of R 1/RE should be obtained from suitable
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simultaneous cuttings * by the f hyperplanes Xo + -+ + X;_; = p"(r; + 1) + constant, for i €

{0,...,f—1}.
It is therefore necessary to perfect the estimates made in the proofs of Propositions 4.10, 4.11:
this is the object of §5.1.1 and Proposition 5.3, where we show that the socle filtration of R, /RS

is described by the associated Euclidean datum % 410’ Again, we rely on some delicate arguments
on Witt vectors contained in §6.4. We remark that the behaviour of (R1/Rg)" (resp. Ry @ RT R;)

is slighty different from that of R} ,/R;} for n > 1 (resp. R, /R, for n > 2) if the Serre weight
is non-regular (see §5.1.2).

In section §5.2 we determine the structure of the amalgamated sums - - - p= RE 1: their structure
can be easily determined from the results concerning of qu 1/ RE.

First of all, we detect a “natural” linear base e%’in for the amalgamated sums --- @ RE Rirl
(Lemmas 5.13, 5.14): this can be done thanks to the compatibility of the elements of ZF C R
with respect to the Hecke operators (7,, )P°*"®8. In particular, the natural projection on Rn 1/ RjE
let us let us identify the elements of the canonical basis %’i 1/n of Rn 1/ R with suitable elements

of B+

al,n’
Again, the elements of %i In admit a natural parametrisation in terms of a convenient lattice
@%i% 11 in yAl (see the paragraph following Lemma 5.14 for a precise realisation of the Euclidean
data associated to %’i ). As we will see (85.2), each Euclidean datum -+ & 5+ RE 41 is obtained by
wr1/m Of RE L1/ RE with the Euclidean datum of

“Op Rrihf this give raise to a complicate fractal picture (see Figure 6).

a convenient gluelng” of the Euclidean datum %2+

The last step is then to prove that such fractal lattice describes the Iwahori structure of the
amalgamated sum - - - @ RE Rril 1 in the sense of Definition 1.7. This is the content of Theorem 5.18.

Let us consider for instancethe “positive sums”. We see that Proposition 5.3 together with a
simple Euclidean argument implies that the linear space V;, generated by

i) a linear basis for the J-th composition factor of --- @+ Rt |,
n—2

ii) a linear basis %, for the J-th composition factor of R},,/R;} (seen as a subset of %, = via
the above identification),

is Ko(p)-stable and the filtration obtained this way has semisimple layers®. As --- @ R, Rj;_l is

a subrepresentation the Ko(p)-stability is verified once we check that the f cutting hyperplanes
Xo+--+Xpy =p"(ri+1)+ J for R 11/Ry} lie strictly below the cutting hyperplanes for the
(J — 1) th composition factor of - Ort, R:_l indeed the structure Theorem for R 11/ R} let us
conclude that the K (p)—subrepresentation generated by an element v € %y lives in V;_; + (v) (we
invite the reader to the discussion after Remark 5.15 for more details). In particular Proposition
4.11 let us conclude that the linear space V;, deduced from the Euclidean datum in the usual sense,
is actually the J-th composition factor for the socle filtration of --- @ R R:{ 41

In Figure 6 an example of the glueing of blocks ¥ and their fractal stucture.

As annonced, we can combine Lemma 5.1 and Proposition 3.4 to exhibit a natural injective

"see Figure 5 and Figure 7 for an example or the discussion after Proposition 5.3 for a precise formalism about the
simultaneous cuttings of the Euclidean data ‘%n-u/n by the f hyperplanes Xo + ---+ X¢_1 = p"(r; + 1) + constant.
8Thus it is easier to treat the glueing of the quotients R +1/ R than the quotients themselves.

9Strictly speaking, the figure gives the glueing of blocks R} ,/Rf_, and RiH/R;*[, i.e. the structure of
R /RS, @ g R}, .. If we want to get the picture of the whole amalgamated sum - © @pit R/, we should insert

a “even smaller” structure inside the point (1,2) of the rectangle drawn on the left in Figure 6.
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- . . g iy (n-1,n)
Magnification around the [1,X"]-block of ... @]{ER:_.l (each point is a F,_r]“ . £,(O)-block).

B T

Magnification of
(n-1.n)
the Fpy_, ", (0)-block — 1
| < .
: |
L i
. (n-1,n) /
Structure of the Fp_ i (OQ)-block |
of ... Re®R, ie. The structure associated to ﬁ |
=<
' (n)
structure of ... ®p* R, is glued inside the I“:, (O)-block of R,

¥ ik -2)
Each point is a I—‘:_r: , (£y1)-block

FIGURE 6: The glueing and the fractal structure in the case f =2, p =5, r = (2,1). On the right
side we have the particular of the [1, X"|-block for R} | & R R, . Notice the glueing of Z,'_,

inside the Ft(n) (0)-block of R, /R,} (Lemma 5.13). For the structure of R,/ Dt R /R 5 we

should further consider the F;ﬁ;i;g (0)-block and its magnification (left hand side). Repeating this

process, we reveal the fractal nature of the structure associated to Rar &3] RF D gt R;L" 41

37



STEFANO MORRA

morphism -whose existence was known by an unpublished work of Paskunas-
c—Ind% ,V < 7(r,0,1)|x 2

where V < 7(r,0,1)| k7 is a convenient K Z-subrepresentation of 7(r,0, 1)|xz: this is the object of
Proposition 5.10.

As the cutting hyperplanes are fixed by the linear transformation es — €441 of R/ the results
of §5.1 and §5.2 do not depend on the immersion 7 : F, < F, (remark 4.9).

5.1 The structure of the quotients Ry /R
In the flavour of §4.1.3 and §4.2 we start by describing a suitable F,-basis for the quotients R, L1/ Ry
LEMMA 5.1. Let n € Ny;.

1) An F,-basis f%’:{ﬂ/n
projection R}, — R}, /R}) of the elements

for R} | /R} is described as the homomorphic image (via the natural

FO (1) € B5,,

lov"'aln
such that l,, £ r ifl,,, = 0.

2) An F-basis Zy.

projection R, | — R /R, ) of the elements

for R, /R, is described as the homomorphic image (via the natural

F(Ln) (ln-i—l) € ‘%r:—‘,-l

ll"“yln

such that [, £ r ifl, ., = 0.

If n = 0 then an Fj-basis for (R1/Ro)" is described as the homomorphic image (via the natural
projection R — (R1/Ro)") of the elements

0
FO()

such that [} € r if [; = 0 and of the element Fﬁ(o) 0).

Proof. The result follows immediately from the definition of the operators (7)P°$"¢¢. Indeed, for
n > 1 we have (with the obvious conventions if n = 1):

(TP (EC™D (1) = (~DREO™) (0);

Loserobn— 2050 in T

(T (E Y (1)) = (~DHE, ()

Lsensdy,

while, for n = 0 we have
0,—1 0 r 1,0
To(Fy" V1)) = F(0) + (=1)"1, 0 Fy ) (0).
]

As usual the elements of the basis %’irl In will be read as the elements of a convenient lattice

Ry OF R,

Interpretation in terms of Fuclidean data. Exactly as we did in sections §4.1.3 and §4.2 we

have natural injections %211 n R/ which let us interpret the elements of %’fﬂ Jn 8S points in a
convenient lattice 9??;1 In of Rf: the details can safely be left to the reader.

The Euclidean interpretation of Lemma 5.1 is therefore clear: for n > 1 the lattice ,@;Ll In (resp.
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'@;—i—l/n

) of R/, is obtained from the lattice of R 41 (resp. R, ;) by removing the simplex
{(zo,...,xf_1) € %’:{_H st.xs < p"(ripgs) + 1 foralls =0,.... f -1}
(resp.
{(xo,...,zp1) €Z,yq stoxs < p"fl(rmﬂ,u + 1) foralls =0,...,f—1})
(i.e. %fﬂ /n 15 Obtained as the set-theoretical difference of %’f“ \ ZF).

As usual, we have to prove that the Euclidean datum AT describes the Iwahori structure of

n+1/n
Rff 1/ RF in the sense of Definition 1.7. This is the content of Proposition 5.3.

We refer the reader to Figure 5 for an example in residual degree f = 2.

The lattice '@f/o associated to (R1/Rp)" is similarly obtained from the lattice associated to Ry,

by removing the subset

{(@o,...,0521) € By stowe < (rjpgs) + Dforalls =0,...,f =13\ {(ro,...,rp—1)}.
We will see that the lattice %fr/o
describe the Ko(p)-structure of (R1/Ro)" (resp. Ry DOp- R;) sic et simpliciter, unless the f-tuple r

(resp. the lattice naturally associated to R, @ T R, ) does not

is sufficiently regular. A harmless modification of the formalism used for % when n > 1 (resp.

n+1/n
Kyir )y, When n 2 2) lets us detect their Ko(p)-socle filtration also for (R1/Ro)™ (resp. Ry Dp- R;)

in the non generic case: see section §5.1.2 and Propositions 5.6, 5.7 and 5.8 for details.

We will describe in detail the Ko(p)-structure of R, /R, for n > 1; as annonced, the negative
case (for n > 2) will be left to the reader.

Preliminaries: partitioning the lattice. As annonced in the introduction to §5, the mere
knowledge of the Ko(p)-socle filtration for R; ., does not allow us determine the structure of the

quotient R:LFH/R:{, as for v € 93:“ lying on the antidiagonal Xo +---+ X;_; = N, Proposition
4.11 describes (Ko(p) - v) modulo the subspace Xo+ -+ -+ Xp_ 1 < N —2.
For instance, if we pick two points vg, v1 € .@:H /n
the Ky(p)-representation generated by {vg, v1} is 2-dimensional and semisimple: consider vy =
0 0 : .
F) (L), 11 = FL(,O’T’)L,"(JHA) with [, = I, = 0 for all j # n, L, = (0,...,0,7s + 1,0,...,0),
l, =(0,...,0,rg +1,0,...,0) and rs > ry; by Proposition 4.11 we only know that v; may lie in

the Ky(p) representation generated by vy (Figure 7).

with empty antecedent it is not clear that

Notice that this phenomena happens only if ' # Q,: if F' = Q,, the structure of the quotients
is immediate from the structure of R;{ 41

We modify the strategy of section 4.2. We show that the Ky(p)-strucure of er 41 Is again pre-
dicted by %, 41 but each cutting antidiagonal Xo + -+ + Xy 1 = constant of section §4.2 is now
replaced by f-antidiagonals of the form Xg + --- + Xy = p" (T‘Ln+s |+ 1) + constant: we will say
that Xo+ -+ Xy 1 = p"(r|pnts) + 1) + constant is the s-th cutting hyperplane of R:LZFI/R;ZF. This

means that we divide the lattice %:H /n into sub-blocks Us, for s € {0,..., f — 1}, of increasing

size (cf. definition 5.2); the J-th composition factor for the Ko(p)-socle filtration of R ,/R;} is
then obtained as the sum of the f subspaces determined by the intersection of the block U, with
the antidiagonal Xo + --- 4+ Xy = p"(rs + 1) 4 constant, for varying s € {0,..., f — 1}: it is the
content of Proposition 5.3. In Figure 8, an example of how the increasing blocks (and successive
cuttings) look like.
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.
Euclidean structure associated to —-

n

(f=2,p=5r=(@21) XotX=p™(rpt1)

A priori, we can find non-trivial
extensions of this kind

Xo+ X =p™(r;+1)

FiGURE 7: With the only Proposition 4.11 we can not exclude a priori some non trivial extensions,
inside the quotient R;f 1/ R, between elements lying on hyperplanes at a distance greater than
1. In the example of the picture (again, given for f =2, p =5, r = (2,1)), we could have a non

trivial extension between the elements FQO, ’ZQ’ 3.0) (0) and FQO, ’ZQ’ 0.2) (0): Proposition 4.11 tells only

that the subrepresentation generated by Fg n 0,(3,0) (0) lives in a linear space generated by a family

which may contain the element Fé), ’.719’(0’2) (0), as this element lies strictly below the hyperplane

Xo+-+ Xy 1=3p" —1assoon asn > 0.
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X0+XI - pn{r(smi nJ+I )

This is the Vﬁm—block

The V,  -block is

+

the whole —ntl T
R, -

n

k' \_//1 |

(n)
Each pointis a F; (£,,.)-block

Magnification: each point F[,r:%ﬁn_,ﬁ

. . . (n-1.n)
is expauded into its F, |, (£,.;)-blocks
><‘(}_'_xl = p“{r[sm. 1y I)

Each point is a [-{Erll'g;({“,: 1)-block.

FiGUrE 8: Euclidean interpretation of the filtration of RZ 11 R by means of the subspaces (or
“blocks”) Vs, € Vs, in the case f =2, p =5, r = (2,1). The socle of R}, /R;} is then obtained
as the sum of the points of Us,, lying below Xo + X1 = p"(7s,,+n) + 1) and the points of Vs, _,
lying below Xo + X1 = p"(7|s,.,14n| + 1) (by construction, v, tn| = 7[s,s14n])-
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We determine the decomposition of %:;Ll /n into increasing blocks. Fix n > 0 and define s, €
{0,..., f — 1} by the condition
T|smtn) = max{rLernJ, se{0,...,f— 1}}
We fix an ordering
— 12T gtn) Z Tlspirdn) Z 0 2 Tlspyyog4n) =0 (13)
and define the following Fp-subspaces of R, ,/R}:

DEFINITION 5.2. For k € {0,..., f — 1} define 0
the elements Fl(oon)ln (Lys1) € %’:{H In verifying the properties:

as the F-subspace of R .1/ R, generated by

Sm+k

i) for s ¢ {Sm,...,Sm+k} we have
l'\rls-i_nJ < T|s4n)
ii) for s ¢ {Sm,...,Sm+k} we have
s+n+1
et — o,

By abuse of notation, we will also write U, to denote the image of the canonical basis (in the
obvious sense) of Y, ., in the lattice %:H In The geometric meaning of the previous definition is
the following: the block U is described as the intersection of the subset

Sm+k
{X3m+k+1 < pn(TLsm+k+1+nJ +1}in---N {Xstrffl < pn(TLSm+f—1+nJ +1)}
with the lattice %:H/n' in other words, we give restrictions on the coordinates xs,, ., ;- --
of a point (zo,...,zr_1) € %nﬂ/ to lie in the block U

Notice that in order to detect if a function F( ) (lpe1) € %n+1/n
smir We only need to study the last two f-tuples ln7 ln—i—l
Obviously, the subspaces U describe (for n > 1) an exhaustive increasing filtration on

R;:H/R?t as a Fp-vector space.

’ xstrf*l
Sm+k*

belongs to the subspace
Py

Sm+k

The following crucial result shows that the lattice %:{H /n lets us detect the required Ky(p)-
structure for n > 1.
PROPOSITION 5.3. Assume n € Nxi. Let a,b,c,d € O wr | 1+pa b € Ko(p), fix
I >1- » 0,6, F, 9 = pe 1+pd o0\P),
an element F(0 ) (ln+1) € U, ., for some k € {0,...,f — 1} and write Nony1(lg, ..., l,41) =
p”(TLSmMJrnJ + 1) + J for some J € N. Finally, consider the linear development

I () = D BOETE ) o L ()

200 7n
i€l

(where I is a suitable set of indices and (i) € F; are scalars).

Fix an index iy € I and assume there exists k' € {k+1,..., f — 1}, minimal with respect to the
0 .
property F( (”)) ,Ln(io)@"H(Zo)) €Us . \ D, -

Then we have
NO,n-i-l(lO(iO)u s 7ln+1(i0>) < pn(r\_sm+k/+nJ + 1) +J -2 (14)

In particular, the lattice 7 describes the Koy(p)-socle filtration, as well as the extensions

n+l/n
between two consecutive graded pieces, of R /R
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We explain here the geometric meaning of Proposition 5.3: we pick a function in the k-th

block Fégon)én (lyy1) €T liyng on the antidiagnal Xo + -+ + Xy1 = p"(r(s,, o4n) + 1) +

Sm+k?

J and FL(OO(;.Z))W’%@.O)(ln+1(i0)) a function appearing (with nonzero linear coefficient) in the linear

development of (g — 1)Fl(0’n) (l,41)- A priori F( ™) )(ln+1(i0)) belongs to the linear space

—07"'7ln - (20)7 7n(ZO

generated by the points of %’:H/n lying below the antidiagonal Xo + -+ + Xy 1 = p”(rLsmMJrnJ +
H+J-1

But, if F( (zo)), N (z’o)@nﬂ(io)) happens to belong to a strictly bigger block, say U ., with k' >k
and mlnlmal with respect to this property, then it lies strictly below the antidiagonal Xy + --- +
Xy g = p”(TLSmM,H” + 1) + J — 1. In other words, the Ko(p)-subrepresentation generated by

FL(OO")Ln (I,,41) lives in the linear space generated by

{z €D, Zajz <P"("sppintn) 1) +J} |_| H {z e RIS Z:L’l <P (P spyytn) T+ — 2}.
j=k+1

AS T gh4n) S Tlspintn) for j =k (by the choosen ordering (13)) we see that this is a refinement
of Proposition 4.11.
Thanks to this phenomenon, we can invoke Proposition 4.11 to deduce the Ky(p)-structure for
/R from the associated lattice % More precisely, we see that
n+1 n+1/n"

i) the linear space V generated by the f-subspaces

<{$ € msm_,_kw le < pn(Tsm+k + 1) + J}>

(i.e. the points of the k-th block U, lying strictly below the antidiagonal Xo+---+ Xy 1 =
P (rs,,yy, +1) +J)) is stable under the action of Ko(p) (Proposition 5.3);

i) the points of a k-block U ., lying on the antidiagonal Xo+---+ Xy 1 =p™(rs,, ., +1)+J
are fixed under the action of the pro-p-Iwahori inside the quotient (R, ;/R;})/V; (Proposition
5.3; note that such points may be equal to zero in the quotient);

i) if x € Y, lies on the antidiagonal Xo + --- 4+ Xy_1 = p™(rs,,,, + 1) + J then the Ko(p)-
subrepresentation generated by x inside the quotient (R}, /R,})/V;_1 is either zero or gener-
ated by x and the z —¢; for t =0,..., f — 1 (Propositions 4.11, 5.3).

We deduce that V; = socs (R}, /R}), i.e. the Iwahori structure of the quotient R /R, is
obtained from the Euclidean datum %:H Jn 88 well as the extensions between two consecutive
graded pieces.

Notice moreover that the statement of Proposition 5.3 is empty if f = 1: in the rest of §5.1 we
will assume f > 2.

5.1.1 Proof of Proposition 5.3. The rest of this section is devoted to the proof of Proposition
5.3. Thanks to the decomposition (8) we can study separately the actions of lower unipotent,
diagonal and upper unipotent matrices on the elements of R:{ 1: this will be the object of the next
three paragraphs. The proofs are similar to the proofs of Propositions 4.4, 4.5 and 4.7, but need a
delicate extra argument due to the irregular structure of the lattice %" 1/ In particular, in order
to control the action of lower unipotent matrices, we will need the estimates of Appendix A, §77.
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Or

0 1 ],and

The action of upper unipotent matrices. We study here the case where g € [

again we assume g = [ 0 ['Lf] } for € Fy. As in Proposition 4.4 we write
07
G, (L) =

1

_sz(ﬂ);(o)aﬂo)io; <A><T>[ o f] L it

j=11d.<l S€F, P’[)\;ﬂ
0 ] instead of [ ol 1 ]

where for notational convenience, we commit the abuse of writing |
PDo] 1 10

and where we have set

def i =10y, Lyi1—1,
J"th_zn7L1 — (_1)7 +1 X (O +1)Y +1 1

Ty = —s50(S0), Tj1 = —s;(Sj41) for j € {0,...,n}.
Developing the polynomials 751 we write

GE") () = D BOESY oL (0)

LIORARRRLY
iel

for a suitable set of indices I and scalars 3(i) € F; We pick a vector v appearing in the linear

development of gF © n)i (Lyy1):

vE Ff(’io]?--- (£, ]((ﬁn+1—|)§

where, as in Proposition 7.3, we write for 0 <a <n+1

n+1
=1, — i, + Z pLa—bJK(b)
b=a+1
and, for a +1 < b < n+ 1 we have
-1
Iigb) _ Zpsﬁ((lb),s
s=0

(0)

. . (%) .
where k4" is the exponent of A, in (T;)% . By the definition of the subspace U we see that

Sm+k

Em::ln<_zn_+lﬂ_1héf+n =

k f—1
— Zplsm+h+nJ (l£L3m+h+nJ) . igsm+h+nJ) + ,{7(1"+1)7L5m+h+”+u) + Z pL5m+h+nJ (lgstthr”J) - i%[SerhﬂH))
h=k+1
If v ¢ U, ., then we define

k' ¥ min {fee{k+1,...f—1}, st [K{lsmtetn)] > Tlsmietn] |

Observe that k' > k by construction and we necessarily have k,, # 0 and the equality

~
[y

Sl — i+ I UR) = U — i) 4 DL G 1)

n

i
o

for a suitable j > 1. Following the inequalities (26), (27), (28) of Proposition 7.3 (i.e. using the
subadditivity of the function s and the fact that the polynomials T are homogeneous of degree P
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if \; is defined to have degree p') we get
s(k5g) + " sk, 1) <P (M5 pin) + 1)+ T —8(io) + 0" (p — 1)j.
As n > 1 the inequality
P (P lsitn) = Tlsy oprtn)) < 3™ (0 — 1) + 5(ip) — 2

is then obvious if either ] 2orr ] > 0.

Assume ﬁnally j=1and Tlspyptn) = 0. Therefore the p-adic development of [k, | has the form

(l(O) _ Z( ) + H(n-ﬁ-l) L 7l7(LS) . igls) + K%’n—l—l),s—f—l —p, l7(LS+1) o Z'%S-H) + ligzn—i-l),s—f—Q +1,.. )
for a unique s € {sm,...,Smqr}. The condition x ¢ U, imposes |s + 1] & {Sm,...,Smik}
and the minimality condition on k" imposes |sp4x +n] = |5+ 1], in particular 741 = 0. As
(n+1),s+1 . . . . ~ [s+1] |s+1 J
Kn 7 is the coefficient of A\j; in the fixed monomial of s(S, 1)+ and ip < g1 We get

a contradiction.

The action of diagonal matrices. The next step is to study the action of an element g €
[ 1+ pOp 0 1+pa 0

0 1+ pOFr 0 1
analogous to those of the previous paragraph, in this case using the fact that the polynomials
¢j—1(Q;) of §6.3 are homogeneous of degree p?. The details are left to the reader.

]; again we can assume g = [ } The arguments are completely

The action of lower unipotent matrices. In this section we deal with the action of an element

1 0 1 0
€ ; again, we assume g = . This case is more delicate than the previous
g [pﬁp 1] & g [p[u] 1] P

and we need to recall and carry on the accurate estimates seen in the appendix A §6.4.2.

As for Proposition 4.7, we write
- l

. 1 +1 0
F,l(o(? n’ n+1 — Z Z <.].+1> Z ()\]179) (VP] ) [ L ] [1, fln+1—in+1]
/\jGFq ] 1

J
= ij41 P

1 0

po[l)\o] (1) ] e of[ [Ao] 1 ]

where for notational convenience, we commit the abuse of writing [

and where we have set

fl +1—i 1 d:ef( ) n+1Xr (n+1+zn+l)YLn+l_in+l

def

and Vi = ((7]+1) for j € {0,...,n}. We develop the polynomials VJrl , Tecognizing again a

sum of elements of the basis Z"

1/ We pick a vector

def

E o (Tnsa]);
as in the previous paragraph we write for 0 <a < n+1

n+1

Kq = éa - l‘a + Z pLabe H(b)

b=a+1
and, fora+1 < b< n+1 we have

f—1
K((zb) _ Zpsﬁt(lb),s
s=0
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. . () . . .
where /{gb)’s is the exponent of A, in (V3)"» . Again, using the notations of Lemmas 6.19 and 6.20,
we focus our attention on

Fip = Ly — iy + pT R =

k
Z Lsm+n+n] Z(L3m+h+”J) (L8m+h+nJ)+BTLLSm+h+1+”J (0)+pBLSm+h+1+”J( 1)) +

n+1
h=0
f—1
+ Z pLSm+h+nJ (l%ts7rb+h+nj) _Z"ELLS77L+h+nD)
h=k+1

(where we can again assume k,, # 0) and we distinguish the following four possibilities.

I). Assumed F_, B}L‘fﬁ*”HnJ (1) = 0. The condition v ¢ U, ., imposes that

) 1+-k
f-1
s(kn) = D 1Y =il + BEHY(0) = j(p - 1)

for ] €N, ] 1. We recall that for each j € {0,...,n—1} the polynomial Vj is pseudohomogeneous
of degree p/ — (p — 2) (see Definition 6.11) so that the subadditivity of s and Lemma 6.20 give

n+1 ' n+1 ) n+1 _
S Ps(ey) < S ps(ly) — (0 2)(3 (i) — 9" G (0 — 1)
7=0 7=0 7=0

and the conclusion follows.

IT). Assume Z];:O iiﬁ*hHJrnJ( 1) > 2. Then we have

f—1 n

SN TP < () — 20" (0 - 2).

s=0 5=0
The conclusion is now easy and left to the reader.

IIT). Assume 1 = SF_ OATLLiml“JFHnJ( )=S0 OBTLL?}*"JFH”J( 1) =1 (see Lemma 6.20 for the

quantities A3 ;(1)). Let hy € {0,...,k} the unique integer such that BTLLTJMHJMJ( 1) = 1. We can
again distinguish the following two subcases:
ITI)A Assume
f-1
s(kn) = Y () =i + BEFV(0) + B, (1) —i(p — 1)
s=0
for ] e N, ] 1. In this case the reader can check that
n+1 A n+1 ) n _
> (i) < psly) — (0 —2)O siy) —p"ilp—1) — (p—2)p"
j=0 j=0 j=0
and the conclusion follows.
ITI)p Assume finally
-1
s(ma) = D_ () =)+ BEHI(0) + B, (1),
s=0

Such condition, together with v ¢ U, ., imposes that |spqn, + 1] & {sm,...,Smir}; by
minimality of k" we conclude that |sp,n, + 1] = Spw; in particular r|; ,+n) > 0 (Lemma
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ON SOME REPRESENTATIONS OF THE IWAHORI SUBGROUP

1
6.20-3)). We deduce that the choosen monomial of un(U;’r{l )ttt is of the form

pLSm+h1 +1+n]

/ 1
/\8“0 ..... Ao (Ao AE")

/,

; verify

where the integers «

S ps(el) < (" — (0~ 2))(s(inss — 1))
=0

By subadditivity of the function s we find finally
n+1 n+1 n
Y Ps(ey) <D ps(ly) — (0= 2)(Q_s(i) + 0" = (0= 2))(8(is1) — 1) +
j=0 j=0 Jj=0
HA+p") = " (i)
(where the integer 1 4 p™ is deduced from the monomial AO)\ffn ) and the conclusion follows

easily noticing that Z?i& s(i;) > 1.
The proof of Proposition 5.3 is therefore complete.

REMARK 5.4. The reader has noticed that if we assume ry < p — 2 for all s € {0,...,f — 1} then
the inequality (14) in the statement can be replaced by the following, stronger, inequality

NO,n—i—l(lO(Z’O)v s 7£n+1(i0)) < pn +J -2

5.1.2 The case n = 0. In this section we study the Ky (p)-structure of (R;/Ro)™; the negative
counterpart, i.e. the Ko(p)-structure of Ry @ RT R, is left to the reader.

_l’_
1/0

not describe the Iwahori structure of (R;/Rp)" in the sense of Definition 1.7 and we need a slight
modification of our methods according to the combinatorics of r (see Proposition 5.8).

We see that if the Serre weight o happens not to be regular, the associated lattice Z.",, needs

This is due to technical reasons: raughly speaking, for n = 0 the f cutting hyperplanes Xg +
o+ Xy = (rs+ 1) + J are “very close” to each other and, in the non regular case, we may get
some extra extensions between functions lying on different hyperplanes.

Otherwise, in the regular case, we see that the lattice %fr/o describes the Iwahori structure of
(R1/Ro)™ in the usual sense (Proposition 5.6, 5.7).

In what follows, we fix k € {0,...,f — 1} and an element FL(OO)(Q) € Vs, \ (Fg(o)(Q»fp. Let

g € Ko(p). We fix an element v = F [(2())1((51]) appearing (with a nonzero linear coefficient) in the

F,-linear development of gFl(OO) (1), for suitable integers kg, k; € N.
We assume there exists an integer ¥’ € {k+1,..., f — 1} such that v ¢ U
is minimal with respect to this property.

\ U and £/

Sm+k! Sm+k

The next lemma can be verified by an easy computation on the ring W1 (F,):

LEMMA 5.5. In the previous hypothesis we have

NO,l(ﬁo;ﬁ1) = N0,1@07£1) — €

where

1) ifg e { (1) ﬁF ] then € = s(iy) + s(iy) —|—3(p -1) Where} > 1 and s(ig) +s(iy) > 1;
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1+p0F 0

2) ifge [ 0 | 4 pOy ] then e =s(i;)(p— 1)+ j(p — 1) where s(i;) > 1 and j € N;

3) ifge [ p; (1) ] then € = s(iy)(p — 2) + j(p — 1) where s(i;) > 1 and j € N.
F

Moreover:

14) if in case 1) we have j = 1 then we necessarly have sy, = | s+ 1] for an index s verifying
$ € {Smy--,Smtk}t and |s+ 1| & {Sm, ..., Smik}; moreoverry ., > 0;

2p) if in case 2) we have j = 0 and s(i;) = 1 then we have
[rol = (@8, 1800t bty
where the index s verify s € {Sm,...,Sm+k} and |s + 1| & {sm,...,Smsk}. Furthermore
Tls41] = Tspp > 0.
3g) if in case 3) we have j = 0 and s(i;) = 1 then we have
[rol = (18, 80,0t o bt )y
where the index s verify s € {Sm,...,Smik} and |s + 1| & {Sm,...,Smik}. Furthermore
Tlst1] = Tspp > 0.

Proof. The proof, a direct computation, is left to the reader. O

Thanks to its explicit nature, the description of the socle filtration for (Ry/Rp)* can be easily
deduced from Lemma 5.5. We have to distinguish three cases, according to the combinatorics of the
f-tuple r; the proofs are left as an exercie to the reader (see [Mol] for details).

PROPOSITION 5.6. Assume that the f-tuple verifies one of the following hypotheses:
I4). Foreach s € {0,...,f — 1} the condition

{ Ts = Ts41] >1

Ts — T\_s—&-lj € {p - 2,]9 - 3}
is false.

Ig). The f-tuple is of the form (0,...,0,7s, ,0,...,0).
Then the socle filtration of (Ry/Ry)™, together with the extensions between two consecutive graded
pieces, is described by the associated lattice 9?;“/0.
Proof. Omissis. See [Mol], Proposition 5.8. O

PROPOSITION 5.7. Assume that for all s € {0,..., f — 1} we have Zg;&(rs) > rs+ 1 and that the
condition

{ Ts 2 T|s1] = 1
Ts = T|s+1] =P — 2
is false.
Then the socle filtration for (Ry/Ry)" is described by the lattice %fr/o.
Proof. Omissis. See [Mol], Proposition 5.9. O

We finally deal with the remaining case -the socle filtration is here slightly more complicated:
in Euclidean terms, the blocks s, for rs . = p — 1 should be cut by the hyperplanes X, +
o+ Xy = (re )+ Jor Xo+ -+ Xpy = (rs,,,, +1)+J — 1 according to a condition on

T5m+k+1 :
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PROPOSITION 5.8. Assume there exist an index s € {0,...,f — 1} such that rs = p — 1 and
Tls+1) = 1. Up to reordering, we assume there exists integers 0 < k1 < ko such that rs,, , =p—1
for all j € {0,...,ko} and

{ Plsmp+1] 71 0<j <k —1,
T|_5m+j+1J =1 if k‘l < _] < k‘o.

Then the J-th factor for the socle filtration of (Ry/Ro)™ is described by the subspace
V= def (0) F + Z Flo 5m+k7 N(O,l)@O?ll) < (T5m+k + 1) +J - 5k1<k<ko>ﬁp

In particular, the socle filtration is deduced from the lattice 921 10 by cutting the k-th block by the
hyperplane Xo + -+ X;_1 = (T3m+k + 1)+ J — O, <k<ko-

Proof. Omissis. See [Mol], Proposition 5.10. O

5.1.3 Application: the universal representation contains infinitely many compact in-
ductions. As annonced in the introduction of §5 we are able to describe a G-equivariant natural
injection

c—Ind%,V < 7(r,0,1)
for r ¢ {0,p — 1} where V is a convenient K Z-subrepresentation of m(r,0,1)|xz. An analogous
result has been discovered by Paskunas in an unpublished draft.

The proof can be outlined as follow. Via the isomorphism of Proposition 2.9 we define the repre-
sentation V' as a suitable subrepresentation of R;/Rg: by Frobenius reciprocity we get a morphism
¢ : c—Ind%,V — 7(r,0,1). From a basis of V' we construct a convenient F,-basis for the compact
induction c—Ind%ZV and therefore we only have to check that ¢ maps such basis into a linearly
independent family of 7(r,0,1).

This can be easily verified combining Proposition 3.4, Lemma 5.1 and Proposition 3.5.

We start from the following elementary fact:

LEMMA 5.9. The K subrepresentation Fil’(R;) of Ry generated by [1,Xﬁ] is naturally isomorphic
to the finite principal series Indg0 (pXr and soc(Fil%(Ry)) & Ry via the monomorphism Ry < Rj.

Proof. Omissis. O

Let V denote the kernel of the natural map
Fil%(R;)/Ry — cosoc(Fil%(Ry));

we define V' < 7(r, 0, 1)| 7z as the homomorphic image of V via the isomorphism given in Proposition
2.9. Therefore, by Frobenius reciprocity, we get a morphism

¢ : c—Ind%,V — 7(r,0,1).
We claim that

THEOREM 5.10. Assume r ¢ {0,p — 1}. Then ¢ is a monomorphism.

Proof. We show that the composite morphism of ¢ with the isomorphism (4)

C—Ind?(ZV g m(r,0,1) = hﬂ)l (Ro ®R, -+ ®Rr, Rnt+1) ® 11*113 (Ri/Ro ®R, - DR, Rnt1)
nodd n even
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maps an F-basis of c—Ind?(ZV onto a linearly independent family of the amalgamated sums on
the right hand side.
By the well known results concerning the structure of finite principal series for GL2(F,) we have

LEMMA 5.11. Assume r ¢ {0,p —1}. For an f-tuple t € {0,...,p — 1} such that t £ r and r £ t
the element v, € V' is defined as

w3 Mg[g ol ] 1, x7].
Ho€Fy

An F-basis V for the compact induction c—Ind% ,V is described by the elements

Gé)[),fl) @) def [Lvﬂ

1 1 0 1 1 0 0 1
G () (APl [ 1 : (Aﬁ")%L[ 1 ] [ i ][1,04
Lo,-..vln )\;‘q p[A{J] 1 /\;q pn[)\g ] 1 p + O L
0,n def [, [Ao] 1 1,n
GL(O,...),Ln(§> =N [ _— ] [1’GL(0,.--),Ln@)]
)\()EFq

wheren € N, [; € {0,...,p— 1} forall j € {0,...,n}, and t € {0,...,p—1}f verify the conditions
tLrandr £t

Proof. 1t is elementary and left to the reader. See [Mol], Lemma 5.13 for details. O]

We recall that the morphism ¢ is G-equivariant and the isomorphism (4) is K Z-equivariant. We
deduce the equalities

S(GI™, (1) = pr(E"1,(0)

l()v"'pn

oG (1) = pr(F ")

Ly, \ =
$(GS V(1) = pr(FV(0))

where we wrote pr to denote the natural epimorphisms of Proposition 3.5. -

As the kernel of the epimorphism pr is known and we dispose of a suitable F,-basis of the
. . .. . + + . 4+ +
inductive limits h_H)lRO Opt -+ Dp R4, 1£>n (R1/Ryp) Ot - Ops R, we check that the

nodd n even
elements pr(ﬂiofﬁjl)z(g)), p?“(FL(llf?Jil)t(Q)) and pr(Ft(O) (0)) of the inductive limits h_II)l Ry®R, @R,
nodd
Ryi1, hi>n (R1/Ry) ®R, - -+ @R, Rny1 are linearly independent, as required. O

neven

REMARK 5.12. Let U the image of the composite map obtained by ¢ and the isomorphism (4). By
the proof of Proposition 5.10 the reader can easily describe, in terms of the lattices - - - Dyt ,@fﬂ,
the inverse image of ¥ by the natural epimorphism pr of Proposition 3.5.

5.2 The structure of the amalgamated sums
We are now ready to describe how two blocks R ,/Rp, and R;,_;/R?_, should be glued together.
We will see that such glueing is more or less a formal consequence of the geometric interpretation
of the amalgamated sums, as announced in the introduction of §5.

As for section 5.1 we will give the detailed proofs for the positive case: the negative part is
deduced analogously.

50



ON SOME REPRESENTATIONS OF THE IWAHORI SUBGROUP

First, we want to understand the image of an element F( )é (lpy1) € REL (vesp. F( - ?l (L) €

R, ) via the projection (pr,41)P* (resp. (prni1)"®) of Lemma 3.4.

(0 n)

LEMMA 5.13. Let n € Nxj. The image of the element £, (ln+1) € R/, via the projection

pr, +s1 is described as follow:

1) Ifeitherl,,; #0orl,,; =0 andl, £ r then

0s N 0
Tt Prae )P (E ") (L)) = mnsn (B

2) Ifl,,1=0,l,=randl, ; >p—1—r then

" ()

(_1)£(prn+1)pOS(F(0 n) (ln+1)) Lpos (FL(OO,WZTLQEQ (ln_l—p—il—r))Jréz,Edl 1 1L$L031 (F(O’n_g)

Ly, loseibn—2

3) Ifeitherl, ;=0,l,=randl,  2p—1—rorl,,;=0andl, <r then

(prn+1)p°S(F;(£f7,)Ln (lng1)) = 0.

Proof. Assertion 1) is clear by Lemma 5.1. We assume now that [, ; = 0 and [,, < r. Thus,

207 2n—1
so that we get the following equality in the amalgamated sum - - - @ RE R:{ 11
0, — 0,n—1
(prns )P (FC™) () = ity oy o (=T Po((— 1) (") (1)),

In order to get the statement, we are now left to describe

(TP (FO™ 7 (1))

L |

Let assume n > 2 (the case n = 1 is treated in an analogous way and is left to the reader). By the
characterisation of the operator T, we have

(TP (F Y (1) =0

n Loseoilp—1
it [,, # r, while, for [, = r, we have
—\DOS 0,n—1)
(TP (FS) (@)) =
iz J [ : 0][ S O O X 4+ Yy
AL 1, DYDY O VED guE) 1o 1a s
pan g P An_1€F,
(’")ifZUV[ 1 0][ viY e
= - DY L 1, Xt iyt AP et
e \V ] ’ PR A 1R,

1
POV

)\n71€Fq
is non zero (indeed assuming the value —1) if and only if {,,, ;+r—% = 0mod¢—1and [, ;+r—i # 0.
The result follows. O

The result concerning the negative part is similar

LEMMA 5.14. Let n € Ns;. The image of the element F( ") . (L,11) € R, via the projection
neg - . ol
pr, 1s described as follow:

o1

(9));
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1) Ifeitherl, . #0orl,, =0 andl, £ r then
n 1, 1,
Tt (Pras) "B ("), (L)) = Tt () (L)
2) Ifl,.1=0,1,=randl,_; >p—1—r (the latter condition being empty if n = 1) then
1, n 1,n—2 1,n—2
(=D)5pras )" S (F") (sn)) = 0B (B (o —p = 1= 1) +0pady, |, pert25 (B2 (0));
3) Ifeitherl, ., =0,1, =7 andl, | # p—1—r (the latter condition being empty if n = 1) or
lyy1=0andl, <r then

(Prap )P (ES™, (1,40) = 0.

ll 7"'7!7;

Proof. 1t is analogous to the proof of Proposition 5.13 and it is left to the reader. O

Interpretation in terms of Euclidean data. We dispose of a canonical F-basis for the rep-
resentation - - - @ p+ Rf 1, which is obtained in the obvious way by an induction from Proposition
3.4 and Lemma 5.1.

Exactly as we did in §5.1 we have a natural way to associate an element of such canonical basis
to a point in R/: again, we obtain a lattice, which we will denote by - - - Dyt %’fﬂ.

In such Euclidean setting Proposition 5.13 is clear: it tells that lattice - - -® s %:[ 1 is obtained as

the union of the lattice ‘%):H Jn, associated to R ,/R} and the image of the lattice - - - @ z, a0

associated to the amalgamated sum --- @p+ R;ll (which, inductively, can be assumed to be

known) under the translation
R/ - R/ (15)
()i = (@i + " (0= 1= Tlign—1)) + D" ign))-
Notice that in particular the lattice - -- @+ 2, is glued inside the F*(0)-block of R 41

n—2
We stress again in Figure 9 the glueing and the fractal structure for f = 2 (noticing the glueing

of - @%I_z %:_1 inside the Fﬁ(n) (0)-block of ‘@:H/n)‘

The evident analogous considerations for the negative part - - - By R, .1 are left to the reader.

REMARK 5.15. Notice that if f = 1 then it follows directly from Propositions 5.13 and 5.14 that the
Ky(p)-structure (and the extensions between two consecutive graded pieces) of the representations
...ge Ry, are given by the associated lattices --- Dge %n, 1. In particular, we deduce that each
of these representations has a space of Iy invariants of dimension 1, recovering [Bre03], Théoreme

3.2.4.

By remark 5.15 we can assume from now on that f > 2.

Structure of the Universal representation and FEuclidean datum. We are now left to prove
that the socle filtration (and the extension between two consecutive graded pieces) of the Ko(p)-
representation - - - @ p+ R;{ 11 is described by the associated Euclidean datum in the sense of Definition

1.7. As we have seen for R +1/R}, the main task is to show that the “natural” linear filtration on
o @pt R, | deduced from the Euclidean structure - - - @+ 7, 1 is indeed Ko(p)-equivariant with
semisimple layers. By proposition 4.11, it follows then that such natural linear filtration is the socle
filtration.

We need therefore a precise control on the Ky(p) representation generated by an element of the
canonical base of -+ ®p+ Rzﬂ; as - Opt Rt | is a Ko(p)-subrepresentation we will see, by a

simple Euclidean argument, that the statement of proposition 5.3 will be sufficient.
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(n-1, n)

Magnification around the [1,X"]-block of ... @R:R:_._l (each pointisaFy, | ,(O)-block).

bR

Magnification of
Jn=1.n)
the PPI_J'. J_,(Q)—bla--:l-c — ——
| < &
| |
[N J
(n-1.n) /
Structure of the Fp_ . (O)-block |
. _ , The structure associated t0 —a— 1
of .. Rg®p'R, 1 i.e. ¢ - B
" ()
structure of ... ®p* R, is glued inside the F_(Q)-block of R:1 f

o g -2)
Each point is a I—“,_(: , (£y1)-block

FIGURE 9: This picture shows how to glue together the datum of R;f,, /R;} and R;}_,/R;}_, (Lemma
5.13). Repeating this process for all R:+172i’ i1 € N, i< "T‘H gives rise to a complicate fractal
structure.
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Let ,%’;rl ,, be the canonical basis of --- @ R R: 15 its description in terms of the canonical basis
of -+  ®p+ , RP | and R} 1/R} is clear, as well as the relations between 2, and the canonical
basis of R, 41 (Lemma 5.13). In particular, the projection 7,1 of Lemma 3.4 let us identify the

canonical base % of R 41/R;} with a convenient subset of %}, 5 in Euclidean terms we are

n+1/n
considering the Euclidean datum %:H In embedded in --- @+ 788 41

For N € N we consider the following subsets of %,

al,n:
i) a linear basis By sup for the N-th composition factor of the socle filtration for - - - @ p+ , R;f_l;

ii) A linear basis By g for the N-th composition factor of R, | /R, (such basis is seen as a subset

of ‘%):l,n via the previous identification).

The result below gives us the desired control of the action of Ky(p) in Euclidean terms:

PROPOSITION 5.16. Let N € N, v € Bn2 and g € Ko(p). Assume moreover that if n = 1 and
f =2 then (ro,71) ¢ {(p —2,0),(0,p—2)}.
Then the element (g—1) - v is contained in the linear space generated by By _1,q and Bn_2 sub-

In particular,

i) the linear space Vi generated by BN sub, BNqt is Ko(p) stable;
i1) the filtration {Vy}nyen has semisimple layers;

i11) modulo Viy_o there are no extensions between the elements of By g and Bn_1, sub-

Proof. Define, for any n > 1,
f—1

M, = Z(pn—l(p -1- r|_5+n—1j) +pnr\_s+nj);
s=0

in particular the hyperplane Xo + --- + X;_; = M, contains the image of the point 0 via the
translation (15). Except in the case where f = 2 and (r9,71) € {(p—1,0),(0,p—1),(p—2,0),(0,p—
2)}, we have

My, > p"(rs, +1) (16)
for any so € {0,...,f — 1} (and we actually have an equality if and only if f = 2, (r9,71) €
{(p - 270)7 (07p - 2)} and Tso =D — 2)

By the Euclidean interpretation, Proposition 5.3 and an immediate induction *
ment is proved if we show the following:

0 on n, the state-

1) if n > 3, that an hyperplane of the form X + -+ + X1 = p" (1|45 + 1) + N lies strictly
below an hyperplane of the form Xo+---+X;_1 = M, +p"*2(an+SJ + 1)+ N for any choice
of indices sg, s1 € {0,...,f — 1}, i.e.

P (reo +1) < My +p"2(rs, +1);
2) similarly, if n = 2, that for any choice of inices sg, s1 € {0,...,f — 1} we have
pQ(rSO +1) <My +(re; +1) =6

where 0 € {0,1} is nonzero if and only if either the f-tuple r verifies the hypothesis Ip) of
Proposition 5.6 and s; = s, (see the introduction of §5.1 for the definition of s,,) or the the
f-tuple r verifies the hypothesis of Proposition 5.8 and s1 € {Spm+k,,- -, Smtko |-

10if f =2 and (r0,71) € {(p — 2,0), (0,p — 2)} then induction works as well thanks to Remark 5.17.
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3) if n =1, that
p(rsy +1) < Mj.

The three conditions follow from (16) if f > 3. If f = 2 and (ro,71) € {(p—1,0),(0,p— 1)} we have
U, = {0} so that the three conditions should be checked only for rs, = 0 (we have no cutting
hyperplane of the form Xo+ -+ X1 = p"(|rs,, + 7] + 1) in this case!). O

REMARK 5.17. Notice that forn =1, f =2 and (rg,m1) € {(p —2,0),(0,p — 2)} the statement of
Proposition 5.16 holds true if we replace By _2 sup by BN—-1,sup- Indeed, in this situation the cutting
hyperplanes for Rar and U, coincides.

THEOREM 5.18. Let n > 1 and consider the Ko(p)-representation - - - & p+ RS,

The socle filtration and the extensions between two consecutive graded pieces are described by
the associated lattice - - - Dt %;[H, with the conventions of section §5.1.2 and Propositions 5.6, 5.7
and 5.8 concerning the lattice associated to the Ko(p)-structure of (Ry/Ro)™.

Proof. 1t is a formal consequence of Proposition 5.16, Remark 5.17 and Proposition 4.11. O

6. Appendix A: Some remarks on Witt polynomials

The aim of this appendix is to collect some technical results concerning Witt polynomials. After
a section of general reminders (§6.1), we will treat in detail the case of the universal polynomials
for the sum and the product (§6.2 and §6.3). In section §6.4 we study the Witt polinomials of a
certain power series in the ring W (F,): in this situation it is more complicate to keep track of
the exponents of such polynomials and we are therefore led to introduce the notion of “pseudo
homogeneity” (definition 6.11).

6.1 Reminder on Witt polynomials

The description of the socle filtration for the aforementioned representations of GLa(F') relies cru-
cially on the behaviour of the universal Witt polynomials. After some generalities, we focus on
specific situations related to the study of the action of lower unipotent, diagonal and upper unipo-
tent matrices in GLy(OF). The interested reader is referred to [Ser], [Bou| or [Bos| for more details
concerning the formalism of Witt polynomials.

For n € N the n-th Witt polynomial W,,(X) € Z[Xy, ..., X,] is defined by
n .
Wn<X) d:ef Z lenfzpz.
i=0

As the ring endomorphism

E

Wi oyl
p][XO’ Ce ,Xn] — Z[*

Z 1[Xo, .-y X0
p
Xj — Wj(Xo,...,Xj)

is bijective, we get a family of polynomials Mo (Xg), ..., Mn(Xo,...,X,) € Z[2][Xo, ..., X,] which

p
are uniquely determined by the condition:
M;(Wo(X),...,Wp(X)) = X;.
They are of course described inductively by
1 n— 7
M, = E(Xn _pnian—l(X)p - le(Xo, Xl)p = MO(XO)p )
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The following Lemma lets us deduce the universal Witt polynomials describing the ring structure
of W(Fy):

PROPOSITION 6.1. Let ® € Z[(,&] be a polynomial in the variables (,¢. For all n € N there exist
polynomials ¢, € Z[X,...,Xn,Y0,...,Ys], uniquely determied by the conditions
Wn(¢07 s a¢n) = (I)(Wn(Xo, cee 7Xn)7 Wn(Yb, ce aYn))

Sketch of the proof. The proof is constructive: we considering the commutative diagram

Wn

Z[:][Xo, ..., Xn)

1 1
L o Z[1][Xo..... X,

if v

7L® n
Z1M[Xo, -+ X, Yo, Ya “F 21X, -, X, Y, -, Vil

where f : Z[Z%][X] — Z[%][K,X} is defined by f(X;) = ®(X;,Y;) for any j € {0,...,n}; the
polynomial ¢,, is then given by
(X, Y) = (wn @ wn) 0 f 0wy, (Xn).

The fact that such ¢,, have integer coeflicients is an induction on n. O

We apply Proposition 6.1 to the polynomials
(¢, 8) =¢+¢&, (¢, &) = ¢¢

to get the universal polynomials for the sum and the product respectively. They will be denoted as
Sn, Prod,, € Z[Xo,...,Xn,Y0,...,Y,] and are described inductively by

]. T — T
Sn(X,Y) = E(Wn(l) + W (Y) = p" St (X, Y)P — - = pSI(X, V)P — So(X,Y)P")
Prodn,(X,Y) = p];l(Wn(X)Wn(Y> — " Prod, (X, Y )P — -+ = pProdi(X,Y)"" " = Prody(X,Y)"").

In section 4 we are interested in such operations as rise to the IN-th power or the alternate sum
Zévzl(—l)jﬂg(j) of N elements. We can of course adapt the arguments of Proposition 6.1 (or, use
an induction on V) to determine the universal Witt polynomials associated to such operations. We
will write PotY (X) € Z[Xo, ..., Xn], SN(X(1),...,X(N)) € Z[X(1)g,..., X(1)p,..., X(N)o,..., X(N),]
for the n-th Witt polinomial associated to the rise to the N-th power and the alternate sum of N
elements respectively. We have then the recursive relations:

Pot (X) = pln<Wn<X>N — p" T Pot_ (X)P —
<= pPot (X)P" — Pot) (X))

N
SN(X(1),.... X(N)) = pﬂ(Z(—lV“Wn(X(j» —p SN (X (1), ., X (V)P

j=1
e pSN(X(L), L X (NPT = SY(X(1), .. X(N)P).

6.2 Some special polynomials-I

In this paragraph we collect some thechnical results concerning some Witt polynomials which appear
Or

{ ] ) for the representations of §4.1

naturally in the study of the action of { pé,F (1) } (resp. [ (1)
(resp. of §4.2), see also the proof of Proposition 4.4.
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For n € N we define S,,(X,Yy) € Z[Xo, ..., Xn, Yo| as the specialisation of S,(X,Y) at Y =
(Y0,0,...,0,...). We recall

LEMMA 6.2. For n € N the polynomial S,,(X,Y) is an homogeneous polynomial in X,Y , of degree
p" if we define the elemets X;,Y; to be homogeneous of degree .

Proof. Omissis. O

Thus, if we set
Sn(X,Y0) ¥ 5,(X,Yp) — X,

we see that §j (X, Y)) is a polynomial in Z[Xy, ..., X,,—1, Yo, homogeneous of degree p". Moreover,
as S, (X,0) = 0 we see that S, (X,Yp) belongs to the ideal generated by Yj.
We define inductively the following family of automorphisms: we put

So . Z[X(),YE)] — Z[X(),Yo]

X() — X() — Yb
Yo — Yo
and, assuming s;_1 : Z[Xo, ..., X;_1,Yy] = Z[Xo, ..., X;_1, Y] being constructed, we define

S5 - Z[Xo,...,Xj,YZ)] — Z[XO,.. . ,Xj,Yo]
Xj = Xj —55-1(5;)

By their very construction, the s; are graded homomorphisms; in particular s;(S;) is homoge-
neous of degree p’, and belongs to the ideal (Yp) inside Z[Xo, ..., X;,Yp]. We can actually prove
the following result

LEMMA 6.3. For any n > 1 we have

Sn—l(Sn(X, YO) - Xn) = _(Sn(57 _YE)) - Xn)
Proof. The case n =1 is elementary:

1 1
$0(S1(Xo, X1,Y0)—X1) = 50(5(X5+Y$—(X0+Yo)p)) = ];((Xo—%)pJ%”—Xé’) = —(S1(Xo, X1, Yp)—X1).
Concerning the general case, we write

1 n n _
Sn(Xo, ..., Xn, Y0) = Xn = E[Xé’ +YY =" (S (X, Vo) = XD ) — (17)

n— n—1 n
= p(S1(Xo, X0, Yol = XTT) — (X0 + Vo).

For j € {1,...,n — 1} we have

1 n—

s (S (Xo, ..., X5, Yo)P' 7 = XV ) = (s51(85(Xo, .- X5, Y0) — X5) + 55(X))P T — (s5(X;))7
= XV — (X5 = s5-1(55(Xo, -, X5, Yo) = Xp)P
= X" — (X + Si(Xo, ..., X, —Yo) — X))

n—j

= —(8§(Xo, ..., X5, Yo" T =X ).
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As $,—1(Sn(Xo, ...y Xn, Y0) — X5) = s0(Sn(Xo, - .., X, Yo) — X)) we are left to compute

L/
(p R ARG U IR

n— n—1
— p(S1(Xo, X1,Y)P 1—X§J ) — (Xo + Yo)? >>
X

1 n u3 _
:n<(X0—}/E))p —i—Yop —pn 1sn_1(Sn 1(X Yb) 1)—...

n—1

- = ps1(S1(Xo, X1, o) — X7

)= o)

n—1 i n—j

and the result follows as s;(S;(Xo, ..., Xj, Yo)?" ' — X? ) = —(Sj(Xo,...,X;,~Yo)P" " — Xf )
forall j € {1,...n —1}. O

We will also need a cleaner statement concerning the monomials of Sy, (Xo, ..., X,, Yp):

LEMMA 6.4. For all n > 1 the coeflicient of the monomial X{~ ... XP~1Yy appearing in the devel-
opment of the universal Witt polynomial S,,(Xo, ..., X, Yo) is 1 up to sign.

Proof. The proof is again an induction on n: the case n = 1 is evident.
For the general case, consider

1 u n— (o
Sn(X, Y0) = F(Wn@) Y TS (XY — = pS1 (XL Vo) — Sp(X, Vo)),

A monomial of the form X}~ b L XP 1Yo lies therefore inside

1 _
_];(S’n—l(XO) cee 7Xn—17 }/O)p - ngi)

and the inductive hypothesis yields
Sn1(Xoy ., X 1,Y0) = X1 4+ X071 XTIV + 2(Xo, ., Xno, Y0)

where z(Xo, ..., X,—2,Y0) € Z[Xo, ..., Xn—2,Yo] doesn’t contains the monomial Xg_l . Xﬁ:;Yo.
Finally, we have

! , B 3 .
(Sn1(Xoy- o, X1, Yo))P = Y X0 (X XETOY0) (2(Xo, -, X2, Y0))F

iljk!
it+j+k=p
0,5,k

and the conclusion follows. O

6.3 Some special polynomials -1I
In this section we deal with some Witt polynomials which appear naturally when we study the
1+pOF 0

action of the diagonal matrices 0 14+ Op

4.5. Recall that

, see in particular the proof of Proposition

LEMMA 6.5. Let n € N. The n-th universal Witt polynomial of the product Prod,(X,Y) is an
homogeneous element of (Z[Y])[X] (resp. (Z]X])[Y]) provided that X; (resp.Y;) is homogeneous
of degree p’ for any 0 < j < n.

Proof. Elementary. O
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REMARK 6.6. In the present paragraph, we will be concerned with the image in F,[X,Y] of
the universal Witt polynomials S,(X,Y), Prod,(X,Y). Such images will be denoted again by
Sp(X,Y), Prod,(X,Y), in order not to overload notations. As p -1 = 0 multiplication by p is
the composite of Frobenius and Verschiebung.

For N € N, let 2/ = (X}, ..., Ny,0...,0,...) € W(F,) and let o = (g, a1,...) € W(Fy); we
need to describe
2 4+ pa-z mod pNt (18)
in terms of the universal Witt polynomials.

LEMMA 6.7. For 0 < j < N, the j-th Witt polynomial of the development of (18) is an homogeneous
element Q;(X, ) of degree p’ in (Fplag, .. .,a;-1])[Xy, ..., Nj] if we define, for 0 < s < j, \; to be
homogeneous of degree p°.

Proof. Tt is a strightforward consequence of Lemmas 6.2 and 6.5. More precisely, from 6.5 we see
that

p-2 -a=(0,Prody(NG,ab),..., Prodj_1 (NG, .. .,)\/5')_1,048, e ,a?_l) o)

jth entry

where each Prodj_i(), a)P is homogeneous of degree p? (provided that )\, is homogeneous of degree
p® for 0 < s < j—1). Furthermore, Q;(X, a) is the specialisation of S;(X,Y) at X =2\ Y =p-2'-«
and we use Lemma 6.2 to get the desired result. ]

As we did in §6.2 we define (for 0 < j < N)
Q; = Q;(X,a) — N,

For j # 0 it is a polynomial in (Fy[ap, ..., a;-1])[Ay, ..., Nj_;], homogeneous of degree .
We can finally define, inductively, a family of ring homomorphisms: we let
a0 : FyN)] = F, [\
be the identity map, and, assuming ¢;_1 being constructed for j > 1, we define
q; : Fp[ 6,...,)\]',&0,...,(1]'_1] — Fp[ 6,...,/\;,040,...,%_1]
by the condition
Xy = X = qi-1(Q;)
Qa1 = Q-1
qj’Fp[Ag,...,Aj_l,ao,...,aj_z] = gj-1

(and the obvious formalism: if j = 1 we just forget a;;_o from the formulas).
We deduce:

LEMMA 6.8. For 0 < j < N, the polynomial qj_l(éj) is homogeneous of degree p’ in A, ..., YIRS

Proof. The morphism ¢;_; is a graded ring homomorphism. O

6.4 Some special Witt polynomials -IT1

In this paragraph we study some Witt polynomials giving the action of [ (1) 61% ] (resp. [ pé’ (1) } )
F

for the representations of §4.1 (resp. of §4.2). A tipycal example is the proof of Proposition 4.7 Such
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study is more delicate than the previous sections (§6.2 and §6.3) and relies crucially on the fact that
we deal with Witt vectors z € W (F,) which are NOT invertible.

We start with a general remark

LEMMA 6.9. Let N,n € N.

i) The n-th universal Witt polynomial of the rise to the N-th power PotY (X) is an homogeneous
element of degree Np" in Z[ Xy, ..., X,] provided that X; is homogeneous of degree p’ for any
0<j<n

ii) The n-th universal Witt polynomial associated to the alternate sum of N elements SY (X (1),..., X(N))
is an homogeneous element of degree p™ in Z[X (1)g,..., X(1)n,..., X(N)o, ..., X(N),] if we
define X (1); to be homogeneous of degree p/, for any l € {1,...,N}.

Proof. The result is elementary once we notice that, for p > 3, the universal Witt polynomials
Inv,(X) of the additive inverse of X is simply Inv,(X) = —X,. O

As in §6.3 we have the following

REMARK 6.10. In the present paragraph, we will be concerned with polynomials with coefficients
in F), obtained by reducing modulo p the coefficients of the universal Witt polynomials S’év (X,Y),
Potl(X), S,(X,Y), Prod,(X,Y). In order not to overload notations, such images will be denoted

again by S,QV(X, Y),.... As p-1 = 0, the multiplication by p is the composite of Frobenius and
Verschiebung.
Fix 0 < m < n and consider the ring Fp[ Ay, ..., Ay).

DEFINITION 6.11. Let M € N. A monomial AJ;» ... \5" € FplAp, ..., \y] is said to be pseudo-
homogeneous of degree M if the following holds:
there exist an integer L € N and integers 5;(j) € N for j € {1,...,L}, 1 € {m,...,n} such that

i) foralll € {m ...,n} we have
L
a =Y P Bi(j)
j=1
1) we have
L L
PO Bm() + -+ "D Bald)) < M.
j=1 j=1

A polynomial in Fp[Ay, ..., A\y] is said to be pseudo-homogeneous of degree M if it is a sum of
pseudo-homogeneous monomials of degree M.

Notice that a monomial A% ... A% can be pseudo-homogeneous of several degrees (for instance,
AB): such notion let us consider any p-th power )\gk as pseudo-homogeneous of degree P with
0 < k' < k. Definition 6.11 is flexible enough to handle information on the exponents of some
complicate Witt polynomials, yet strong enough to make these informations interesting for our

aims!!.

The following result is imediate

LEMMA 6.12. Fix m,n as above. Then:

1YWe suggest the reader to make some example of pseudo homogeneous polynomials of low degree (p — 1, p, p + 1,
etc...).
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i) If P, Py € Fy[Am, ..., \y] are pseudo-homogeneous of degree M, My respectively, then Py P>
is pseudo-homogeneous of degree My + Ms.

it) if Py € Fp[Am, ..., Ay Is pseudo-homogeneous of degree M, then P is again pseudohomoge-
neous of degree Mj.

Proof. Omissis. O

REMARK 6.13. If P € Fy,[\p,, ..., Ay is pseudo-homogeneous and we specialise P on an element of
Fg_mﬂ, we see that the integer L in definition 6.11 can be assumed to verify L < f.

We are now ready to focus our attention on some Witt vectors in W (F,).

def

6.4.1 The negative case. For 1 < m < n, let z & (0,...,0, A\my -, Ap, 0,...) and [y]
(1,0, ...) be elements of W (F,). We are interested in the Witt development of

N

S(-1) W] mod pt! (19)
=0

where N & |ZEL ] For j € {m,...,n} write finally U;(A, 1) € Fp[Am,...,Aj, u] for the j-th poly-
nomial of the Witt development of (19) and put

il def

Uj(AMU') =Uj = A

We notice that ﬁj =0ifm<j<2m—1 and ﬁgm = —A%fm.

We have a rough estimate for the degree of the U
LEMMA 6.14. Let h € {2m,...,n}. Then Uy € F,[ A, ..., A\n—1, ] and is pseudo homogeneous of
degree p — p™(p™ — 2).

1 1 ,
Proof. IEZ %< (\S,...,AF",0,...) then we recall that Potf“(%} is homogeneous of degree (j+1)p!
(if \s is homogeneous of degree p*). Thus the Witt development of 2/7![u]/ has the form

i1 . i+1 mj . pm(j+1) i1 mj mj . pm(j+1)+l
ATl = (0,...,0, Pot) ™ (A07) (1) J,...,Pot{ (AD A () .
position m(j+1) positionm(j+1)+1
. mj mj . om(i+1)+1 .
and Pot] T (A0, )\%le)(/ﬂ)p ’ is homogeneous of degree (j 4 1)p"*™U+D) and actually is

pseudo-homogeneous of degree (j + 1)p!™™.

Thus, if a(j41)m(f); - - -, an(j) is an (b — (j + 1)m + 1)-tuple of integers, the polynomial
h—(j+1)m _
; mj mj .
[T Pot T Ow", A ) ()
1=0

m(j+1)+1 .
Uy )a(j+1)m+l(])

is pseudo-homogeneous of degree
(G + D@ agrm() + -+ 0" an ().
By Lemma 6.9 we see that a monomial of S7' *1(X(1),..., X(N + 1)) has the following form:

h h
x & H Xlo(l)alo(o) H X, (N + 1)azN(N)
lo=0 IN=0
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where
h h
> p0an(0)+ -+ D pNa (N) =p".
lo=0 In=0
As Uy, is the specialisation of S,gNH) at
(X +1)jeq0,..51 = ) jeqo,.. 53

we see in particular that f]; €EFp[Am, .- A1, 1]
Assume now that

1) if j verifies h > (j + 1)m we have a;;(j) = 0 for all [; < (j + 1)m;
2) if j verifies h < (j + 1)m we have a;;(j) = 0.

Then Lemma 6.12 shows that the specialisation of X is pseudo-homogeneous of degree

N h
dED G+ D pImald).
j=0 i=(+1)m

Letting

h
i = Y P Ma))

i=+1)m
for 7 €{0,...,h} we get
N
d=p" > ("~ (j+ 1)z,
=0
and the conclusion follows from Lemma 6.15 below. O

LEMMA 6.15. Let j € {0,...,N} and let

h h
x o H Xlo(l)azo(()) ... H X (N + 1)a1N(N)
lo=0 InN=0

be a monomial of S,gNH)(X(l), L X(N+1)).
If a;;(i) = 0 for all t # j and l; € {0,...,h} then

X = (1) X5(9).
Proof. An immediate induction on h shows that if we specialise S}(INH) at
(Xo(2),...,Xn()) =(0,...,0)
for i # j we get

SO0, X(),0, -, 0) = (=17 X4 ()
and the claim follows. ]
We finally introduce a family of ring homomorphisms, for m < j < n,
Uj - Fp[)\ma ey )\j,,u] — Fp[)\m, cey )\j,,u]

defined inductively as follow: w,, is the identity map and, assuming w;_; being constructed, we
define u; as the unique extension of uj_1 to Fp[Ay, ..., A;, p] such that

A = N — w1 (U5).
‘We have the
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LEMMA 6.16. Let h € {2m,...,n}. Then uy,(Uy) is pseudo-homogeneous of degree pl — p™ (p™ — 2).

Proof. Argumg by induction, we can assume that u;()\;) is pseudo homogeneous of degree p' for all
le{m,.. —1}. As Uh is pseudo-homogeneous of degree p* — p™(p™ — 2) by Lemma 6.14, the
claim follows from Lemma 6.12. O

6.4.2 The positive case This section is essentially a re-edition of §6.4.1, where we take m = 0.
The results presented here will be used in 4.2, precidely for the proofs of Propositions 4.11, 4.13
where we give a description of the Ky(p)-representations R,

Let (Ao,...,An,0,...) € W(Fy).

We are interested in the Witt development (Uy(Ao, 1), U1 (Ao, A1y 8), -+ s Unk1( N0y« -y Apr1, 1), 0,0 .0)

of
n+1

2(1 4 plp]z) 1 —Zp7 1)/ 27 mod p™+2.

We check immediately that Uy = A\g and U1 =)\ — )\

We define, for h =10,...,n+ 1, ﬁh & Uy, — Ap. The followmg result is the analogous of Lemma
6.14

LEMMA 6.17. Let h € {1,...,n+1}. Then U, € F,[ Ao, ..., A\n_1, p] is pseudohomogeneous of degree
h
p"—(p—2).

Proof. The proof is completely analogous to the proof of Lemma 6.14 and left to the reader (see
[Mol], Lemma 6.17 for details). O

As in section §6.4.1 we define inductively, for h = 0,...,n + 1, the ring morphisms
up : FpXo, oo, An, ] = FplXo, ..oy An, ]
by the condition uy(\p) £ V. uh_l(ﬁh) for h > 1 and up = id. Then
LEMMA 6.18. Let 1 < h < n+ 1. Then uy(Uy) is pseudo-homogeneous of degree p" — (p — 2).

Proof. As for Lemma 6.16 it is a consequence of Lemma 6.12 and Lemma 6.17. O

Still others remarks on some universal Witt polynomials. In this paragraph we pursue
the technical computations of §6.4.2; the results here will be used in §5.1, Proposition 5.3. Indeed,
the structure of the quotients R} _ | /Ry, is more complicate than for R}, |, and it can not be deduced
from Lemmas 6.16, 6.18; we therefore need to look more closely to the structure of the polynomial
Ups1 and up (U, + 1) (the notations being the same as for §6.4.2).

The following description is deduced as in the proof of Lemma 6.14. Let z = (Ao, ..., \p,0) €
W, 41(F,) and write
n+1

Zpﬂ Zj+1 (U05'°'7UTL+1)‘

for U; € Fylho, ..., Aj, u]. We recall that Uj, is obtained by specializing the universal polynomial
SPX(1)... X(n+2)) at

X(G+1)=(0,...,0,(Potd ™ ) (1?7, ..., (Pot] TH A ()P,
position j position j+1
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We recall moreover that a monomial X of S}™(X(1),...,X(n +2)) has the form

h
x =[] X,(1)2C H Xy, (n+2) (7D (20)
lo=0 ln+1 0

where the integers a;, (i) verify

h h
Z ploalo(o) 4+ Zpln+1aln+l(n +1)=
lo=0 lnt1
Therefore a monomial A\j® - --- - A3 issued from Uj, verifies
hoo h oo h
D Ps(ay) <D G+ DO Ta(i) =" =Y (0 - (G +1)
=0 =0 i=j i=1

where we have set

h
2 2 P i)
P

We focus our attention for the case h = n + 1, obtaining thus the following

LEMMA 6.19. A monomial of ﬁnH has the following form

Adn (0)+pan+1(1) /\27_“11 ..... )\8‘0

where the exponents verify the following properties:
1) we have an( )€ {0,...,p—1} and ap41(1) € {0,1},
2) letting x; = Z?Jrjl p*~Ja;(j) we have

- n+1
Zlﬂﬁ(%‘) + 9" (an(0) + a1 (1)) <P =Y (0 = (5 + 1))z
j=0 j=1
3) if ant+1(1) =1 then the monomial has the form
n+1
PYED VS
Proof. The fact that a,(0) # p follows from the fact that in the polynomial Sgif the coefficient

of X, (1)P is zero (the proof is the usual one: see Lemma 6.15). Assertion 2) is deduced from 1)

(and the fact that f > 2). Assertion 3) follows noticing that (Pot2(z))P = 2)\gn+l)\ﬁ + = where
Z‘EFP[)\(),...,)\n_ﬂ. ]

We recall the ring morphism wy, : Fy[Xo, ..., A, 1] = Fp[Ao, ..., Ap, ] (cf. 6.4.2). If Z(S) eN
deduce the following

~ .(s)
LEMMA 6.20. In the preceding notations, a monomial issued from u,(Up+1)'»+1 has the following
form

A AR B OB O\ \

and there exists convenient integers A;(j) > 0 (depending on the choosen monomial) such that

1) we have
n+1n+1
s(o + "B (1) +ij5 B;) + " (BE(0) + B (1) <p il = D0 (0 - G+ D)p
j=1 7j=1 1=j
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2) we have A;(j) = 0 for all couples (i, j) if and only if igf}rl =0;

3) we have 0 < Bszl(l) < AY

n+1 (1) < ifls-?—l'

Proof. Lemma 6.19 shows that a monomial A% = \;" 7 7" 000 L A" issued from ﬁn_l,_l
is pseudo homogeneous of degree

n+1n+1

0 =P =D W G+ DI i)

j=11i=j

A monomial issued from wu,(A%) is of the form

Aﬁ/ def ()\18"“)\10) 11 ))\b( (0 ))\B . .)\gé (21)

n—1

where 0 < b,(0) < a,(0) and 0 < bypy1(1) < ap+1(1). Moreover, as A* is pseudo-homogeneous of
degree dy, so it is for A2 and in particular we have

5(B) + p" M bnsa (1) +Zp]5 by (0) + b1 (1)) < do.

(as 5(bn(0) + pbny1(1)) = bn(0) + bn+1(1)!)-
(s)

~ -(s) /
A monomial issued from u,(Upy1)"=+1 is the product of i, ; monomials of the form M and
thus of the form

()\15"“)\@3511(1)/\555 @ ))ﬁﬂ RV
where 37(1421( 1), Bﬁf)(O) is the sum of szJ)rl terms of the form b,(lll( 1), bgf)(O).

If each of the monomials Aﬁ comes from wu,(A%), the statement follows easily from the subaddi-
tivity of the function s and the additivity of the pseudo-homogeneous degree, once we define each
integer A;(j) to be the sum of zq(lll terms of the form a;(j), one for each monomial A\* (the integers

a;(j) being defined as for Lemma 6.19).

O

7. Appendix B: Two rough estimates

The aim of this appendix is to estimate the behaviour of some “discrete Fourier transforms” which
appear naturally in the study of the socle filtration for the representations Rn 1 Indgg Eg 7)1 1) 1, etc...
According to the Fuclidean vocabulary developped in Sections 4 and 5 such behaviour is related to
the reduction mod pf — 1 of the exponents of some (pseudo-)homogeneous polynomials.

The first tool is discussed in §7.1: it is an elementary description of the function s giving the
digit sum of the reduction modulo p/ —1 of a natural number. In §7.2 the properties of the function
s and the results on Witt polynomials stated in §6 will be used to describe in detail some explicit

vectors of the aforementioned representations (Propositions 7.3, 7.4 and 7.5).

7.1 Remark on the proof of Stickelberger’s Theorem

In this section we recall the construction and the properties of a certain function s : Z — N which
appears in the proof of Stickelberger’s theorem.

If p is a prime of Q({;—1) lying above p, the reduction modulo p, Z[(;—1] — F, admits a
multiplicative section

W : F; — Z[(g-1]
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which induces an isomorphisms on the group p4—1 of ¢ — 1-th roots of unity. If P is the prime of
Q(¢g—1,¢p) lying above p, we define a function s : Z — N by
s(n) dof valp(g(w, ™))

where valy denotes the ‘B-adic valuation and g(w, ") denotes the Gauss sum of the character
" FY — pg-1 (see [Was], §6.1 for the definition of the Gauss sum g(w, ™))
We need to modify slightly this function as follow:

s:N—-N
. s(n)if eithern # Omodg—1orn=0
" f(p—1) otherwise

The following lemma is then easily deduced from the well known properties of the function s (cf.
[Was], §6.2):

LEMMA 7.1. Let n,m € N. Then:
a) 5(0) =0ands(l) =1;
b) 0 < s(m+mn)<s(n)+s(m);
¢) 5( n) = s(n);
d) if0<n<q—1and (ag,...,ar_1) are the digits of the p-adic development of n, we have
s(n)=ap+ar+---+ap_1.
In particular, s(n) < n for any n € N, with equality if and only if n € {0,...,p — 1}.
We can improve the statement of b):

LEMMA 7.2. Let by, ...,by—1 € N be integers.
Then there exist integers ms,ns, where s € {0, ..., f — 1} such that:

1) foralls € {0,...,f—1}

cs 2 b, —pms +ns 1) € {0,....,p—1}

2) we have

<
Ig
T
r
3
I
T
r
3
V)

@
Il
o
@
Il
o

3) we have

f-1 f=
Zp = Z Cs modpf -1
s=0 s=0

4) we have the equality
f-1 -1
5(Zpsb5) = Z bs —j(p—1).

Proof. Assume first that bs € {0,...,p — 1} for all s > 1 and by > p. There exist (unique) integers
mg, for s =0,..., f — 1 such that

i) bs+ms—1 —pms €{0,...,p—1} for all s > 1 and by — pmg € {0,...,p— 1};

ii) we have the equality
/-1 /-1
D bep® = (bo — pmo) + > p°(bs + me—1 — pms) +p' tmp_y. (22)
s=0 s=0
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As we work modulo ¢ — 1 the equality (22) reads
F-1

stp = (bo —pmo +my_1) + Zps(bs +mg_1 — pmg)modg — 1.
5=0

If b — pmo + my_1 € {0,...,p — 1} we get the result. If not, we only have to check that 0 <
bo — pmo + my_1 < by (so that the iteration of the preceding procedure eventually stops). As
—pmq +by+mg >0 and by < p—1 we get mp < pfl% and, inductively, ms11 < W_ Thus

=1 _14m
—pmo +mjy_q1 < —pmo—l—p—i 0 <0
p/1

if mg > 1.
For the general case, we notice that there exists unique integers m/, such that bs+m}_; —pm/, €
{0,...,p—1} for all s > 1 and by —mg € {0,...,p — 1}. As we work modulo g — 1 we get

f-1 f-1
Z bsp® = (bo — pmg +my_y) + Zps(bs +ml_; — pm})modq — 1.
s=0 s=0
and we are in the previous case. O

7.2 Two rough estimates

Ko(p™)

Ko(pm +1)1 which appear naturally in the study of the

In this section we study some elements of Ind

o(™)

socle filtration for Indgo(pn 1) 1 (but the results adapt immediately for the representations R, +1)

In particular, we will be able to have a partial control of the action of Ky(p™) on Ind KoEp" 21)1.

The following proposition holds for a fixed pair (m,n) of integers such that 0 < m < n;if m =0

we just have to replace the matrix ml 0 with o 1 in the expressions (23) and
P Am] 1 1 0

(24). Finally we recall the definition of the F-linear subspace W .. of Ind E . 21)1 for a given
(n+1—m)f-tuple (,,...,1,) € {{0,...,p— 1}f}n+1_m, given in §4.1.2.

PROPOSITION 7.3. Let /™", € %, and N = ). For m < j < nlet Tj €

FplAm, ..., Aj—1] be a polynomial of degree deg(T;) < p’~™ (where, for j € {0,...,n — 1}, we
define A\jim to be homogeneous of degree p’), and i; be a f-tuple such that i; < l;. Finally, fix
M < p! —1 and define the element

1 1 0 1 1 0
“’sz > W L Tf’”+ )m[ . ] > )ln—’n[ 1 ] [1,e]. (23)

j=m X;€F, LY B =r P ] 1

Nl 1

yin

Then the image of x under the projection

Tndig it — Ind i 1/ (Indig 0 v

is contained in the image of the subspace 20,

yreeidn)”

Proof. The technique of the proof is very simple: we fix 0 < ¢t < M and k € N such that k(p—1) <

t < (k+1)(p—1). If we write = as a suitable sum of elements the statement is proved if we

check that any such element lying in the antidiagonal Xq-+- - -—i—?( ¥ ;n— N —t verifies x; xj+k for
all j =0,...,f—1 (where, as usual, (zo,...,z5_1), (x(, ... ,a:’f_l) are the coordinates of F(mn)in

(m,n)
-F}/ l/

=mtt

via the map (7)).
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This is a long computation. If we expand each of the polynomials Timﬁl, . ,Tfl", we obtain:
1 , 1 0 1 , 1 0
DI DRCTRE [ i ] DB [ EE NS %)
i€l AneF, PR ] 1 AEF, Pt ] 1

where I is a suitable set of indices, 3; € F,, and the exponents «;(i) (for j € {m,...,n}) admit the
following explicit description: 2
Kq = p\_—lJ H((;H_l) N pL—(”—a)J ,{((1”) +1, — i,
and (fora+1<b<n)
where each /{((lb)’s is the exponent of A\, apperaring in a fixed monomial of (Tb)igs>.
Recall that, by the hypothesis on the T}, we have
/ﬁg_]b)vs +p5$)4,7-51 4+ 4 pb—l—m/{l()li),ls < pb—mil()s)‘ (25)

Thanks to Lemma 7.1, we have the following inequalities:

S(km) +ps(Kmy1) + -+ 0" " s(ky) < (26)

S(s(ly = i) + (PTG 4o s (p TR +

(51— i) + s R sl ) 4
T (L — i)+ (R )) (s, — 1)) < (27)
f—1
< 5Ly —dp) + Y _s(RiTT) +
s=0
f—1
P Ungr = 1)) + (O (s(KEHD - ps(plriP%)) 4.
s=0
f—1
o (O (R ps(sUD) 4+ T s (RU)) + 9" (L, — i) < (28)
s=0

< s(ém - lm) +p5(@.m+1) +p5@m+1 - Zm—i—l) + - +pn_m5(l’n) +pn_m5(£n - 171)

where the inequality (28) is deduced from (25) and Lemma 7.1-d).
If we impose our function to lie on the hyperplane Xo + --- + X;_; = ¢ we get a “control” on
the exponents ﬁ((lb)’s. More precisely,
i) the inequality (26) give rise to the conditions:
§(kia) = 8Ly — ig) +8(KETY) 4 s(m) —ualp — 1)
for a € {m,...,n — 1} and some u, € N;
i7) the inequality (27) give rise to the conditions:

() = s(k) -+ + 5(sPT ) — 0 (p ~ 1)

. . def .
2From now on, we fix an index i € I, and we put x; = k(i)
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where a € {m,...,n—1},b€ {a+1,...,n} and some wgb) € N;
iii) the inequality (28) give rise to the conditions
s(kP%) = K =0 (p— 1)
where a € {m,...,n—1},be{a+1,...,n}, s€{0,...,f — 1} and some o eN;
iv) condition t < (k+ 1)(p — 1) imposes finally

n—1 n—1 n n—1 n f-1
Z pa—mua + Z pa—m( Z wz(zb)) + Z pa—m( Z Zv((lb)vs) <k
a=m a=m b=a+1 a=m b=a+1 s=0

First, notice that the condition k(p — 1) < p/ — 1 implies H,(lb)’s < p/ — 1 for all possible choices
of a,b,s (as s(kq ()ss ") < [ka ()»s ). If /igb)’s(i), for i € {0,...,f — 1}, are the cyphers of the p-adic

development of /i((lb) , we then see that zzz) gives the necessary condition

Zf@ <Ub)3

(indeed, o can uniquely written as vl = Aaps(1)+ @+ 1Dagys(2)+- -+ agys(f—1)(1+p+

-4 pf=1) for suitable integers agps(5))-
Fix now a € {m,...,n—1}, b€ {a+1,...,n}. Working in Z/(p/ — 1), we see that

f—1
RO ol TR = ST I D00+ kO = 1) e PG - (F - 1)
j=0

(0)

Using Lemma 7.2 we see that condition 4i) lets us deduce the p-adic expansion of kg :
k) (7) = 5D00G) + -+ 5N = (F = D)) = pa () + B () (29)
= w19 (0) + o) (7) — pal ()

where the integers oz((lb) (7), B((lb) (7) verify

f-1 I-

> o) =) 8P0) =
j=0

—_

and
F—1
pP () = > kOS5 = s]) + B G) < v+ w),
se{0....f—1}\{j} s=0

Similarly, condition 7) lets us deduce the p-adic development of x,:

hali) =19 — 19+ 3" RO+ b a)) — pAali) + Bali)

b= a+1
1 i)+ 3 OUH0) 4 90() ~p( 3D oL+ a)) + Au)
b=a-+1 b=a+1
where the integers A,(j), Ba(j), Ra(j) verify
=1 F—1
Aa Z Ba(]) = Uq
7=0 7=0
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and
Ra() = > oD +b—a)) + Balj) Sua+ Y. Zv(b +wy!
b=a+1 b=a+1 s=0

We finally have all the ingredients to give the rough estimate of the statement. We fix a “coor-
dinate” j. A strightforward but tedious computation gives

Zpa_m Zp M) —0) 4 Z BLLi+d=al(0) 4+ R, (j) — pAa(4)) =

b=a+1

Zpam Lj+a— mJ_|_ i Zpam (b),Li+b— mj()

b=m+1a=m

_‘_Zpam% Zpamgl

where ,(j) € N are convenient integers (and notice that 2, (j) = 0!). The conclusion follows as

n—1 n f-1
Z a— m% Z p Ua + Z b) + vc(bb),S) <k
a=m b=a+1 b=a+1 s=0
and
b—1
Z Kgb)’s(o) < pbfmil()S)
foranybe {m+1,...,n} and s € {0,...,f — 1}. O

0 1 pﬁF 1
on the representations in §4.1 (resp. §4.2) and it will be used in the proof of Proposition 4.7. Appar-
ently, the result is unsatisfactory if we want to describe the K-socle filtration for the representations

7(r, A\, 1), unless we impose some conditions, depending on p, on the residue degree f (we expect a
condition of the form f < 1%1, [Mo2]).

The following rough estimate will help us understand the action of [ L OF } (resp. of [ 10 } )

ProrosSITION 7.4. Let 1 < m < n be integers and consider F(m n)l € AB; let N = &f Nown (s - -1

For2m < j<nletV; eF, [)\m, ..., Aj—1] be a pseudo- homogeﬁéo’ﬁns polynomial of degree deg(V
P! —p™(p™—2) and i; be a f-tuple such thati; < l;. Finally, fix M < p™—2 and define V; = 1, i;
form < j<2m— 1

The element x defined as

1 0 i 1 0
defz Z )\pJ lfz ij-‘rl) [ ‘ p% ] Z ()\Tp;" )Ln_ln [ % ] [176]
j=m \;€F, P An€Fq
(m,n)

and the element F, """, have the same image under the projection

21— Tnd 0P, 1/ (Indf0®7), 1)y

Proof. The idea of the proof is completely analogous of that of Proposition 7.3 the main difference
being that here we are not able to give an estimate of the coordinates of the points appearing in
the development of x.
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As in 7.3 we consider an element appearing in the development of z:

1 1 0 1 1 0
§ p™ Hm(i) 1 p" Hn(’b) 1 el.
i) [pm[m 1]“'2()\") [p"[AS"] 1][1’}

Am€Fyq A ] A €Fq
The exponents k, (for a € {m,...,n}) admit the following explicit description:
o = PR s plmal ) g, g,
and (fora+1<b<n)
(b) - ,i( ),0 +p,.€(b) A . +pf—1,.€[(1b),f—1
where each /{((lb)’s is the exponent of A\, apperaring in a fixed monomial of (V},)igs).
As each Vj is pseudo-homogeneous, for each triple (a,b, s) we have

p = B ) e+ p TP
where the integers [3@ *(j) verify
/

f
(b),s ¢ —m— b),s/ . —m m (s
S804+ (Y BUAG) -+ B 6) < 6P - 0 - 2))i.
Jj=1 7j=1 j=1
As for the inequalities (26), (27), (28), we use Lemma 7.1 to obtain

Do p s(ka) SN = (" = 2)( Y s(i)

a=m a=2m

and the conclusion follows. O
We state an analogous result in the case m = 0.

PROPOSITION 7.5. Let n > 0 and Fl(o Y e Bl let N E Nyl .. ,;n+1). For1<h<n+1

n+1
let V), € Fp[)\o, ...y, An—1] be a pseudo homogeneous po]ynonual of degree p —(p—2) and i), < [},
def

be an f-tuple. We finally fix M € {0,...,p — 3} and put i, = L0, Vo Z1.
The element

. 1 n+1 1 0

e s [N V]S S appeee [
Xo€Fy J=1A;€Fq PRI

( n)

s have the same image under the projection

and the element F

Indjg, rizy D)t = (IndfS niay )/ (IdE izy D)

Proof. The proof is completely analogous to the proof of Proposition 7.4 and is left to the reader
(see [Mol], Proposition 7.5 for details). O
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