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On some representations of the Iwahori subgroup

Stefano Morra

Abstract

Let p > 5 be a prime number. In [BL94] Barthel and Livné gave a classification for irre-
ducible representations of GL2(F ) over Fp, for F a p-adic field, discovering some objects,
referred to as “supersingular”, which appear as subquotients of a universal representa-
tions π(r, 0, 1). In this paper we give a detailed description the Iwahori structure of such
universal representations for F an unramified extension of Qp. We determine a fractal
structure which shows how and why the thechniques used for Qp fail and which let us
determine“natural” subrepresentations of the universal object π(r, 0, 1). As a corollary,
we get the Iwahori structure of tamely ramified principal series.
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1. Introduction

Let p be a prime number and F a p-adic field. In their works [BL94], [BL95] Barthel and Livné
studied a classification (recently generalized for general GLn(F ) by Herzing in [Her]) for the rep-
resentations of GL2(F ) with coefficients in an algebraic closure of Fp. Besides characters, principal
unramified series and special series, they found a new class of irreducible objects referred as “su-
persingular”, which are defined, up to twist, as subquotients of a universal representation, which
we will note π(r, 0, 1) (and r = (r0, . . . , rf−1) if f is the residual degree of F ). The existence of
supersingular representations is assured by a Zorn-type argument (see [BL95], Proposition 11) and
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a complete exhaustive study for supersingular representations is a relevant open problem in the
emerging p-adic Langlands program. Indeed, in a conjectural mod p-Langlands correspondence it
is expected that the supersingular object are those GL2(F ) representations which should naturally
be attached to Galois representations arising from elliptic curves with supersingular reduction.

This is actually the case if F = Qp (when the universal representations are indeed irreducible).
Such result is due to Breuil [Bre] where he reaches a complete classification of supersingular repre-
sentations thanks to direct computations on the ring of Witt vectors of Fp. If F 6= Qp the situation
is not clear. For the time being, the problem of classifying supersingular representations looks to be
infinitely more involved compared to its Galois analogue (known from the works of Serre [Ser72]).
The methods of Paskunas [Pas] and Breuil-Paskunas [Br-Pa] let us associate an infinite family Π(ρ)
of supersingular representations to a single Galois object ρ, are a major progress in this direction,
but it is not clear, especially after the work of Hu [Hu1], how to distingush in a canonical way
a privileged supersingular representation inside Π(ρ). We remark that the methods of [Pas] and
[Br-Pa] have been improved by Hu’s canonical diagrams in [Hu2]; unfortunately canonical diagrams
are difficult to calculate explicitely.

Another approach to the problem has been treated by Schein in [Sch] where he studies the
universal representations for a totally ramified extension F/Qp. He detects a natural quotient Ve−1
of π(r, 0, 1) which enjoys an universal property with respect to supersingular representations whose
GL2(OF )-socle respects a certain combinatoric conjecturally associated to suitable Galois represen-
tations arising from elliptic curves with supersingular reduction (the modular weights introduced
in [BDJ] and generalised in [Sch1])

In this paper we describe the Iwahori structure for the universal representation π(r, 0, 1) in
the case where F/Qp is unramified generalizing Breuil’s method (in particular, our result give the
irreducibility for F = Qp and shows how and why the universal representations fail to be irreducible
otherwise). With “Iwahori structure” we mean that we are able to detect the Iwahori-socle filtration
for π(r, 0, 1) as well as the extension between two consecutive graded pieces. As a byproduct we will
deduce the Iwahori structure of principal and special series and the presence of a natural injection
c−IndGKZV ↪→ π(r, 0, 1). The reader will find out that, as soon as F 6= Qp, the Iwahori-socle
filtration for the universal representation relies on an extremely complicated combinatoric.

The main result of this paper is to show that such combinatoric can be handled with the help
of some simple euclidean data; such a method -a far reaching generalisation of the techniques of
[Bre]- can be briefly described as follow. We detect a natural Fp-basis B of π(r, 0, 1) as well as an
injection:

B ↪→ Z[F :Qp];

as we will show, its image R is explicitely known. For v ∈ B we define the set of antecedents Sv

of v as the set of v′ ∈ B such that v′ = v − es where es is the s-th element of the canonical base
of Z[F :Qp]. When we claim that the Iwahori structure for π(r, 0, 1) is described by R we mean the
following facts:

i) the Iwahori-socle filtration is obtained from R by successively removing the points with empty
antecedents;

ii) if v0, v1 ∈ B and J ∈ N is such that vi is an eigenvector for the J − i-th graded piece
(π(r, 0, 1))J−i of the socle filtration of the universal representation then we have a nontrivial
extension inside the quotient π(r, 0, 1)/(π(r, 0, 1))J−1 if and only if v0 is an antecedent of v1.

According to this terminology the main result is the following (see Proposition 5.16):

Theorem 1.1. The Iwahori structure of the universal representations is described by R.
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We give in figure 1 the idea of such structure for the quadratic unramified extension of Qp.

As annonced, we get some other byproducts as

Theorem 1.2. The Iwahori structure of tamely ramified principal series is described by two copies
of N[F :Qp].

and

Theorem 1.3. Let r /∈ {(0, . . . , 0), (p − 1, . . . , p − 1)} and let χs be the conjugate character of
(σr)

U(Fq). There is a sub KZ-representation V 6 π(r, 0, 1)|KZ isomorphic to the kernel of the
natural map

Ind
GL2(Fq)
B(Fq)

χs/soc(Ind
GL2(Fq)
B(Fq)

χs)� cosoc(Ind
GL2(Fq)
B(Fq)

χs)

and such that the map (induced by Frobenius reciprocity)

c−IndGKZV → π(r, 0, 1)

is injective.

We remark that a similar phenomenon has already been discovered by Paskunas in an unpub-
lished draft.

Such results rely on an heavy formalism and they need preparation to be handled. In particular,
from section §4 we start using the euclidean dictionary as a key tool to manage the combinatoric
of the representation under study. In order to guide the reader the statements are preceeded by a
detailed translation in geometric terms (otherwise they would sound as empty exercices of combi-
natoric) and each section opens with an exhaustive description of the euclidean strategy adopted
to reach our aims.

The reasons which make such strategy work are essentially three:

i) we detect a suitable basis B of the universal representation which is well behaved with respect
to the action of the Iwahory subgroup and the canonical Hecke operator T ∈ EndG(c−IndGKZσr);

ii) the action of the Iwahori subgroup on the elements of B can be read through certains universal
Witt polynomials whose homogeneous degree is known;

iii) the correspondence between the elements of the basis B and integers points in R[F :Qp] is
compatible with the homogeneous degree of the polynomials of ii).

The structure of the paper is then the following.

First two sections §2 and §3 are formal and do not need the hypothesys F/Qp unramified. Section
§2 is essentially a dictionary which let us detect a natural KZ-filtration on the KZ-restriction of
the universal representation. We first introduce a family of KZ-representations {Rn}n∈N. Through
some convenient Hecke operators T±n : Rn → Rn±1 we define inductively a direct system of amal-
gamed sums (each of them endowed with a natural filtration) which leads to explicit isomorphism
(Proposition 2.9):

π(σr, 0, 1)|KZ
∼→ lim
−→
n odd

(R0 ⊕R1 · · · ⊕Rn Rn+1)⊕ lim
−→
n even

(R1/R0 ⊕R2 · · · ⊕Rn Rn+1).

We remark that such isomorphism was already draft by Breuil in [Bre].
In section 3 we start from an Iwahori-splitting Rn+1 = R+

n+1 ⊕ R
−
n+1 to deduce, in the same

flavour of the preceeding section, an inductive system of amalgamed sums · · · ⊕R±n R±n+1. Such
amalgamed sums are endowed with a natural Iwahori-filtration revealed by a short exact sequence

0→ · · · ⊕R±n−2
R±n−1 → · · · ⊕R±n R

±
n+1 → R±n+1/R

±
n → 0. (1)

3
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Figure 1. Part of the euclidean structure for f = 2, r = (2, 1).
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The resulting inductive limits are related to the universal representation by the following

Proposition 1.4. We have an exact Iwahori-equivariant sequence

0→ 〈(v+, v−)〉Fp → ( lim
−→
n odd

R+
0 ⊕R+

1
· · · ⊕R+

n
R+
n+1)⊕ ( lim

−→
n odd

R−0 ⊕R−1 · · · ⊕R−n R
−
n+1)→

→ ( lim
−→
n odd

R0 ⊕R1 · · · ⊕Rn Rn+1)|K0(p) → 0

where v± ∈ lim
−→
n odd

R±0 ⊕R±1 · · · ⊕R±n R
±
n+1 (and are explicitely known).

We have an analogous result in the even case.

It will therefore be enough to focus our attention on the inductive limits of section §3.
The euclidean dictionary is developed in section 4. Thanks to the natural filtration on the inductive
limits, we are primarly concerned with the Iwahory structure of the representations R±n+1. We detect

a convenient Fp-basis B±n+1 (Lemma 2.6) and determine a natural way to identify the elements of

B±n+1 to integer valued points of R[F :Qp] (see section 4.1.1 for details). If we write R±n+1 to denote
the image of B±n+1 in the [F : Qp]-dimensional real euclidean space (such an image looks as a
parallelepipoid of side pn+ε(r + 1) for ε ∈ {0, 1} according to the cases R+

n+1, R
−
n+1) then

Proposition 1.5. The Iwahori structure of R±n+1 is described by R±n+1.

Because of the geometry of the polytope R±n+1 we indeed see that the socle filtration can be
detected by successive cuttings by a suitable hyperplanes (parallel to the antidiagonal X0 + · · · +
Xf−1 = 0).

We similarly deduce the structure of tamely ramified principal series given in Proposition 1.2
Unfortunately, these results rely on a careful analysis of the behaviour of some universal Witt
polynomials, contained in the two appendices A and B.

Section §5 deals finally with the universal representaiton π(r, 0, 1). We are first concerned with
the graded pieces of the natural filtrations introduced in §3: it is the object of §5.1. Thanks to the
behaviour of the canonical basis B±n with respect to the Hecke operators of §3 we easily determine
a natural basis B±n+1/n for each R±n+1/R

±
n and associate an euclidean structure R±n+1 to it. Such

a structure is more complicated than the previous R±n+1 and can not be determined directely by
Proposition 1.5 but a suitable decomposition of R±n+1/n as a union of inreasing polytopes enable us
to state the

Proposition 1.6. The Iwahori structure of R±n+1/R
±
n is described by R±n+1/n.

The euclidean image of R±n+1/n is more or less given in figure 2.

As a byproduct, the natural filtrations of section §3 and the previous description of the basis
B±n+1 let us deduce Proposition 1.3.

The conclusion is in section §5.2 where we study the amalgamed sums · · · ⊕R±n R
±
n+1. Again, the

behaviour of the canonical base B±n with respect to the Hecke operators let us deduce, by induction
on the exact sequence (1), an euclidean structure, say R±even,odd. Such a structure has a regular

fractal nature, due to a convenient glueing of the bloks R±n+1/n and simple remarks on the geometry

of R±even,odd, as well as the fact that · · · ⊕R±n−2
R±n−1 is a Iwahori-subrepresentation of · · · ⊕R±n R

±
n+1,

let us deduce the main result of Proposition 1.1.

We introduce now the basic conventions and notations of the paper (we essentially use the
formalism and notations of [Bre]).
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Figure 2. The structure of the quotients R±n+1/R
±
n .

Fix a prime p > 5 and let F be a finite unramified extension of Qp; let f
def
= [F : Qp] be the

residue degree. We write OF to denote the ring of integers of F and fix the uniformizer p ∈ OF : let
kF be the residue field; it is a finite field with q

def
= pf elements. We fix an isomorphism kF ∼= Fq;

as F is unramified, we deduce an isomorphism OF
∼= W (Fq) where W (Fq) denote the ring of Witt

vectors of Fq. We will write [·] : F×q → W (Fq)
× to denote the Teichmüller character (putting

[0]
def
= 0). We finally fix an algebraic closure Fp of Fq.

For any k ∈ N the natural action of GL2(Fq) on F2
q let us determine, by functoriality of the

k-th symmetric power, the GL2(Fq)-representation SymkF2
q . It is isomorphic (up to a choice of

an Fq-basis for F2
q) to Fq[X,Y ]hk , the homogeneous component of degree k of the ring Fq[X,Y ],

endowed with the usual modular action:[
a b
c d

]
Xk−iY i = (aX + cY )k−i(bX + dY )i.

We recall that for s ∈ N (Fq[X,Y ]hk)Frob
s

is the representation obtained by functoriality, in the
evident way, from the field automorphism x 7→ xp

s
defined on Fq.

For τ ∈ Gal(Fq/Fp) and rτ , tτ ∈ {0, . . . , p− 1} we consider the GL2(Fq)-representation

σ{rτ},{tτ}
def
=

⊗
τ∈Gal(Fq/Fp)

(dettτ ⊗Fq SymrτF2
q)⊗τ Fp;

such representations exhaust all irreducible GL2(Fq)-representations with coefficients in Fp (and
they are pairwise non isomorphic if we impose tτ < p− 1 for at least one element τ ∈ Gal(Fq/Fp)).

We fix once for all an immersion τ : Fq ↪→ Fp. Such a choice determines, up to twist, a manifest

6
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isomorphism

σ{rτ},{tτ}
∼= σ(r0,...,rf−1)

def
=

f−1⊗
s=0Fp

(Fp[Xs, Ys]
h
rs)

Frobs

for a convenient r
def
= (r0, . . . , rf−1) ∈ {0, . . . , p − 1}f ; such an isomorphism will be assumed to be

fixed once for all throughout the paper. We notice that the choice of another immersion acts on the
right hand side by a circular permutation on the indexes s in the obvious sense.

Write G
def
= GL2(F ), K

def
= GL2(OF ) and Z

def
= Z(G). We write K0(p) to denote the Iwahori

subgroup of K. The GL2(Fq)-representation σr will be seen, by the inflation map K � GL2(Fq),
as a smooth representation of K. By imposing p ∈ Z to act trivially, the smooth K-action on
σr extends to a smooth action of KZ: by abuse of notation we will write σr to denote either the
GL2(Fq) or the K or the KZ-representation obtained by this procedure (or, as usual, the underlying
vector space of σr).

Similarly, the character

χr : B(Fq)→ F
×
p[

a b
0 d

]
7→ a

∑f−1
s=0 p

srs

will be considered, by inflation as a character of any open subgroup of K0(p). We write then χsr to
denote the conjugate character of χr. We denote by a the character

B(Fq)→ F
×
p[

a b
0 d

]
7→ ad−1.

Recall the compact induction:

c−IndGKZσr

defined as the Fp-linear space of functions f : G → σr, compactly supported modulo Z, verifying
f(kg) = k · f(g) for any k ∈ K, g ∈ G; it is endowed with the smooth left action of G defined by
right translations.

For g ∈ G, v ∈ σr we define
[
g, v
]
∈ c−IndGKZσr as the unique function f supported in KZg−1

and such that f(g) = v. Then we have

g′ ·
[
g, v
]

=
[
g′g, v

]
for g′ ∈ G[

gk, v
]

=
[
g, k · v

]
for k ∈ KZ.

Each function f ∈ c−IndGKZσr can be written as a Fp-linear combination of a finite family of
functions

[
g, v
]
; if g varies in a fixed system of coset for G/KZ and v varies in a fixed Fp-basis of

σr the aforementioned writing is then unique.
We leave to the reader the task to adapt the previous definitions and remarks to such objects as

Ind
K0(pm)
K0(pn+1)

τ

where K0(p
n+1)

◦
6 K0(p

m)
◦
6 K are open subgroups of K and τ is a smooth representation of

K0(p
n+1).

From [BL94], Proposition 8-(1) there exists a canonical Hecke operator (depending on r) T ∈
EndG(c−IndGKZσr). It realizes an isomorphism of the Fp-algebra of endomorphisms EndG(c−IndGKZσr)
with the ring of polynomials in one variable over Fp. We then define the universal representation of

7
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GL2(F ) as the cokernel of the canonical operator T :

π(r, 0, 1)
def
= coker(T ).

We recall some conventions on the multiindex notations. For αs ∈ N we write α
def
= (α0, . . . , αf−1)

to denote an f -tuple α ∈ Nf . If α, β are f -tuples we define

i) α+ β
def
= (αs + βs)

f−1
s=0 ;

ii) α > β if and only if αs > βs for all s ∈ {0, . . . , f − 1};

iii)
(
α
β

) def
=
∏f−1
s=0

(
αs
βs

)
.

For n ∈ N we will write n
def
= (n, . . . , n) ∈ Nf .

If α+ β = r we define the following element of σr:

XαY β def
= ⊗f−1s=0X

αs
s Y βs

s ;

for λ ∈ Fq and α ∈ {0, . . . , p− 1}f we put

λα
def
= λ

∑f−1
s=0 p

sαs .

For an integer n ∈ N we define bnc ∈ {0, . . . , f − 1} as the unique integer m ∈ {0, . . . , f − 1}
congruent to n modulo f . Similarly, if n 6= 0 we define dne ∈ {1, . . . , q − 1} as the unique integer

m ∈ {1, . . . , q − 1} congruent to n modulo q − 1; we set d0e def
= 0.

Finally, for a smooth representation R of K0(p) over Fp we write {socN (R)}N∈N to denote its

socle filtration (with the convention soc(R)0
def
= soc(R)).

Let B be an Fp-basis of R and P a bijection of B onto a subset R in Zf . Let B′ ⊆ B be a
subset and R′ denotes its image through the bijection P ; for v ∈ B′ we define the set of antecedents
of v in R′ as:

Sv(B
′)

def
=
{
w ∈ B′ s.t. P (w) = P (v)− es for s ∈ {0, . . . , f − 1}

}
(where (es)

f−1
s=0 is the canonical basis of Zf ).

We say that the socle filtration {socN (R)}N∈N of R is described by R if the following holds: it
exists an increasing family {BN}N∈N of subsets of B such that

i) for all N ∈ N the family BN is an Fp-basis of socN (R);

ii) for all N ∈ N an Fp-basis for soc(R/socN−1(R)) is described as{
v ∈ B \BN−1, s.t.Sv(B \BN−1) = ∅

}
.

If the socle filtration of R is described by R we will say that the extensions between two graded
pieces are described by R if the following holds true:

for all N ∈ N and v ∈ BN+1 the Fp-linear subspace Ev,N of R/socN−1(R) generated by
v,Sv(B \BN−1) is K0(p)-stable and for each w ∈ Sv(B \BN−1) the induced extension

0→ w → Ev,N/〈Sv(B \BN−1) \ {w}〉Fp → v → 0

is nonsplit (with the obvious meaning of w, v).

In euclidean terms the segments between v and the set of its antecedents let us detemines all the
nonsplit extensions between two graded pieces of the socle filtration.

8
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2. Preliminaries

As we outlined in the introduction, the main aim of this section is to describe the Iwahori-structure
of the universal representations π(r, 0, 1) of GL2(F ) over Fp.

Such representations have a completely explicit description in terms of the Bruhat-Tits tree and
of the Hecke operator T given in [Bre], §2 and their Iwahory structure can indeed be found by direct
methods. Nevertheless, the extremely involved combinatoric of such results lead us to introduce an
intermediary step -namely a suitable KZ-filtration- which let us handle, in a reasonable way, the
high amount of technical computations. Precisely, we start (cf. definition 2.3) by introducing the
KZ-representations

Rn+1
def
= IndKK0(pn+1)σrn+1

(where σrn+1 is aK0(p
pn+1

)-representations obtained by twisting the action ofK0(p
n+1) on σr|K0(pn+1)).

Such objects are endowed with an action of suitable “Hecke” operators T±n : Rn → Rn±1 (cf. Lemma
2.7), with respect to which we are able to define (inductively) a direct system of amalgamed sums
· · ·⊕RnRn+1 (cf. Proposition 2.8). Such amalgamed sums fit in a natural commutative diagram (see
Proposition 2.8) which let us deduce a natural filtration on the resulting inductive limits. The final
result is then the isomorphism of Proposition 2.9, which relies the KZ-restriction of the universal
representation π(r, 0, 1)|KZ to the inductive limits constructed above; in particular, we have a nat-
ural KZ-equivariant filtration on the universal representation π(r, 0, 1).

In Lemma 2.6 we introduce a “canonical” basis for the representations Rn+1. Such basis is well
behaved with respect to both the action of the Hecke operators and the action of the Iwahori sub-
group: this will be the key observation which lead us to the description of the Iwahory structure for
π(r, 0, 1).

We remark that the isomorphism of Proposition 2.9 does not rely on the fact that F/Qp is
unramified: the content of this section can be generalised in the evident manner for any finite
extension F of Qp.

Reminders on the universal representations π(r, 0, 1). For n ∈ N>1 we define

In
def
= {

n−1∑
j=0

pj [λj ] forλj ∈ Fq}

and we put I0
def
= {0}. The sets In’s let us describe the Bruhat-Tits tree in the following way: if

n,m ∈ N, λ ∈ In and

g0n,λ
def
=

[
pn λ
0 1

]
, g1n,λ

def
=

[
1 0
pλ pn+1

]
we get a decomposition

KZα−mKZ =
∐
λ∈Im

g0m,λKZ
∐ ∐

λ∈Im−1

g1m,λKZ (2)

thus describing the vertex of the tree having distance m from KZ (where we have written α
def
= g10,0).

The canonical Hecke operator T ∈ EndG(IndGKZσr), defined in [Bre] §2.7, is then characterized as
follow:

9
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Lemma 2.1. For n ∈ N>, λ ∈ In and 0 6 j 6 r we have:

T (
[
g0n,λ, X

r−jY j
]
) =

∑
λn∈Fq

[
g0n+1,λ+pn[λn]

, (−λn)jXr
]

+
[
g0n−1,[λ]n−1

, δj,r(λn−1X + Y )r
]

T (
[
g1n,λ, X

r−jY j
]
) =

∑
λn∈Fq

[
g1n+1,λ+pn[λn]

, (−λn)r−jY r
]

+
[
g0n−1,[λ]n−1

, δj,0(X + λn−1Y )r
]
.

If n = 0 we have

T (
[
1G, X

r−jY j
]
) =

∑
λ0∈Fq

[
g01,[λ0], (−λ0)

jXr
]

+
[
α, δj,rY

r
]

T (
[
α,Xr−jY j

]
) =

∑
λ1∈Fq

[
g11,[λ1], (−λ1)

r−jY r
]

+
[
1G, δj,0X

r
]

.

Proof. A computation shows that the statement of lemme 3.1.1 in [Bre] has an obvious generalisation
for f > 1. The result follows then from Ibid., §2.5.

For n ∈ N we define the Fp-subspace of IndGKZσr:

W (n)
def
= {f ∈ IndGKZσr, s.t. the support of f is contained inKZα−nKZ}.

By Cartan decomposition the subspaces W (n) are KZ-stable for all n ∈ N and therefore

Lemma 2.2. There is a natural KZ-equivariant isomorphism

IndGKZσr
∼→
⊕
n∈N

W (n).

The representations Rn’s and the dictionary. Let n ∈ Z>−1; we define the open subgroups
of K:

K0(p
n+1)

def
=
{
g ∈ K, s.t. g =

[
a b

pn+1c d

]
for a, b, c, d ∈ OF

}
.

As

[
0 1

pn+1 0

]
normalizesK0(p

n+1), the representation σr|K0(pn) induces, by conjugation, aK0(p
n+1)-

representation which will be denoted as σn+1
r (or simply σr if there is no risk of confusion). Ex-

plicitely, we have

σn+1
r (

[
a b

pn+1c d

]
) = σr(

[
d c

pn+1b a

]
).

We can therefore introduce the representations Rn+1’s:

Definition 2.3. Let n ∈ Z>−1. The K-representation Rn+1 is defined as

Rn+1
def
= IndKK0(pn+1)σ

n+1
r .

We can extend the action of K on Rn+1 to an action of KZ by letting p ∈ Z act trivially; the
resulting representation will be denoted again by Rn+1 and we will pass from the one to the other
without commentary.

Thanks to the decomposition (2) we get the following, elementary, description of the Rn’s:

Lemma 2.4. Let n ∈ Z>−1 Then:

10



On some representations of the Iwahori subgroup

i) right translation by αn+1w induces a bijection

K/K0(p
n+1)

∼→ KZα−n−1KZ/KZ;

ii) we have a decomposition

K =
∐

λ∈In+1

[
λ 1
1 0

]
K0(p

n+1)
∐ ∐

λ′∈In

[
1 0
pλ′ 1

]
K0(p

n+1);

Moreover, if 1 6 m 6 n we have a decomposition

K0(p
m) =

∐
λ′∈In+1−m

[
1 0

pmλ′ 1

]
K0(p

n+1);

iii) the family{[[ λ 1
1 0

]
, Xr−jY j

]
,
[ [ 1 0

pλ′ 1

]
, Xr−jY j

]
forλ ∈ In+1, λ

′ ∈ In, 0 6 j 6 r
}

defines an Fp-basis for the representation Rn+1. Moreover, if 1 6 m 6 n, the family

{
[ [ 1 0

pmλ′ 1

]
, Xr−jY j

]
forλ ∈ In+1−m, 0 6 j 6 r}

defines an Fp-basis for the representation Ind
K0(pm)
K0(pn+1)

σr.

Proof. Omissis.

The relation between the representations Rn’s and the compact induction IndGKZσr|KZ is then
described by the following

Proposition 2.5. Let n ∈ Z>−1. We have a KZ-equivariant isomorphism

Φn+1 : W (n+ 1)
∼→ Rn+1

such that

Φn+1(
[
g0n+1,λ, X

r−jY j
]
) =

[ [ λ 1
1 0

]
, Xr−jY j

]
Φn+1(

[
g1n,λ′ , X

r−jY j
]
) =

[ [ 1 0
pλ′ 1

]
, XjY r−j]

for n > 0 and

Φ0(
[
1G, X

r−jY j
]
) = XjY r−j

for n = 0.
In particular, we have a KZ-equivariant isomorphism

IndGKZσr
∼→
⊕
n∈N

Rn

Proof. Elementary (see for instance [Mo], Proposition 3.4, whose proof generalizes line by line).

We introduce now a convenient Fp-basis for the representation Rn+1. Thanks to the transitivity

Ind
K0(pm)
K0(pn+1)

σr ∼= Ind
K0(pm)
K0(pm+1)

Ind
K0(pm+1)
K0(pn+1)

σr

(where 0 6 m 6 n) we see that a Vandermonde argument together with an immediate induction
give us the following:

11
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Lemma 2.6 (Definition). Let n ∈ N. An Fp basis for the K-representation Rn+1 is described by
the elements

F
(1,n)
l1,...,ln

(ln+1)
def
=

n∑
i=1

∑
λi∈Fq

(λ
1

pi

i )li

[
1 0

pi[λ
1

pi

i ] 1

] [
1, Xr−ln+1Y ln+1

]
F

(0,n)
l0,...,ln

(ln+1)
def
=
∑
λ0∈Fq

λ
l0
0

[
[λ0] 1
1 0

] [
1, F

(1,n)
l1,...,ln

(ln+1)
]

for li ∈ {0, . . . , p − 1}f (where i ∈ {0, . . . , n}) and ln+1 6 r, with the obvious conventions that if
n = 0 we have

F
(1,0)
∅ (l1)

def
=
[
1, Xr−ln+1Y ln+1

]
.

For notational convenience we define

F
(0,−1)
∅ (l0)

def
= (−1)l0X l0Y r−l0

F
(1,−1)
∅ (∅) def

= Y r.

Such basis will be denoted by Bn+1.

The subset B+
n+1 ⊂ Bn+1 described by the elements of the form F

(0,n)
l0,...,ln

(ln+1) will be referred to

as the set of positive elements of Rn+1; the Fp-linear subspace generated by the positive elements
will be denoted as R+

n+1.

Similarly the subset B−n+1 ⊂ Bn+1 described by elements of the form F
(1,n)
l1,...,ln

(ln+1) will be

referred to as the set of negative elements of Rn+1; the Fp-linear subspace generated by the negative
elements will be denoted as R−n+1.

Hecke operators on the Rn+1’s. Let n ∈ N. Thanks to Lemma 2.1 the W (n)-restriction of the
operator T gives the Fp-linear morphism

T |W (n) : W (n)→W (n− 1)⊕W (n+ 1).

Such restriction is KZ-equivariant (by Cartan decomposition) and composition by the natural
projections gives us the KZ-equivariant operators

T+
n : W (n)→W (n+ 1) T−n : W (n)→W (n− 1).

By transport of structure (via the isomorphisms of Lemma 2.5) we get morphisms

T+
n : Rn → Rn+1 T−n : Rn → Rn−1

(where we used the same notations for the operators on W (n) and Rn). Their description in terms
of the canonical basis of Rn+1 is immediate, following from Lemmas 2.1 and 2.5:

Lemma 2.7. Let n > 0 ∈ N. The KZ-equivariant operators T+
n , T

−
n are characterized by

T+
n : Rn → Rn+1[

1, Xr−lnY ln
]
7→ (−1)ln

∑
λn∈Fq

(λ
1
pn

n )ln

[
1 0

pn[λ
1
pn

n ] 1

] [
1, Xr

]
T−n : Rn → Rn−1[

1, Xr−lnY ln
]
7→
{
δr,ln

[
1, Y r

]
if n > 1

δr,lnY
r if n = 1.

12



On some representations of the Iwahori subgroup

For n = 0 we have

R0 ↪→ R1

Xr−l0Y l0 7→
∑
λ0∈Fq

(−1)r−l0λ
r−l0
0

[
[λ0] 1
1 0

] [
1, Xr

]
+ δl0,0

[
1, Xr

]
.

Moreover, the operators T+
n are monomorphisms for all n ∈ N and the operators T−n are epimor-

phisms for all n ∈ N>1.

Proof. The characterisation of the operators T±n follows by the explicit descriptions given in Lemmas
2.1 and 2.5.

As T+
n maps the basis Bn into a subset of Bn+1, the operator is injective for n > 1. As

[
1, Y r

]
(resp. Y r) is a K-generator for Rn−1 (resp. R0) for n > 2 (resp. n = 1), the operator T−n is
surjective.

We identify Rn as a K-subrepresentation of Rn+1 via the monomorphism T+
n without any further

commentary. For any odd integer n > 1 we use the Hecke operators T±n to define (inductively) the
amalgamed sum R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn Rn+1 via the following co-cartesian diagram

Rn

−prn−1◦T−n

����

� � T+
n // Rn+1

prn+1

����
R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn−2 Rn−1 // R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn Rn+1

(where we define pr0 to be the identity map). Similarly we define the amalgamed sums R1/R0 ⊕R2

· · · ⊕Rn Rn+1 for any positive even integer n ∈ N>. The following result is then formal

Proposition 2.8. For any odd integer n ∈ N, n > 1 we have a natural commutative diagram

0 // Rn

−prn−1◦T−n����

T+
n // Rn+1

prn+1����

// Rn+1/Rn // 0

0 // R0 ⊕R1 · · · ⊕Rn−2 Rn−1 // R0 ⊕R1 · · · ⊕Rn Rn+1
π // Rn+1/Rn // 0

with exact lines.
We have an analogous result concerning the family

{R1/R0 ⊕R2 · · · ⊕Rn Rn+1}n∈2N\{0}.

Proof. Formal. See for instance [Mo], Proposition 4.1.

The following result let us complete the dictionary

Proposition 2.9. We have a KZ equivariant isomorphism

π(σr, 0, 1)|KZ
∼→ lim
−→
n odd

(R0 ⊕R1 · · · ⊕Rn Rn+1)⊕ lim
−→
n even

(R1/R0 ⊕R2 · · · ⊕Rn Rn+1).

Proof. The proof is formal and identical to [Mo], Proposition 3.9.

Remark 2.10. We can give analogous (in the evident way) definitions in the case where F is any
finite extension of Qp: we would then get a statement completely analogous to Proposition 2.9.

13
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3. First description of the Iwahori structure

The goal of this section is to give a first, general description for theK0(p)-representation π(r, 0, 1)|K0(p).
The endpoint is Proposition 3.6, which is the “Iwahori analogue” of Proposition 2.9 of the preceeding
section. More precisely, for each n ∈ N the block Rn+1 has a natural K0(p)-equivariant splitting

Rn+1 = R+
n+1 ⊕R

−
n+1

which is compatible with the Hecke operators T±n in the obvious sense (cf. Lemma/definition 3.2).
This will enable us to repeat the constructions of §2, i.e. the construction of the (inductive family
of) amalgamed sums · · · ⊕R±n R

±
n+1, endowed with a natural filtration (cf. Lemma 3.5) .

Thanks to Proposition 3.6 we see that we can content ourselves to the study of the amalgames
sums · · · ⊕R±n R

±
n+1: actually we have a K0(p)-equivariant surjection

( lim
−→
n odd

· · · ⊕R+
n
R+
n+1)⊕ ( lim

−→
n odd

· · · ⊕R−n R
−
n+1)⊕ ( lim

−→
n even

· · · ⊕R+
n
R+
n+1)⊕ ( lim

−→
n even

· · · ⊕R−n R
−
n+1)

↓
π(r, 0, 1)|K0(p)

whose kernel is “small” (and explicitely determined).

The following elementary result will be crucial.

Lemma 3.1. Let a ∈ {0, . . . , q − 1}. Then∑
λ∈Fq

λa =

{
0 if a 6= q − 1
−1 if a = q − 1.

Proof. Omissis.

The representations R±n+1 and the Hecke operators (T±n )pos, neg. Fix n ∈ N; the Fp-linear
decomposition

Rn+1
∼= R+

n+1 ⊕R
−
n+1 (3)

is easily checked to be K0(p)-equivariant (realising the Mackey decomposition for Rn+1|K0(p)) and
we clearly have a K0(p)-equivariant isomorphism

R−n+1
∼→ Ind

K0(p)
K0(pn+1)

σn+1
r .

We moreover define the following K0(p)-representations:

R+
0

def
= R0, R−0

def
= 〈Y r〉Fp , (R1/R0)

+ def
= Im(R+

1 ↪→ R1 � R1/R0).

The decomposition given in (3) and the description of Lemma 2.7 let us define the Hecke oper-
ators (T±n )pos, neg on the representations R±n+1:

Lemma 3.2 (Definition). Let n ∈ N>1.

i) The restriction of Hecke operator T+
n on the K0(p)-subrepresentations R+

n , R−n of Rn induces
two K0(p)-equivariant monomorphisms,

(T+
n )pos : R+

n ↪→ R+
n+1

(T+
n )neg : R−n ↪→ R−n+1

ii) The restriction of Hecke operator T−n on the K0(p)-subrepresentations R+
n , R−n of Rn induces

two K0(p)-equivariant epimorphisms,

(T−n )pos : R+
n � R+

n−1
(T−n )neg : R−n � R−n−1

14
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Proof. Except for the operator (T−1 )pos, the result follows immediately from the decomposition
Rn|K0(p)

∼= R+
n ⊕R−n and the properties and characterisations of the Hecke operators T±n .

Concerning (T−1 )pos : R+
1 → R0 we notice that

(T−1 )pos(F
(0)
l0(r)

) =
∑
i6r

Xr−iY i(
∑
λ0∈Fq

λ
l0+i
0 )

and the result follows from Lemma 3.1.

Corollary 3.3. The natural K0(p)-equivariant map

R+
2 → (R1/R0)

+

is an epimorphism.

Proof. Omissis.

Remark 3.4. The notation (T±n )pos,neg may look a bit awkard. We believe, though, that a notation
of the kind (T±n )±, even if it could be more convenient for statements (see Lemma 3.5), it can be
disagreeable for the computations (and especially misprints!)

Amalgamed sums and first description of the Iwahori structure. Using the Hecke ope-
rators defined in Lemma 3.2 we can introduce the following amalgamed sums, analogously to the
constructions of §2.

Let n ∈ N be odd and • ∈ {+,−}. We can define inductively a natural K0(p)-representation
R•0 ⊕R•1 · · · ⊕R•n R

•
n+1 together with canonical morphisms pr•n+1, ι

•
n−1 by the condition that the

diagram

R•n

−(prn−1)•◦(T−n )•

��

� � (T+
n )• // R•n+1

(prn+1)•∃!

��
R•0 ⊕R•1 · · · ⊕R•n−2

R•n−1 ∃!

ι•n−1 // R•0 ⊕R•1 · · · ⊕R•n R
•
n+1.

is co-cartesian (with the convention that (T±j )+
def
= (T±j )pos and (T±j )−

def
= (T±j )neg).

For n ∈ N even and • ∈ {+,−} we can define the amalgamed sums (R1/R0)
•⊕R•2 · · ·⊕R•n R

•
n+1,

together with canonical morphisms pr•n+1, ι
•
n−1 in the evident analogous way (with the convention

that (R1/R0)
− = R−1 .)

The following result is similar to Proposition 2.8:

Lemma 3.5. Let n ∈ N be odd, • ∈ {+,−}. Then ι•n−1 is a monomorphism, pr•n+1 is an epimorphism
and we have a (K0(p)-equivariant) commutative diagram with exact lines:

0 // R•n

−(T−n )•����

(T+
n )• // R•n+1

pr•n+1

����

πn+1 // R•n+1/R
•
n

// 0

R•n−1
pr•n−1����

0 // R•0 ⊕R•1 · · · ⊕R•n−2
R•n−1

ιn−1 // R•0 ⊕R•1 · · · ⊕R•n R
•
n+1

πn+1// R•n+1/R
•
n

// 0.

We have an analogous (in the evident way) result in the case n ∈ N> is even.

15
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Proof. The proof is identical to Proposition 2.8, provided that the maps R•1
(T−1 )•

� R•0 and R•2
(T−2 )•

�
(R1/R0)

• are epimorphisms.

In order to give a first description of the K0(p)-representation π(r, 0, 1)|K0(p) we are now left
to determine the relations between the amalgamed sums · · · ⊕R•n R

•
n+1 (where • ∈ {+,−}) and the

restriction (· · · ⊕Rn Rn+1)|K0(p).
We will treat in detail the analysis of the limit ( lim

−→
n, odd

R0 ⊕R1 · · · ⊕Rn Rn+1)|K0(p). The case n

even is proved in a similar way and is left to the reader.

Proposition 3.6. The decomposition Rn|K0(p)
∼= R+

n ⊕R−n induces the following K0(p)-equivariant
exact sequences:

0→ 〈(F (0,−1)
∅ (0), F

(1,−1)
∅ (∅))〉Fp → ( lim

−→
n odd

R+
0 ⊕R+

1
· · · ⊕R+

n
R+
n+1)⊕ ( lim

−→
n odd

R−0 ⊕R−1 · · · ⊕R−n R
−
n+1)→

→ ( lim
−→
n odd

R0 ⊕R1 · · · ⊕Rn Rn+1)|K0(p) → 0

and

0→ 〈(F (0)
r (0),−F (1,0)

∅ (0))〉Fp → ( lim
−→
n even

(R1/R0)
+ ⊕R+

2
· · · ⊕R+

n
R+
n+1)⊕ ( lim

−→
n even

R−1 ⊕R−2 · · · ⊕R−n R
−
n+1)→

→ ( lim
−→
n even

(R1/R0)⊕R1 · · · ⊕Rn Rn+1)|K0(p) → 0.

Proof. Let us assume n odd, leaving the case n even to the reader (the proof being analogous).
Since the functor lim

−→
is exact if the index category is filtrant and since the forgetful functor For :

RepK0(p) → VectFp commutes with lim
−→

it is enough to show that we have an inductive system of

exact sequences

0→ 〈(F (0,−1)
∅ (0),−F (1,−1)

∅ (∅))〉Fp → (R+
0 ⊕R+

1
· · · ⊕R+

n
R+
n+1)⊕ (R−0 ⊕R−1 · · · ⊕R−n R

−
n+1)→

→ (R0 ⊕R1 · · · ⊕Rn Rn+1)|K0(p) → 0.

The proof is an induction on n.
Let • ∈ {+,−}. By the universal property of the push out we deduce the following commutative

diagramm

0 // R•1 //

������

����

R•2 //

uukkkkkkkkkkkkk

����

R•2/R
•
1

//

{{vvvvv
0

0 // R1

����

// R2

����

// R2/R1
// 0

0 // R•0 //
r R

������
R•0 ⊕R•1 R

•
2

//

∃!
f•

uu

R•2/R
•
1

//
mM

{{wwwww
0

0 // R0
// (R0 ⊕R1 R2)|K0(p)

// R2/R1
// 0

and the morphism f• is injective by the four Lemma applied to the “bottom” diagram: recall that
(T+

0 )• is injective and we check easily the injectivity of the morphism R•2/R
•
1 → R2/R1. We deduce

16
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the commutative diagramm with exact lines

0 // R+
0 ⊕R

−
0

//

��

(R+
0 ⊕R+

1
R+

2 )⊕ (R−0 ⊕R−1 R
−
2 ) //

��

(R+
2 /R

+
1 )⊕ (R−2 /R

−
1 )

��

// 0

0 // R0
// (R0 ⊕R1 R2)|K0(p)

// R2/R1
// 0.

(4)

The isomorphism (R+
2 /R

+
1 )⊕ (R−2 /R

−
1 )
∼→ R2/R1 and the exact sequence

0→ 〈(F (0,−1)
∅ (0),−F (1,−1)

∅ (∅))〉 → R+
0 ⊕R

−
0 → R0 → 0

give the result, via the snake Lemma applied to the diagramm (4).
We treat now the inductive step. By the inductive hypothesis and the definition of the Hecke

operators (T±n )pos,neg, we dispose of the commutative diagrams

R•n

����

� � // Rn

����
R•n−1

����

� � // Rn−1

����
R•0 ⊕R•1 · · · ⊕R•n−2

R•n−1
� � / R0 ⊕R1 · · · ⊕Rn−2 Rn−1

(the inductive hypothesis being used for the injectivity of the lower arrow) from which we deduce
the following commutative diagram with exact rows

0 // R•n //

~~|||||||||||||||||

����

R•n+1
//

������������������

����

R•n+1/R
•
n

//

���������������
0

0 // Rn

����

// Rn+1

����

// Rn+1/Rn // 0

0 // ···⊕R•n−2
R•n−1 //

nN

~~}}}}}}}}}}}}}}}}
···⊕R•n

R•n+1 //

∃!
f•

��

R•n+1/R
•
n

//
s S

����������������
0

0 // (···⊕Rn−2
Rn−1)|K0(p)

// (···⊕Rn2Rn+1)|K0(p)
// Rn+1/Rn // 0.
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Again, the morphism f• is injective and we deduce as well the following commutative diagram

0

��
(R0 ⊕R1 · · · ⊕Rn−1 Rn−1)|K0(p)

��
(R0 ⊕R1 · · · ⊕Rn Rn+1)|K0(p)

��
Rn+1/Rn

��
0

0

��
(R+

0 ⊕R+
1
· · · ⊕R+

n−1
R+
n−1)⊕ (R−0 ⊕R−1 · · · ⊕R−n−1

R−n−1)

��

//

(R+
0 ⊕R+

1
· · · ⊕R+

n+1
R+
n+1)⊕ (R−0 ⊕R−1 · · · ⊕R−n+1

R−n+1)

��

//

(R+
n+1/R

+
n )⊕ (R−n+1/R

−
n )

��

//

0.

As the natural morphism (R+
n+1/R

+
n )⊕ (R−n+1/R

−
n )→ Rn+1/Rn is an isomorphism, the conclusion

follows by applying the snake lemma and using the exact sequence

0→ 〈(F (0,−1)
∅ (0), F

(1,−1)
∅ (∅))〉Fp → (R+

0 ⊕R+
1
· · · ⊕R+

n−2
R+
n−1)⊕ (R−0 ⊕R−1 · · · ⊕R−n−2

R−n−1)→

→ (R0 ⊕R1 · · · ⊕Rn−2 Rn−1)|K0(p) → 0.

coming from the inductive hypothesis.

4. Representations of the Iwahori subgroups

We start here the technical computations which should lead us (in section §5) to the Iwahori-
structure of the universal representations π(r, 0, 1). The aim is to describe the K0(p)-representations
R±n+1 which appeared in the preceeding section §3.

We focus our attention on the representations Ind
K0(p)
K0(pn+1)

1: the description of R±n+1 can be ob-

tained with identical techniques (cf. sections §4.1.3 or 4.2). The Iwahori structure of such objects
-given by Proposition 4.2- may look complicated, but the keypoint is its combinatoric can be con-
trolled by an easy euclidean method which can be outlined as follow.

First of all we detect a “canonical” Fp-basis B for the representation Ind
K0(p)
K0(pn+1)

1 (definition 4.1).

We see that each element F
(1,n)
l1,...,ln

∈ B is parametrized by a family of f -tuples li ∈ {0, . . . , p− 1}f ,

family which can be used to define a point (in the näıve sense) (x0, . . . , xf−1) ∈ Rf−1. In this way,
we can associate, bijectively, the elements of the basis B to the integer points of an f -hypercube of
side pn − 1 in Rf−1: this is detailed in paragraph 4.1.1.

With this gloss, the K0(p)-socle filtration for Ind
K0(p)
K0(pn+1)

1 can be simply described by the suc-

cessive intersections of the f -hypercube with the antidiagonals X0 + · · · + Xf−1 = constant, as
illustrated in figure 3.

This is the content of Proposition 4.2 where we verify, by direct computation on Witt vectors,

that the behaviour of the canonical elements F
(1,n)
l1,...,lf−1

fits the previous euclidean picture. It is the

technical part of the paper and rely, as announced in the introduction, on the following three key
facts (whose meaning will be clear to the reader of paragraph §4.1.2):

i) the elements of the canonical basis B are “well behaved” with respect to the action of g ∈

18
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Figure 3. The structure of Ind
K0(pm)
K0(pn+1)

1.

K0(p), i.e. one can naturally describe gF
(1,n)
l1,...,lf−1

as a linear combination of elements of B;

ii) one can compute the homogeneous (pseudo-)degree of the universal Witt polynomials appear-

ing in the developement of gF
(1,n)
l1,...,lf−1

;

iii) the correspondence between the elements of B and the points in the associated hypercube is
well behaved with respect to the homogeneous degree of the universal Witt polynomials.

As annonced the same techniques let us detect the K0(p)-structure for the representations
R±n+1: the involved combinatoric can be handled with the help of a simple euclidean picture (an
f -parallelepipoid). The precise statements are Propositions 4.9 and 4.10 which deal with R−n+1 and
R+
n+1 respectively.

The constructions and computations of this section let us, as an application, determine the
Iwahori structure for principal and special series: this is the object of §4.3. Again, in terms of
euclidean space, we see that the successive layers for the K0(p)-socle filtration are detected by the
intersections of Nf (the “hypercube” associated to such series) with the hyperplansX0+· · ·+Xf−1 =
constant.

4.1 The negative case.

Let 1 6 m 6 n be integers. In this section we examine the K0(p)-socle filtration (and the extensions

between two consecutive graded pieces) for the representations Ind
K0(pm)
K0(pn+1)

χ where χ : K0(p
n+1)→

F
×
p is a smooth character of K0(p

n+1) (i.e. the inflation of a character of the finite Borel B(Fq) by
the morphism K0(p

n+1)� B(Fq)). Thanks to the canonical isomorphism :

Ind
K0(pm)
K0(pn+1)

χ ∼= (Ind
K0(pm)
K0(pn+1)

1)⊗ χ
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we can assume that χ = 1 is the trivial character. Finally, let {e} be an Fp-basis for the underlying
vector space associated to the character χ.

We introduce now the canonical base of Ind
K0(pm)
K0(pn+1)

1 and its interpretation in terms of lattices

of Rf .

Definition 4.1. For j ∈ {m, . . . , n} let lj = (l
(0)
j , . . . , l

(f−1)
j ) ∈ {0, . . . , p − 1}f be a f -tuple. We

define the element F
(m,n)
lm,...,ln

∈ Ind
K0(pm)
K0(pn+1)

1 as

F
(m,n)
lm,...,ln

def
=

n∑
j=m

∑
λj∈Fq

(λ
1

pj

j )lj

[
1 0

pj [λ
1

pj

j ] 1

] [
1, e
]
.

For a notational convenience, we define F
(n+1,n)
ln+1,...,ln

def
=
[
1, e
]

and ln+1
def
= 0.

The set

B
def
=

{
F

(m,n)
lm,...,ln

∈ Ind
K0(pm)
K0(pn+1)

1, for (lm, . . . , ln) ∈
{
{0, . . . , p− 1}f

}n+1−m
}

is an Fp-basis for Ind
K0(pm)
K0(pn+1)

1.

The fact that B is an Fp basis for Ind
K0(pm)
K0(pn+1)

1 is again an induction together with a Vander-

monde argument as for Lemma 2.6.

4.1.1 Interpretation in terms of lattices. As anticipated in the introduction, each element
of B can be seen as a “point” of a Z-lattice in the standard euclidean f -dimensional space Rf : such
correspondence is given by the injective map

B
P
↪→ Rf (5)

Fm,nlm,...,ln
7→
( n∑
j=m

pj−ml
(bj−mc)
j , . . . ,

n∑
j=m

pj−ml
(bf−1+j−mc)
j

)
whose image will be denoted by R. We notice that R is a f -hypercube of side pn−m+1 − 1. It has
a natural recurrent structure: for a fixed f -tuple tn ∈ {0, . . . , p− 1}f the subset{

F
(m,n)
lm,...,ln−1,tn

∈ B lj ∈ {0, . . . , p− 1}f , form 6 j 6 n− 1
}

is mapped onto an f -hypercube of side pn−m − 1, which will be referred as the F
(n)
tn

-block. The

hypercube R is then obtained as the juxtaposition of the F
(n)
tn

-blocks for varying tn ∈ {0, . . . , p−1}f .

We are therefore allowed to apply the terminology of real euclidean spaces to the elements of B,
meaning their image through the map P . In particular if ei

def
= (δ0,i, . . . , δf−1,i) ∈ {0, 1}f we define

Fm,n(lm,...,ln)−ei
by

Fm,n(lm,...,ln)−ei
=

{
0 if P←(P (Fm,nlm,...,ln

)− ei) = ∅
the only element of P←(P (Fm,nlm,...,ln

)− ei) otherwise.

In order to give the statement concerning the K0(p
m)-structure of Ind

K0(pm)
K0(pn+1)

χ we still need
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some notation. If (lm, . . . , ln) is a (n+ 1−m)f -tuple, we define

Nm,n(lm, . . . , ln)
def
=

f−1∑
s=0

l(s)m + p(

f−1∑
s=0

l
(s)
m+1) + · · ·+ pn−m(

f−1∑
s=0

l(s)n )

e(lm, . . . , ln)
def
= (

f−1∑
s=0

psl(s)m ) + · · ·+ (

f−1∑
s=0

psl(s)n );

in particular any F
(m,n)
lm,...,ln

lies on the antidiagonal X0 + · · ·+Xf−1 = Nm,n(lm, . . . , ln).

Let N ∈ N. We define the Fp-linear subspace

(Ind
K0(pm)
K0(pn+1)

1)N
def
= 〈Fm,nlm,...,ln

∈ B s.t. Nm,n(lm, . . . , ln) < N〉Fp ;

it is the subspace generated by the functions lying strictly below the antidiagonal X0+. . . Xf−1 = N .

We refer the reader to figure 3 to have the euclidean interpretation in the case f = 2.

Let (lm, . . . , ln) a fixed -tuple. For s ∈ {0, . . . , f − 1}, we define

Ξs
def
=
{
a ∈ {m, . . . , n}, s.t. lbs+a−mca 6= 0

}
and we set

a0(s)
def
=

{
min(Ξs) if Ξs 6= ∅
n+ 1 otherwise.

The euclidean meaning of a0(s) is clear: if we consider the F
(a0(s),n)
la0(s)

,...,ln
-block then the function F

(m,n)
lm,...,ln

lies on its s-th face (which is a (f − 1)-hypercube of side pa0(s)−m − 1).

The K0(p
m)-structure of Ind

K0(pm)
K0(pn+1)

χ is then given by the following

Proposition 4.2. Let r
def
= (r0, . . . , rf−1) ∈ {0, . . . , p− 1}f−1 be a f − tuple, m,n be integers such

that 1 6 m 6 n and let F
(m,n)
lm,...,ln

∈ Ind
K0(pm)
K0(pn+1)

χsr be as in definition 4.1. If a, b, c, d ∈ OF are integers

such that g
def
=

[
a b
pmc d

]
∈ K0(p

m) we have

gF
(m,n)
lm,...,ln

= ae(lm,...,ln)χsr(g)(F
(m,n)
lm,...,ln

−
f−1∑
s=0

(ca−1)p
s
l
bs+a0(s)−mc
a0(s)

F
(m,n)
lm,...,ln−es

+ y)

where, putting N
def
= Nm,n(lm, . . . , ln), we have y ∈ (Ind

K0(pm)
K0(pn+1)

χsr)N−1.

In particular, the K0(p)-socle filtration, as well as the extensions between two consecutive graded

pieces, of Ind
K0(pm)
K0(pn+1)

χsr is described by the associated lattice R.

We emphatise again the meaning of Proposition 4.2 in terms of lattices in Rf : the socle filtration

of Ind
K0(pm)
K0(pn+1)

χ is given by cutting up the hypercube R by the antidiagonals X0 + · · ·+Xf−1 = N

(precisely, socN is obtained by cutting the antidiagonal X0+· · ·+Xf−1 = N); the extensions between
two consecutive graded pieces are visualized by the segments of length 1 obtained by cutting R by
two consecutive antidiagonals X0 + · · ·+Xf−1 = N , X0 + · · ·+Xf−1 = N − 1.
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Here below an exemple for f = 2.

.... . .

.... . .

χs
r χs

ra

χs
ra

p

. . . . . . . . . -

...

...

...

6

...

...

...

...

. . .

. . .

. . .

. . .

χs
r

χs
ra

−1

χs
ra

−p

pn+1−m-1. . .1 2 . . .

pn+1−m-1

...

1

2

...

Here, each “point” in the lattice corresponds to a function Fm,nlm,...,ln
∈ B according to the map

P described in (5). The N -th composition factor socN (Ind
K0(pm)
K0(pn+1)

1) of the socle filtration can be

read as the intersection of R with the semispace X0 + · · · + Xf−1 6 N , and the N -th graded

piece socN (Ind
K0(pm)
K0(pn+1)

1)/socN−1(Ind
K0(pm)
K0(pn+1)

1) as the intersection with the antidiagonal X0 + · · ·+

Xf−1 = N . Finally, a “point” of coordinates (
∑n

j=m p
j−ml

(bj−mc)
j ,

∑n
j=m p

j−ml
(b1+j−mc)
j ) should be

understood as the character χsra
e(lm,...,ln).

4.1.2 Proof of Proposition 4.2. The section is devoted to the proof of Proposition 4.2.
Thanks to the decomposition

K0(p
m) = H ·

[
1 OF

0 1

] [
1 + pOF 0

0 1 + pOF

] [
1 0

pmOF 1

]
(6)

for m > 1 we are led to study separately the actions of lower unipotent, diagonal and upper
unipotent matrices on the elements of the canonical basis B: this will be the object of the next
three paragraphs.

The action of lower unipotents matrices. We study here the action of the closed subgroup[
1 0

pmOF 1

]
of K0(p

m) on Ind
K0(pm)
K0(pn+1)

1; we first need to introduce a family of Fp-subspaces of

Ind
K0(pm)
K0(pn+1)

1.

Let F
(m,n)
lm,...,ln

∈ B and set (x0, . . . , xf−1)
def
= P (F

(m,n)
lm,...,ln

) ∈ R. We define the Fp-subspace

W(lm,...,ln)
of Ind

K0(pm)
K0(pn+1)

1 via

P (W(lm,...,ln)
)

def
= {(x′0, . . . , x′f−1) ∈ R s.t. it existsn > 0 for which

n(p− 1) 6
f−1∑
s=0

(xs − x′s) < (n+ 1)(p− 1) andx′j 6 xj + n for all j = 0, . . . , f − 1}.

The image P (W(lm,...,ln)
) ⊆ Rf looks as a snowflake: in figure 4 an exemple for f = 2 (and p = 5).
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Figure 4. Euclidean interpretation of W(lm,...,ln)
.

It is immediate to check that if F
(m,n)

l′m,...,l
′
n
∈ W(lm,...,ln)

then W(l′m,...,l
′
n)
⊆ W(lm,...,ln)

. The action

of

[
1 0

pmOF 1

]
is then described in the following

Proposition 4.3. Let F
(m,n)
lm,...,ln

∈ B, and write N
def
= Nm,n(lm, . . . , ln). Let g =

[
1 0
pmc 1

]
∈[

1 0
pmOF 1

]
for c ∈ OF . Then we have

g · F (m,n)
lm,...,ln

= F
(m,n)
lm,...,ln

−
f−1∑
s=0

cp
s
l
bs+a0(s)−mc
a0(s)

F
(m,n)
(lm,...,ln)−es

+ y

for a suitable y ∈ (Ind
K0(pm)
K0(pn+1)

1)N−1. More precisely, via the projection

Ind
K0(pm)
K0(pn+1)

1
pr
� Ind

K0(pm)
K0(pn+1)

1/(Ind
K0(pm)
K0(pn+1)

1)N−(pf+2),

the image of the element y is contained in the image of the subspace W(lm,...,ln)
.

Proof. As the action of

[
1 0

pOF 1

]
is continuous, we can assume that c belongs to a set of topo-

logical generators (for the additive structure) of OF ; in particular, we can assume c = [µ
1
pm ] for

µ ∈ Fq.
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Using the notations of §6.2, we can write the following equality in pmOF /p
n+1OF :

pm[µ] +
n∑

j=m

pj [λ
1

pj

j ] =

n∑
j=m

pj [λ
1

pj

j + (S̃
1

pj

j−m)] (7)

A direct computation describes the action of g on the function F
(m,n)
lm,...,ln

:

[
1 0

pm[µ] 1

]
F

(m,n)
lm,...,ln

=

=

n−1∑
j=m

∑
ij6lj

(
lj
ij

)
(−s0(S̃0)im)

∑
λj∈Fq

(λ
1

pj

j )lj−ij (−sj−m(S̃j−m+1)
1

pj+1 )ij+1

[
1 0

pj [λ
1

pj

j ] 1

] [
1, Fnln−in

]
.

As deg(sj−1(S̃j)) 6 pj for each j ∈ {1, . . . , n − m} we can apply Proposition 7.3 (with Tm+j =

sj−1(S̃j)) to conclude that

g · F (m,n)
lm,...,ln

= F
(m,n)
lm,...,ln

+

f−1∑
s=0

βsF
(m,n)
(lm,...,ln)−es

+ y

where y ∈ Ind
K0(pm)
K0(pn+1)

1 is the element described in the statement, for suitable elements βs ∈ Fq.

We are now left to prove that βs = −(µ
1
pm )p

s
l
bs+a0(s)−mc
a0(s)

.
We use the notations of Proposition 7.3 and we recall that, for b = m + 1, . . . , n, a polynomial

−sb−m−1(S̃b−m(X,Y )) is homogeneous of degree pb−m if Xa has degree pa, Y degree p0 (and S̃0 =
Y ). In particular if we pick an element

x
def
=

∑
λm∈Fq

(λ
1
pm

m )κm

[
1 0

pm[λ
1
pm

m ] 1

]
. . .

∑
λn∈Fq

(λ
1
pn

n )κn

[
1 0

pn[λ
1
pn

n ] 1

] [
1, e
]

appearing in the development of gF
(m,n)
lm,...,ln

we have, for b ∈ {m+ 1, . . . , n},

b−1∑
a=m

pa−mκ(b),sa = i
(s)
b pb−m − α(s)

b

where i
(s)
b (pb−m− 1) > α(s)

b > i
(s)
b is the exponent of Y in the fixed monomial of −sb−1−m(S̃b−m)i

(s)
b

(recall that any monomial Y c
∏b−1−m
i=0 Xai

i with c = 0 appears in the development of −sb−1−m(S̃b−m)
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with coefficient zero). Considering that p > 3 the inequalities

s(κm) + p s(κm+1) + · · ·+ pn−m s(κn) 6

6(s(lm − im) + s(pb−1cκ(m+1)
m ) + · · ·+ s(pb−(n−m)cκ(n)m )) +

+p(s(lm+1 − im+1) + s(pb−1cκ
(m+2)
m+1 ) + · · ·+ s(pb−(n−m−1)cκ

(n)
m+1)) + . . .

· · ·+ pn−m−1(s(ln−1 − in−1) + s(pb−1cκ
(n)
n−1)) + pn−m(s(ln − in)) 6

6 s(lm − im) +

f−1∑
s=0

s(κ(m+1),s
m ) +

p(s(lm+1 − im−1)) + (

f−1∑
s=0

(s(κ(m+2),s
m + p s(κ

(m+2),s
m+1 )))) + . . .

· · ·+ (

f−1∑
s=0

(s(κ(n),sm ) + p s(κ
(n),s
m+1) + · · ·+ pn−m−1 s(κ

(n),s
n−1 ))) + pn−m s(ln − in) 6

6
n∑

a=m

pa−m(s(la − ia)) +
n∑

b=m+1

(pb−m(s(ib))−
f−1∑
s=0

α
(s)
b )

have to be equalities if we furthermore require our element to lie on the hyperplane X0+· · ·+Xf−1 =

N − 1; in particular we must have i
(s)
b = 0 for all couples (b, s) ∈ {m, . . . , n}× {0, . . . , f − 1} except

one and only one, say (b0, s0), for which we must have i
(s0)
b0

= 1.
We notice that for b0 6= m we require furthermore that αb0 = 1 i.e. the exponent of Y appearing

in the fixed monomial of −sb0−m−1(S̃b0−m) is 1. Thanks to Lemmas 6.3 and 6.4 we check that

x = −(µ
1
pm )p

s0
(l
bs+a0(s)−mc
a0(s)

)F
(m,n)
lm,...,n−es0

as required.

The action of diagonal matrices. We are going to study the action of the subgroup[
1 + pOF 0

0 1 + pOF

]
on the elements of B. If z ∈ pmOF /p

n+1OF , an elementary computation shows that[
1 + pa 0

0 1 + pd

] [
1 0
z 1

]
=

[
1 0
z′ 1

]
k

where k ∈ K0(p
n+1) is upper unipotent modulo p and z′ ∈ pmOF /p

n+1OF is determined by the
condition

z′ ≡ (1 + pa)−1(1 + pd)zmod pn+1. (8)

We can therefore content ourself studying the action of an element of the form x
def
=

[
1 0
0 1 + pα

]
for α ∈ OF .

Proposition 4.4. Let g ∈
[

1 + pOF 0
0 1 + pOF

]
and fix F

(m,n)
lm,...,ln

∈ B; writeN
def
= Nm,n(lm, . . . , ln).
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We then have the equality

g · F (m,n)
lm,...,ln

= Fm,nlm,...,ln
+ y

where y ∈ Ind
K0(pm)
K0(pn+1)

1)N−1.

More precisely, via the projection

Ind
K0(pm)
K0(pn+1)

1
pr
� Ind

K0(pm)
K0(pn+1)

1/(Ind
K0(pm)
K0(pn+1)

1)N−(pf+2),

the image of y is contained in the image of the subspace W(lm,...,ln)
and writing

y =
∑
i∈I

βiF
(m,n)
lm(i),...,ln(i)

(for a suitable set of indexes I and scalars βi ∈ F
×
p ) we have that each function F

(m,n)
lm(i),...,ln(i)

which

is not in the kernel ker(pr) lies on an hyperplane

X0 + · · ·+Xf−1 = N − t(p− 1)

for some t ∈ N>.

Proof. The proof is completely analogous to the proof of Proposition 4.3. As remarked above, it

is enough to consider the case x =

[
1 0
0 1 + pα

]
where α =

∑∞
j=0 p

j [α
1

pj

j ]. Using the notations of

§6.3 we see that

(1 + pα)(
n∑

j=m

pj [λ
1

pj

m ]) ≡
n∑

j=m

pj [λ
1

pj

j + Q̃
1

pj

j ] mod pn+1

and we deduce[
1 0
0 1 + pα

]
Fm,nlm,...,ln

=

=

n−1∑
j=m

∑
ij6lj

(
lj
ij

) ∑
λj∈Fq

(λ
1

pj

j )lj−ij (−qj−m(Q̃j+1−m))ij+1

[
1 0

pj [λ
1

pj

j ] 1

] [
1, F

(n)
ln−in

]
(9)

(where we convene that im = 0 and with the obvious conventions if n ∈ {m,m + 1}). As each
polynomial (−qj−1(Q̃j)) ∈ Fp[λm, . . . , λj−1−m], for 1 6 j 6 n−m is homogeneous of degree pj (for
the shifted grading for which λm+h is homogeneous of degree ph for h > 0) we can apply Proposition
7.3 with Tm+j = (−qj−1(Q̃j)) to get the first part of the statement.

We are left to prove 2). Consider an integer t ∈ N and an hyperplane H : X0 + . . . Xf−1 = N − t.
Following the proof of Proposition 7.3, a necessary condition for an element∑

λm∈Fq

(λ
1
pm

m )κm

[
1 0

pm[λ
1
pm

m ] 1

]
. . .

∑
λn∈Fq

(λ
1
pn

n )κn

[
1 0

pn[λ
1
pn

n ] 1

] [
1, e
]

appearing in the developement of (9) to lie in H is then

n∑
j=m

pj−m s(κj) ≡ N − tmod p− 1.

Again, as each polynomial (−qj−1(Q̃j)), for 1 6 j 6 n − m is homogeneous of degree pj , and
s(h) ≡ hmod p−1 we deduce that inequalities 20, 21, 22 and 23 appearing in the proof of Proposition
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7.3 are actually equalities in Z/(p− 1) so that we get

n∑
j=m

pj−m s(κj) ≡ N − s(im) mod p− 1 = N.

The conclusion follows.

The action of upper unipotent matrices. We are left to study the action of the closed sub-

group

[
1 OF

0 1

]
on the elements of B. We recall that the action of K0(p

m) is continuous on

Ind
K0(pm)
K0(pn+1)

1 and the natural topology on

[
1 OF

0 1

]
coincides with the topology induced (via the

natural immersion) by K0(p
m). Thanks to the isomorphisms of abelian topological groups[

1 OF

0 1

]
∼= OF

∼= (Zp)
f

where the latter isomorphism is determined by the choice of a primitive element α ∈ Fq of Fq over

Fp (cf. Serre [Ser], Proposition 16 Ch.I) it is enough to study the action of elements g ∈
[

1 OF

0 1

]
of the form g =

[
1 [µ]
0 1

]
for µ ∈ Fq.

We start with an elementary computation:

Lemma 4.5. Let z ∈ pmOF /p
n+1OF and µ ∈ Fq. We have the following equality:[

1 [µ]
0 1

] [
1 0
z 1

]
=

[
1 0
z′ 1

]
k

where k ∈ K0(p
n+1) is upper unipotent modulo p and z′ ∈ pmOF /p

n+1OF is uniquely determined
by the condition

z′ ≡ z(1 + z[µ])−1 mod pn+1 ≡
N∑
j=0

(zj+1[µj ]) mod pn+1

for N
def
= bn+1

m c.

Proof. Omissis.

We are now left to use Lemma 4.5 and the results of §6.4 in order to describe the required action

of

[
1 OF

0 1

]
:

Proposition 4.6. Let g ∈
[

1 OF

0 1

]
and fix F

(m,n)
lm,...,ln

∈ B. Write 1 N
def
= Nm,n(lm, . . . , ln). In the

quotient space

Ind
K0(pm)
K0(pn+1)

1/(Ind
K0(pm)
K0(pn+1)

1)N−(pm−2)+1

we have the equality

g · F (m,n)
lm,...,ln

= F
(m,n)
lm,...,ln

.

1of course, this N does not have anything to do with N
def
= bn+1

m
c. We believe this conflict of notations will not give

rise to any confusion, as the meaning of N will be clear from the context.
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Proof. As remarked at the begining of this paragraph, we can assume g =

[
1 [µ]
0 1

]
where µ ∈ Fq.

Using Lemma 4.5 and the results (and notations) of §6.4.1 we get the following equality in
OF /(p

n+1):

N∑
j=0

zj+1[µj ] ≡
n∑

j=m

pj [λ
1

pj

j + Ũ
1

pj

j ] mod pn+1

so that, inside Ind
K0(pm)
K0(pn+1)

1, we have:

gFm,nlm,...,ln
=

n−1∑
j=m

∑
ij6lj

(
lj
ij

) ∑
λj∈Fq

(λ
1

pj

j )lj−ij (−uj(Ũ
1

pj+1

j+1 ))ij+1

[
1 0

pj [λ
1

pj

j ] 1

] [
1, F

(n)
ln−in

]
where we convene that im = 0 and we recall that Ũj = 0 for m 6 j 6 2m−1 As for each 2m 6 j 6 n
the polynomial −uj−1(Ũj) is pseudo-homogeneous of degree pj − pm(pm− 2) the conclusion follows

from Proposition 7.4, with Vj = −uj−1(Ũj).

Proof of Proposition 4.2. The last step in order to complete the proof of Proposition 4.2 is
immediate:

Proposition 4.7. Let F
(m,n)
lm,...,ln

∈ B and let a, d ∈ Fq. We then have the following equality in

Ind
K0(pm)
K0(pn+1)

1: [
[a] 0
0 [d]

]
F

(m,n)
lm,...,ln

= ae(lm,...,ln)(

[
[a] 0
0 [d]

]
)F

(m,n)
lm,...,ln

.

In particular [
[a] 0
0 [d]

]
F

(m,n)
lm,...,ln−es

= ae(lm,...,ln)−p
s
(

[
[a] 0
0 [d]

]
)F

(m,n)
lm,...,ln−es

.

Proof. We just remark that for z =
∑n

j=m p
j [λj ] ∈ pmOF /p

n+1OF we have[
[a] 0
0 [d]

] [
1 0
z 1

]
=

[
1 0

z[a−1d] 1

] [
[a] 0
0 [d]

]
and that

z[a−1d] =
n∑

j=m

pj [λj(a
−1d)].

Finally, for a, b, c, d ∈ OF as in the statement of Proposition 4.2, we recall the matrix equality[
a b
pmc d

]
=

[
[a] 0
0 [d]

] [
1 0
pmz 1

] [
1 + px 0

0 1 + pw

] [
1 y
0 1

]
where x, y, z, w ∈ OF are suitable integers verifying z = cd−1. The result follows now from Propo-
sitions 4.3, 4.4, 4.6 and Lemma 4.7. 2

Remark 4.8. We note that the bijection (5) depends on the immersion τ : Fq ↪→ Fp fixed in
the introduction and should be noted as Pτ . As another immersion τ ′ : Fq ↪→ Fp is obtained
by composing τ with a power φa of the frobenius on Fq we see that the map Pτ ′ is obtained by
composing Pτ with a power Φa, where Φ ∈ End(Rf ) is defined by Φ(es) = ebs+1c. Hence, as the
antidiagonal is fixed under Φ, Proposition 4.2 does not depend on τ .
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4.1.3 The structure of the representations R−n . Fix an integer n ∈ N. We describe here
the socle filtration (and the extensions between two consecutive graded pieces) for the K0(p)-
representations R−n+1. Again, we can identify the negative elements of R−n+1 with the points of a
lattice of Rf according to the following injective map

B−n+1 ↪→ Rf

F
(1,n)
l1,...,ln

(ln+1) 7→ (

n+1∑
a=1

pa−1lbs+a−1ca )s∈{0,...,f−1}

whose image will be denoted by R−n+1; we define in the evident way the subspaces (R−n+1)N for
N ∈ N.

The structure of R−n+1 is then sumarized in the following

Proposition 4.9. Let n ∈ N, F
(1,n)
l1,...,ln

(ln+1) ∈ B−n+1 and let a, b, c, d ∈ OF be such that g
def
=[

a b
pc d

]
∈ K0(p). Define finally the integer N

def
= N1,n+1(l1, . . . , ln+1).

We have the equality

gF
(1,n)
l1,...,ln

(ln+1) = ae(l1,...,ln+1)χsr(g)(F
(1,n)
l1,...,ln

(ln+1)−
f−1∑
s=0

(ca−1)p
s
l
bs+a0(s)−1c
a0(s)

(−1)δa0(s),n+1F
(1,n)
l1,...,ln

(ln+1) + y)

where y ∈ (R−n+1)N−1.
In particular, theK0(p)-socle filtration ofR−n+1, as well as the extensions between two consecutive

graded pieces, are described by the associated lattice R−n+1.

Proof. We notice that we have a K0(p
n+1)-equivariant monomorphism

σ(n+1)
r ↪→ Ind

K0(pn+1)
K0(pn+2)

χsr

Xr−ln+1Y ln+1 7→ (−1)ln+1

∑
λn+1∈Fq

(λ
1

pn+1

n+1 )ln+1

[
1 0

pn+1[λ
1

pn+1

n+1 ] 1

] [
1, e
]
.

By transitivity and exactness of the induction functor Ind
K0(p)
K0(pn+1)

(•) we get a K0(p)-equivariant

monomorphism

R−n+1 ↪→ Ind
K0(p)
K0(pn+2)

χsr

F
(1,n)
l1,...,ln

(ln+1) 7→ (−1)ln+1F
(1,n+1)
l1,...,ln,ln+1

.

The conclusion is now immediate from Proposition 4.2.

4.2 The positive case

This section is again divided into two parts. We begin with the study of the K0(p)-representations
R+
n+1, for n ∈ N: they are described in Proposition 4.10. We subsequently switch our attention

introducing other K0(p) representations (the (IndKK0(pn+1)χ
s)+, defined in §4.3) which will let us

describe the K0(p)-restriction of principal and special series (see §4.3).
The philosophy is completely analogous to the one of the previous paragraph: we verify by a

direct computation on the ring of Witt vectors that the K0(p)-structure of such objects can be
described in terms of f -parallelepipoids in the euclidean space Rf .
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Fix n ∈ N. We introduce the injective map

B+
n+1 ↪→ Rf

F
(0,n)
l0,...,ln

(ln+1) 7→ (
n+1∑
i=0

pil
(bs+ic)
i )s∈{0,...,f−1}

which let us interpret the positive elements of R+
n+1 as points in a convenient lattice of Rf . The

image of such map (which is a parallelepipoid of side pn+1(rs + 1)− 1) will be denoted as R+
n+1. We

still need the following notations (see also §4.1.1):

i) for a (n+ 2)f -tuple (l0, . . . , ln+1) ∈
{
{0, . . . , p− 1}f

}n+2
define the integers

N0,n+1(l0, . . . , ln+1)
def
=

n+1∑
a=0

pas(la)

e(l0, . . . , ln+1)
def
= (

f−1∑
s=0

psl
(s)
0 ) + · · ·+ (

f−1∑
s=0

psl
(s)
n+1);

ii) for N ∈ N we define the Fp-linear subspace

(R+
n+1)N

def
=

〈
F

(0,n)
l0,...,ln

(ln+1) ∈ B+
n+1 s.t. N0,n+1(l0, . . . , ln+1) < N

〉
Fp

;

iii) for s ∈ {0, . . . , f − 1}, we define

Ξs
def
=
{
a ∈ {0, . . . , n+ 1}, s.t. lbs+aca 6= 0

}
and we set

a0(s)
def
=

{
min(Ξs) if Ξs 6= ∅
0 otherwise.

For a given positive element F
(0,n)
l0,...,ln

(ln+1) we define the subspace W(l0,...,ln+1)
in the evident, similar

way.

The structure of R+
n+1 is then given by

Proposition 4.10. Let n ∈ N, F
(0,n)
l0,...,ln

(ln+1) ∈ B+
n+1 and let a, b, c, d ∈ OF be such that g

def
=[

a b
pc d

]
∈ K0(p). Define finally the integer N

def
= N0,n+1(l0, . . . , ln+1). We then have

gF
(0,n)
l0,...,ln

(ln+1) = (a−1)e(l0,...,ln+1)χr(g)(F
(0,n)
l0,...,ln

(ln+1)−
f−1∑
s=0

(bd
−1

)p
s
l
bs+a0(s)c
a0(s)

(−1)δa0(s),n+1F
(0,n)
l0,...,ln

(ln+1) + y)

where y ∈ (R+
n+1)N−1.

In particular, the K0(p)-filtration, as well as the extensions between two consecutive pieces, is
described by the associated lattice R+

n+1.

Proof. The proof is analogous to the proof of Proposition 4.2, using this time Lemma 6.17 and
Proposition 7.5. The details are left as an exercice to the reader.

4.2.1 On some other K0(p)-representations. As annonced in the introduction, we define

and study some K0(p)-representations (denoted as IndKK0(pn+1)χ
+

) which naturally appear dealing
with the Iwahori structure of principal and special series. The reader will realize soon that the
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behaviour of the representations (IndKK0(pn+1)χ)+ can be treated with the same methods of §4.2 and
4.1; the proofs will be therefore omitted.

Fix an integer n ∈ N, a smooth character χ : K0(p
n+1) :→ F

×
p and an Fp-basis {e} for the

underlying vector space of χ. The K0(p)-representation (IndKK0(pn+1)χ)+ is defined as the K0(p)-

subrepresentation induced by IndKK0(pn+1)χ on the Fp-subspace

〈
[ [ [z] 1

1 0

]
, e
]
∈ IndKK0(pn+1)χ, z ∈ In+1〉Fp

(the K0(p)-stability of such Fp-linear space is immediately verified). Again, we have the

Definition 4.11. Let j ∈ {0, . . . , n} and let lj ∈ {0, . . . , p−1}f be a f -tuple. We define the following

element of (IndKK0(pn+1)χ)+:

F
(0,n)
l0,...,ln

def
=
∑
λ0∈Fq

λ
l0
0

n∑
j=1

∑
λj∈Fq

(λ
1

pj

j )lj

[
1 0

pj [λ
1

pj

j ] 1

] [
1, e
]
.

The family

B+ def
=
{
F

(0,n)
l0,...,ln

∈ (IndKK0(pn+1)χ)+, lj ∈ {0, . . . , p− 1}f for all j ∈ {0, . . . , n}
}

is an Fp-basis for (IndKK0(pn+1)χ)+.

Exactly as we did for R+
n+1, each given element F

(0,n)
l0,...,ln

of B+ will be read as a point in a

convenient lattice R of Rf and the integers a0(s) (for s ∈ {0, . . . , f − 1}) can be assigned. More-
over, if N ∈ N, the subspaces ((IndKK0(pn+1)χ)+)N are defined in the similar, evident way (see the

introduction of §4.2 for details).

The structure of the representations (IndKK0(pn+1)χ)+ is then described in the next

Proposition 4.12. Let r ∈ {0, . . . , p− 1}f be an f -tuple, n ∈ N an integer and let a, b, c, d ∈ OF

be such that g
def
=

[
a b
pc d

]
∈ K0(p). Fix an element F

(0,n)
l0,...,ln

∈ B+ and set N
def
= N0,n(l0, . . . , ln).

Then

g · F (0,n)
l0,...,ln

= (a−1)e(l0,...,ln)χr(g)F
(0,n)
l0,...,ln

−
f−1∑
s=0

(bd
−1

)p
s
l
bs+a0(s)c
a0(s)

F 0,n
(l0,...,ln)−es

+ y

where y ∈ (IndKK0(pn+1)χ
s
r
+

)N−1.

In particular the K0(p)-socle filtration of (IndKK0(pn+1)χ
s
r)

+, as well as the extensions of two
consecutive graded pieces, are described by the associated lattice R.

Proof. Omissis.

4.3 The Iwahori structure of Principal and Special Series

We are now able to describe easely the Iwahori-structure of principal and special series for GL2(F ).
Such result is essentially a formal consequence of the previous sections §4.1 and §4.2.1.

For λ ∈ F
×
p and r ∈ {0, . . . , p− 1}f we consider the smooth parabolic induction

Ind
GL2(F )
B(F ) µλ ⊗ ωrµλ−1
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where ω denotes the mod p cyclotomic character and µλ the unramified character verifying µλ(p) =
λ. It is well known that for (r, λ) /∈ {(0,±1), (p− 1,±1)} such inductions are irreducible, while, if
(r, λ) ∈ {(0,±1), (p− 1,±1)} they have length 2 and a unique infinite dimensional factor, the Stein-
berg representation (see also [BL94]). Thanks to the Iwahori decomposition and Mackey theorem
we have

Ind
GL2(F )
B(F ) µλ ⊗ ωrµλ−1 |K

∼−→ Ind
GL2(OF )
B(OF )

χsr

and, since the elements f ∈ Ind
GL2(F )
B(F ) µλ⊗ωrµλ−1 are locally constant functions andB(OF )\GL2(OF )

is compact we have a natural isomorphism

Ind
GL2(OF )
B(OF )

χsr
∼−→ lim

−→
n∈N

IndKK0(pn+1)χ
s
r.

Again, we can use Mackey decomposition to deduce

IndKK0(pn+1)χ
s
r|K0(p)

∼−→ Ind
K0(p)
K0(pn+1)

χsr ⊕ (IndKK0(pn+1)χ
s
r)

+

so that, by exactness property of filtrant inductive limit, we get

Ind
GL2(F )
B(F ) µλ ⊗ ωrµλ−1 |K0(p)

∼−→ ( lim
−→
n∈N

Ind
K0(p)
K0(pn+1)

χsr)⊕ ( lim
−→
n∈N

(IndKK0(pn+1)χ
s
r)

+). (10)

The isomorphism (10) let us reduce to the case of the finite inductions Ind
K0(p)
K0(pn+1)

χsr, IndKK0(pn+1)χ
s
r
+

,

whose structure is completely described in Propositions 4.2 and 4.12. Therefore

Theorem 4.13. Let λ ∈ F
×
p and r ∈ {0, . . . , p− 1}f an f -tuple. For any m ∈ N> we write

F
(m,∞)
0,...,0,... ∈ Ind

GL2(F )
B(F ) µλ ⊗ ωrµλ−1

to denote the characteristic function of K0(p
m).

The K0(p)-restriction of the parabolic induction admits a natural splitting

Ind
GL2(F )
B(F ) µλ ⊗ ωrµλ−1 |K0(p)

∼−→ ( lim
−→
n∈N

Ind
K0(p)
K0(pn+1)

χsr)⊕ ( lim
−→
n∈N

(IndKK0(pn+1)χ
s
r)

+).

Moreover an Fp-basis B− for lim
−→
n∈N

Ind
K0(p)
K0(pn+1)

χsr (risp. B+ for lim
−→
n∈N

(IndKK0(pn+1)χ
s
r)

+) is described by

the elements

F
(1,∞)
l1,...,ln,...,

def
=
∑
λ1∈Fq

(λ
1
p

1 )l1

[
1 0

p[λ
1
p

1 ] 1

]
. . .

∑
λn∈Fq

(λ
1
pn

n )ln

[
1 0

pn[λ
1
pn

n ] 1

]
. . .

(risp. the elements

F
(0,∞)
l0,...,ln,...,

def
=
∑
λ0∈Fq

λ
l0
0

[
[λ1] 1
1 0

]
. . .

∑
λn∈Fq

(λ
1
pn

n )l1

[
1 0

pn[λ
1
pn

n ] 1

]
. . . )

for a varying sequence (ln)n∈N> ∈ {0, . . . , p− 1}(N>) (resp. (ln)n∈N ∈ {0, . . . , p− 1}(N)).
If we associate the elements of such basis to points in Rf according to the law

F
(1,∞)
l1,...,ln,...,

7→ (

∞∑
i=1

pi−1l
bs+i−1c
i )s∈{0,...,f−1}

F
(,∞)
l,...,ln,...,

7→ (

∞∑
i=0

pil
bs+ic
i )s∈{0,...,f−1}

32



On some representations of the Iwahori subgroup

and write R− (resp R+) to denote the image of B− (resp. B+) by this map, then the K0(p)-socle

filtration for lim
−→
n∈N

Ind
K0(p)
K0(pn+1)

χsr (resp. for lim
−→
n∈N

(IndKK0(pn+1)χ
s
r)

+), as well as the extentions between

two graded pieces, is described by the associated lattice R− (risp. R+).

The Iwahori structure of irreducible principal series follows.
As far as the Steinberg representation is concerned, we just need to notice the following fact:

Lemma 4.14. Assume r ∈ {0, p− 1} and let n ∈ N. We have a K0(p)-equivariant exact sequence

0→ 〈(F (0)
0 , F

(1,0)
∅ )〉 → IndKK0(pn+1)χ

s
r
+ ⊕ Ind

K0(p)
K0(pn+1)

χsr → (IndKK0(pn+1)χ
s
r/〈1〉)|K0(p) → 0.

Proof. The proof is an induction on n, the case n = 0 being well known (cf. [Br-Pa], Lemma 2.6).
For the general case, we leave to the reader the easy task to check that we have a natural

commutative diagram with exact lines

0

��
(IndKK0(pn)

χsr/〈1〉)

��
(IndKK0(pn+1)χ

s
r/〈1〉)

��
IndKK0(pn+1)χ

s
r/IndKK0(pn)

χsr

��
0

0

��

Ind
K0(p)
K0(pn)

χsr ⊕ IndKK0(pn)
χsr

+

��

// //

Ind
K0(p)
K0(pn+1)

χsr ⊕ IndKK0(pn+1)χ
s
r
+

��

// //

(Ind
K0(p)
K0(pn+1)

χsr/Ind
K0(p)
K0(pn)

χsr)⊕ (IndKK0(pn+1)χ
s
r
+
/IndKK0(pn)

χsr
+

)

��

∼= // //

0

so that the snake lemma and the inductive hypothesys, giving an exact sequence

0→ 〈(F (0)
0 , F

(1,0)
∅ )〉 → IndKK0(pn)

χsr
+ ⊕ Ind

K0(p)
K0(pn)

χsr → (IndKK0(pn)
χsr/〈1〉)|K0(p) → 0,

let us conclude.

5. The structure of the universal representation

In this section we show how the techical results of §4 concerning the representations R±n+1 and
the formalism of §3 let us describe the Iwahori structure for the universal representation π(r, 0, 1).
Again we develop an euclidean dictionary which enable us to handle the involved combinatoric
of π(r, 0, 1)|K0(p): the conclusion is then Proposition 5.16, which loosely speaking shows that the

required structure is obtained by a juxtaposition of the blocks R±n+1 in a fractal way. As a byproduct,
we will exhibit a natural injective map

c−IndGKZV ↪→ π(r, 0, 1)

where V 6 π(r, 0, 1)|KZ is a convenient KZ-subrepresentation of π(r, 0, 1)|KZ . We remark that a
similar injective map has been detected independently by Paskunas in an unpublished draft.

We give here a more precise description of this section. Thanks to Proposition 3.6 we can content
ourselves to the study of the representations lim

−→
n odd

R+
0 ⊕R+

1
· · ·⊕R+

n
R+
n+1 and lim

−→
n odd

R−0 ⊕R−1 · · ·⊕R−n R
−
n+1.
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Figure 5. Euclidean structure for R±n+1/R
±
n .

As seen in Proposition 3.5, such K0(p)-representations have a natural filtration whose graded pieces
are isomorphic to the quotients R+

n+1/R
+
n , R−n+1/R

−
n respectively.

Such quotients are studied in §5.1. As we did in sections §4.1.3 and §4.2 -concerning the K0(p)-
structure of R+

n+1 and R−n+1- we introduce a natural correspondence between a “canonical” Fp-base
B±n+1/n for R±n+1/R

±
n and a convenient lattice (denoted as R±n+1/n) in Rf . Thanks to the behaviour

of the canonical Hecke operator (T+
n )pos,neg with respect to the elements of B±n+1/n we see that such

a lattice is in fact the set-theoretic difference of the lattices R±n+1 and R±n (cf. Lemma 5.1): figure
5 shows this phenomenon for f = 2.

Unfortunately, we can not use directly the results of sections 4 to concude that the K0(p)-
structure of R±n+1/R

±
n is predicted by the lattice R±n+1/n: in fact Propositions 4.9 and 4.10 describe

the extensions detected by functions f1, f2 ∈ B±n+1 lying on adjacent antidiagonals.
It is therefore necessary to perfect the estimates made in the proofs of Propositions 4.9, 4.10:

this is the object of §5.1.1. We remark that the behaviour of (R1/R0)
+ (resp. R−0 ⊕R−1 R

−
2 ) is slighty

different from that of R+
n+1/R

+
n for n > 1 (resp. R−n+1/R

−
n for n > 2) (and treated in §5.1.2).

In section §5.2 we determine the structure of the amalgamed sums · · ·⊕R±n R
±
n+1: their structure

can be easily determined from the results concerning of R±n+1/R
±
n . Indeed, thanks to the behaviour of

the canonical basis of R±n with respect to the Hecke operators (T−n )pos,neg we see that the convenient
euclidean pictured is obtained by gluenig the lattice R±n+1/n with (a suitable translation of) the

lattice associated to . . .R±n−2
R±n−1 (which we assume inductively to have been described). Again,

the K0(p)-socle filtration is expected to be obtained by successive intersections of such lattice with
parallels antidiagonals, as it was for R±n+1/R

±
n , but a simple computation shows that the hyperplanes

giving the J-th layer of the socle filtation of R±n+1/n lie always below the hyperplanes giving the

J-th layer of the socle filtration for . . .R±n−2
R±n−1. As . . .R±n−2

R±n−1 is a K0(p)-subrepresentation of
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. . .R±n R
±
n+1 we are able to deduce the desired result of Proposition 5.16.

In figure 6 an exemple of the glueing of blocks 2 and their fractal stucture.

As annonced, we can combine Lemma 5.1 and Proposition 3.5 to exhibit a natural injective
morphism -whose existence was known informally by an unpublished work of Paskunas-

c−IndGKZV ↪→ π(r, 0, 1)|KZ
where V 6 π(r, 0, 1)|KZ is a convenient KZ-subrepresentation of π(r, 0, 1)|KZ : this is the object of
Proposition 5.10.

As the cutting hyperplanes are fixed by the linear transformation es 7→ ebs+1c of Rf the results

of §5.1 and §5.2 do not depend on the immersion τ : Fq ↪→ Fp, see remark 4.8.

5.1 The structure of the quotients R•n+1/R
•
n

In the flavour of §4.1.3 and §4.2 we start by describing a suitable Fp-basis for the quotients R•n+1/R
•
n.

Lemma 5.1. Let n ∈ N>1.

1) An Fp-basis B+
n+1/n for R+

n+1/R
+
n is described as the homomorphic image (via the natural

projection R+
n+1 � R+

n+1/R
+
n ) of the elements

F
(0,n)
l0,...,ln

(ln+1) ∈ B+
n+1

such that ln 66 r if ln+1 = 0.

2) An Fp-basis B−n+1/n for R−n+1/R
−
n is described as the homomorphic image (via the natural

projection R−n+1 � R−n+1/R
−
n ) of the elements

F
(1,n)
l1,...,ln

(ln+1) ∈ B−n+1

such that ln 66 r if ln+1 = 0.

If n = 0 then an Fp-basis for (R1/R0)
+ is described as the homomorphic image (via the natural

projection R+
1 � (R1/R0)

+) of the elements

F
(0)
l0

(l1)

such that l1 66 r if l1 = 0 and of the element F
(0)
r (0).

Proof. The result follows immediately from the definition of the operators (T+
n )pos,neg. Indeed, for

n > 1 we have (with the obvious conventions if n = 1):

(T+
n )pos(F

(0,n−1)
l0,...,ln−1

(ln)) = (−1)lnF
(0,n)
l0,...,ln

(0);

(T+
n )neg(F

(1,n−1)
l1,...,ln−1

(ln)) = (−1)lnF
(1,n)
l1,...,ln

(0)

while, for n = 0 we have

T0(F
(0,−1)
∅ (l0)) = F

(0)
l0

(0) + (−1)rδl0,0F
(1,0)
∅ (0).

As usual the elements of the basis B±n+1/n will be read as the elements of a convenient lattice

R±n+1/n of Rf .

2strictly speaking, the figure gives the glueing of blocks R+
n−1/R

+
n−2 and R+

n+1/R
+
n , i.e. the structure of

R+
n−1/R

+
n−2 ⊕R+

n
R+
n+1. If we want to get the picture of the whole amalgamed sum · · · ⊕

R+
n
R+
n+1 we should insert a

“even smaller” structure inside the point (1, 2) of the rectangle drawed on the left in figure 6.
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Figure 6. The glueing and the fractal structure.
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Interpretation in terms of euclidean data. Exactely as we did in sections §4.1.3 and §4.2 we
have natural injections B±n+1/n ↪→ Rf which let us interpret the elements of B±n+1/n as points in a

convenient lattice R±n+1/n of Rf : the details can safely be left to the reader.

The euclidean interpretation of Lemma 5.1 is therefore clear: for n > 1 the lattice R+
n+1/n (resp.

R−n+1/n) of Rf , which is expected to describe the K0(p)-structure of R+
n+1/R

+
n (resp. R−n+1/R

−
n ), is

obtained from the lattice of R+
n+1 (resp. R−n+1) by removing the simplex

{(x0, . . . , xf−1) ∈ R+
n+1 s.t. xs < pn(rbn+sc + 1) for all s = 0, . . . , f − 1}

(resp.

{(x0, . . . , xf−1) ∈ R−n+1 s.t. xs < pn−1(rbn+s−1c + 1) for all s = 0, . . . , f − 1})

(equivalently, R±n+1/n is obtained as the set-theoretical difference of R±n+1 \R±n ).

We refer the reader to figure 5 for an exemple in residual degree f = 2.

The lattice R+
1/0 associated to (R1/R0)

+ similarly obtained from the lattice associated to R+
1 ,

by removing the subset{
(x0, . . . , xf−1) ∈ R+

n+1 s.t. xs < (rbn+sc + 1) for alls = 0, . . . , f − 1
}
\
{

(r0, . . . , rf−1)
}
.

To be precise, the lattice R+
1/0 (resp. the lattice naturally associated to R−0 ⊕R−1 R−2 ) does not

describe the K0(p)-structure of (R1/R0)
+ (resp. R−0 ⊕R−1 R−2 ) sic et simpliciter. But a harmless

modification of the formalism used for R+
n+1/n if n > 1 (resp. R−n+1/n if n > 2) let us detect their

K0(p)-socle filtration: see section §5.1.2 and Propositions 5.6, 5.7 and 5.8 for details.

We will describe in detail the K0(p)-structure of R+
n+1/R

+
n for n > 1; as annonced, the negative

case (for n > 2) will be left to the reader.

Preliminaries: partitioning the lattice. As annonced in the introduction to §5, the mere
knowledge of the K0(p)-socle filtration for R+

n+1 does not allow us determine the structure of the
quotient R+

n+1/R
+
n . Indeed Proposition 4.9 let us determine the extensions detected by functions

F
(0,n)
l0,...,ln

(ln), F
(0,n)

l′0,...,l
′
n
(l′n) ∈ B+

n+1 lying on adjacent antidiagonals. We could therefore get, a priori,

a nontrivial extension between them if lj = l′j = 0 for all j 6= n and ln = (0, . . . , 0, rs, 0, . . . , 0)
ln = (0, . . . , 0, rs′ , 0, . . . , 0) for s 6= s′ as illustred in the figure 7.

Notice that this phenomena happens only if F 6= Qp: if F = Qp the structure of the quotients
is immediate from the structure of R+

n+1.

We modify the strategy of section 4.2. We show that the K0(p)-strucure of R+
n+1 is again pre-

dicted by R+
n+1 but each cutting antidiagonal X0 + · · · + Xf−1 = constant of section §4.2 is now

replaced by f -antidiagonals of the form X0 + · · · + Xf−1 = pn(rbn+sc + 1) + constant: we will say

that X0 + · · · + Xf−1 = pn(rbn+sc + 1) + constant is the s-th cutting hyperplane of R+
n+1/R

+
n .

This means that we naturally divide the lattice R+
n+1/n into sub-blocks Vsm+k

of increasing size

for k ∈ {0, . . . , f − 1} (cf. definition 5.2); the J-th composition factor for the K0(p)-socle filtra-
tion of R+

n+1/R
+
n is then obtained as the sum of the subspaces determined by the intersection of

the block Vsm+k
with the antidiagonal X0 + · · · + Xf−1 = pn(rsm+k

+ 1) + constant, for varying
k ∈ {0, . . . , f−1}. This is the content of Proposition 5.3. In figure 8, an exemple of how the inreasing
block (and successive cuttings) look like.

We determine the decomposition of R+
n+1/n into increasing blocks. Fix n > 0 and define sm ∈
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Figure 7. A priori, we can have disagreeable glueing phenomena.

{0, . . . , f − 1} by the condition

rbsm+nc = max{rbs+nc}.
We fix an ordering

p− 1 > rbsm+nc > rbsm+1+nc > · · · > rbsm+f−1+nc > 0

and define the following Fp-subspaces of R+
n+1/R

+
n :

Definition 5.2. For k ∈ {0, . . . , f − 1} define Vsm+k
as the Fp-subspace of R+

n+1/R
+
n generated by

the elements F
(0,n)
l0,...,ln

(ln+1) ∈ B+
n+1/n verifying the properties:

i) for s /∈ {sm, . . . , sm+k} we have

lbs+ncn 6 rbs+nc;

ii) for s /∈ {sm, . . . , sm+k} we have

l
bs+n+1c
n+1 = 0.

By abuse of notation, we will also write Vsm+k
to denote the image of the canonical basis (in the

obvious sense) of Vsm+k
in the lattice R+

n+1/n. The geometric meaning of the previous definition is
the following: the block Vsm+k

is described as the intersection of the subset

{Xsm+k+1
< pn(rbsm+k+1+nc + 1)} ∩ · · · ∩ {Xsm+f−1

< pn(rbsm+f−1+nc + 1)}

with the lattice R+
n+1/n: in other words, we give restrictions on the coordinates xsm+k+1

, . . . , xsm+f−1

of a point (x0, . . . , xf−1) ∈ R+
n+1/n to lie in the block Vsm+k

.

Notice that in order to detect if a function F
(0,n)
l0,...,ln

(ln+1) ∈ B+
n+1/n belongs to the subspace

Vsm+k
we only need to study the last two f -tuples ln, ln+1.

Obviously, the subspaces Vsm+k
describe (for n > 1) an exhaustive increasing filtration on

R+
n+1/R

+
n as a Fp-vector space.
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Figure 8. Exemple of bloks subdivision and cutting.
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The following crucial result shows that the lattice R+
n+1/n let us detect the required K0(p)-

structure for n > 1.

Proposition 5.3. Assume n ∈ N>1. Let a, b, c, d ∈ OF , g
def
=

[
1 + pa b
pc 1 + pd

]
∈ K0(p), fix

an element F
(0,n)
l0,...,ln

(ln+1) ∈ Vsm+k
for some k ∈ {0, . . . , f − 1} and write N0,n+1(l0, . . . , ln+1) =

pn(rbsm+k+nc + 1) + J for some J ∈ N. Finally, consider the linear development

gF
(0,n)
l0,...,ln

(ln+1) =
∑
i∈I

β(i)F
(0,n)
l0(i),...,ln(i)

(ln+1(i))

(where I is a suitable set of indices β(i) ∈ F
×
p are scalars).

Fix an index i0 ∈ I and assume there exists k′ ∈ {k+ 1, . . . , f − 1}, minimal with respect to the

property F
(0,n)
l0(i0),...,ln(i0)

(ln+1(i0)) ∈ Vsm+k′ \Vsm+k
.

Then we have

N0,n+1(l0(i0), . . . , ln+1(i0)) 6 p
n(rbsm+k′+nc + 1) + J − 2. (11)

In particular, the lattice R+
n+1/n describes the K0(p)-socle filtration, as well as the extensions

between two consecutive graded pieces, of R+
n+1/R

+
n .

We insist on the geometric meaning of Proposition 5.3: we pick a function in the k-th block

F
(0,n)
l0,...,ln

(ln+1) ∈ Vsm+k
, liyng on the antidiagnal X0 + · · · + Xf−1 = pn(rsm+k

+ 1) + J and

F
(0,n)
l0(i0),...,ln(i0)

(ln+1(i0)) a function appearing (with nonzero linear coefficient) in the linear devel-

opment of gF
(0,n)
l0,...,ln

(ln+1). If F
(0,n)
l0(i0),...,ln(i0)

(ln+1(i0)) happens to belong to a strictly bigger block,

say Vsm+k′ with k′ > k and minimal with respect to this property, then it lies strictly below the
antidiagonal X0 + · · ·+Xf−1 = pn(rsm+k′ + 1) + J − 1.

Thanks to this phenomenon, we can invoke Proposition 4.10 to deduce the K0(p)-structure for
R+
n+1/R

+
n from the associated lattice R+

n+1/n: the J-composition factor for the socle filtration of

R+
n+1/R

+
n is determined as the sum of the f subspaces obtained by intersecting each block Vsm+k

with the corresponding antidiagonal X0 + · · ·+Xf−1 = pn(rsm+k
+ 1) + J (as in figure 8).

Notice moreover that the statement of Proposition 5.3 is empty if f = 1: in the rest of §5.1 we
will assume f > 2.

5.1.1 Proof of Proposition 5.3. The rest of this section is devoted to the proof of Proposition
5.3. Thanks to decomposition (6) we can study separately the actions of lower unipotent, diagonal
and upper unipotent matrices on the elements of R+

n+1: this will be the object of the next three
paragraphs. The proofs are similar to the proofs of Propositions 4.3, 4.4 and 4.6, but need a delicate
extra argument due to the irregular structure of the lattice R+

n+1/n.

The action of upper unipotent matrices. We study here the case where g ∈
[

1 OF

0 1

]
, and

again we assume g =

[
1 [µ]
0 1

]
for µ ∈ Fq. As in Proposition 4.3 we write

gF
(0,n)
l0,...,ln

(ln+1) =

=
n+1∑
j=1

∑
ij6lj

(
lj
ij

)∑
i06l0

(
l0
i0

)
(T0)

i0
∑
λj∈Fq

(λ
1

pj

j )lj−ij (T
1

pj+1

j+1 )ij+1

[
1 0

pj [λ
1

pj

j ] 1

] [
1, fln+1−in+1

]
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where for notational convenience, we commit the abuse of writing

[
1 0

p0[λ0] 1

]
instead of

[
[λ0] 1
1 0

]
and where we have set

fln+1−in+1

def
= (−1)in+1Xr−(ln+1−in+1)Y ln+1−in+1 ,

T0
def
= −s0(S̃0), Tj+1

def
= −sj(S̃j+1) for j ∈ {0, . . . , n}.

Developing the polynomials Tj+1’s we write

gF
(0,n)
l0,...,ln

(ln+1) =
∑
i∈I

β(i)F
(0,n)
l0(i),...,ln(i)

(ln+1(i))

(for a suitable set of indices I) and we pick a vector v appearing in the linear development of

gF
(0,n)
l0,...,ln

(ln+1):

v
def
= F

(0,n)
dκ0e,...,dκne

(dκn+1e);
where, as in Proposition 7.3, we write for 0 6 a 6 n+ 1

κa = la − ia +

n+1∑
b=a+1

pba−bcκ(b)a

and, for a+ 1 6 b 6 n+ 1 we have

κ(b)a =

f−1∑
s=0

psκ(b),sa

where κ
(b),s
a is the exponent of λa in T

i
(s)
b
b . By the definition of the subspace Vsm+k

we see that

κn = ln − in + pb−1cκ(n+1)
n =

=

k∑
h=0

pbsm+h+nc(l
(bsm+h+nc)
n − i(bsm+h+nc)

n + κ
(n+1),bsm+h+n+1c
n ) +

f−1∑
h=k+1

pbsm+h+nc(l
(bsm+h+nc)
n − i(bsm+h+nc)

n )

If v /∈ Vsm+k
then

k′
def
= min

{
c ∈ {k + 1, . . . f − 1}, s.t. dκ(bsm+c+nc)

n e > r(bsm+c+nc)
}

( > k )

and we necessarly have κn 6= 0 and the equality

s(ln − in + pb−1cκ(n+1)
n ) =

f−1∑
s=0

l(s)n − i(s)n + κ(n+1),bs+1c
n − j̃(p− 1)

for a suitable j̃ > 1. Following the inequalities (21), (22), (23) of Proposition 7.3 (i.e. using the
subadditivity of the function s and the fact that the polynomials Tj are homogeneous of degree pj

if λi is defined to have degree pi) we get

s(κ0) + . . . pn+1s(κn+1) 6 p
n(rbsm+k+nc + 1) + J − s(i0) + pn(p− 1)j̃.

As n > 1 the inequality

pn(rbsm+k+nc − rbsm+k′+nc) 6 j̃p
n(p− 1) + s(i0)− 2

is then obvious if either j̃ > 2 or rbsm+k′+nc > 0.

Assume finally j̃ = 1 and rbsm+k′+nc = 0. Therefore the p-adic development of dκne has the form

(l(0)n − i(0)n + κ(n+1),1
n , . . . , l(s)n − i(s)n + κ(n+1),s+1

n − p, l(s+1)
n − i(s+1)

n + κ(n+1),s+2
n + 1, . . . )
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for a unique s ∈ {sm, . . . , sm+k}. The condition x /∈ Vsm+k
imposes bs + 1c /∈ {sm, . . . , sm+k} and

the minimality condition on k′ imposes bsm+k′+nc = bs+1c, in particular rbs+1c = 0. As κ
(n+1),s+1
n

is the coefficient of λ
1
pn

n in the fixed monomial of s(S̃n+1)
i
bs+1c
n+1 and i

bs+1c
n 6 rbs+1c we get an absurde.

The action of diagonal matrices. The next step is to study the action of an element g ∈[
1 + pOF 0

0 1 + pOF

]
; again we can assume g =

[
1 + pα 0

0 1

]
. The arguments are completely

analogous to those of the previous paragraph, in this case using the fact that the polynomials
qj−1(Q̃j) of §6.3 are homogeneous of degree pj . The details are left to the reader.

The action of lower unipotent matrices. In this section we deal with the action of an element

g ∈
[

1 0
pOF 1

]
; again, we assume g =

[
1 0
p[µ] 1

]
. This case is more delicate than the previous

and we need to recall and carry on the accurate estimates seen in the appendix A §6.4.2.

As for Proposition 4.6, we write

gF
(0,n)
l0,...,ln

(ln+1) =

n∑
j=0

∑
ij+16lj+1

(
lj+1

ij+1

) ∑
λj∈Fq

(λ
1

pj

j )lj−ij (V
1

pj+1

j+1 )ij+1

[
1 0

pj [λj ] 1

] [
1, fln+1−in+1

]
where for notational convenience, we commit the abuse of writing

[
1 0

p0[λ0] 1

]
instead of

[
[λ0] 1
1 0

]
and where we have set i0

def
= 0,

fln+1−in+1

def
= (−1)in+1Xr−(ln+1+in+1)Y ln+1−in+1

and Vj+1
def
= −uj(Ũj+1) for j ∈ {0, . . . , n}. We develop the polynomials V

ij+1

j+1 , recognizing again a

sum of elements of the basis B+
n+1/n: we pick a vector

v
def
= F

(0,n)
dκ0e,...,dκne(dκn+1e);

as in the previous paragraph we write for 0 6 a 6 n+ 1

κa = la − ia +
n+1∑
b=a+1

pba−bcκ(b)a

and, for a+ 1 6 b 6 n+ 1 we have

κ(b)a =

f−1∑
s=0

psκ(b),sa

where κ
(b),s
a is the exponent of λa in V

i
(s)
b
b . Again, using the notations of Lemmas 6.19 and 6.20, we

focus our attention on

κn = ln − in + pb−1cκ(n+1)
n =

=

k∑
h=0

pbsm+h+nc(l
(bsm+h+nc)
n − i(bsm+h+nc)

n +B
bsm+h+1+nc
n (0) + pB

bsm+h+1+nc
n+1 (1)) +

+

f−1∑
h=k+1

pbsm+h+nc(l
(bsm+h+nc)
n − i(bsm+h+nc)

n )

(where we can again assume κn 6= 0) and we distinguish the following four possibilities.
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I).Assume
∑k

h=0B
bsm+h+1+nc
n+1 (1) = 0. The condition v /∈ Vsm+k

imposes that

s(κn) =

f−1∑
s=0

l(s)n − i(s)n +Bbs+1c
n − j̃(p− 1)

for j̃ ∈ N, j̃ > 1. We recall that for each j ∈ {0, . . . , n− 1} the polynomial Vj is pseudohomogeeous
of degree pj − (p− 2) so that the subadditivity of s and Lemma 6.20 give

n+1∑
j=0

pjs(κj) 6
n+1∑
j=0

pjs(lj)− (p− 2)(
n+1∑
j=0

s(ij))− pnj̃(p− 1)

and the conclusion follows.
II). Assume

∑k
h=0B

bsm+h+1+nc
n+1 (1) > 2. Then we have

f−1∑
s=0

n∑
j=0

pjs(κ
(n+1),s
j ) 6 pn+1s(in+1)− 2pn(p− 2).

The conclusion is now easy and left to the reader.

III). Assume 1 =
∑k

h=0A
bsm+h+1+nc
n+1 (1) =

∑k
h=0B

bsm+h+1+nc
n+1 (1) = 1. Let h1 ∈ {0, . . . , k} the

unique integer such that B
bsm+h1

+1+nc
n+1 (1) = 1. We can again distinguish the following two subcases:

III)A Assume

s(κn) =

f−1∑
s=0

(l(s)n − i(s)n +B(s+1)
n (0) +B

(s)
n+1(1))− j̃(p− 1)

for j̃ ∈ N, j̃ > 1. In this case the reader can check that

n+1∑
j=0

pjs(κj) 6
n+1∑
j=0

pjs(lj)− (p− 2)(

n∑
j=0

s(ij))− pnj̃(p− 1)− (p− 2)pn

and the conclusion follows.

III)B Assume finally

s(κn) =

f−1∑
s=0

(l(s)n − i(s)n +B(s+1)
n (0) +B

(s)
n+1(1)).

Such condition, together with v /∈ Vsm+k
imposes that bsm+h1 + 1c /∈ {sm, . . . , sm+k}; by

minimality of k′ we conclude that bsm+h1 + 1c = sm+k′ ; in particular rsm+k′ > 0. We deduce

that the choosen monomial of un(Ũ
1

pn+1

n+1 )in+1 is of the form

λ
α′0
0 · · · · · λ

α′n
n (λ0λ

1
pn

n )p
bsm+h1

+1+nc

where the integers α′j verify

n∑
j=0

pjs(α′j) 6 (pn+1 − (p− 2))(s(in+1 − 1)).

By subadditivity of the function s we find finally

n+1∑
j=0

pjs(κj) 6
n+1∑
j=0

pjs(lj)− (p− 2)(

n∑
j=0

s(ij)) + (pn+1 − (p− 2))(s(in+1)− 1) +

+(1 + pn)− pn+1s(in+1)
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(where the integer 1 + pn is deduced from the monomial λ0λ
1
pn

n ) and the conclusion follows
easily (notice that

∑n+1
j=0 s(ij) > 1).

The proof of Proposition 5.3 is therefore complete.

Remark 5.4. The reader has noticed that if we assume rs 6 p − 2 for all s ∈ {0, . . . , f − 1} then
the inequality (11) in the statement can be replaced by the following, stronger, inequality

N0,n+1(l0(i0), . . . , ln+1(i0)) 6 p
n + J − 2.

5.1.2 The case n = 0. In this section we show that theK0(p)-structure of (R1/R0)
+ is actually

slightly more complicated than expected, at least under some particular conditions on the f -tuple
r. The negative counterpart will be the K0(p)-structure of R−0 ⊕R−1 R

−
2 which is left to the reader.

The aim is to give an analogue of Proposition 5.3 in the case n = 0: in the next three paragraphs we
will analyse where and how a statement of such a kind fails to hold true, detecting some condition
on the f -tuple r. The main statements are Propositions 5.6, 5.7 and 5.8, where we see that the
K0(p)-socle filtration for (R1/R0)

+ can be obtained from the associated lattice R+
1/0, with some

harmless adjustment in few special cases (according to the combinatoric of r).

In what follows, we fix k ∈ {0, . . . , f − 1} and an element F
(0)
l0

(l1) ∈ Vsm+k
\ 〈F (0)

r (0)〉Fp . Let

g ∈ K0(p). We fix an element v = F
(0)
dκ0e

(dκ1e) appearing (with a nonzero linear coefficient) in the

Fp-linear development of gF
(0)
l0

(l1), for suitable integers κ0, κ1 ∈ N.

We assume there exists an integer k′ ∈ {k + 1, . . . , f − 1} such that v /∈ Vsm+k′ \Vsm+k
and k′

is minimal with respect to this property.

The next lemma can be verified by an easy computation on the ring W1(Fq):

Lemma 5.5. In the previous hypothesis we have

N0,1(κ0, κ1) = N0,1(l0, l1)− ε

where

1) if g ∈
[

1 OF

0 1

]
then ε = s(i0) + s(i1) + j̃(p− 1) where j̃ > 1 and s(i0) + s(i1) > 1;

2) if g ∈
[

1 + pOF 0
0 1 + pOF

]
then ε = s(i1)(p− 1) + j̃(p− 1) where s(i1) > 1 and j̃ ∈ N;

3) if g ∈
[

1 0
pOF 1

]
then ε = s(i1)(p− 2) + j̃(p− 1) where s(i1) > 1 and j̃ ∈ N.

Moreover:

1A) if in case 1) we have j̃ = 1 then we necessarly have sm+k′ = bs + 1c for an index s verifying
s ∈ {sm, . . . , sm+k} and bs+ 1c /∈ {sm, . . . , sm+k}; moreover rsm+k′ > 0;

2B) if in case 2) we have j̃ = 0 and s(i1) = 1 then we have

dκ0e = (l
(0)
0 , . . . , l

(s)
0 , l

bs+1c
0 + 1, l

bs+2c
0 , . . . , l

(f−1)
0 )

where the index s verify s ∈ {sm, . . . , sm+k} and bs + 1c /∈ {sm, . . . , sm+k}. Furthermore
rbs+1c = rsm+k′ > 0.

3B) if in case 3) we have j̃ = 0 and s(i1) = 1 then we have

dκ0e = (l
(0)
0 , . . . , l

(s)
0 , l

bs+1c
0 + 2, l

bs+2c
0 , . . . , l

(f−1)
0 )
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where the index s verify s ∈ {sm, . . . , sm+k} and bs + 1c /∈ {sm, . . . , sm+k}. Furthermore
rbs+1c = rsm+k′ > 0.

Proof. The proof, a direct computation, is left to the reader.

Thanks to its explicit nature, the description of the socle filtration for (R1/R0)
+ can be easily

deduced from Lemma 5.5. We have to distinguish three cases, according to the combinatoric of the
f -tuple r; the proofs are left as an exercie to the reader (see [Mo1] for details).

Proposition 5.6. Assume that the f -tuple verifies one of the following hypothesis:

IA). For each s ∈ {0, . . . , f − 1} the condition{
rs > rbs+1c > 1

rs − rbs+1c ∈ {p− 2, p− 3}

is false.

IB). The f -tuple is of the form (0, . . . , 0, rsm , 0, . . . , 0).

Then the socle filtration, together with the extensions between two consecutive graded pieces, of
(R1/R0)

+ is described by the associated lattice R+
1/0.

Proof. Omissis.

Proposition 5.7. Assume that for all s ∈ {0, . . . , f − 1} we have
∑f−1

s=0 (rs) > rs + 1 and that the
condition {

rs > rbs+1c > 1

rs − rbs+1c = p− 2

is false.
Then the socle filtration for (R1/R0)

+ is described by the lattice R+
1/0.

Proof. Omissis.

We finally deal with the remaining case -the socle filtration is here slightly more complicated:
in euclidean terms, the blocks Vsm+k

for rsm+k
= p − 1 should be cutted by the hyperplanes

X0 + · · ·+Xf−1 = (rsm+k
+ 1) +J or X0 + · · ·+Xf−1 = (rsm+k

+ 1) +J −1 according to a condition
on rsm+k+1.

Proposition 5.8. Assume there exists an index s ∈ {0, . . . , f − 1} such that rs = p − 1 and
rbs+1c = 1. Up to reordering, we assume there exists integers 0 6 k1 6 k0 such that rsm+j = p − 1
for all j ∈ {0, . . . , k0} and {

rbsm+j+1c 6= 1 if 0 6 j 6 k1 − 1,

rbsm+j+1c = 1 if k1 6 j 6 k0.

Then the J-th factor for the socle filtration of (R1/R0)
+ is described by the subspace

VJ
def
= 〈F (0)

r (0)〉Fp +

f−1∑
k=0

〈Fl0(l1) ∈ Vsm+k
, N(0,1)(l0, l1) 6 (rsm+k

+ 1) + J − δk16k6k0〉Fp .

In particular, the socle filtration is deduced from the lattice R+
1/0 by cutting the k-th block by the

hyperplane X0 + · · ·+Xf−1 = (rsm+k
+ 1) + J − δk16k6k0 .

Proof. Omissis.
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5.1.3 Application: the universal representation contains infinitely many compact in-
ductions. As annonced in the introduction of §5 we are able to describe a G-equivariant natural
injection

c−IndGKZV ↪→ π(r, 0, 1)

for r /∈ {0, p− 1} where V is a convenient KZ-subrepresentation of π(r, 0, 1)|KZ . An analogous
result has been discovered by Paskunas in an unpublished draft.

The proof can be outlined as follow. Via the isomorphism of Proposition 2.9 we define the repre-
sentation V as a suitable subrepresentation of R1/R0: by Frobenius reciprocity we get a morphism
φ : c−IndGKZV → π(r, 0, 1). From a basis of V we construct a convenient Fp-basis for the compact
induction c−IndGKZV and therefore we only have to check that φ maps such basis into a linearly
independent family of π(r, 0, 1).

This can be easily verified combinig Proposition 3.5, Lemma 5.1 and Proposition 3.6.

We start from the following elementary fact:

Lemma 5.9. The K subrepresentation Fil0(R1) of R1 generated by
[
1, Xr

]
is naturally isomorphic

to the finite principal series IndKK0(p)
χsr and soc(Fil0(R1)) ∼= R0 via the monomorphism R0 ↪→ R1.

Proof. Obvious.

Let Ṽ denote the kernel of the natural map

Fil0(R1)/R0 � cosoc(Fil0(R1));

we define V 6 π(r, 0, 1)|KZ as the homomorphic image of Ṽ via the isomrphism given in 2.9.
Therefore, by Frobenius reciprocity, we get a morphism

φ : c−IndGKZV → π(r, 0, 1).

We claim that

Theorem 5.10. Assume r /∈ {0, p− 1}. Then φ is a monomorphism.

Proof. We show that the composite morphism of φ with the isomorphism (3)

c−IndGKZV
φ→ π(r, 0, 1)

∼→ lim
−→
n odd

(R0 ⊕R1 · · · ⊕Rn Rn+1)⊕ lim
−→
n even

(R1/R0 ⊕R2 · · · ⊕Rn Rn+1)

maps an Fp-basis of c−IndGKZV onto a linearly independent family of the amalgamed sums on the
right hand side.

By the well known results concerning the structure of finite principal series for GL2(Fq) we have

Lemma 5.11. Assume r /∈ {0, p− 1}. For an f -tuple t ∈ {0, . . . , p − 1}f such that t 66 r and r 66 t
the element vt ∈ V is defined as

vt
def
=
∑
µ0∈Fq

µ
t
0

[
p [µ0]
0 1

] [
1, Xr

]
.

An Fp-basis V for the compact induction is described by the elements

G
(0,−1)
∅ (t)

def
=
[
1, vt

]
G

(1,n)
l0,...,ln

(t)
def
=
∑
λ1∈Fq

(λ
1
p

1 )l1

[
1 0

p[λ
1
p

1 ] 1

]
. . .

∑
λn∈Fq

(λ
1
pn

n )ln
[

0 1
pn+1 0

] [
1, vt

]
G

(0,n)
l0,...,ln

(t)
def
=
∑
λ0∈Fq

λ
l0
0

[
[λ0] 1
1 0

] [
1, G

(1,n)
l0,...,ln

(t)
]
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where n ∈ N, lj ∈ {0, . . . , p− 1}f for all j ∈ {0, . . . , n}, and t ∈ {0, . . . , p− 1}f verify the conditions
t 66 r and r 66 t.

Proof. It is elementary and left to the reader. See [Mo1], Lemma 5.13 for details.

We recall that the morphism φ is G-equivariant and the isomorphism (3) is KZ-equivariant. We
deduce the equalities

φ(G
(0,n)
l0,...,ln

(t)) = pr(F
(0,n+1)
l0,...,ln,t

(0))

φ(G
(1,n)
l1,...,ln

(t)) = pr(F
(1,n+1)
l1,...,ln,t

(0))

φ(G
(0,−1)
∅ (t)) = pr(F

(0)
t (0))

where we wrote pr to denote the natural epimorphisms of Proposition 3.6.
As the kernel of the epimorphism pr is known and we dispose of a suitable Fp-basis of the

inductive limits lim
−→
n odd

R±0 ⊕R±1 · · · ⊕R±n R
±
n+1, lim

−→
n even

(R1/R0)
± ⊕R±2 · · · ⊕R±n R

±
n+1 we conclude that the

elements pr(F
(0,n+1)
l0,...,ln,t

(0)), pr(F
(1,n+1)
l1,...,ln,t

(0)) and pr(F
(0)
t (0)) of the inductive limits lim

−→
n odd

R0⊕R1 · · ·⊕Rn

Rn+1, lim
−→
n even

(R1/R0)⊕R2 · · · ⊕Rn Rn+1 are linearly independent, as required.

Remark 5.12. Let V the image of the composite map obtained by φ and the isomorphism (3). By
the proof of Proposition 5.10 the reader can easily describe, in terms of the lattices · · · ⊕R±n

R±n+1,
the inverse image of V by the natural epimorphism pr of Proposition 3.6.

5.2 The structure of the amalgamed sums

We are now ready to describe two blocks R•n+1/R
•
n and R•n−1/R

•
n−2 should be glued together. We

will see that such glueing is more or less a formal consequence of the geometric interpretation of
the amalgamed sums, as annonced in the introduction of §5.

Like in section 5.1 we will give the detailed proofs for the positive case: the negative part is
deduced analogously.

First, we want to understand the image of an element F
(0,n)
l0,...,ln

(ln+1) ∈ R+
n+1 (resp. F

(1,n)
l1,...,ln

(ln+1) ∈
R−n+1) via the projection (prn+1)

pos (resp. (prn+1)
neg) of Lemma 3.5.

Lemma 5.13. Let n ∈ N>1. The image of the element F
(0,n)
l0,...,ln

(ln+1) ∈ R+
n+1 via the projection

prposn+1 is described as follow:

1) If either ln+1 6= 0 or ln+1 = 0 and ln 66 r then

πn+1(prn+1)
pos(F

(0,n)
l0,...,ln

(ln+1)) = πn+1(F
(0,n)
l0,...,ln

(ln+1));

2) If ln+1 = 0, ln = r and ln−1 > p− 1− r then

(−1)r(prn+1)
pos(F

(0,n)
l0,...,ln

(ln+1)) = ιposn−1(F
(0,n−2)
l0,...,ln−2

(ln−1−p− 1− r))+δr,p−1δln−1,p−1ι
pos
n−1(F

(0,n−2)
l0,...,ln−2

(0));

3) If either ln+1 = 0, ln = r and ln−1 6> p− 1− r or ln+1 = 0 and ln � r then

(prn+1)
pos(F

(0,n)
l0,...,ln

(ln+1)) = 0.

Proof. Assertion 1) is clear by Lemma 5.1. We assume now that ln+1 = 0 and ln 6 r. Thus,

F
(0,n)
l0,...,ln

(0)) = (−1)ln(T+
n )pos(F

(0,n−1)
l0,...,ln−1

(ln))
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so that we get the following equality in the amalgamed sum · · · ⊕R+
n
R+
n+1:

(prn+1)
pos(F

(0,n)
l0,...,ln

(0)) = ι+n−1 ◦ pr
+
n−1 ◦ (−T−n )pos((−1)ln(F

(0,n−1)
l0,...,ln−1

(ln))).

In order to get the statement, we are now left to describe

(T−n )pos((F
(0,n−1)
l0,...,ln−1

(ln))).

Let assume n > 2 (the case n = 1 is treated in an analogous way and is left to the reader). By the
characterisation of the operator T−n we have

(T−n )pos((F
(0,n−1)
l0,...,ln−1

(ln))) = 0

if ln 6= r, while, for ln = r, we have

(T−n )pos((F
(0,n−1)
l0,...,ln−1

(ln)))) =

=

n−2∑
j=0

∑
λj∈Fq

(λ
1

pj

j )lj

[
1 0

pj [λ
1

pj

j ] 1

] [
1,

∑
λn−1∈Fq

(λ
1

pn−1

n−1 )ln−1(λ
1

pn−1

n−1 X + Y )r
]

=

=
∑
i6r

(
r

i

) n−2∑
j=0

∑
λj∈Fq

(λ
1

pj

j )lj

[
1 0

pj [λ
1

pj

j ] 1

] [
1, Xr−iY i

∑
λn−1∈Fq

(λ
1

pn−1

n−1 )ln−1+r−i
]
.

By Lemma 3.1, the quantity ∑
λn−1∈Fq

(λ
1

pn−1

n−1 )ln−1+r−i

is non zero (indeed assuming the value −1) if and only if ln+1+r−i ≡ 0 mod q−1 and ln+1+r−i 6= 0.
The result follows.

The result concerning the negative part is similar

Lemma 5.14. Let n ∈ N>1. The image of the element F
(1,n)
l1,...,ln

(ln+1) ∈ R−n+1 via the projection

prnegn+1 is described as follow:

1) If either ln+1 6= 0 or ln+1 = 0 and ln 66 r then

πn+1(prn+1)
neg(F

(1,n)
l1,...,ln

(ln+1)) = πn+1(F
(1,n)
l1,...,ln

(ln+1));

2) If ln+1 = 0, ln = r and ln−1 > p− 1− r (the latter condition being empty if n = 1) then

(−1)r(prn+1)
neg(F

(1,n)
l1,...,ln

(ln+1)) = ιnegn−1(F
(1,n−2)
l1,...,ln−2

(ln−1−p− 1− r))+δr,p−1δln−1,p−1ι
pos
n−1(F

(1,n−2)
l1,...,ln−2

(0));

3) If either ln+1 = 0, ln = r and ln−1 6> p− 1− r (the latter condition being empty if n = 1) or
ln+1 = 0 and ln � r then

(prn+1)
pos(F

(1,n)
l1,...,ln

(ln+1)) = 0.

Proof. It is analogous to the proof of Proposition 5.13 and it is left to the reader.

Interpretation in terms of euclidean data. We dispose of a canonical Fp-basis for the rep-
resentation · · · ⊕R±n R

±
n+1, which is obtained in the obvious way by an induction from Proposition

3.5 and Lemma 5.1.
Exactly as we did in §5.1 we have a natural way to associate an element of such canonical basis

to a point in Rf : again, we obtain a lattice, which we will denote by · · · ⊕R±n
R±n+1.
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Figure 9. Again, the glueing and the fractal structure.

In such euclidean setting Proposition 5.13 is clear: it tells that lattice · · ·⊕R+
n

R+
n+1 is obtained as

the union of the lattice R+
n+1/n associated to R+

n+1/R
+
n and the image of the lattice · · · ⊕R+

n−2
R+
n−1

associated to the amalgamed sum · · ·⊕R+
n−2

R+
n−1 (which, inductively, can be assumed to be known)

by the traslation

Rf → Rf (12)

(xi)i 7→ (xi + pn−1(p− 1− rbi+n−1c) + pnrbi+nc).

Notice that in particular the lattice · · · ⊕R+
n−2

R+
n−1 is glued inside the Fnr (0)-block of R+

n+1.

We stress again in figure 9 the glueing and the fractal structure for f = 2 (noticing the glueing

of · · · ⊕R+
n−2

R+
n−1 inside the F

(n)
r (0)-block of R+

n+1/n).

The evident analogous considerations for the negative part · · · ⊕R−n
R−n+1 are left to the reader.

Remark 5.15. Notice that if f = 1 then it follows directly from Propositions 5.13 and 5.14 that
the K0(p)-structure (and the extensions between two consecutive graded pieces) of the represen-
tations . . .R•n R

•
n+1 are given by the associated lattices · · · ⊕R•n R•n+1. In particular, each of these

representations has a space of I1 invariants of dimension 1.

By remark 5.15 we can assume f > 2. In the next proposition we describe the socle filtration (and
the extension between two consecutive graded pieces) of the K0(p)-representations · · · ⊕R+

n
R+
n+1

for n > 1; the corresponding result for · · · ⊕R−n R
−
n+1 is similar and left to the reader.

The euclidean leitfaden which we are going to follow in order to prove the main result given in
Proposition 5.16 is the following. As · · · ⊕R+

n−2
R+
n−1 is a K0(p)-subrepresentation of · · · ⊕R+

n
R+
n+1

the only thing we have to check is the following:
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each of the J-th cutting hyperplanes X0 + · · ·+Xf−1 = pn(rbn+sc + 1) + J of the lattice

R+
n+1/n lies strictly below 3 any of the J − 1-cutting hyperplanes of the lattice · · · ⊕R+

n−2

R+
n−1.

Note that, as the cutting hyperplanes are parallel, we can assume J = 0.
Fix n > 1 and define

Mn
def
=

f−1∑
s=0

pn−1(p− 1− rbs+n−1c) + pnrbs+nc

(so that the hyperplane X0 + · · ·+Xf−1 = Mn contains the image of the point 0 via the translation
(12)).

Theorem 5.16. Let n > 1 and consider the K0(p)-representation · · · ⊕R+
n
R+
n+1.

The socle filtration and the extensions between two consecutive graded pieces are described by
the associated lattice · · ·⊕R+

n
R+
n+1, with the conventions of section §5.1.2 and Propositions 5.6, 5.7

and 5.8 concerning the lattice associated to the K0(p)-structure of (R1/R0)
+.

Proof. By the eucildean interpretation of the K0(p)-structure of · · · ⊕R+
n
R+
n+1 and an immediate

induction we see that it is enough to prove the inequalities

1) for n > 3

pn(rs0 + 1) < Mn + pn−2(rs1 + 1)

for any all indexes s0, s1 ∈ {0, . . . , f − 1};
2 for n = 2 and s0, s1 ∈ {0, . . . , f − 1}

p2(rs0 + 1) < M2 + (rs1 + 1)− δ

where δ ∈ {0, 1} is nonzero if and only if either the f -tuple r verifies the hypothesis IB) of
Proposition 5.6 and s1 = sm or the the f -tuple r verifies the hypothesis of Proposition 5.8
s1 ∈ {sm+k1 , . . . , sm+k0}.

3) if n = 1

p(rs0 + 1) 6M1.

Inequality 1) is immediately verified, and 2), 3) are trivial if f > 3 or f = 2 and (r0, r1) /∈
{(p− 1, 0), (0, p− 1), (p− 2, 0), (0, p− 2)}. Notice that if f = 2 and (r0, r1) ∈ {(p− 1, 0), (0, p− 1)}
then Vsm = {0} so that it sufficies to prove inequalities 2) and 3) only for s0 = sm+1, i.e. rs0 = 0,
which is true. The remaining case f = 2 and (r0, r1) ∈ {(p− 2, 0), (0, p− 2)} is trivially checked and
the proof is complete.

6. Appendix A: Some remarks on Witt polynomials

The aim of this appendix is to collect some technical results concerning Witt polynomials. After
a section of general reminders (§6.1), we will treat in detail the case of the universal polynomials
for the sum and the product (§6.2 and §6.3). In section §6.4 we study the Witt polinomials of a
certain power series in the ring W (Fq): in this situation it is more complicate to keep track of the
exponents of such polynomials. We are therefore led to introduce the notion of “pseudo homogeneity”
(definition 6.11), a weak condition which nevetheless gives us a small control, sufficient for our aim
(see also Proposition 7.4 and 7.5).

3if f = 2 and n = 1 we will see that, in few cases depending on the f -tuple r, the J-th cutting hyperplane X0 + · · ·+
Xf−1 = p(rbn+sc + 1) + J of R+

2 /R
+
1 coincide with a J-th cutting hyperplane for R+

0 . A direct check shows that the
K0(p)-structure is the desired one.
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6.1 Reminder on Witt polynomials

The description of the socle filtration for the aforementioned representations of GL2(F ) relies cru-
cially on the behaviour of the universal Witt polynomials. After some generalities, we focus on
specific situations related to the study of the action of lower unipotent, diagonal and upper unipo-
tent matrices in GL2(OF ).

For n ∈ N the n-th Witt polynomial Wn(X) ∈ Z[X0, . . . , Xn] is defined by

Wn(X)
def
=

n∑
i=0

Xpn−i

i pi.

As the ring endomorphism

Z[
1

p
][X0, . . . , Xn]

ωn−→ Z[
1

p
][X0, . . . , Xn]

Xj 7−→Wj(X0, . . . , Xj)

is bijective, we get a family of polynomials M0(X0), . . . ,Mn(X0, . . . , Xn) ∈ Z[1p ][X0, . . . , Xn] which
are uniquely determined by the condition:

Mj(W0(X), . . . ,Wn(X)) = Xj .

They are of course described inductively by

Mn =
1

pn
(Xn − pn−1Mn−1(X)p − · · · − pM1(X0, X1)

pn−1 −M0(X0)
pn).

The following lemma let us deduce the universal Witt polynomials describing the ring structure
of W (Fq):

Proposition 6.1. Let Φ ∈ Z[ζ, ξ] be a polynomial in the variables ζ, ξ. For all n ∈ N there exist
polynomials φn ∈ Z[X0, . . . , Xn, Y0, . . . , Yn], uniquely determied by the conditions

Wn(φ0, . . . , φn) = Φ(Wn(X0, . . . , Xn),Wn(Y0, . . . , Yn)).

Sketch of the proof.. The proof is constructive: we considering the commutative diagramm

Z[1p ][X0, . . . , Xn]
ωn
∼

//

f

��

Z[1p ][X0, . . . , Xn]

��
Z[1p ][X0, . . . , Xn, Y0, . . . , Yn]

ωn⊗ωn
∼

// Z[1p ][X0, . . . , Xn, Y0, . . . , Yn]

where f : Z[1p ][X] → Z[1p ][X,Y ] is defined by f(Xj)
def
= Φ(Xj , Yj) for any j ∈ {0, . . . , n}; the

polynomial φn is then given by

φn(X,Y )
def
= (ωn ⊗ ωn) ◦ f ◦ ω−1n (Xn).

The fact that such φn’s have integer coefficients is then an induction on n.

We apply then Proposition 6.1 to the polynomials

Φ(ζ, ξ) = ζ + ξ, Φ(ζ, ξ) = ζξ

to get the universal polynomials for the sum and the product respectively. They will be denoted as
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Sn, P rodn ∈ Z[X0, . . . , Xn, Y0, . . . , Yn] and are described inductively by

Sn(X,Y ) =
1

pn
(Wn(X) +Wn(Y )− pn−1Sn−1(X,Y )p − · · · − pS1(X,Y )p

n−1 − S0(X,Y )p
n
)

Prodn(X,Y ) =
1

pn
(Wn(X)Wn(Y )− pn−1Prodn−1(X,Y )p − · · · − pProd1(X,Y )p

n−1 − Prod0(X,Y )p
n
).

In section 4 we are interested in such operations as either rise to the N -power or the sum of N
elements. We can of course adapt the arguments of Proposition 6.1 (or, use an induction on N) to
determine the universal Witt polynomials associated to such operations. We will write PotNn (X) ∈
Z[X0, . . . , Xn], SNn (X(1), . . . , X(N)) ∈ Z[X(1)0, . . . , X(1)n, . . . , X(N)0, . . . , X(N)n] for the n-th
Witt polinomial associated to the rise to the N -power and the sum of N elements respectively. We
have then the recursive relations:

PotNn (X) =
1

pn
(Wn(X)N − pn−1PotNn−1(X)p −

· · · − pPotN1 (X)p
n−1 − PotN0 (X)p

n
)

SNn (X(1), . . . , X(N)) =
1

pn
(
N∑
j=1

Wn(X(j))− pn−1SNn−1(X(1), . . . , X(N))p −

· · · − pSN1 (X(1), . . . , X(N))p
n−1 − SN0 (X(1), . . . , X(N))p

n
).

6.2 Some special polynomials-I

In this paragraph we collect some thechnical results concerning some Witt polynomials which appear

naturally in the study of the action of

[
1 0

OF 1

]
(resp.

[
1 pOF

0 1

]
) for the representations of §4.2

(resp. of §4.1).

For n ∈ N we define Sn(X,Y0) ∈ Z[X0, . . . , Xn, Y0] as the specialisation of Sn(X,Y ) at Y =
(Y0, 0, . . . , 0, . . . ). We recall

Lemma 6.2. For n ∈ N the polynomial Sn(X,Y ) is an homogeneous polinomial in X,Y , of degree
pn if we define the elemets Xj , Yj to be homogeneous of degree pj .

Proof. Elementary.

Thus, if we set

S̃n(X,Y0)
def
= Sn(X,Y0)−Xn

we see that S̃j(X,Y0) is a polynomial in Z[X0, . . . , Xn−1, Y0], homogeneous of degree pn. Moreover,

as S̃n(X, 0) = 0 we see that S̃n(X,Y0) belongs to the ideal generated by Y0.
We define inductively the following family of automorphisms: we put

s0 : Z[X0, Y0]→ Z[X0, Y0]

X0 7→ X0 − Y0
Y0 7→ Y0

and, assuming sj−1 : Z[X0, . . . , Xj−1, Y0]→ Z[X0, . . . , Xj−1, Y0] being constructed, we define

sj : Z[X0, . . . , Xj , Y0]→ Z[X0, . . . , Xj , Y0]

Xj 7→ Xj − sj−1(S̃j)

By their very construction, the sj ’s are graded homomorphisms; in particular sj(S̃j) is homo-
geneous of degree pj , and belongs to the ideal (Y0) inside Z[X0, . . . , Xj , Y0]. We can actually prove
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the following result

Lemma 6.3. For any n > 1 we have

sn−1(Sn(X,Y0)−Xn) = −(Sn(X,−Y0)−Xn).

Proof. The case n = 1 is elementary:

s0(S1(X0, X1, Y0)−X1) = s0(
1

p
(Xp

0+Y p
0 −(X0+Y0)

p)) =
1

p
((X0−Y0)p+Y p

0 −X
p
0 ) = −(S1(X0, X1, Y0)−X1).

Concerning the general case, we write

Sn(X0, . . . , Xn, Y0)−Xn =
1

pn
[
Xpn

0 + Y pn

0 − pn−1(Sn−1(X,Y0)p −Xp
n−1)− . . . (13)

· · · − p(S1(X0, X1, Y0)
pn−1 −Xpn−1

1 )− (X0 + Y0)
pn
]
. (14)

For j ∈ {1, . . . , n− 1} we have

sj(Sj(X0, . . . , Xj , Y0)
pn−j −Xpn−1

j ) = (sj−1(Sj(X0, . . . , Xj , Y0)−Xj) + sj(Xj))
pn−j − (sj(Xj))

pn−j

= Xpn−j

j − (Xj − sj−1(Sj(X0, . . . , Xj , Y0)−Xj))
pn−j

= Xpn−j

j − (Xj + Sj(X0, . . . , Xj ,−Y0)−Xj))
pn−j

= −(Sj(X0, . . . , Xj ,−Y0)p
n−j −Xpn−j

j ).

As sn−1(Sn(X0, . . . , Xn, Y0)−Xn) = sn(Sn(X0, . . . , Xn, Y0)−Xn) we are left compute

sn(
1

pn
[
Xpn

0 + Y pn

0 − pn−1(Sn−1(X,Y0)p −Xp
n−1)− . . .

· · · − p(S1(X0, X1, Y0)
pn−1 −Xpn−1

1 )− (X0 + Y0)
pn
]
) =

1

pn
[
(X0 − Y0)p

n
+ Y pn

0 − pn−1sn−1(Sn−1(X,Y0)p −Xp
n−1)− . . .

· · · − ps1(S1(X0, X1, Y0)
pn−1 −Xpn−1

1 )− (X0)
pn
]

and the result follows as sj(Sj(X0, . . . , Xj , Y0)
pn−j −Xpn−1

j ) = −(Sj(X0, . . . , Xj ,−Y0)p
n−j −Xpn−j

j )
for all j ∈ {1, . . . n− 1}.

We will also need a cleaner statement concerning the monomials of Sn(X0, . . . , Xn, Y0):

Lemma 6.4. For all n > 1 the coefficient of the monomial Xp−1
0 . . . Xp−1

n−1Y0 appearing in the devel-
opment of the universal Witt polynomial Sn(X0, . . . , Xn, Y0) is 1.

Proof. The proof is again an induction on n: the case n = 1 is evident.
For the general case, consider

Sn(X,Y0) =
1

pn
(Wn(X) + Y pn

0 − pn−1Sn−1(X,Y0)p − · · · − pS1(X,Y0)p
n−1 − S0(X,Y0)p

n
).

A monomial of the form Xp−1
0 . . . Xp−1

n−1Y0 lies therefore inside

−1

p
(Sn−1(X0, . . . , Xn−1, Y0)

p −Xp−1
n−1)

and the inductive hypothesis yields

Sn−1(X0, . . . , Xn−1, Y0) = Xn−1 +Xp−1
0 . . . Xp−1

n−2Y0 + x(X0, . . . , Xn−2, Y0)
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where x(X0, . . . , Xn−2, Y0) ∈ Z[X0, . . . , Xn−2, Y0] doesn’t contains the monomial Xp−1
0 . . . Xp−1

n−2Y0.
Finally, we have

(Sn−1(X0, . . . , Xn−1, Y0))
p =

∑
i+j+k=p

06i,j,k

p!

i!j!k!
Xi
n−1(X

p−1
0 . . . Xp−1

n−2Y0)
j(x(X0, . . . , Xn−2, Y0))

k

and the conclusion follows.

6.3 Some special polynomials -II

In this section we deal with some Witt polynomials which appear naturally when we study the

action of the diagonal matrices

[
1 + pOF 0

0 1 + OF

]
. Recall that

Lemma 6.5. Let n ∈ N. The n-th universal Witt polynomial of the product Prodn(X,Y ) is an
homogeneous element of (Z[Y ])[X] (resp. (Z[X])[Y ]) provided that Xj (resp. Yj) is homogeneous
of degree pj for any 0 6 j 6 n.

Proof. Elementary.

Remark 6.6. In the present paragraph, we will be concerned with the image in Fp[X,Y ] of
the universal Witt polynomials Sn(X,Y ), P rodn(X,Y ). Such images will be denoted again by
Sn(X,Y ), P rodn(X,Y ), in order not to overload notations. As p · 1 = 0 multiplication by p is
the composite of Frobenius and Verschiebung.

For N ∈ N, let z′ = (λ′0, . . . , λ
′
N , 0 . . . , 0, . . . ) ∈ W (Fq) and let α = (α0, α1, . . . ) ∈ W (Fq); we

need to describe

z′ + pα · z′ mod pN+1 (15)

in terms of the universal Witt polynomials.

Lemma 6.7. For 0 6 j 6 he j-th Witt polynomial of the development of (15) is an homogeneous
element Qj(λ

′, α) of degree pj in (Fp[α0, . . . , αj−1])[λ
′
0, . . . , λ

′
j ] if we define, for 0 6 s 6 j, λ′s to be

homogeneous of degree ps.

Proof. It is a strightforward consequence of Lemmas 6.2 and 6.5. More precisely, from 6.5 we see
that

p · z′ · α = (0, P rod0(λ
′p
0, α

p
0), . . . , P rodj−1(λ

′p
0, . . . , λ

′p
j−1, α

p
0, . . . , α

p
j−1)︸ ︷︷ ︸

j th entry

. . . )

where each Prodj−1(λ
′, α)p is homogeneous of degree pj (provided that λ′s is homogeneous of degree

ps for 0 6 s 6 j−1). Furthermore, Qj(λ
′, α) is the specialisation of Sj(X,Y ) at X = z′, Y = p ·z′ ·α

and we use Lemma 6.2 to get the desired result.

As we did in §6.2 we define (for 0 6 j 6 N)

Q̃j
def
= Qj(λ

′, α)− λ′j .

For j 6= 0 it is a polynomial in (Fp[α0, . . . , αj−1])[λ
′
0, . . . , λ

′
j−1], homogeneous of degree pj

We can finally define, inductively, a family of ring homomorphisms: we let

q0 : Fp[λ
′
0]→ Fp[λ

′
0]
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be the identity map, and, assuming qj−1 being constructed for j > 1, we define

qj : Fp[λ
′
0, . . . , λj , α0, . . . , αj−1]→ Fp[λ

′
0, . . . , λ

′
j , α0, . . . , αj−1]

by the condition

λ′j 7→ λ′j − qj−1(Q̃j)
αj−1 7→ αj−1

qj |Fp[λ′0,...,λj−1,α0,...,αj−2] = qj−1

(and the obvious formalism: if j = 1 we just forget αj−2 from the formulas).

We deduce:

Lemma 6.8. For 0 6 j 6 N , the polynomial qj−1(Q̃j) is homogeneous of degree pj in λ′0, . . . , λ
′
j−1.

Proof. The morphism qj−1 is a graded ring homomorphism.

6.4 Some special Witt polynomials -III

In this paragraph we study some Witt polynomials giving the action of

[
1 OF

0 1

]
(resp.

[
1 0

pOF 1

]
)

for the representations of §4.1 (resp. of §4.2). Such study is more delicate than the previous sections
(§6.2 and §6.3) and relies crucially on the fact that we deal with Witt vectors x ∈W (Fq) which are
NOT invertible.

We start with a general remark

Lemma 6.9. Let N,n ∈ N.

i) The n-th universal Witt polynomial of the rise to the N -th power PotNn (X) is an homogeneous
element of degree Npn in Z[X0, . . . , Xn] provided that Xj is homogeneous of degree pj for any
0 6 j 6 n.

ii) The n-th universal Witt polynomial associated to the sum of N elements SNn (X(1), . . . , X(N))
is an homogeneous element of degree pn in Z[X(1)0, . . . , X(1)n, . . . , X(N)0, . . . , X(N)n] if we
define X(l)j to be homogeneous of degree pj , for any l ∈ {1, . . . , N}.

Proof. Elementary.

As in §6.3 we have the following

Remark 6.10. In the present paragraph, we will be concerned with polynomials with coefficients
in Fp obtained by reducing modulo p the coefficients of the universal Witt polynomials SNn (X,Y ),
PotNn (X), Sn(X,Y ), Prodn(X,Y ). In order not to overload notations, such images will be denoted
again by SNn (X,Y ), . . . . As p · 1 = 0, recall that multiplication by p is the composite of Frobenius
and Verschiebung.

Fix 0 6 m 6 n and consider the ring Fp[λm, . . . , λn].

Definition 6.11. Let M ∈ N. A monomial λαmm . . . λαnn ∈ Fp[λm, . . . , λn] is said to be pseudo-
homogeneous of degree M if the following holds:

there exist an integer L ∈ N and integers βl(j) for j ∈ {1, . . . , L}, l ∈ {m, . . . , n} such that

i) for all l ∈ {m . . . , n} we have

αl =
L∑
j=1

pj−1βl(j)
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ii) we have

pm(
L∑
j=1

βm(j)) + · · ·+ pn(
L∑
j=1

βn(j)) 6M.

A polynomial in Fp[λm, . . . , λn] is said to be pseudo-homogeneous of degree M if it is a sum of
monomials each of which is pseudo homogeneous of degree M .

The following result is imediate

Lemma 6.12. Fix m,n as above. Then:

i) If P1, P2 ∈ Fp[λm, . . . , λn] are pseudo-homogeneous of degree M1,M2 respectively, then P1P2

is pseudo-homogeneous of degree M1 +M2.

ii) if P1 ∈ Fp[λm, . . . , λn] is pseudo-homogeneous of degree M1 then P p1 is again pseudohomoge-
neous of degree M1.

Proof. Omissis.

Remark 6.13. If P ∈ Fp[λm, . . . , λn] is pseudo-homogeneous and we specialise P on an element of
Fn−m+1
q , we see that the integer L in definition 6.11 can be assumed to verify L 6 f .

We are now ready to focus our attention some Witt vectors in W (Fq).

6.4.1 The negative case. For 1 6 m 6 n, let z
def
= (0, . . . , 0, λm, . . . , λn, 0, . . . ) and [µ]

def
=

(µ, 0, . . . ) be elements of W (Fq). We are interested in the Witt development of

N∑
j=0

zj+1[µj ] mod pn+1 (16)

where N
def
= bn+1

m c. For j ∈ {m, . . . , n} write finally Uj(λ, µ) ∈ Fp[λm, . . . , λj , µ] for the j-th poly-
nomial of the Witt development of (16) and put

Ũj(λ, µ)
def
= Uj − λj .

We notice that Ũj = 0 if m 6 j 6 2m− 1 and Ũ2m = λ2p
m

m .

We have a rough estimate of the degree of the Ũh

Lemma 6.14. Let h ∈ {2m, . . . , n}. Then Ũh ∈ Fp[λm, . . . , λh−1, µ] and is pseudo homogeneous of
degree ph − pm(pm − 2).

Proof. If z̃
def
= λ

1
pm

m , . . . , λ
1
pm

n , 0, . . . ) then we recall that Potj+1
l (z̃) is homogeneous of degree (j+1)pl

(if λs is homogeneous of degree ps). Thus the Witt development of zj+1[µ]j has the form

zj+1[µ]j = (0, . . . , 0, Potj+1
0 (λp

mj

m )(µj)
pm(j+1)︸ ︷︷ ︸

positionm(j+1)

, . . . , Potj+1
l (λp

mj

m , . . . , λp
mj

m+l)(µ
j)
pm(j+1)+l︸ ︷︷ ︸

positionm(j+1)+l

, . . . )

and Potj+1
l (λp

mj

m , . . . , λp
mj

m+l)(µ
j)
pm(j+1)+l

is homogeneous of degree (j + 1)pl+m(j+1) and actually is

pseudo-homogeneous of degree (j + 1)pl+m.
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Thus, if a(j+1)m(j), . . . , ah(j) is an h− (j + 1)m+ 1-tuple of integers, the polynomial

h−(j+1)m∏
l=0

(Potj+1
l (λp

mj

m , . . . , λp
mj

m+l)(µ
j)
pm(j+1)+l

)a(j+1)m+l(j)

is pseudo-homogeneous of degree

(j + 1)(pma(j+1)m(j) + · · ·+ ph−mjah(j)).

By Lemma 6.9 we see that a monomial of SN+1
h (X(1), . . . , X(N + 1)) has the following form:

X
def
=

h∏
l0=0

Xl0(1)al0 (0) · · ·
h∏

lN=0

XlN (N + 1)alN (N)

where
h∑

l0=0

pl0al0(0) + · · ·+
h∑

lN=0

plNalN (N) = ph.

As Uh is the specialisation of S
(N+1)
h at

(X(j + 1))j∈{0,...,N} = (zj+1[µj ])j∈{0,...,N}

we see in particular that Ũh ∈ Fp[λm, . . . , λh−1, µ].
Assume now that

1) for h > (j + 1)m we have alj (j) = 0 for all lj < (j + 1)m;

2) for h < (j + 1)m we have alj (j) = 0.

Then Lemma 6.12 shows that the specialisation of X is pseudo-homogeneous of degree

d
def
=

N∑
j=0

(j + 1)(
h∑

i=(j+1)m

pi−jmai(j)).

Letting

xj+1
def
=

h∑
i=(j+1)m

pi−mjai(j)

for j ∈ {0, . . . , h} we get

d = ph −
N∑
j=0

(pjm − (j + 1))xj

and the conclusion follows from Lemma 6.15 below.

Lemma 6.15. Let j ∈ {0, . . . , N} and let

X
def
=

h∏
l0=0

Xl0(1)al0 (0) · · ·
h∏

lN=0

XlN (N + 1)alN (N)

be a monomial of S
(N+1)
h (X(1), . . . , X(N + 1)).

If ali(i) = 0 for all i 6= j and li ∈ {0, . . . , h} then

X = Xh(j).

Proof. An immediate induction on h shows that if we specialise S
(N+1)
h at

(X0(i), . . . , Xh(i)) = (0, . . . , 0)
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for i 6= j we get

S
(N+1)
h (0, . . . , 0, X(j), 0, . . . , 0) = Xh(j)

and the claim follows.

We finally introduce a family of ring homomorphisms, for m 6 j 6 n,

uj : Fp[λm, . . . , λj , µ]→ Fp[λm, . . . , λj , µ]

defined inductively as follow: um is the identity map and, assuming uj−1 being constructed, we
define uj as the unique extension of uj−1 to Fp[λm, . . . , λj , µ] such that

λj 7→ λj − uj−1(Ũj).

We have the

Lemma 6.16. Let h ∈ {2m, . . . , n}. Then uh(Ũh) is pseudo homogeneous of degree ph−pm(pm−2).

Proof. Arguing by induction, we can assume that ul(λl) is pseudohomogeneous of degree pl for all
l ∈ {m, . . . , h − 1}. As Ũh is pseudohomogeneous of degree ph − pm(pm − 2) by Lemma 6.14, the
claim follows from Lemma 6.12.

6.4.2 The positive case This section is essentially a re-edition of §6.4.1, where we take m = 0.
The interest of this case will appear in §4.2, where we give a description of the K0(p)-representations
R+
n+1.

Let (λ0, . . . , λn, 0, . . . ) ∈W(Fq).
We are interested in the Witt development (U0(λ0, µ), U1(λ0, λ1, µ), . . . , Un+1(λ0, . . . , λn+1, µ), 0, . . . )
of

z(1 + p[µ]z)−1 ≡
n+1∑
j=0

pj [µ]zj+1 mod pn+2.

We check immediately that U0 = λ0 and U1 = λ1 + λ2p0 µ.

We define for h = 0, . . . , n + 1 Ũh
def
= Uh − λh. The following result is the analogous of Lemma

6.14

Lemma 6.17. Let h ∈ {1, . . . , n+1}. Then Ũh ∈ Fp[λ0, . . . , λh−1, µ] is pseudohomogeneous of degree
ph − (p− 2).

Proof. The proof is completely analogous to the proof of Lemma 6.14 and left to the reader (see
[Mo1] for details).

As in section §6.4.1 we define inductively, for h = 0, . . . , n+ 1, the ring morphisms

uh : Fp[λ0, . . . , λh, µ]→ Fp[λ0, . . . , λh, µ]

by the condition uh(λh)
def
= λh − uh−1(Ũh) for h > 1 and u0

def
= id. Then

Lemma 6.18. Let 1 6 h 6 n+ 1. Then uh(Ũh) is pseudo homogeneous of degree ph − (p− 2).

Proof. As for Lemma 6.16 it is a consequence of Lemma 6.12 and Lemma 6.17.

Still others remarks on some universal Witt polynomials. In this paragraph we are going
to pursue the technical computations of §6.4.2. Indeed, the structure of the quotients R•n+1/R

•
n (cf.

§5.1) can not be deduced simply from Lemma 6.18, as for R•n+1. We should instead look more closely

the structure of the polynomial Ũn+1 and un(Ũn + 1) (the notations being the same as for §6.4.2).
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The following description is deduced as in the proof of Lemma 6.14. Let z = (λ0, . . . , λn, 0) ∈
Wn+1(Fq) and write

n+1∑
j=0

pj [µ]zj+1 = (U0, . . . , Un+1).

for Uj ∈ Fp[λ0, . . . , λj , µ]. We recall that Uh is obtained by specializing the universal polynomial
Sn+2
h (X(1), . . . , X(n+ 2)) at

X(j + 1) = (0, . . . , 0, (Potj+1
0 (λ))p

j
(µj)p

j︸ ︷︷ ︸
position j

, . . . , (Potj+1
l (λ))p

j
(µj)p

j+l︸ ︷︷ ︸
position j+l

, . . . ).

We recall moreover that a monomial X of Sn+2
h (X(1), . . . , X(n+ 2)) has the form

X =
h∏

l0=0

Xl0(1)al0 (0) · · ·
h∏

ln+0=0

Xln+1(n+ 2)aln+1
(n+1)

where the integers ali(i) verify

h∑
l0=0

pl0al0(0) + · · ·+
h∑

ln+1

pln+1aln+1(n+ 1) = ph;

Therefore a monomial λα0
0 · · · · · λ

αh
h issued from Uh verifies

h∑
j=0

pjs(αj) 6
n+1∑
j=0

(j + 1)(
h∑
i=j

pi−jai(j)) = ph −
h∑
j=1

(pj − (j + 1))xj

where we have set

xj
def
=

h∑
i=j

pi−jai(j).

We focus our attention for the case h = n+ 1, obtaining thus the following

Lemma 6.19. A monomial of Ũn+1 has the following form

λan(0)+pan+1(1)
n · λαn−1

n−1 · · · · · λ
α0
0

whose the exponents verify the following properties:

1) we have an(0) ∈ {0, . . . , p− 1} and an+1(1) ∈ {0, 1},
2) letting xj

def
=
∑n+1

i=j p
i−jai(j) we have

n∑
j=0

pjs(αj) + (an(0) + an+1(1)) 6 ph −
h∑
j=1

(pj − (j + 1))xj

3) if an+1(1) = 1 then the monomial has the form

λp
n+1

0 λpn.

Proof. The fact that αn(0) 6= p follows from the fact that in the polynomial Sn+2
n+1 the coefficient

of Xn(1)p is zero (the proof is the usual one: see Lemma 6.15). Assertion 2) is deduced from 1)

(and the fact that f > 2). Assertion 3) follows noticing that (Pot2n(z))p = 2λp
n+1

0 λpn + x where
x ∈ Fp[λ0, . . . , λn−1].

We recall the ring morphism un : Fp[λ0, . . . , λnµ] → Fp[λ0, . . . , λnµ] (cf. 6.4.2). If i
(s)
n+1 ∈ N

deduce the following
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Lemma 6.20. In the preceeding notations, a monomial issued from un(Ũn+1)
i
(s)
n+1 has the following

form

(λp
n+1

0 λpn)B
(s)
n+1(1)λB

(s)
n (0)

n λ
βn−1

n−1 · . . . λ
β0
0

where the exponents verify the following properties:

1) we have

s(β0 + pn+1B
(s)
n+1(1)) +

n−1∑
j=1

pjs(βj) + pn(B(s)
n (0) +B

(s)
n+1(1)) 6 pn+1i

(s)
n+1 −

n+1∑
j=1

n+1∑
i=j

(pj−i − (j + 1))Ai(j)

for suitable integers Ai(j) ∈ N;

2) we have Ai(j) = 0 for all couples (i, j) if and only if i
(s)
n+1 = 0;

3) we have 0 6 B(s)
n+1(1) 6 A(s)

n+1(1) 6 i(s)n+1.

Proof. By the argument appearing in the proof of Lemma 6.14 (see also [Mo1], Lemma 6.17) we

see that a fixed monomial λα0
0 · · · · · λαnn issued from Ũ

i
(s)
n+1

n+1 is pseudohomogeneous of degree d
def
=

pn+1i
(s)
n+1−

∑n+1
j=1

∑n+1
i=j (pj−i− (j+ 1))Ai(j), where the integers Ai(j) ∈ N are not all equal to zero,

except if i
(s)
n+1 = 0. By Lemma 6.19 we see moreover that a monomial issued from Ũ

i
(s)
n+1

n+1 has the
form

(λ0λ
p
n)A

(s)
n+1(1)λA

(s)
n (0)

n λ
αn−1

n−1 . . . λα0
0

and An+1(1) 6 i(s)n+1. Recall now that uj(λj) is pseudohomogeneous of degree pj (Lemma 6.18) and

un(λn) = λn − un−1(Ũn), where Ũn ∈ Fp[λ0, . . . , λn−1, µ]. It follows then from Lemma 6.12 that a
monomial issued from un(λα0

0 · · · · · λαnn ) has the form

(λp
n+1

0 λpn)B
(s)
n+1(1)λB

(s)
n (0)

n λ
βn−1

n−1 · . . . λ
β0
0

for convenient integers B
(s)
n+1, B

(s)
n (0), βj , satisfying B

(s)
n+1(1) 6 A(s)

n+1(1) and, being pseudohomoge-
neous of degree d, it verifies

n∑
j=0

pjs(β′j) 6 p
n+1i

(s)
n+1 −

n+1∑
j=1

n+1∑
i=j

(pj−i − (j + 1))Ai(j).

7. Appendix B: Two rough estimates

In this appendix use the material of appendix A to estimate the behaviour of (the reduction modulo
pf − 1 of) some elements which appear naturally in the study of the socle filtration for the repre-

sentations R±n+1, Ind
K0(p)
K0(pn+1)

1, etc...

The first tool is discussed in §7.1: it is an elementary description of the function s giving the
cipher sum of the reduction modulo pf−1 of a natural number. In §7.2 the properties of the function
s and the results on Witt polynomials stated in §6 will be used to describe in detail some explicit
vectors of the aforementioned representations (Propositions 7.3, 7.4 and 7.5).

7.1 Remark on the proof of Stickelberger’s theorem

In this section we recall the construction and the properties of a certain function s : Z→ N which
appears in the proof of Stickelberger’s theorem.
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If p is a prime of Q(ζq−1) lying above p, the reduction modulo p, Z[ζq−1] → Fq admits a
multiplicative section

ωp : F×p → Z[ζq−1]

which induces an isomorphisms on the group µq−1 of q − 1-th roots of unity. If P is the prime of
Q(ζq−1, ζp) lying above p, we define a function s : Z→ N by

s(n)
def
= valP(g(ω−np ))

where valP denotes the P-adic valuation and g(ω−np ) denotes the Gauss sum of the character
ω−np : F×q → µq−1.

We need to modify slightly this function as follow:

s : N→ N

n 7→
{
s(n) if eithern 6≡ 0 mod q − 1 orn = 0
f(p− 1) otherwise

The following lemma is then easily deduced from the well known properties of the function s (cf.
[Was], §6.2):

Lemma 7.1. Let n,m ∈ N. Then:

a) s(0) = 0 and s(1) = 1;

b) 0 6 s(m+ n) 6 s(n) + s(m);

c) s(pn) = s(n);

d) if 0 6 n 6 q − 1 and (a0, . . . , af−1) are the cyphers of the p-adic development of n, we have

s(n) = a0 + a1 + · · ·+ af−1.

In particular, s(n) 6 n for any n ∈ N, with equality if and only if n ∈ {0, . . . , p− 1}.

We can improve the statement of b):

Lemma 7.2. Let b0, . . . , bf−1 ∈ N be integers.
Then there exists integers ms, ns, where s ∈ {0, . . . , f − 1} such that:

1) for all s ∈ {0, . . . , f − 1}

cs
def
= bs − pms + nbs−1c ∈ {0, . . . , p− 1};

2) we have

j̃
def
=

f−1∑
s=0

ms =

f−1∑
s=0

ns;

3) we have
f−1∑
s=0

psbs ≡
f−1∑
s=0

pscs mod pf − 1;

4) we have the equality

s(

f−1∑
s=0

psbs) =

f−1∑
s=0

bs − j̃(p− 1).

Proof. Assume first that bs ∈ {0, . . . , p− 1} for all s > 1 and b0 > p. There exist (unique) integers
ms, for s = 0, . . . , f − 1 such that

i) bs +ms−1 − pms ∈ {0, . . . , p− 1} for all s > 1 and b0 − pm0 ∈ {0, . . . , p− 1};
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ii) we have the equality

f−1∑
s=0

bsp
s = (b0 − pm0) +

f−1∑
s=0

ps(bs +ms−1 − pms) + pf−1mf−1. (17)

As we work modulo q − 1 the equality (17) reads

f−1∑
s=0

bsp
s ≡ (b0 − pm0 +mf−1) +

f−1∑
s=0

ps(bs +ms−1 − pms) mod q − 1.

If b0 − pm0 + mf−1 ∈ {0, . . . , p − 1} we get the result. If not, we only have to check that 0 6
b0 − pm0 + mf−1 < b0 (so that the iteration of the preceeding procedure eventually stops). As

−pm1 + b1 +m0 > 0 and b1 6 p−1 we get m1 6
p−1+m0

p and, inductively, ms+1 6
ps+1−1+m0

ps+1 . Thus

−pm0 +mf−1 6 −pm0 +
pf−1 − 1 +m0

pf−1
< 0

if m0 > 1.
For the general case, we notice that there exists unique integers m′s such that bs+ms−1−pms ∈

{0, . . . , p− 1} for all s > 1 and b0 −m0 ∈ {0, . . . , p− 1}. As we work modulo q − 1 we get

f−1∑
s=0

bsp
s ≡ (b0 − pm0 +mf−1) +

f−1∑
s=0

ps(bs +ms−1 − pms) mod q − 1.

and we are in the previous case.

7.2 Two rough estimates

In this section we study some elements of Ind
K0(pm)
K0(pn+1)

1 which appear naturally in the study of the

socle filtration for Ind
K0(pm)
K0(pn+1)

1 (but the results adapt immediately for the representations R±n+1).

In particular, we will be able to have a partial control of the action of K0(p
m) on Ind

K0(pm)
K0(pn+1)

1 (and

not only on the graded pieces of the socle filtration).

The following proposition holds for a fixed couple (m,n) of integers such that 0 6 m 6 n; for the

m = 0 case we just have to replace the matrix

[
1 0

pm[λm] 1

]
with

[
[λ0] 1
1 0

]
in the expressions

(18) and (19). Finally we recall the definition of the Fp-linear subspace W(lm,...,ln)
of Ind

K0(pm)
K0(pn+1)

1

for a given (n+ 1−m)f -tuple (lm, . . . , ln) ∈
{
{0, . . . , p− 1}f

}n+1−m
, given in §4.1.2.

Proposition 7.3. Let Fm,nlm,...,ln
∈ B, and N

def
= Nm,n(lm, . . . , ln). For m 6 j 6 n let Tj ∈

Fp[λm, . . . , λj−1] be a polynomial of degree deg(Tj) 6 pj−m (where, for j ∈ {0, . . . , n − 1}, we
define λj+m to be homogeneous of degree pj), and ij be a f -tuple such that ij 6 lj . Finally, fix

M < pf − 1. Then the image inside Ind
K0(pm)
K0(pn+1)

1/N −M of the element x defined as

x
def
=

n−1∑
j=m

∑
λj∈Fq

(λ
1

pj

j )lj−ij (T
1

pj+1

j+1 )ij+1

[
1 0

pj [λ
1

pj

j ] 1

] ∑
λn∈Fq

(λ
1
pn

n )ln−in

[
1 0

pn[λ
1
pn

n ] 1

] [
1, e
]

(18)

is contained in the image inside Ind
K0(pm)
K0(pn+1)

1/N −M of the subspace

W(lm,...,ln)
.

Proof. The technique of the proof is very simple: we fix 0 6 t 6M and n ∈ N such that n(p− 1) 6
t < (n+ 1)(p−1). If we write x as a suitable sum of elements Fm,n

l′m,...,l
′
n
, the statement is proved if we
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check that any such element lying in the antidiagonal X0+· · ·+Xf−1 = N−t verifies x′j 6 xj+n for
all j = 0, . . . , f − 1 (where, as usual, (x0, . . . , xf−1), (x′0, . . . , x

′
f−1) are the coordinates of Fm,nlm,...,ln

,

Fm,n
l′m,...,l

′
n

via the map (5)).

This is a long computation. If we expand each of the polynomials T
im+1

m+1 , . . . , T
in
n , we obtain:∑

i∈I
βi
∑

λm∈Fq

(λ
1
pm

m )κm(i)

[
1 0

pm[λ
1
pm

m ] 1

]
. . .

∑
λn∈Fq

(λ
1
pn

n )κn(i)

[
1 0

pn[λ
1
pn

n ] 1

] [
1, e
]

(19)

where I is a suitable set of indices, βi ∈ Fp, and the exponents κj(i) (for j ∈ {m, . . . , n}) admit the
following explicit description: 4

κa = pb−1cκ(a+1)
a + · · ·+ pb−(n−a)cκ(n)a + la − ia

and (for a+ 1 6 b 6 n)

κ(b)a = κ(b),0a + pκ(b),1a + · · ·+ pf−1κ(b),f−1a

where each κ
(b),s
a is the exponent of λa apperaring in a fixed monomial of (Tb)

i
(s)
b .

Recall that, by the hypothesys on the Tb’s, we have

κ(b),sm + pκ
(b),s
m+1 + · · ·+ pb−1−mκ

(b),s
b−1 6 p

b−mi
(s)
b . (20)

Thanks to Lemma 7.1, we have the following inequalities:

s(κm) + p s(κm+1) + · · ·+ pn−m s(κn) 6 (21)

6(s(lm − im) + s(pb−1cκ(m+1)
m ) + · · ·+ s(pb−(n−m)cκ(n)m )) +

+p(s(lm+1 − im+1) + s(pb−1cκ
(m+2)
m+1 ) + · · ·+ s(pb−(n−m−1)cκ

(n)
m+1)) + . . .

· · ·+ pn−m−1(s(ln−1 − in−1) + s(pb−1cκ
(n)
n−1)) + pn−m(s(ln − in)) 6 (22)

6 s(lm − im) +

f−1∑
s=0

s(κ(m+1),s
m ) +

p(s(lm+1 − im−1)) + (

f−1∑
s=0

(s(κ(m+2),s
m + p s(κ

(m+2),s
m+1 )) + . . .

· · ·+ (

f−1∑
s=0

(s(κ(n),sm ) + p s(κ
(n),s
m+1) + · · ·+ pn−m−1 s(κ

(n),s
n−1 ))) + pn−m s(ln − in) 6 (23)

6 s(lm − im) + p s(im+1) + p s(lm+1 − im+1) + · · ·+ pn−m s(in) + pn−m s(ln − in)

where the inequality (23) is deduced from (20) and Lemma 7.1-d).
If we impose our function to lie on the hyperplane X0 + · · · + Xf−1 = t we get a “control” on

the exponents κ
(b),s
a . More precisely,

i) the inequality (21) give rise to the conditions:

s(κa) = s(la − ia) + s(κ(a+1)
a ) + · · ·+ s(κ(n)a )− ua(p− 1)

for a ∈ {m, . . . , n− 1} and some ua ∈ N;

4from now on, we fix an index i ∈ I, and we put κj
def
= κj(i)
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ii) the inequality (22) give rise to the conditions:

s(κ(b)a ) = s(κ(b),0a ) + · · ·+ s(κ(b),f−1a )− w(b)
a (p− 1)

where a ∈ {m, . . . , n− 1}, b ∈ {a+ 1, . . . , n} and some w
(b)
a ∈ N;

iii) the inequality (23) give rise to the conditions

s(κ(b),sa ) = κ(b),sa − v(b),ca (p− 1)

where a ∈ {m, . . . , n− 1}, b ∈ {a+ 1, . . . , n}, s ∈ {0, . . . , f − 1} and some v
(b),s
a ∈ N;

iv) condition t < (n+ 1)(p− 1) imposes finally

n−1∑
a=m

pa−mua +
n−1∑
a=m

pa−m(
n∑

b=a+1

w(b)
a ) +

n−1∑
a=m

pa−m(
n∑

b=a+1

f−1∑
s=0

v(b),sa ) 6 n.

First, notice that the condition n(p − 1) < pf − 1 imply k
(b),s
a 6 pf − 1 for all possible choices

of a, b, s (as s(k
(b),s
a ) 6 dk(b),sa e). If k

(b),s
a (i), for i ∈ {0, . . . , f − 1}, are the cyphers of the p-adic

development of κ
(b),s
a , we then see that iii) gives the necessary condition

f−1∑
i=1

κ(b),sa (i) 6 v(b),sa

(indeed, v
(b),s
a can uniquely written as v

(b),s
a = αa,b,s(1) + (p+ 1)αa,b,s(2) + · · ·+αa,b,s(f − 1)(1 + p+

· · ·+ pf−1) for suitable integers αa,b,s(j)).
Fix now a ∈ {m, . . . , n− 1}, b ∈ {a+ 1, . . . , n}. Working in Z/(pf − 1), we see that

κ(b),0a + · · ·+ pf−1κ(b),f−1a ≡
f−1∑
j=0

pj(κ(b),0a (j) + κ(b),1a (bj − 1c) + · · ·+ κ(b),f−1a (bj − (f − 1)c)).

Using Lemma 7.2 we see that condition ii) let us deduce the p-adic expansion of κ
(b)
a :

κ(b)a (j) = κ(b),0a (j) + · · ·+ κ(b),f−1a (bj − (f − 1)c)− pα(b)
a (j) + β(b)a (j) (24)

= κ(b),ja (0) + ρ(b)a (j)− pα(b)
a (j)

where the integers α
(b)
a (j), β

(b)
a (j) verify

f−1∑
j=0

α(b)
a (j) =

f−1∑
j=0

β(b)a (j) = w(b)
a

and

ρ(b)a (j) = κ
s∈{0 ...,f−1}\{j}

(b),s

a

(bj − sc) + β(b)a (j) 6
f−1∑
s=0

v(b),sa + w(b)
a .

Similarly, condition i) let us deduce the p-adic development of κa:

κa(j) = l(j)a − i(j)a +

n∑
b=a+1

κba(bj + b− ac)− pAa(j) +Ba(j)

= l(j)a − i(j)a +

n∑
b=a+1

κ(b),bj+b−aca (0) + Ra(j)− p(
n∑

b=a+1

α(b)
a (bj + b− ac) +Aa(j))
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where the integers Aa(j), Ba(j),Ra(j) verify

f−1∑
j=0

Aa(j) =

f−1∑
j=0

Ba(j) = ua

and

Ra(j) =

n∑
b=a+1

ρ(b)a (bj + b− ac) +Ba(j) 6 ua +

n∑
b=a+1

(

f−1∑
s=0

v(b),sa + w(b)
a ).

We finally have all the ingredients to give the rough estimate of the statement. We fix a “coor-
dinate” j. A strightforward but tedious computation gives

n∑
a=m

pa−mκa(j) =

n∑
a=m

pa−m(l(j)a − i(j)a +

n∑
b=a+1

κ(b),bj+b−aca (0) + Ra(j)− pAa(j))

= xj −
n∑

a=m

ibj+a−mca +

n∑
b=m+1

b−1∑
a=m

pa−mκ(b),bj+b−mca +

n−1∑
a=m

pa−mRa(j)− p(
n−1∑
a=m

Aa(j)).

The conclusion follows as

n−1∑
a=m

pa−mRa(j) 6
n−1∑
a=m

pa−m(ua +
n∑

b=a+1

w(b)
a ) +

n∑
b=a+1

f−1∑
s=0

v(b),sa 6 n

and
b−1∑
a=m

κ(b),s(0) 6 pb−mi(s)b

for any b ∈ {m+ 1, . . . , n} and s ∈ {0, . . . , f − 1}.

The following rough estimate will help us to understand the action of

[
1 OF

0 1

]
(resp. of[

1 0
pOF 1

]
) on the representations in §4.1 (resp. §4.2). Apparently, the result is unsatisfactory if

we want to describe the K-socle filtration for the representations π(r, λ, 1), unless we impose some
conditions, depending on p, on the residue degree f (we expect a condition of the form f 6 p+1

2 ).

Proposition 7.4. Let 1 6 m 6 n be integers and consider Fm,nlm,...,ln
∈ B; let N

def
= Nm,n(lm, . . . , ln).

For 2m 6 j 6 n let Vj ∈ Fp[λm, . . . , λj−1] be a pseudo-homogeneous polynomial of degree deg(Vj) 6

pj−pm(pm−2) and ij be a f -tuple such that ij 6 lj . Finally, fix M < pm−2 and define Vj
def
= 1, ij = 0

for m 6 j 6 2m− 1.

The image inside Ind
K0(pm)
K0(pn+1)

1/N −M of the element x defined as

x
def
=

n−1∑
j=m

∑
λj∈Fq

(λ
1

pj

j )lj−ij (V
1

pj+1

j+1 )ij+1

[
1 0

pj [λ
1

pj

j ] 1

] ∑
λn∈Fq

(λ
1
pn

n )ln−in

[
1 0

pn[λ
1
pn

n ] 1

] [
1, e
]

coincides with the image of F
(m,n)
lm,...,ln

.

Proof. The idea of the proof is completely analogous of that of Proposition 7.3 the main difference
being that here we are not able to give an estimate of the coordinates of the points appearing in
the development of x.
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As in 7.3 we consider an element appearing in the development of x:∑
λm∈Fq

(λ
1
pm

m )κm(i)

[
1 0

pm[λ
1
pm

m ] 1

]
. . .

∑
λn∈Fq

(λ
1
pn

n )κn(i)

[
1 0

pn[λ
1
pn

n ] 1

] [
1, e
]
.

The exponents κa (for a ∈ {m, . . . , n}) admit the following explicit description:

κa = pb−1cκ(a+1)
a + · · ·+ pbn−acκ(n)a + la − ia

and (for a+ 1 6 b 6 n)

κ(b)a = κ(b),0a + pκ(b),1a + · · ·+ pf−1κ(b),f−1a

where each κ
(b),s
a is the exponent of λa apperaring in a fixed monomial of (Vb)

i
(s)
b .

As each Va is pseudo-homogeneous, for each triple (a, b, s) we have

κ(b),sa = β(b),sa (1) + · · ·+ pf−1β(b),sa (f)

where the integers β
(b),s
a (j) verify

f∑
j=1

β(b),sm (j) + p(

f∑
j=1

β
(b),s
m+1(j)) + · · ·+ pb−m−1

f∑
j=1

(β
(b),s
b−1 (j)) 6 (pb−m − (pm − 2))i

(s)
b .

As for the inequalities (21), (22), (23), we use Lemma 7.1 to obtain

n∑
a=m

pa−ms(κa) 6 N − (pm − 2)(

n∑
a=2m

s(ia))

and the conclusion follows.

We state an analogous result in the case m = 0.

Proposition 7.5. Let n > 0 and F
(0,n)
l0,...,ln+1

∈ B+
n+1; let N

def
= N0,n+1(l0, . . . , ln+1). For 1 6 h 6 n+1

let Vh ∈ Fp[λ0, . . . , λh−1] be a pseudo homogeneous polynomial of degree ph − (p − 2) and ih 6 lh
be an f -tuple. We finally fix M ∈ {0, . . . , p− 3} and put i0

def
= 0, Vn+2

def
= 1.

The image inside (IndKK0(pn+2)1)+/N −M of the element

x
def
=
∑
λ0∈Fq

λ
l0−i0
0 (V

1
p

1 )i1
[

[λ0] 1
1 0

] n+1∑
j=1

∑
λj∈Fq

(λ
1

pj

j )lj−ij (V
1

pj+1

j+1 )ij+1

[
1 0

pj [λ
1

pj

j ] 1

] [
1, e
]

coincides with the image of F
(0,n)
l0,...,ln+1

.

Proof. The proof is completely analogous to the proof of Proposition 7.4 and is left to the reader
(see [Mo1] for details).
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