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On some representations of the Iwahori subgroup

Stefano Morra,

ABSTRACT

Let p > 5 be a prime number. In [BL94] Barthel and Livné gave a classification for irre-
ducible representations of GLa(F) over F,, for F' a p-adic field, discovering some objects,
referred to as “supersingular”, which appear as subquotients of a universal representa-
tions 7 (r,0,1). In this paper we give a detailed description the Iwahori structure of such
universal representations for F' an unramified extension of Q,. We determine a fractal
structure which shows how and why the thechniques used for Q, fail and which let us
determine “natural” subrepresentations of the universal object m(r,0,1). As a corollary,
we get the Iwahori structure of tamely ramified principal series.
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1. Introduction

Let p be a prime number and F' a p-adic field. In their works [BL94], [BL95] Barthel and Livné
studied a classification (recently generalized for general GL, (F') by Herzing in [Her]) for the rep-
resentations of GLy(F') with coefficients in an algebraic closure of F,,. Besides characters, principal
unramified series and special series, they found a new class of irreducible objects referred as “su-
persingular”, which are defined, up to twist, as subquotients of a universal representation, which
we will note 7(r,0,1) (and r = (ro,...,7p—1) if f is the residual degree of F'). The existence of
supersingular representations is assured by a Zorn-type argument (see [BL95], Proposition 11) and
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a complete exhaustive study for supersingular representations is a relevant open problem in the
emerging p-adic Langlands program. Indeed, in a conjectural mod p-Langlands correspondence it
is expected that the supersingular object are those GLa(F') representations which should naturally
be attached to Galois representations arising from elliptic curves with supersingular reduction.

This is actually the case if F' = Q, (when the universal representations are indeed irreducible).
Such result is due to Breuil [Bre] where he reaches a complete classification of supersingular repre-
sentations thanks to direct computations on the ring of Witt vectors of F,,. If F' # Q,, the situation
is not clear. For the time being, the problem of classifying supersingular representations looks to be
infinitely more involved compared to its Galois analogue (known from the works of Serre [Ser72]).
The methods of Paskunas [Pas] and Breuil-Paskunas [Br-Pa] let us associate an infinite family II(p)
of supersingular representations to a single Galois object p, are a major progress in this direction,
but it is not clear, especially after the work of Hu [Hul], how to distingush in a canonical way
a privileged supersingular representation inside II(p). We remark that the methods of [Pas] and
[Br-Pa] have been improved by Hu’s canonical diagrams in [Hu2|; unfortunately canonical diagrams
are difficult to calculate explicitely.

Another approach to the problem has been treated by Schein in [Sch] where he studies the
universal representations for a totally ramified extension F'/Q,. He detects a natural quotient V._;
of m(r,0,1) which enjoys an universal property with respect to supersingular representations whose
GL2(OF)-socle respects a certain combinatoric conjecturally associated to suitable Galois represen-
tations arising from elliptic curves with supersingular reduction (the modular weights introduced
in [BDJ] and generalised in [Schl])

In this paper we describe the Iwahori structure for the universal representation m(r,0,1) in
the case where F'/Q,, is unramified generalizing Breuil’s method (in particular, our result give the
irreducibility for F' = Q, and shows how and why the universal representations fail to be irreducible
otherwise). With “Iwahori structure” we mean that we are able to detect the Iwahori-socle filtration
for m(r,0,1) as well as the extension between two consecutive graded pieces. As a byproduct we will
deduce the Iwahori structure of principal and special series and the presence of a natural injection
c—Ind%ZV — 7(r,0,1). The reader will find out that, as soon as F' # Q,, the Iwahori-socle
filtration for the universal representation relies on an extremely complicated combinatoric.

The main result of this paper is to show that such combinatoric can be handled with the help
of some simple euclidean data; such a method -a far reaching generalisation of the techniques of
[Bre]- can be briefly described as follow. We detect a natural Fy-basis % of m(r,0,1) as well as an
injection:

B s Z[F?Qp];
as we will show, its image R is explicitely known. For v € & we define the set of antecedents &,
of v as the set of v/ € & such that v/ = v — e; where e, is the s-th element of the canonical base
of ZIF*Qrl. When we claim that the Iwahori structure for 7 (r,0, 1) is described by 9% we mean the
following facts:

i) the Iwahori-socle filtration is obtained from R by successively removing the points with empty
antecedents;

i1) if vo,v; € A and J € N is such that v; is an eigenvector for the J — i-th graded piece
(m(r,0,1))s—; of the socle filtration of the universal representation then we have a nontrivial
extension inside the quotient m(r,0,1)/(m(r,0,1))s—1 if and only if vy is an antecedent of v;.

According to this terminology the main result is the following (see Proposition 5.16):

THEOREM 1.1. The Iwahori structure of the universal representations is described by fR.
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We give in figure 1 the idea of such structure for the quadratic unramified extension of Q,.

As annonced, we get some other byproducts as

THEOREM 1.2. The Iwahori structure of tamely ramified principal series is described by two copies
of N[F:QP]_

and

THEOREM 1.3. Let r ¢ {(0,...,0),(p —1,...,p — 1)} and let x* be the conjugate character of
(0,)VFa). There is a sub K Z-representation V < m(r,0,1)|f7 isomorphic to the kernel of the
natural map

GL2(Fg) _ s GL2(Fy)_ s GL2(Fq) _ s
IndB(lf‘i) )X /soc(IndB(éi) )X ) — Cosoc(IndB(;i) )x )

and such that the map (induced by Frobenius reciprocity)
c—Ind%,V — 7(r,0,1)
is injective.

We remark that a similar phenomenon has already been discovered by Paskunas in an unpub-
lished draft.

Such results rely on an heavy formalism and they need preparation to be handled. In particular,
from section §4 we start using the euclidean dictionary as a key tool to manage the combinatoric
of the representation under study. In order to guide the reader the statements are preceeded by a
detailed translation in geometric terms (otherwise they would sound as empty exercices of combi-
natoric) and each section opens with an exhaustive description of the euclidean strategy adopted
to reach our aims.

The reasons which make such strategy work are essentially three:

i) we detect a suitable basis Z of the universal representation which is well behaved with respect
to the action of the Iwahory subgroup and the canonical Hecke operator T' € Endg(c—Ind% 207);

i1) the action of the Iwahori subgroup on the elements of % can be read through certains universal
Witt polynomials whose homogeneous degree is known;

iii) the correspondence between the elements of the basis % and integers points in RIFQrl is
compatible with the homogeneous degree of the polynomials of 7).

The structure of the paper is then the following.

First two sections §2 and §3 are formal and do not need the hypothesys F'/Q,, unramified. Section
§2 is essentially a dictionary which let us detect a natural K Z-filtration on the K Z-restriction of
the universal representation. We first introduce a family of K Z-representations { R, },,en. Through
some convenient Hecke operators Téﬁ : R, — R,4+1 we define inductively a direct system of amal-
gamed sums (each of them endowed with a natural filtration) which leads to explicit isomorphism
(Proposition 2.9):

7r(0£707 1)’KZ 5 h_rr)l (Ro ®Rr, - Br, Rn+1) ) hi)ﬂ (Rl/Ro @®Rr, - DR, Rn—i—l)-
nodd n even

We remark that such isomorphism was already draft by Breuil in [Bre].

In section 3 we start from an Iwahori-splitting R,+1 = RZ 11 © R, | to deduce, in the same
flavour of the preceeding section, an inductive system of amalgamed sums --- @ RE Rf 41 Such
amalgamed sums are endowed with a natural Iwahori-filtration revealed by a short exact sequence

+ + + +
0= @pe Ry = @pe By — R /Ry — 0. (1)
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The resulting inductive limits are related to the universal representation by the following

ProproOSITION 1.4. We have an exact Iwahori-equivariant sequence

0= ((v4,0-))F, = (@RJ Opr - Ory Ry)&( lim Ry ©p- - @p Rypy) =

n odd nodd
= (lim Ro ®R, -+ ®r, Bnt1)|ko(p) = 0
n odd

. + + . .
where vy € th Ry ©pe - Opzx Ry (and are explicitely known).

nodd
We have an analogous result in the even case.

It will therefore be enough to focus our attention on the inductive limits of section §3.
The euclidean dictionary is developed in section 4. Thanks to the natural filtration on the inductive
limits, we are primarly concerned with the Iwahory structure of the representations Rn 1 1- We detect
a convenient F,-basis BE 1 (Lemma 2.6) and determine a natural way to identify the elements of
,%i 1 to integer valued points of RIQ0] (see section 4.1.1 for details). If we write % 1 to denote
the image of A+ a1 in the [F 1 Qp)-dimensional real euclidean space (such an image looks as a
parallelepipoid of side p"*¢(r + 1) for € € {0, 1} according to the cases R, |, R, ;) then

PRrROPOSITION 1.5. The Iwahori structure of Rirl is described by e@fﬂ

Because of the geometry of the polytope %f“ we indeed see that the socle filtration can be
detected by successive cuttings by a suitable hyperplanes (parallel to the antidiagonal Xo + -- - +
Xf—l = 0)

We similarly deduce the structure of tamely ramified principal series given in Proposition 1.2
Unfortunately, these results rely on a careful analysis of the behaviour of some universal Witt
polynomials, contained in the two appendices A and B.

Section §5 deals finally with the universal representaiton 7(r,0,1). We are first concerned with
the graded pieces of the natural filtrations introduced in §3: it is the object of §5.1. Thanks to the
behaviour of the canonical basis T with respect to the Hecke operators of §3 we easily determine

a natural basis B~ ot /n for each Rfﬂ /R and associate an euclidean structure = i1 to it. Such

a structure is more complicated than the prev10us RE i1 and can not be determined directely by
Proposition 1.5 but a suitable decomposition of 92’ 1y S A union of inreasing polytopes enable us
to state the

PROPOSITION 1.6. The Iwahori structure of Riﬂrl/RjE is described by %+ 1/

The euclidean image of 2= is more or less given in figure 2.

n+1/n
As a byproduct, the natural /ﬁltrations of section §3 and the previous description of the basis
%f_ﬂ let us deduce Proposition 1.3.

The conclusion is in section §5.2 where we study the amalgamed sums - - - & RE R,jf 41- Again, the
behaviour of the canonical base % with respect to the Hecke operators let us deduce, by induction

on the exact sequence (1), an euclidean structure, say %even odd- Such a structure has a regular

fractal nature, due to a convenient glueing of the bloks 2+ and simple remarks on the geometry
of RE

let us deduce the main result of Proposition 1.1.

n+1/n

even,odd> 35 well as the fact that - @Rf , Ri 1 is a Iwahori-subrepresentation of - - @Bpt RnH,

We introduce now the basic conventions and notations of the paper (we essentially use the
formalism and notations of [Bre]).
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.............

FIGURE 2. The structure of the quotients Rfﬂ/Rf.

Fix a prime p > 5 and let F' be a finite unramified extension of Qy; let f EF Q] be the
residue degree. We write O to denote the ring of integers of F' and fix the uniformizer p € Op: let
kr be the residue field; it is a finite field with ¢ & p/ elements. We fix an isomorphism kp = F,;
as F' is unramified, we deduce an isomorphism Op = W (F,) where W (F,) denote the ring of Witt
vectors of Fy. We will write [-] : F' — W(Fg)* to denote the Teichmiiller character (putting

def

[0] = 0). We finally fix an algebraic closure F,, of Fy.

For any k € N the natural action of GL2(F,) on Fg let us determine, by functoriality of the
k-th symmetric power, the GLa(F,)-representation SymkFg. It is isomorphic (up to a choice of

an Fg-basis for F2) to F[X, Y]}, the homogeneous component of degree k of the ring Fy[X,Y],
endowed with the usual modular action:

[ a b ] XY = (aX 4 V)P H(bX + dY).

We recall that for s € N (F,[X,Y]")f" is the representation obtained by functoriality, in the
evident way, from the field automorphism x — 2" defined on F,.
For 7 € Gal(Fy/F,) and r-,t; € {0,...,p — 1} we consider the GLy(F,)-representation

O-{TT}’{tT} d:ef ® (dettT ®Fq SymTTFg) ®‘r Fpa
T€Gal(Fy/Fyp)

such representations exhaust all irreducible GLy(F,)-representations with coefficients in F,, (and
they are pairwise non isomorphic if we impose ¢, < p — 1 for at least one element 7 € Gal(F,/F))).
We fix once for all an immersion 7 : F; < F,. Such a choice determines, up to twist, a manifest
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isomorphism
f—1
~ def = h \Frob®
Tl hite} = Olropry 1) = (Fp[Xs, Yel7 )"
s:Ofp
for a convenient r & (ro,...,r5—1) € {0,...,p — 1}7; such an isomorphism will be assumed to be

fixed once for all throughout the paper. We notice that the choice of another immersion acts on the
right hand side by a circular permutation on the indexes s in the obvious sense.

Write G < GLy(F), K ¥ GLy(Op) and Z ¥ Z(G). We write Ky(p) to denote the Iwahori
subgroup of K. The GLy(F)-representation o, will be seen, by the inflation map K — GLy(Fy),
as a smooth representation of K. By imposing p € Z to act trivially, the smooth K-action on
o, extends to a smooth action of KZ: by abuse of notation we will write o, to denote either the
GLy(Fy) or the K or the K Z-representation obtained by this procedure (or, as usual, the underlying
vector space of ;).

Similarly, the character

Xr : B(Fy) — F;

a b Zf*l s
s=0P°Ts
[ - } —a
will be considered, by inflation as a character of any open subgroup of Ko(p). We write then x; to
denote the conjugate character of x,. We denote by a the character

B(F,) — F;

CLb -1
{0 d]»—>ad .

Recall the compact induction:
c—Ind% 707

defined as the F-linear space of functions f : G — o, compactly supported modulo Z, verifying
f(kg) = k- f(g) for any k € K, g € G} it is endowed with the smooth left action of G defined by
right translations.

For g € G, v € 0, we define [g,v] € c—Indg’;ZU£ as the unique function f supported in K Zg~!
and such that f(g) = v. Then we have

g - [9,v] = [d'9,v] for g’ € G
[gk,v] = [g,k-v] for ke KZ.

Each function f € c¢—Ind% 0, can be written as a F-linear combination of a finite family of
functions [g, v]; if g varies in a fixed system of coset for G/KZ and v varies in a fixed F-basis of
or the aforementioned writing is then unique.

We leave to the reader the task to adapt the previous definitions and remarks to such objects as

IndKO ®™)

Ko(pnt1)T

where Ko(p"*1) % Ko(p™) % K are open subgroups of K and 7 is a smooth representation of
Ko(p™th).

From [BL94|, Proposition 8-(1) there exists a canonical Hecke operator (depending on r) T €
Endg(c—Ind$ ,0,). It realizes an isomorphism of the F-algebra of endomorphisms Endg(c—Ind% ,0,)
with the ring of polynomials in one variable over F,. We then define the universal representation of

7
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GL2(F) as the cokernel of the canonical operator 7T":

d

7(r,0,1) & coker(T).

We recall some conventions on the multiindex notations. For as € N we write a = (g, ..., 0p1)
to denote an f-tuple o € N7. If a, 8 are f-tuples we define

i) a+ 8L (as+ B0

it) a > B if and only if ag > B, for all s € {0,..., f —1};

def —1 s

i) (5) < TS0 (5)-

For n € N we will write n < (n,...,n) € N/.

If a + 8 = r we define the following element of o,
e -1
xayB & ®£:0 X;lsysﬂs;
for A\ € F, and a € {0,...,p — 1}/ we put
& def )\Zﬁ;} pios

For an integer n € N we define |n| € {0,..., f — 1} as the unique integer m € {0,...,f — 1}

congruent to n modulo f. Similarly, if n # 0 we define [n] € {1,...,¢ — 1} as the unique integer

m € {1,...,q — 1} congruent to n modulo ¢ — 1; we set [0] <.

Finally, for a smooth representation R of Ko(p) over F, we write {socy(R)}yen to denote its

socle filtration (with the convention soc(R)y & soc(R)).

Let % be an F,-basis of R and P a bijection of # onto a subset % in Z'. Let ' C % be a
subset and %’ denotes its image through the bijection P; for v € %’ we define the set of antecedents
of v in #' as:

S, (#) < {we P st. P(w)=P(v) —esfors € {0,..., f —1}}

(where (es)f;& is the canonical basis of Z/).

We say that the socle filtration {socy(R)}nen of R is described by Z if the following holds: it
exists an increasing family {Zn }nen of subsets of Z such that

i) for all N € N the family 2y is an F,-basis of socy (R);
ii) for all N € N an F-basis for soc(R/socy_1(R)) is described as

{UG@\@N_L S.t.GU(@\@N_l):@}.

If the socle filtration of R is described by % we will say that the extensions between two graded
pieces are described by Z if the following holds true:

for all N € N and v € Bn 41 the Fy-linear subspace E, y of R/socy_1(R) generated by
0, 6,(AB\ Bn-1) is Ko(p)-stable and for each w € &,(B \ Zn-_1) the induced extension

0= w— Eyn/(6u(Z\ Bn-1) \{w})g, =70
is nonsplit (with the obvious meaning of w, v).

In euclidean terms the segments between v and the set of its antecedents let us detemines all the
nonsplit extensions between two graded pieces of the socle filtration.

8
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2. Preliminaries

As we outlined in the introduction, the main aim of this section is to describe the Iwahori-structure
of the universal representations m(r,0,1) of GLo(F) over F).

Such representations have a completely explicit description in terms of the Bruhat-Tits tree and
of the Hecke operator T' given in [Bre], §2 and their Iwahory structure can indeed be found by direct
methods. Nevertheless, the extremely involved combinatoric of such results lead us to introduce an
intermediary step -namely a suitable K Z-filtration- which let us handle, in a reasonable way, the
high amount of technical computations. Precisely, we start (cf. definition 2.3) by introducing the
K Z-representations

def

K
Rn+1 = IndKO(an)Uan

(where o,n11is a Ko (pP""")-representations obtained by twisting the action of Ko(p"™) on Or| Ko (prt1))-

Such objects are endowed with an action of suitable “Hecke” operators TnjE : R, = Rp11 (cf. Lemma
2.7), with respect to which we are able to define (inductively) a direct system of amalgamed sums
-+ @R, Rnt1 (cf. Proposition 2.8). Such amalgamed sums fit in a natural commutative diagram (see
Proposition 2.8) which let us deduce a natural filtration on the resulting inductive limits. The final
result is then the isomorphism of Proposition 2.9, which relies the K Z-restriction of the universal
representation 7(r, 0, 1)|xz to the inductive limits constructed above; in particular, we have a nat-
ural K Z-equivariant filtration on the universal representation 7(r,0,1).

In Lemma 2.6 we introduce a “canonical” basis for the representations R, 1. Such basis is well
behaved with respect to both the action of the Hecke operators and the action of the Iwahori sub-
group: this will be the key observation which lead us to the description of the Iwahory structure for
m(r,0,1).

We remark that the isomorphism of Proposition 2.9 does not rely on the fact that F/Q, is
unramified: the content of this section can be generalised in the evident manner for any finite
extension F' of Q.

Reminders on the universal representations m(r,0,1). For n € N>; we define

n—1
I, = {> PN ford; € Fy}
j=0

def

and we put Iy = {0}. The sets I,’s let us describe the Bruhat-Tits tree in the following way: if
n,m € N, X € I, and

0 def | P A 1 aer |1 0
Gnx = 0o 11’ Inx = pA pn+1

we get a decomposition

KzZa "KZ= [[ 9\ EZ]] [I 9mrEZ (2)
AT, ANelm—1

thus describing the vertex of the tree having distance m from K Z (where we have written o o 9[1)70).

The canonical Hecke operator T' € Endg(Ind[G(Zai), defined in [Bre] §2.7, is then characterized as
follow:
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LEMMA 2.1. Forn € N5, A € I,, and 0 < j <1 we have:

T([gh 2o X" Y = > [0 1 arpnpgs (CAZXT] + (951 10 GirAna X + V)7
AneF,

T([gnas XY = 37 [gniapape s CAELYE] {001y, 050(X + Aar V).
An€EF,
If n = 0 we have

T( [1@,X£_ZYZ]) = Z [g?,[)\o}’ (—)\())lXﬁ] + [oa,él-,sz]
)\()EFq

70 X722 = [ghg, (=227 + [16,,0%]
A1 EFq

Proof. A computation shows that the statement of lemme 3.1.1 in [Bre] has an obvious generalisation
for f > 1. The result follows then from Ibid., §2.5. O

For n € N we define the F-subspace of Ind% 70

def

W(n) = {f € Ind% ,0,, s.t.thesupport of f is containedin K Za "K Z}.

By Cartan decomposition the subspaces W (n) are K Z-stable for all n € N and therefore

LEMMA 2.2. There is a natural K Z-equivariant isomorphism

md% o, @W(n)
neN

The representations R, ’s and the dictionary. Letn € Z-_;; we define the open subgroups
of K:

nt1y def a b
Ko(p"t) = {g e K,st.g= [p”'HC d ] fora,b,c,d € ﬁF}.

1 . . . . .
As [ 0 } normalizes Ko(p™*!), the representation o, s, (,n) induces, by conjugation, a Ko(p™*1)-

representation which will be denoted as o1

plicitely, we have -

(or simply o, if there is no risk of confusion). Ex-

#1([ e ]) _ M[ e ]>,

We can therefore introduce the representations R, y1’s:

DEFINITION 2.3. Let n € Z>_1. The K-representation R, is defined as

def K n+1
Rn+1 == IndKO(pn+1)O'£ .

We can extend the action of K on R,; to an action of KZ by letting p € Z act trivially; the
resulting representation will be denoted again by R,y and we will pass from the one to the other
without commentary.

Thanks to the decomposition (2) we get the following, elementary, description of the R;,’s:
LEMMA 2.4. Let n € Z>_; Then:
10
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i) right translation by o™*'w induces a bijection
K/Ko(p"™ 5 KZa " 'KZ/KZ;
1) we have a decomposition
— Al n+1 1 0 n+1y.
k=] [1 O}Ko@ LI |y 5 | motm:
Aelpnt1 NeT,
Moreover, if 1 < m < n we have a decomposition
Ko™ = JI | v | Ko™
pm)\/ 1 )
Alelnﬁ»lfm

iii) the family

Al i 1 0 i '
{[[1 o]’X JY]]’[[pX 1}’X JYj]forAGInH,XeImOs<r}

defines an Fp—basis for the representation R, 1. Moreover, if 1 < m < n, the family

{l [ N } XTIV for A € L1, 0< j <1}

defines an Fp—basis for the representation Indfgg Z?l)aﬂ .

Proof. Omissis. O

The relation between the representations R,,’s and the compact induction Ind?(zo'£ |k 7z is then
described by the following

PROPOSITION 2.5. Let n € Z>_1. We have a K Z-equivariant isomorphism
Py W(n+1) > Ry
such that

L. A1 o
Pt ([gn10 XEIYI]) = | [ Lo } Xty ]

®py1([gn o, XELYI]) = | [ 1o ] , XIyr=i]

pN 1
for n > 0 and
®o([1e, X2IY7]) = Xyl

for n = 0.
In particular, we have a K Z-equivariant isomorphism

IndIG<ZU2 — EBR”
neN

Proof. Elementary (see for instance [Mo], Proposition 3.4, whose proof generalizes line by line). [J

We introduce now a convenient F-basis for the representation R,1. Thanks to the transitivity
™)

IndKO (p

m m+1
Ko(pn+1)0r %Indgg(p ) Ind%o® )aﬂ

(pm+1) Ko (pntl)

(where 0 < m < n) we see that a Vandermonde argument together with an immediate induction
give us the following:

11
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LEMMA 2.6 (Definition). Let n € N. An F,, basis for the K-representation Ry1 is described by
the elements

- L 1 0
B ) 530 3 O w[ % ] [1, X*nyten]

L1seenslyy P /\iqu pi[)\ipz] 1

0,n de [, A 1 1n
F( )l (ln—i-l) = Z )‘00 [ [10] 0 ] [1’FL(1,..~,)Z (én-&-l)]

é())'“),n “n
M €EFy
for I; € {0,...,p— 1}/ (where i € {0,...,n}) and ;1 < r, with the obvious conventions that if
n = 0 we have
F@(LO) (él) d:ef [1’ Xﬂ*ln.»ﬂyl,ﬁ*l] .
For notational convenience we define

R0 l) # (~1)xtoy =l

RV @) E vy,
Such basis will be denoted by %,+1.
The subset B, | C Bn+1 described by the elements of the form F;E)OT); (1,,4+1) will be referred to

as the set of positive elements of R, 11; the Fp—linear subspace generated by the positive elements
will be denoted as R:Lr 11

Similarly the subset %, C %41 described by elements of the form Fl(ll’n) (ly4q) will be

ol

referred to as the set of negative elements of R, 1; the Fp—h’near subspace generated by the negative
elements will be denoted as R, ;.

Hecke operators on the R,y1’s. Let n € N. Thanks to Lemma 2.1 the W (n)-restriction of the
operator T gives the Fj-linear morphism

Tlwmy: W(n) = W(n—-1)@W(n+1).

Such restriction is K Z-equivariant (by Cartan decomposition) and composition by the natural
projections gives us the K Z-equivariant operators

Tr:W(n)— W(n+1) T, :W(n) - W(n-—1).
By transport of structure (via the isomorphisms of Lemma 2.5) we get morphisms
TY:R,— Ryy1 T, :Ry— Ry

(where we used the same notations for the operators on W(n) and R,,). Their description in terms
of the canonical basis of R, is immediate, following from Lemmas 2.1 and 2.5:

LEMMA 2.7. Let n > 0 € N. The K Z-equivariant operators T, ,T); are characterized by

TF: R, — Ron1

L 0
(1, X7yl ] s (D)l Y (A ) [ 1 ] 1, X]
An€F, 1
Tn_ Ry — Ry
r—L,yL, Op1, [1,YT] if > 1
[1, X" Y] { R N

12
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For n = 0 we have
Ro — R1

r— r—ly\ T A 1 T r
Xrhoyl é (=1)"toxg 0[[10] 0} [1, X*] + by, 0[1, X7
0 q

Moreover, the operators T, are monomorphisms for all n € N and the operators T,; are epimor-
phisms for all n € Nx.

Proof. The characterisation of the operators 7.F follows by the explicit descriptions given in Lemmas
2.1 and 2.5.

As T,F maps the basis %, into a subset of 4,1, the operator is injective for n > 1. As [1, Yﬂ}
(resp. Y1) is a K-generator for R,_1 (resp. Ry) for n > 2 (resp. n = 1), the operator T, is
surjective. [

We identify R,, as a K-subrepresentation of R,,+1 via the monomorphism 7, without any further
commentary. For any odd integer n > 1 we use the Hecke operators T.F to define (inductively) the
amalgamed sum Ry ®r, R2 ®r, - - @R, Rnt1 via the following co-cartesian diagram

n

T
R, Ry
—prp—10Ty éan+l
¥
Ry ®R, Ro ®Ry -+ @R,y Rn—1-+ >Ry @R, Ro ®Ry -+~ ®r, Rny1

(where we define pro to be the identity map). Similarly we define the amalgamed sums Ry /Ry ®g,
-+ @R, Rp41 for any positive even integer n € N+. The following result is then formal

ProrosITION 2.8. For any odd integer n € N, n > 1 we have a natural commutative diagram

T

0 Rn Rn+1 Rn+1/Rn —=0
¢7prn,1oTnf Qprn-&-l H
0—> Ro®R, -+ ®R,_, Rn1 — Ro ®R, -+ ®R, Rnt1 — Rps1/Rp —0

n

with exact lines.
We have an analogous result concerning the family

{R1/Ro ©r, - ®R, Rn+1}nean\{0}-

Proof. Formal. See for instance [Mo], Proposition 4.1. O

The following result let us complete the dictionary

ProrosiTiON 2.9. We have a KZ equivariant isomorphism

W(UD 07 1)’KZ :) h_II}l (RO DOR, " OR, Rn+l) 2] h_H} (Rl/RO DR, " OR, Rn-i-l)'

n odd n even

Proof. The proof is formal and identical to [Mo], Proposition 3.9. O

REMARK 2.10. We can give analogous (in the evident way) definitions in the case where F' is any
finite extension of Q,: we would then get a statement completely analogous to Proposition 2.9.

13
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3. First description of the Iwahori structure

The goal of this section is to give a first, general description for the Ko(p)-representation 7 (r, 0, 1)[ k, (p)-

The endpoint is Proposition 3.6, which is the “Iwahori analogue” of Proposition 2.9 of the preceeding

section. More precisely, for each n € N the block R, has a natural Ky(p)-equivariant splitting
Roy1=Ry  ®R,

which is compatible with the Hecke operators 7. in the obvious sense (cf. Lemma/definition 3.2).
This will enable us to repeat the constructions of §2, i.e. the construction of the (inductive family
of) amalgamed sums - - - @ p+ RF 1, endowed with a natural filtration (cf. Lemma 3.5) .

Thanks to Proposition 3.6 we see that we can content ourselves to the study of the amalgames
sums - - - @ p Rf - actually we have a Ko(p)-equivariant surjection

(hgl'”@R,tR:H)@(hgl‘”@R; R;-‘rl)@(liE}”'@RﬁR;&-l)@(hl)n”'@R; Roy)

n odd n odd n even n even
+
W(f, 07 1)‘K0(p)
whose kernel is “small” (and explicitely determined).

The following elementary result will be crucial.

LEMMA 3.1. Let a € {0,...,q— 1}. Then
Z A — 0 ifa#qg—1
-1 ifa=q—1.
AEF,
Proof. Omissis. O

The representations Rf 1 and the Hecke operators (TF)pos:nee. Fix n € Nj the Fy-linear
decomposition

Rpy1 = Ry @ Ry (3)
is easily checked to be Ko(p)-equivariant (realising the Mackey decomposition for R, 11|, ()) and
we clearly have a Ky(p)-equivariant isomorphism

dKo(p) ntl

R, ;—In Ko(pn+1)0r

We moreover define the following Ky(p)-representations:
R{ = Ry, Ry & (YO, (R1/Ro)™ = Im(R{ — R1 — R1/Ry).
The decomposition given in (3) and the description of Lemma 2.7 let us define the Hecke oper-
ators (TiF)P°5 8 on the representations R iRt
LEMMA 3.2 (Definition). Let n € N;.

i) The restriction of Hecke operator T, on the Ko(p)-subrepresentations R}, R, of R,, induces
two Ky(p)-equivariant monomorphisms,
(T3P : Ry — Ry
(T7)"8 - Ry — R4y
i1) The restriction of Hecke operator T, on the Ky(p)-subrepresentations R, R,
two Ko(p)-equivariant epimorphisms,
(T,)P® : Ry — Ry 4

(T)"®: Ry — R,

n—1

of R,, induces

14
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Proof. Except for the operator (T} )P, the result follows immediately from the decomposition
Rl go(p) & R} @ R, and the properties and characterisations of the Hecke operators 7).
Concerning (77 )P* : R{ — Ry we notice that
— 0 r—ivi Lo+
(TDP(F ) = XY S AT
i<T Xo€F,

and the result follows from Lemma 3.1. O

COROLLARY 3.3. The natural Ky(p)-equivariant map
Ry — (R1/Ro)*
is an epimorphism.
Proof. Omissis. O

REMARK 3.4. The notation (TF)P°"°8 may look a bit awkard. We believe, though, that a notation
of the kind (T;F)*, even if it could be more convenient for statements (see Lemma 3.5), it can be
disagreeable for the computations (and especially misprints!)

Amalgamed sums and first description of the Iwahori structure. Using the Hecke ope-
rators defined in Lemma 3.2 we can introduce the following amalgamed sums, analogously to the
constructions of §2.

Let n € N be odd and e € {4+, —}. We can define inductively a natural Ko(p)-representation
R§ ®Ry -+ ®rsy R}, together with canonical morphisms prp . ;,¢;_; by the condition that the
diagram

. (T:)° .
Rn( Rn—i—l

—(prn-1)%o(Tn )*® 3 (pro+1)®

[’n— '} L]
Ry ®Ry - ®pe_, Ry _y 3!"1' """ >Ry ©Rs -+ ©Ors, Ry 4y

2

is co-cartesian (with the convention that (Tjj[)Jr o (Tjjc)poS and (Tji)* o (Tji)neg).
For n € N even and e € {+, —} we can define the amalgamed sums (R1/Ro)® ©ry - Ors R}, 11,
together with canonical morphisms pry_ ;, ¢ in the evident analogous way (with the convention

that (Rl/Ro)_ = Rf)
The following result is similar to Proposition 2.8:

LEMMA 3.5. Letn € N beodd, e € {+,—}. Then ;_, is a monomorphism, pry,_ | is an epimorphism
and we have a (Ky(p)-equivariant) commutative diagram with exact lines:

(Tw)*

0 Ry, el =Ry /Ry —>0
f-more
Ry Prog1
$pr;71

tn—1

0—> RS @Ry -~ ®re_, Ry "> Ry @py -+ Gre Ry = Ry, /RS —> 0.
We have an analogous (in the evident way) result in the case n € N~ is even.

15
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(T7)* Ty)*
Proof. The proof is identical to Proposition 2.8, provided that the maps R$ = R and RS 2
(R1/Ro)® are epimorphisms. O

In order to give a first description of the Ko(p)-representation 7(r,0,1)|x,) we are now left
to determine the relations between the amalgamed sums --- ©re Ry | (where o € {+, —}) and the
restriction (- ©g, Rnt1)|Ko(p)-

We will treat in detail the analysis of the limit ( h_I)Il Ro @R, ®R, Bnt1)|k,(p)- The case n

n,odd
even is proved in a similar way and is left to the reader.

PROPOSITION 3.6. The decomposition R, |k, ) = R} @R, induces the following K (p)-equivariant
exact sequences:

0,—1 1,—1 . . _ _
0— <(FQ§ )(Q),Fé )(@)»E = (1 R Spe -+ Spe RE) & (lm By @y @y Ryyy) =

n odd nodd
— ( hﬁr\n Ry ®R, -+ ®r, Rn-l—l)’Ko(p) —0
n odd

and

0 (FO0), ~F ()5, = (lim (Ba/Ro)* @pe -+ gt R © (i By @ @ Riyy) =
— (lim (R1/Ro) ®ry -~ Ry Bt 1)|ko(p) = 0-

n even

Proof. Let us assume n odd, leaving the case n even to the reader (the proof being analogous).
Since the functor lim is exact if the index category is filtrant and since the forgetful functor For :
—

Repryp) — Vectfp commutes with lim it is enough to show that we have an inductive system of
—
exact sequences
0,-1 1,-1 - -
0= (B (), —Fg " 0))g, > (B @ - @ Ry @ (Ry D - D Ripyy) =
— (Ro ®R, - ®R, Rn+1)|K0(P) — 0.

The proof is an induction on n.
Let o € {+, —}. By the universal property of the push out we deduce the following commutative

diagramm
0—R; —— Ry s/RY—0
0 Ry y Ry " Ry/Ri ———0
0—| RS - RS oy —— | — B3 /R —0
/ —— e
0 RO (RO DPr, RQ)’K()(P) R2/R1 0

and the morphism f, is injective by the four Lemma applied to the “bottom” diagram: recall that
(T5h)* is injective and we check easily the injectivity of the morphism R$/R} — Ra/R;. We deduce

16
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the commutative diagramm with exact lines

0—> R{ ® Ry — (Ry @ps RY) & (Ry ©p- Ry) — (Rf/Rf) @ (Ry /Ry) —=0 (4)

| | |

0 Ry (Ro ®r, R2)|ry(p) Ra/Ry

0.
The isomorphism (Ry /R]) @ (Ry /R]) = Ra/R; and the exact sequence
0 — ((Fy" (), —F" D (0)) = B @ Ry — Ro — 0

give the result, via the snake Lemma applied to the diagramm (4).
We treat now the inductive step. By the inductive hypothesis and the definition of the Hecke
operators (7, %)Pos’neg , we dispose of the commutative diagrams

ReC .
1€ R,

i |

Ry ®ps -+ ®pe_, Ry 1~ Ro ®R, - OR,_, Rn—1

(the inductive hypothesis being used for the injectivity of the lower arrow) from which we deduce
the following commutative diagram with exact rows

0 Ry, Ry 4 Ry 1/Rp —>0
0 Rp Ry41 Ry41/BRn ———— >0
® .
0 @R;72Rn71 ~@pe Ry i1 —> R? /R}, —>0

=

//,

00— C®Rr, ,Bn-Dlkyp) ————— (~OR H Bnt 1)Ky (p) ——————> Rpt1/Bn ————> 0.

17
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Again, the morphism f, is injective and we deduce as well the following commutative diagram

0 0
(R(J)r @Rj T @le_l R:—l) ® (Ry @R; @R;_l R;—l) (Ro @R, =+ DR,y Rn—1)|Ko(p)
(Ry Orf " Ort,, Ry.y) @ (Ry Dy PR, R.1) (Ro ®R, -+ SR, Bnt 1)Ko (p)
(RrerJrl/RrJf) © (R, /Ry) Rp+1/Ry,
0. 0

As the natural morphism (R;},,/R}}) ® (R, /R,;) = Rypt1/Ry is an isomorphism, the conclusion
follows by applying the snake lemma and using the exact sequence

R, ) —

n—2

0— ((Foj(o’fl)(g)aFél’il)@)»fp — (R§ Opr @RI_Q RY e (R, ®p - B
- (RO ®Rr, - DR, Rn—1)|K0(p) — 0.

coming from the inductive hypothesis. O

4. Representations of the Iwahori subgroups

We start here the technical computations which should lead us (in section §5) to the Iwahori-
structure of the universal representations 7 (r, 0, 1). The aim is to describe the Ky(p)-representations
Rff 1 Which appeared in the preceeding section §3.

(p)

(" +1)1: the description of R;—L 41 can be ob-

We focus our attention on the representations Indgg
tained with identical techniques (cf. sections §4.1.3 or 4.2). The Iwahori structure of such objects
-given by Proposition 4.2- may look complicated, but the keypoint is its combinatoric can be con-
trolled by an easy euclidean method which can be outlined as follow.

First of all we detect a “canonical” F,-basis 4 for the representation Indgg gz ,)L +1) 1 (definition 4.1).

We see that each element Fl(ll,ﬁ)ln € A is parametrized by a family of f-tuples [, € {0,...,p — 1}f ,
family which can be used to define a point (in the naive sense) (zo,...,z;_1) € R/~1. In this way,
we can associate, bijectively, the elements of the basis Z to the integer points of an f-hypercube of
side p" — 1 in R~ this is detailed in paragraph 4.1.1.

With this gloss, the Ky(p)-socle filtration for Indgggg 7)1 +1)1 can be simply described by the suc-
cessive intersections of the f-hypercube with the antidiagonals Xo + --- 4+ X;_; = constant, as
illustrated in figure 3.

This is the content of Proposition 4.2 where we verify, by direct computation on Witt vectors,

that the behaviour of the canonical elements Fl(lli.T.L)lf,l fits the previous euclidean picture. It is the
technical part of the paper and rely, as announced in the introduction, on the following three key

facts (whose meaning will be clear to the reader of paragraph §4.1.2):
i) the elements of the canonical basis & are “well behaved” with respect to the action of g €

18
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7 5 D oy
Em.?&» encldoau, piue \f»fx M?F 4.
I )

X, N

A3 Al )
P rguares wilk /'“»b(u Tnes e

e T L,

Ko(»™)
FIGURE 3. The structure of IndKO(an)l.

Ky(p), i.e. one can naturally describe gFl(llf?)lf_l as a linear combination of elements of %;

i1) one can compute the homogeneous (pseudo-)degree of the universal Witt polynomials appear-

ing in the developement of gFl(llfiL)l Y

i7i) the correspondence between the elements of # and the points in the associated hypercube is
well behaved with respect to the homogeneous degree of the universal Witt polynomials.

As annonced the same techniques let us detect the Ky(p)-structure for the representations
Rfﬂz the involved combinatoric can be handled with the help of a simple euclidean picture (an
f-parallelepipoid). The precise statements are Propositions 4.9 and 4.10 which deal with R, 41 and
R | respectively.

The constructions and computations of this section let us, as an application, determine the
Iwahori structure for principal and special series: this is the object of §4.3. Again, in terms of
euclidean space, we see that the successive layers for the Ky(p)-socle filtration are detected by the
intersections of N/ (the “hypercube” associated to such series) with the hyperplans Xo+---+Xy_; =
constant.

4.1 The negative case.

Let 1 < m < n be integers. In this section we examine the Ky(p)-socle filtration (and the extensions

between two consecutive graded pieces) for the representations Indggg :+)1) x where x : Ko(p"*!) —

F; is a smooth character of Ko(p"*1) (i.e. the inflation of a character of the finite Borel B(F,) by
the morphism Ko(p"™!) — B(F,)). Thanks to the canonical isomorphism :
Ko(pm™ ~ Ko(p™
Tndg (= (dig 0 ) @ x

19
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we can assume that y = 1 is the trivial character. Finally, let {e} be an F,-basis for the underlying
vector space associated to the character x.

o(®™)

We introduce now the canonical base of Imdg0 (" +1)1 and its interpretation in terms of lattices
of R.

DEFINITION 4.1. For j € {m,...,n} let ; (lj(o),...,l(-f_l)) € {0,...,p— 1}/ be a f-tuple. We

J
define the element F(Wf n?ln €In dﬁgng”l as

n 1 1 0
B EY T S [ L ] [1,e].

j=m /\jEFq p][)\]p] ] 1

For a notational convenience, we define F(nJrl n% = [1 e] and [, 4 = 0.

—n+17 in
The set

;2f{ W“ﬂeldmﬂgw1ﬁnu ,%)Eﬂﬂuwplyywkm}

m7 »n (

o(p™)

is an F-basis for Ind Kolp n+1)1

The fact that 4 is an F), basis for Ind E ) )1 is again an induction together with a Vander-
monde argument as for Lemma 2.6.

4.1.1 Interpretation in terms of lattices. As anticipated in the introduction, each element
of % can be seen as a “point” of a Z-lattice in the standard euclidean f-dimensional space R/: such
correspondence is given by the injective map

2L RS (5)

<ij ml (Li— mJ Zp] ml (Lf=1+5— mJ))

whose image will be denoted by Z. We notice that Z is a f-hypercube of side p?~™*! — 1. It has
a natural recurrent structure: for a fixed f-tuple t,, € {0,...,p — 1}/ the subset
{ F(m n)

a---7 n—12n

., €A lj6{0,...,p—1}f,f0rm<j<n—1}

is mapped onto an f-hypercube of side p"~" — 1, which will be referred as the Ft(:)—block. The

(n)

hypercube Z is then obtained as the juxtaposition of the F} “-blocks for varying ¢,, € {0,...,p— 1}f .

We are therefore allowed to apply the terminology of real euclidean spaces to the elements of %,
meaning their image through the map P. In particular if e; < (8o, .. ., §r-14) € {0,1} we define
F(”ZL’V‘:L"”Lin)_el by

o 0 if P (P (an ) ei) =10
(Lnsely)=€i ) theonly element of P“(P(Flm ™ ) — e;) otherwise.

byseesly,

(™)

In order to give the statement concerning the Ko(p™)-structure of Indgg(pn F1yX We still need
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some notation. If ({,,,...,l,) is a (n + 1 — m) f-tuple, we define
f-1
N (Ls -3 1,) & Z 19 4+ p Z 1)+ +pm (Il
s=0
f*l -
e@mv s aln) = (Zpslsri)) +ot (Zpslr(zS))
s=0 s=0
in particular any F( )l lies on the antidiagonal Xo + -+ X¢_1 = Ny n(lpns -+, ).

7rL rIn

Let N € N. We define the F-linear subspace

(Indggggfjl)gzv (M, € B st Nl L) < N)g

it is the subspace generated by the functions lying strictly below the antidiagonal Xo+... Xy = N.
We refer the reader to figure 3 to have the euclidean interpretation in the case f = 2.

Let (,,,...,l,) a fixed -tuple. For s € {0,..., f — 1}, we define

—_ def

S — {a S {m, - ,n}’ s.t. l(gs-&-a—mj 7& O}
and we set

ao(s) 2 { min(Z;) if=Zs#0

n+1 otherwise.

)

The euclidean meaning of ag(s) is clear: if we consider the F} (ao(s), ) -block then the function F, (m .

ao(s)’ 7n m’ in

lies on its s-th face (which is a (f — 1)-hypercube of side p® ()= — 1),

The Ko(p™)-structure of Indggg :21) x is then given by the following

PROPOSITION 4.2. Let r & (ro, corpo1) €40, p— 1}/=1 be a f — tuple, m,n be integers such

that 1 < m < n and let FL(W. -,)l € IndKOE BI)XE be as in definition 4.1. If a, b, c,d € O are integers

o a b
such that g £ [ pe d } € Ko(p™) we have
-1
gF T, = ol b ) (R = D (e L TR )
s=0
where, putting N = Nmn(l yeeosl,), we have y € (Indgggﬂl)xi)]\f_l.

In particular, the Ko(p)-socle filtration, as well as the extensions between two consecutive graded

pieces, of Indgggz 21) Xz is described by the associated lattice % .

We emphatise again the meaning of Proposition 4.2 in terms of lattices in R7: the socle filtration
of Indggg " le) X is given by cutting up the hypercube % by the antidiagonals Xo +---+X;_; = N
(precisely, socy is obtained by cutting the antidiagonal Xo+---+X¢_1 = N); the extensions between
two consecutive graded pieces are visualized by the segments of length 1 obtained by cutting & by
two consecutive antidiagonals Xo +---+ Xy 1 =N, Xg+---+X; 1 =N — L
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Here below an exemple for f = 2.

pntl=m_ .. xga~! X8
ra” P
2
1 pee?
pos )pa | -
1 2 ... ... prtl-m_g

Here, each “point” in the lattice corresponds to a function F l € A according to the map

m’ =n

P described in (5). The N-th composition factor socN(IndKOEp " +)1) ) of the socle filtration can be

read as the intersection of R with the semispace Xo + --- + X;_1 < N, and the N-th graded

piece socN(Ind?ginH) )/socn— 1(IndK°E nzl) ) as the intersection with the antidiagonal X+ -+

Xf_1 = N. Finally, a “point” of coordinates (Z?:mpj_mlgufmn, Z?:mpj_mlj(.tlﬂfmp) should be

understood as the character x;a ellyokn),

4.1.2 Proof of Proposition 4.2. The section is devoted to the proof of Proposition 4.2.
Thanks to the decomposition

my ) 1 Of 1+ pOr 0 1 0
Kolp™) = H [0 1 H 0 1+pﬁFHpmﬁF 1] (6)

for m > 1 we are led to study separately the actions of lower unipotent, diagonal and upper
unipotent matrices on the elements of the canonical basis 4: this will be the object of the next
three paragraphs.

The action of lower unipotents matrices. We study here the action of the closed subgroup

{ pmlﬁ (1) ] of Ko(p™) on IndKog " 31)1; we first need to introduce a family of Fp—subspaces of
F

K m
Innggn 31)1.

Let F(m’n)L € # and set (xo,...,Tf_1) o P(Fl(m"% ) € %. We define the F,-subspace
W, .4 of Ind E n21)1 via

P ..1)) (), ... ,x'_1) €A s.t.itexistsn > 0for which
f-
p—1) Z —a) <(n+1)(p—1)andz} < zj+nforallj=0,...,f -1}
=0

The image P( .1 4) C Rf looks as a snowflake: in figure 4 an exemple for f =2 (and p = 5).
22
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E / 04 |
Rl - comage of Ao Mg

W, L Ak Ko P

FIGURE 4. Euclidean interpretation of 2 ;.

moTin

It is immediate to check that if F (m.n) S QU(

/
m’ 7l

1,) then Wy vy © W . The action

[RRRD) N ’ n

1 01]. . . .
of [ POy 1 } is then described in the following

PROPOSITION 4.3. Let Fl(mjf)l e B, and write N = Nyl .. ,1,). Let g = [ L0 }

[ 1 0 ] for ¢ € Op. Then we have

p"Opr 1
(m.n) (mn) s taos)m] ()
m,n m,n — s+a m,n
g Fm7 7ln o F'n’w 7ln - Z p la (S)O F(Lmv---aln)_eé‘ + y
s=0

for a suitable y € (Ind E ngl)l)N_l. More precisely, via the projection

Indg07) 1 5 i ® 1/ (Indg ) 1)y ),
the image of the element y Is contained in the image of the subspace 2 . y.

Proof. As the action of { is continuous, we can assume that ¢ belongs to a set of topo-

1 0
pOr 1
1
logical generators (for the additive structure) of Op; in particular, we can assume ¢ = [u?»™] for
p € Fy.
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Using the notations of §6.2, we can write the following equality in p™ @ /p" 1 Op:

P+ DD P =3P+ (5),)] (7)

().

As deg(sj 1( ) < p’ for each j € {1,...,n —m} we can apply Proposition 7.3 (with T},4; =
55— 1(5 )) to conclude that

m7 in mo* 7n n) €s

ty

(™)

where y € Ind®° 111 is the element described in the statement, for suitable elements s € F,.
Ko(pmth) q

We are now left to prove that g5 = (/M’ )P lL8+a°(S) ™,

We use the notations of Proposition 7.3 and we recall that, for b =m +1,...,n, a polynomial
—8p-m—1(Sp_m(X,Y)) is homogeneous of degree p®~™ if X, has degree p®, Y degree p° (and Sy =
Y'). In particular if we pick an element

1 1 0 1
o ATy a1 AET)fn 1 1,e

Am€F,

(m n)

appearing in the development of gF " we have, for be {m+1,...,n},

b—1
pafmﬁgb),s — ,L'I()S)pbfm - al(f)
a=m
where iés) (™" —1) > ,() ) > z'l() *) is the exponent of Y in the fixed monomial of —s;_1_ m(Sb m) iy
(recall that any monomial Y Hb 1=m X" with ¢ = 0 appears in the development of —5h-1-m(Sp—m)
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with coefficient zero). Considering that p > 3 the inequalities

5(’€m) +p5(’£m+1) + e +pn_m5("€n) <

5Ly — i) + 5P R o s(plm M ey 4
Ap(8(Lpsr — imsr) +5(pL Uk “””)) co e g(plm eIy
T (g — dn) + s R ) + (5L, — 4) <

f-1
< 5Ly —dp) + Y sk +
s=0
f—1
m s m+2),s
DUy — 1)) + O (RGP 4 ps(xlri 7)) +
s=0
f-1
+ (O (6(65%) + ps(sly3) + -+ s(60)) + " s, — ) <
s=0
n f-1
Zp sl — 1)+ > (s(@) — Y o)
b=m+1 s=0

have to be equalities if we furthermore require our element to lie on the hyperplane Xo+---+Xy_1 =
N —1; in particular we must have il()s) = 0 for all couples (b,s) € {m,...,n} x{0,..., f—1} except
one and only one, say (b, so), for which we must have ig‘;o) =1.

We notice that for by # m we require furthermore that oy, = 1 i.e. the exponent of Y appearing

in the fixed monomial of —sp,_y—1(Spy—m) is 1. Thanks to Lemmas 6.3 and 6.4 we check that

L )psO (l|_s+a0(s)—mj )F(m ,n)

T = _(Mp ao(s) n—es,

=mrti=

as required. O

The action of diagonal matrices. We are going to study the action of the subgroup

1+ pOr 0 ]
0 1—|—pﬁp_

on the elements of #. If z € p™ O /p" T OF, an elementary computation shows that
1+ pa 0 1 0] [1 0 b
0 1+ pd z 1| |71
where £ € Ko(p"*!) is upper unipotent modulo p and 2’ € p™ O /p"*t'1 0 is determined by the
condition

= (1 + pa) (1 + pd)zmod p™+L. (8)
We can therefore content ourself studying the action of an element of the form z e [ (1] 1 —i—Opa }
for o € OF.
PROPOSITION 4.4. Let g € 1 +é)ﬁF 1 +(])7ﬁF and fix Fé(:n)l € B; write N & Ny -5 1y)-
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We then have the equality
m, nl m ,n l y

'm”'n 'm”n

where y € Ind E ngl)l)N_l.

More prec1sely, via the projection

K 17 o™ Ko(p™
Ind&ot™) 1 % Inngggw)l)1/(IndK0(p’“31)1)N_(pf+2)’

Ko(p "“) o(p
the image of y is contained in the image of the subspace 20, y and writing
y=y B
i€l

(for a suitable set of indexes I and scalars f3; € Fp) we have that each function F( (’)) L (i) which
is not in the kernel ker(pr) lies on an hyperplane

Xo+-+Xs 1 =N-tp-1)
for some t € Ns.

Proof. The proof is completely analogous to the proof of Proposition 4.3. As remarked above, it

1 0
0 1+pa] where o = > 7% 0p7[

1
pJ

is enough to consider the case z = { |. Using the notations of

86.3 we see that

n 11
Zp][)\jpj +Q;J]modpn+l

j=m j=m

=
+
=
£
S
=
S3 -
I

n—1 ) ~ ; 1 0
-y ZC) S ()b qj_m<@j+1_m>>”“[ Dr] ] LR )
- Y

A €EF, pj[)‘]p]]

(where we convene that i,, = 0 and with the obvious conventions if n € {m,m 4+ 1}). As each
polynomial (—qj,l(@j)) €FpAm,---s Aj—1—m), for 1 < j < n —m is homogeneous of degree p’ (for
the shifted grading for which ), 5, is homogeneous of degree p" for h > 0) we can apply Proposition
7.3 with Tpqj = (—qj,l(@j)) to get the first part of the statement.

We are left to prove 2). Consider an integer ¢t € N and an hyperplane $ : Xo+... Xy = N —t.

Following the proof of Proposition 7.3, a necessary condition for an element

. 1 e L0,
2, () [pm[Am ] 2, O [p”[A,’;"] 1][1’]

Am€F, An€F,

appearing in the developement of (9) to lie in §) is then
n .
Zp]_ms(/fj) =N —tmodp — 1.
j=m

Again, as each polynomial (—qj_l(@j)), for 1 < j < n — m is homogeneous of degree p’, and
s(h) = hmod p—1 we deduce that inequalities 20, 21, 22 and 23 appearing in the proof of Proposition
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7.3 are actually equalities in Z/(p — 1) so that we get
n
ijimﬁ(/ﬂ',j) =N —5(ip) modp— 1= N.
j=m
The conclusion follows. ]

The action of upper unipotent matrices. We are left to study the action of the closed sub-

group { (1) ﬁlp ] on the elements of Z. We recall that the action of Ky(p™) is continuous on
Indggg 21)1 and the natural topology on 0 ﬁlF ] coincides with the topology induced (via the

natural immersion) by Ky(p™). Thanks to the isomorphisms of abelian topological groups

o ¥ |zor=

where the latter isomorphism is determined by the choice of a primitive element o € F, of F, over

F, (cf. Serre [Ser|, Proposition 16 Ch.I) it is enough to study the action of elements g € [ (1) 61>F }

of the form g = [(1] [le] ] for p € Fy,.

We start with an elementary computation:

LEMMA 4.5. Let z € p™Op /p" T OF and p € F,. We have the following equality:

IR

where £ € Ko(p"!) is upper unipotent modulo p and 2’ € p™Or/p" 1 O is uniquely determined
by the condition
N

2 = 2(14 z[p]) P mod p" ! = Z(zjﬂ[/ﬂ]) mod p" !
=0

for N = |1,
Proof. Omissis. O

We are now left to use Lemma 4.5 and the results of §6.4 in order to describe the required action
¢ 1 Or |
ofl v 1 |

PROPOSITION 4.6. Let g € [ (1) ﬁiF ] and fix Fl(mn)é e B. Write ' N € Nyyn(lys ..., 1,). In the

quotient space

K m K, m
o)1/ (nd o v 2y

we have the equality
(mn)  _ pa(mn)
gy o =I

motin motin

of course, this N does not have anything to do with N €ef | L], We believe this conflict of notations will not give

rise to any confusion, as the meaning of N will be clear from the context.
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(1]
0 1

Using Lemma 4.5 and the results (and notations) of §6.4.1 we get the following equality in
O /(0"):

Proof. As remarked at the begining of this paragraph, we can assume g = [ ] where 1 € Fy.

N n a1 4
szﬂ[uj] = ZpJ[/\]"J + Ujpj]modp’”rl
3=0 j=m

S Ko(p™) )
so that, inside Ind Ko(pn +1)1, we have:

n-l 1 1 1 0
T L IN\Li—1 e ESINYY
gFlm:‘..,Ln = Z Z (Z]) Z (/\jZ’J )L] 5 (—uj(Ujpil )b+t [ L

pJ [I’F:(nn)' ]
j=mi;<l =17 X\;€F, PJ[)\j ] 1

where we convene that ¢, = 0 and we recall that ﬁj =0form<j<2m—1Asforeach2m < j<n

the polynomial —u;_1(U;) is pseudo-homogeneous of degree p’ — p™ (p™ — 2) the conclusion follows
from Proposition 7.4, with V; = —u;_1(U;). O

Proof of Proposition 4.2. The last step in order to complete the proof of Proposition 4.2 is
immediate:

(m;n)

PROPOSITION 4.7. Let F; ", € % and let a,d € F,. We then have the following equality in

Ko@™) 1. .
IndKO(an)l.

[ la] 0 ] plma) ae(zm,...,zn)([ [g} [0 ]) o)

0 [d] |t Loy
[a] 0 (m,n (& goooy —p° [a’] 0 m,n
[o [d] B e, = a7 (| [d] JE

Proof. We just remark that for z = Z;l:mzﬂ[)\]] € p"Op/p" O we have

w1V L V]S ]

dla”td =Y P \(atd)l.

j=m

In particular

and that

O]

Finally, for a,b,c,d € O as in the statement of Proposition 4.2, we recall the matrix equality

a b| [[a O 1 0 l+px O 1y
pme d| | 0 [d] pmz 1 0 1+ pw 0 1
where x,y,z,w € O are suitable integers verifying Z = ¢d—!. The result follows now from Propo-
sitions 4.3, 4.4, 4.6 and Lemma 4.7. O

REMARK 4.8. We note that the bijection (5) depends on the immersion T : F, — F,, fixed in
the introduction and should be noted as P,. As another immersion 7' : F, — Fp is obtained
by composing T with a power ¢* of the frobenius on F, we see that the map P, is obtained by
composing P, with a power ®*, where ® € End(R/) is defined by ®(e,) = e|s+1)- Hence, as the

antidiagonal is fixed under ®, Proposition 4.2 does not depend on T.
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4.1.3 The structure of the representations R, . Fix an integer n € N. We describe here
the socle filtration (and the extensions between two consecutive graded pieces) for the Ky(p)-

representations R, ;. Again, we can identify the negative elements of R, with the points of a
lattice of R/ according to the following injective map

&, — RS
n+1
1,n a— s+a—
Fl(l,.“,)ln@n—l—l) = (Zp ety 0,1y
a=1

whose image will be denoted by %, ,; we define in the evident way the subspaces (R, ,)n for
N e N.

The structure of R, is then sumarized in the following

def

PROPOSITION 4.9. Let n € N, Fl(llf)l (lns1) € %, and let a,b,c,d € Op be such that g =

n

[ ;c Z } € Ko(p). Define finally the integer N < Ny, 41(1y, . . . i)

We have the equality

|
—

f
1n e(ly,... s 1,n ——1\p®|8+ao(s)—1 1,n
GEM) (L) = 0oty S () (B, (L) — S (e it (e B, (1,40) + )

ao(s) Lyl

@
Il
o

where y € (R, |)N-1-
In particular, the Ko(p)-socle filtration of R, ,, as well as the extensions between two consecutive
graded pieces, are described by the associated lattice %, ;.

Proof. We notice that we have a Ko(p"'!)-equivariant monomorphism

Ko(p™tt)

0-£7L+1) — IndKQ(p"+2)X;
r—1 l l RET 1 0
X* 7n+1Y7n+1 — (_1)7n+1 Z ()\TI;+1 )Jn+1 _ pn1+1 [1,6].

)\n+lqu p [)‘nJrl ] 1
By transitivity and exactness of the induction functor Ind%g 7)1+1)(°) we get a Ko(p)-equivariant
monomorphism

_ K

R, ., — IndKEgBLH)X;
1, l 1n+1
FM) (L) e (CDb Y

The conclusion is now immediate from Proposition 4.2. O

4.2 The positive case

This section is again divided into two parts. We begin with the study of the Ky(p)-representations
R:{H, for n € N: they are described in Proposition 4.10. We subsequently switch our attention
introducing other K((p) representations (the (Indllgo(pnﬂ) x*)T, defined in §4.3) which will let us
describe the Ky(p)-restriction of principal and special series (see §4.3).

The philosophy is completely analogous to the one of the previous paragraph: we verify by a
direct computation on the ring of Witt vectors that the Ky(p)-structure of such objects can be
described in terms of f-parallelepipoids in the euclidean space R7.
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Fix n € N. We introduce the injective map

#r— R
(0.0) S (st
0,n i7([s+i
FLO,.,,,Ln@nJrI) = (Z;P l; )sE{O,...,f—l}

which let us interpret the positive elements of R 41 as points in a convenient lattice of R/. The
image of such map (which is a parallelepipoid of 81de p"t(rs+1) —1) will be denoted as %n 41 We
still need the following notations (see also §4.1.1):

i) for a (n+2)f-tuple (ly,...,l4q1) € {{0,...,p— 1}f}nJr2 define the integers

n+1
Nony1(los -+ Lyiq) = Zpa5(Lz)
f-1 (®)
def s1(8
e(lyy - slpgr) = (Z Sl ZP byt1)s
s=0

ii) for N € N we define the F,-linear subspace
def 0,
(Ry)ny <Fzgn)zn (lnp1) € By ste Nongillo, - lysr) < N> ;
FP
iii) for s € {0,..., f — 1}, we define

- def

2= {aec{0,...,n+1}, st. jlstal o 0}

and we set

0 otherwise.

ao(s) 2 { min(Z,) =5 #0

For a given positive element FZE)OT)Z (Lp+1) we define the subspace 2 in the evident, similar

707"'7£n+1)
way.
The structure of R:{ 41 1s then given by

PROPOSITION 4.10. Let n € N, F\"") (I,,,) € %}, and let a,b,c,d € Op be such that g =

[ ;c Z } € Ko(p). Define finally the integer N = No 11 (L, - - - slyi1). We then have

~
—

\n —1ve(ly,... N 75— 1\ps ;| s+ao(s
Fl(o(? ,)l (£n+1) = (Cl 1) (o> 7£n+1)X£(g)(FL(OO,...,)Ln(ln‘i’l) _ (b )p l[ “+ao( )J( 1)5a0(s) n+1F( )l @nJrl) _|_y)

ao(s) Loyl

vy
Il
o

where y € (Rn+1)N 1-
In particular, the Ky(p)-filtration, as well as the extensions between two consecutive pieces, is
described by the associated lattice %,

Proof. The proof is analogous to the proof of Proposition 4.2, using this time Lemma 6.17 and
Proposition 7.5. The details are left as an exercice to the reader. ]

4.2.1 On some other Ky(p)-representations. As annonced in the introduction, we define

and study some Kj(p)-representations (denoted as Indg0 (pr+1) X+) which naturally appear dealing
with the Iwahori structure of principal and special series. The reader will realize soon that the
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behaviour of the representations (Indﬁ0 (pn+1)x)+ can be treated with the same methods of §4.2 and
4.1; the proofs will be therefore omitted.

Fix an integer n € N, a smooth character y : Ko(p"™!) :— F; and an F,-basis {e} for the
underlying vector space of x. The Ky(p)-representation (Indﬁo(pnﬂ) X)" is defined as the Ky(p)-
subrepresentation induced by Indﬁo(pnﬂ) x on the Fp-subspace

z] 1
(| { [1] 0 } €] € Indﬁo(pnﬂ)x, z € Int1)y,
(the Ko(p)-stability of such F,-linear space is immediately verified). Again, we have the

DEFINITION 4.11. Let j € {0,...,n} and let [; € {0, ... ,p—1} be a f-tuple. We define the following
element of (Indgo(pnﬂ)xfr

(0,71) def l() " p% I 1 O
Flo ----- L, — Z )‘6 Z Z (/\j )7J . i [1,6].

XEF,  j=1\EF,
The family
def 0, .
BT = {Fl(on)ln € (Indgo(pnﬂ)x)*, L;e{0,....p— 1}f forallj € {0, ... ,n}}
is an F,-basis for (Indllgo(pwl)x)Jr

(0,n)

Exactly as we did for R:{ 41, each given element F) of % will be read as a point in a

L0 in
convenient lattice Z of R/ and the integers ag(s) (for s € {0,..., f — 1}) can be assigned. More-
over, if N € N, the subspaces ((Indllgo(pnﬂ) X))~ are defined in the similar, evident way (see the

introduction of §4.2 for details).

The structure of the representations (Indgo (prt1) X) " is then described in the next

PROPOSITION 4.12. Let r € {0,...,p — 1} be an f-tuple, n € N an integer and let a,b,c,d € Op
[ ;c Z ] € Ko(p). Fix an element Fl(ooff)l c Zt and set N dze[No,n(lo, ).

def

be such that g =

Then
(0m) ( L 1 Lsran(s)]
0,n —Ive(lg,-nnl, on) 75— 1\ps ;| s+ao(s 0,n
g-Fy" = (™ (A )Xt(g)Féo,__in z_;)(bd W i G e Y

+
where y € (Indﬁo(pnﬂ)xz IN-1-
In particular the Ky(p)-socle filtration of (Ind?o(pnﬂ)x;)“', as well as the extensions of two
consecutive graded pieces, are described by the associated lattice Z.

Proof. Omissis. O

4.3 The Iwahori structure of Principal and Special Series

We are now able to describe easely the Iwahori-structure of principal and special series for GLo(F').
Such result is essentially a formal consequence of the previous sections §4.1 and §4.2.1.

For A € F; and r € {0,...,p— 1}f we consider the smooth parabolic induction

GL2(F
IndB(ég ),u,\ ® Wy —1
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where w denotes the mod p cyclotomic character and p) the unramified character verifying py(p) =

A. It is well known that for (r,\) ¢ {(0,£1), (p — 1,%1)} such inductions are irreducible, while, if
(r,\) € {(0,£1), (p — 1,+1)} they have length 2 and a unique infinite dimensional factor, the Stein-
berg representation (see also [BL94]). Thanks to the Iwahori decomposition and Mackey theorem
we have

GL2(F ~ GL2 (0
IndB(ég )/L,\®w£u)\_1]1( — IndB({;,;)F)X;

and, since the elements f € IndG%QS ) x@wr iy —1 are locally constant functions and B(0r)\GL2(OF)

is compact we have a natural isomorphism

IdG%z(ﬁ)F)X AN hmInd (n+1)Xz~

neN
Again, we can use Mackey decomposition to deduce

s ~ K s s
Indgo(p’”'l)XAKO(P) — Innggv)wrl)Xﬁ ® (Indg)(p”“)xﬂrr

so that, by exactness property of filtrant inductive limit, we get

G Id ~ . S : S
Ind 25 ja @ Wy ko) — (HmIndi ™" x3) @ (lim (IndfS xg) ). (10)

neN neN

The isomorphism (10) let us reduce to the case of the finite inductions Ind E?LH) X Ind& %, (p"+1)Xr+;

whose structure is completely described in Propositions 4.2 and 4.12. Therefore
THEOREM 4.13. Let A € F; andr € {0,...,p— 1}f an f-tuple. For any m € N~ we write

F(mogo) € In dg(;g )MA ® Wity -1

to denote the characteristic function of Ky(p™).

The Ky(p)-restriction of the parabolic induction admits a natural splitting

GLa(F r ~ . K s . s
Indiy 25 @ Wity ey ) — (limIndg0) 1) x8) & (lim (IndfS e i) ).

neN neN

= o : K : : S\t : .
Moreover an F-basis %~ for @InngEZ%+I)XE (risp. B+ for h_n)l(IndﬁO(an)xl)Jr) is described by

neN neN
the elements

(risp. the elements
1 0
0,00 e 1 )
e 2 o[ ] o | o ]
Ao€Fy An€Fy n

for a varying sequence (1,)nen~ € {0,...,p — 1}(N>) (resp. ( wneN €{0,...,p—11M),
If we associate the elements of such basis to points in R according to the law

1,00 - i—17|s+i—1

l(l, ,l)n, . (Zp 1liL+ J)se{o,...,f—1}
=1
=0
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and write Z#~ (resp Z7 ) to denote the image of 8~ (resp. 987" ) by this map, then the Ky(p)-socle
(p)

(th)
neN neN

two graded pieces, is described by the associated lattice Z~ (risp. #7).

filtration for limIndgg X3 (resp. for li_r>n(Ind§O(pn+1)X1§)+), as well as the extentions between
p— r r

The Iwahori structure of irreducible principal series follows.
As far as the Steinberg representation is concerned, we just need to notice the following fact:

LEMMA 4.14. Assume r € {0,p — 1} and let n € N. We have a K(p)-equivariant exact sequence

0 1,0 st K s s
0= (B, ")) — nd s @ Indi ) 1 xg — (Indf o xs/ () ko) = 0-

Proof. The proof is an induction on n, the case n = 0 being well known (cf. [Br-Pal, Lemma 2.6).
For the general case, we leave to the reader the easy task to check that we have a natural
commutative diagram with exact lines

0 0
K s ot 5
Ind 002 & Indf X (Indgg, () x2/ (1))
S S + S
Indggg’)ﬁl)xﬁ ® Indgo(p"+1)xﬁ (Indﬁo(pm)xﬂ/ﬂ))

14

K S K S S+ S+
(Inngng)XE/Innggl)Xﬁ) ) (Indﬁo(pnﬂ)x£ /Indﬁo(pn)x£ )

0 0

so that the snake lemma and the inductive hypothesys, giving an exact sequence

0 1,0 s+ K S S
0= (F”, FSMO)) = md, gt @ Inngg,)L)Xz — (Ind%, o X3/ (W) ko) = O,

let us conclude. O

5. The structure of the universal representation

In this section we show how the techical results of §4 concerning the representations Rf 41 and
the formalism of §3 let us describe the Iwahori structure for the universal representation 7 (r,0,1).
Again we develop an euclidean dictionary which enable us to handle the involved combinatoric
of m(r,0,1)|k,(p): the conclusion is then Proposition 5.16, which loosely speaking shows that the
required structure is obtained by a juxtaposition of the blocks Rff 41 in a fractal way. As a byproduct,
we will exhibit a natural injective map

c—Ind%,V < 7(r,0,1)
where V' < 7(r,0,1)| k7 is a convenient K Z-subrepresentation of 7(r,0,1)|xz. We remark that a

similar injective map has been detected independently by Paskunas in an unpublished draft.

We give here a more precise description of this section. Thanks to Proposition 3.6 we can content
. . + + . — —
ourselves to the study of the representations hgl R, OrrOpyt R, and hj}l R, Opr gy R, .
nodd nodd
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.............

FIGURE 5. Euclidean structure for Rff 1/ RE.

As seen in Proposition 3.5, such Ko( )-representations have a natural filtration whose graded pieces
are isomorphic to the quotients Rn 11 /RY, R, 11 /R, respectively.

Such quotients are studied in §5.1. As we did in sections §4.1.3 and §4.2 -concerning the Ky(p)-
structure of Rn 41 and R, ;- we introduce a natural correspondence between a “canonical” F -base
BE ot 1/n for RE 1/ R and a convenient lattice (denoted as R* it 1/n ) in RY. Thanks to the behav1our

of the canonical Hecke operator (7] )P°5"°8 with respect to the elements of BE we see that such

n+1/n
a lattice is in fact the set-theoretic difference of the lattices %= ~1 and Z (cf. Lemma 5.1): figure
5 shows this phenomenon for f = 2.

Unfortunately, we can not use directly the results of sections 4 to concude that the Ky(p)-
structure of Rf 1/ RY is predicted by the lattice %irl Jn in fact Propositions 4.9 and 4.10 describe

the extensions detected by functions fi, fo € %‘f;l lying on adjacent antidiagonals.
It is therefore necessary to perfect the estimates made in the proofs of Propositions 4.9, 4.10:
this is the object of §5.1.1. We remark that the behaviour of (Ry/Ro)™ (resp. Ry Dy R, ) is slighty

different from that of R, /R for n > 1 (resp. R, /R, for n > 2) (and treated in §5.1.2).

In section §5.2 we determine the structure of the amalgamed sums - - - @ p+ RE ¢ their structure
can be easily determined from the results concerning of Rn 1 R, Indeed, thanks to the behaviour of
the canonical basis of R- with respect to the Hecke operators (T, )Po5"°8 we see that the convenient
euclidean pictured is obtained by gluenig the lattice 2+ ot 1/n with (a suitable translation of) the
lattice associated to ...p+ , qu (which we assume inductively to have been described). Again,
the Ko(p)-socle filtration is expected to be obtained by successive intersections of such lattice with
parallels antidiagonals, as it was for R 1/ R*, but a simple computation shows that the hyperplanes
giving the J-th layer of the socle ﬁltatlon of RE ot 1/n lie always below the hyperplanes giving the

J-th layer of the socle filtration for ...+ , Rn_ cAs gt , Rf_l is a Ko(p)-subrepresentation of
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gt be 1 we are able to deduce the desired result of Proposition 5.16.
In figure 6 an exemple of the glueing of blocks ? and their fractal stucture.

As annonced, we can combine Lemma 5.1 and Proposition 3.5 to exhibit a natural injective
morphism -whose existence was known informally by an unpublished work of Paskunas-

c—Indf(ZV — 7(r,0,1)|xz

where V < 7(r,0,1)| k7 is a convenient K Z-subrepresentation of 7(r,0, 1)|xz: this is the object of
Proposition 5.10.

As the cutting hyperplanes are fixed by the linear transformation es — e 441 of R/ the results
of §5.1 and §5.2 do not depend on the immersion 7 : F, < F,, see remark 4.8.

5.1 The structure of the quotients Ry /R
In the flavour of §4.1.3 and §4.2 we start by describing a suitable F-basis for the quotients Ry, | /Ry.
LEMMA 5.1. Let n € N>;.

1) An F,-basis %’:;Ll/n
projection R}, — R} | /R}) of the elements

for R:H /R is described as the homomorphic image (via the natural

F(Oml (Iny1) € ﬂq—;-l

l()y"':,n
such that l,, £ r ifl,,, = 0.
2) An F-basis ‘%};—H/n for R, /R, is described as the homomorphic image (via the natural
projection R, | — R /R, ) of the elements

1,n)
Jce
lly"':!n

(ln—i-l) € %7:-1-1
such that l,, £ r ifl,,, = 0.
If n = 0 then an Fj-basis for (R1/Ro)" is described as the homomorphic image (via the natural
projection R — (R1/Ro)*") of the elements
0
F (L)

by
such that [} £ r if [; = 0 and of the element FE(O) 0).

Proof. The result follows immediately from the definition of the operators (7, )P°%"®8. Indeed, for
n > 1 we have (with the obvious conventions if n = 1):

(TP (EO Y (1,) = (~1DHESY, (0);

200 Zn—1 209 02n

(THesE" Y (1)) = (~DRFSY,(0)

Zlrmin—1 7 212 in
while, for n = 0 we have

TO(FQEO’_I)@O)) — FZ(O)(Q) + (—1)£5;0,QF®(1’0)(Q).

20

O]

As usual the elements of the basis f%’i:_l In will be read as the elements of a convenient lattice

By OF R,

%strictly speaking, the figure gives the glueing of blocks R;_,/R} , and R} ,/R}, ie. the structure of
R /RS, D pt Rj;ﬂ' If we want to get the picture of the whole amalgamed sum - - @+ RIH we should insert a

“even smaller” structure inside the point (1,2) of the rectangle drawed on the left in figure 6.
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Interpretation in terms of euclidean data. FExactely as we did in sections §4.1.3 and §4.2 we
have natural injections BF < R which let us interpret the elements of %ZEH Jn S points in a

n+1/n
convenient lattice %j;l /n of RY: the details can safely be left to the reader.

The euclidean interpretation of Lemma 5.1 is therefore clear: for n > 1 the lattice %:H /n (resp.
%’;H/n) of R, which is expected to describe the Ko(p)-structure of R\, | /R, (vesp. R, |/R;,), is
obtained from the lattice of R 41 (resp. R, ;) by removing the simplex

{(zo,...,a51) € B, st <P (r|pis) +1)foralls =0,..., f =1}
(resp.
{(zo,...,zp1) €EZpyy stoxs < p"_l(rtnﬁ_” + 1) foralls =0,...,f —1})

., is obtained as the set-theoretical difference of RE |\ FF).

. +
(equivalently, 2 ot

+1/

We refer the reader to figure 5 for an exemple in residual degree f = 2.

The lattice ‘@f/o associated to (R1/Ro)T similarly obtained from the lattice associated to R,
by removing the subset

{(z0,...,251) € %:H st.2s < (r|pys) + 1) foralls =0,..., f — 13\ {(ro,...,rp-1)}.

To be precise, the lattice %f/o (resp. the lattice naturally associated to R, @ RT R, ) does not

describe the Ko(p)-structure of (R1/Ro)" (resp. Ry Dy R, ) sic et simpliciter. But a harmless

modification of the formalism used for ’@:{H /n if n>1 (resp. Z, 10> 2) let us detect their

Ky(p)-socle filtration: see section §5.1.2 and Propositions 5.6, 5.7 and 5.8 for details.

We will describe in detail the Ko(p)-structure of R

+1/Ry for n > 1; as annonced, the negative
case (for n > 2) will be left to the reader.

Preliminaries: partitioning the lattice. As annonced in the introduction to §5, the mere

knowledge of the Ky(p)-socle filtration for R, 41 does not allow us determine the structure of the
quotient R, ,/R; . Indeed Proposition 4.9 let us determine the extensions detected by functions

FL(OOH)% @n)’F;(gon)zg (L) € &}, lying on adjacent antidiagonals. We could therefore get, a priori,
a nontrivial extension between them if [; = l;- =0 for all j # n and [,, = (0,...,0,75,0,...,0)
L, =(0,...,0,r4,0,...,0) for s # s as illustred in the figure 7.

Notice that this phenomena happens only if ' # Q,: if I = Q,, the structure of the quotients
is immediate from the structure of R;{ 41

We modify the strategy of section 4.2. We show that the Ky(p)-strucure of R;f 41 is again pre-
dicted by %, 41 but each cutting antidiagonal Xo + --- + Xy 1 = constant of section §4.2 is now
replaced by f-antidiagonals of the form Xo + -+ + Xy 1 = p™(7|545] + 1) + constant: we will say
that Xo + -+ + Xy 1 = p"(r|nys) + 1) + constant is the s-th cutting hyperplane of R;’H/Rf{.
This means that we naturally divide the lattice Q?IH In into sub-blocks U ., of increasing size

for k € {0,...,f — 1} (cf. definition 5.2); the J-th composition factor for the Ko(p)-socle filtra-

tion of R, +1/R;} is then obtained as the sum of the subspaces determined by the intersection of
the block U, ., with the antidiagonal Xo + --- + X;_1 = p™(rs,,,, + 1) + constant, for varying

k €{0,..., f—1}. This is the content of Proposition 5.3. In figure 8, an exemple of how the inreasing
block (and successive cuttings) look like.

We determine the decomposition of %’;{H In into increasing blocks. Fix n > 0 and define s, €
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{0,..., f — 1} by the condition
T|smtn] = max{rLs+nJ}.
We fix an ordering
L 2T snin) Z Tlsmiatn] 20 2 Tspygoa4n) 20
and define the following F,-subspaces of R." /R
DEFINITION 5.2. For k € {0,..., f — 1} define U, ., as the F-subspace of R, | /R,} generated by

the elements Flgon)ln (Lys1) € %:{H In verifying the properties:

i) for s & {sm,...,Smir} we have
l’rLLs-i-nJ < TLS—l—nJ;
i) for s ¢ {Sm,...,Sm+k} We have
st
n+1 '

By abuse of notation, we will also write U, to denote the image of the canonical basis (in the
obvious sense) of U, ., in the lattice %Zl In The geometric meaning of the previous definition is
the following: the block s, ., is described as the intersection of the subset

{X5m+k+1 < pn(rLstrkH—l-nJ +1n---nN {XSerffl < pn(TLSm+f71+nJ +1)}
with the lattice ‘@;H/n: in other words, we give restrictions on the coordinates xs,, . -, %s,,
of a point (zg,...,zr_1) € %Jr /n to lie in the block Vs, -
Notice that in order to detect if a function F( ?l (Lyy1) € %:H In belongs to the subspace

smar We only need to study the last two f-tuples ln, ln—l—l
Obviously, the subspaces s, ., describe (for n > 1) an exhaustive increasing filtration on

R} /R as a Fp-vector space.

T
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The following crucial result shows that the lattice ’@:{H In let us detect the required Ky(p)-
structure for n > 1.
dr | 1+ pa b
PROPOSITION 5.3. Assume n € Nxj. Let a,b,c,d € Op, g = pe 1+pd € Koy(p), fix
n) @n+1) € Y, ., for some k € {0,...,f — 1} and write Nopni1(lg, - 0l,1) =
(rLSmMJrnJ + 1) + J for some J € N. Finally, consider the linear development
0 Ja
GF™) () = D BOESE | oL ()

200" 7
iel

an element F(0

(where I is a suitable set of indices 3(i) € F; are scalars).

Fix an index iy € I and assume there exists k' € {k+1,..., f — 1}, minimal with respect to the
0, .
property F( (;L))) (,0)(ln+1(20)) €Ys, 0\ DVs,yy-

Then we have
Nop+1(lo(i0), - - Lyy1(00)) < P (1, in) +1) +J = 2. (11)

In particular, the lattice %7 describes the Ky(p)-socle filtration, as well as the extensions

n+1/n
between two consecutive graded pieces, of R, /R

We insist on the geometric meaning of Proposition 5.3: we pick a function in the k-th block
Fl(o’")l (Lyy1) € Vs,,,p, liyng on the antidiagnal Xo + --- + Xy 1 = p"(rs, ., + 1) + J and

Lok

L(oo(’zz)),---in(io)@" +1(%0)) a function appearing (with nonzero linear coeflicient) in the linear devel-

opment of gFL(oO,iL,)ln (Lyyq)- If FIE)O(ZT;)) (‘0)(Ln+1(i0)) happens to belong to a strictly bigger block,
say ‘I]smM, with ¥/ > k and mlnlmal with respect to this property, then it lies strictly below the
antidiagonal Xo +--- + Xy_1 = p"(rsm+k, +1)+J-1
Thanks to this phenomenon, we can invoke Proposition 4.10 to deduce the Ky(p)-structure for
R +1 /R from the associated lattice Z 1/ the J-composition factor for the socle filtration of

- +1/ R is determined as the sum of the f subspaces obtained by intersecting each block U
with the corresponding antidiagonal Xo + --- + X;_1 = p™(rs, ., + 1)+ J (as in figure 8).

Sm+k

Notice moreover that the statement of Proposition 5.3 is empty if f = 1: in the rest of §5.1 we
will assume f > 2.

5.1.1 Proof of Proposition 5.3. The rest of this section is devoted to the proof of Proposition
5.3. Thanks to decomposition (6) we can study separately the actions of lower unipotent, diagonal
and upper unipotent matrices on the elements of R:{H: this will be the object of the next three
paragraphs. The proofs are similar to the proofs of Propositions 4.3, 4.4 and 4.6, but need a delicate
extra argument due to the irregular structure of the lattice 2

n+1/n"
The action of upper unipotent matrices. We study here the case where g € [ 0 ﬁiF ], and
again we assume g = [ 0 [/f] } for p € Fy. As in Proposition 4.3 we write
GO, (L) =
ntl L - 1 0
3 J J
-5 (1) ()awe S ofwsapie |
j= lzjgl i0<lg A €Fy p][ 7 ]
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where for notational convenience, we commit the abuse of writing [ po[l ol (1) ] instead of [ [)\10] (1) ]
0

and where we have set

fl s (g (_1)ln+1 XE_(Ln+1_in+1)Yln+1_Zn+1
b1 7 int1 ’
def

Ty = —S()(So) ]_:,_1 o Sj(gj_H) fOI‘j € {0, Ce ,n}.
Developing the polynomials T)11’s we write

GE") () = D BOESS o L (0)

200" 7n
el

ef

(for a suitable set of indices I) and we pick a vector v appearing in the linear development of
l07 Sl 1/

def

SO (B ]

where, as in Proposition 7.3, we write for 0 <a <n+1

n+1
Ky =1,—1,+ Z pla=?
b=a+1
and, for a +1 < b < n+1 we have
f—1
ﬁgb) — psﬁgb),s
s=0

(b),s

-(s)
where kg 77" is the exponent of A\, in T, ;b . By the definition of the subspace U we see that

Sm+k

Ky = Ln - ln +pL71J Rsbn+1) =

k -1
— Zpl_sm+h+nJ (lg.sm-‘rh'i'nj) _ Z.gll'sm+h+nj) + K’Eln+1)7|_5m+h+n+1j) + Z pl_Serh"!‘nJ (l’sll_sm-kh"’nj) _ Z'gll_sm+h+nj))
h=0 h=k+1
If v ¢ U, then

k' < min {ee{k+1,...f -1}, st [K{lm+etnl)] > T(Lsmpetn) J( > F)

and we necessarly have k,, # 0 and the equality

f—1
sy — iy +p AT = 1D =i A —p - 1)
s=0

for a suitable j > 1. Following the inequalities (21), (22), (23) of Proposition 7.3 (i.e. using the
subadditivity of the function s and the fact that the polynomials 7} are homogeneous of degree p’
if \; is defined to have degree p') we get

s(kg) +...p" s(k Kng1) <P (Mspirtn) T 1) +J —5() +p"(p - 1)3-
As n > 1 the inequality
(P (spiotn) = Tlspin)) < 9" (0= 1) +5(ig) —2
is then obvious if either j > 2 or Tlsynp+n) > 0-
Assume ﬁnally 7 =1and Tlsppr+n] = 0. Therefore the p-adic development of [k, | has the form

(lgo) - 21(10) + Hq(@nJrl),l’ o Jgs) N 21(18) + Iiganrl),erl (s+1) i,(@erl) + ﬁgln+1),s+2 +1,.. )

- D ln
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for a unique s € {sm,...,Sm4xr}. The condition = ¢ U ., imposes s+ 1] ¢ {sm,...,Smixr} and

the minimality condition on k" imposes | ;44 +n] = [s+1], in particular r|,1) = 0. As & (nt1)st

. s : 5 iletld
is the coefficient of A" in the fixed monomial of (S,,+1)"+1 " and it < T|s+1] We get an absurde.

The action of diagonal matrices. The next step is to study the action of an element g €
{ 1+ pOp 0 1+pa 0

0 1+ pOF 0 1
analogous to those of the previous paragraph, in this case using the fact that the polynomials
qj—1(Q;) of §6.3 are homogeneous of degree p/. The details are left to the reader.

]; again we can assume g = [ } The arguments are completely

The action of lower unipotent matrices. In this section we deal with the action of an element
1 0

1
S
[ pOF 1 plp] 1
and we need to recall and carry on the accurate estimates seen in the appendix A §6.4.2.

]; again, we assume g = [ ] This case is more delicate than the previous

As for Proposition 4.6, we write

D\~ 1 T\ I 0
gFl(m oL ”+1 Z Z <J+1> Z ()\JP )LJ 7](Vj+1 )7#1 [P][)\j] 1 } [1’fln+1—in+1]

<L, Tt/ \eR,
0 ] instead of [ Dol 1 ]

b1 <l
. . . " 1
where for notational convenience, we commit the abuse of writing |
p’[Ao] 1 L0

. def
and where we have set i, = 0,

fl +1—i 1 d:ef( ) n+1Xr (n+1+zn+l)Y£n+l_in+l

and Vjiq S uj(ﬁjﬂ) for j € {0,...,n}. We develop the polynomials V_fil, recognizing again a
sum of elements of the basis ‘@Zﬂ Jn W pick a vector

def

Ff(wd? [kn ]((’{n+1—|)§

as in the previous paragraph we write for 0 <a <n+1

n+1
b= lamiat 30 2R
b=a+1
and, fora+1 < b< n+1 we have
f—1
Kt(zb) _ Zpsﬁ(b),s
s=0

:(s)
where /Q((lb)’s is the exponent of )\, in Vblb . Again, using the notations of Lemmas 6.19 and 6.20, we
focus our attention on

g i 4 pl U =

k
Z [Smt-ntn) Z(L5m+h+”J) (L8m+h+”J) —&—BTL{S’"”HMLJ( 0) + BLSm+h+1+nJ( 1)) +

n+1
h=0
-1
+ Z pLsm+h+nJ (lgsmﬂﬁﬂj) _ Z~7(1L8m+h+nj))
h=k+1

(where we can again assume k,, # 0) and we distinguish the following four possibilities.
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I).Assumed ) _, plementian] (1) = 0. The condition v ¢ U

1 imposes that

Sm+k
f—1

() = 1) — 89+ B G- 1)
s=0

for ; e N, } > 1. We recall that for each j € {0,...,n — 1} the polynomial V; is pseudohomogeeous
of degree p’ — (p — 2) so that the subadditivity of s and Lemma 6.20 give

n+1 ' n+1 ) n+1 »
S Ws(ny) < 3 ps(ly) — (- 2)(3 (i) — 9" G (0 — 1)
=0 =0 =0

and the conclusion follows.
IT). Assume SF_, B#‘l”thMJ (1) > 2. Then we have
f-1 n
i 1), .
S Ps) < (i) — 207 (0 — 2).
s=0 j=0
The conclusion is now easy and left to the reader.
TIT). Assume 1 = YO Alsmentttnl gy — 5ok plsmonttbnl oy — 9 16 1y € {0,..., k} the

BLS"H_hl +14n]

il (1) = 1. We can again distinguish the following two subcases:

unique integer such that

IIT)A Assume
f—1
s(kn) = D (1) =i + BETY(0) + BY (1) — i - 1)
s=0

for } e N, 5 > 1. In this case the reader can check that
n+1 n+1 n
Y Ps(ry) <Y psly) = (0= 2)(Ds(i;) — p"i(p — 1) — (0 — 2)p"
j=0 j=0 j=0
and the conclusion follows.
ITI)p Assume finally

f—1
s(kn) = > (1 — i) + BEH(0) + BY) (1)),
s=0

Such condition, together with v ¢ U, ., imposes that |spqn, + 1] & {sm,...,Smir}; by

minimality of ¥ we conclude that |sp,4n, + 1] = Smis; in particular s, ow > 0 We deduce
1

that the choosen monomial of un(ﬁrﬁf )én+1 is of the form

p\_sm+h1 +1+n]

’ , %
Ago ..... A (Ao AE")

/,

where the integers o

verify

Y s(e)) <" = (= 2)(8(ing — 1)),
j=0

By subadditivity of the function s we find finally
n+1 n+1 n

D Ps(rg) <Y Psl) — (0= 2)Q (i) + (0" = (0 = 2))(s(ingr) — 1) +
=0 j=0

=0
+(1+p") = p" (i)
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a1
(where the integer 1 + p" is deduced from the monomial A\gAj; ) and the conclusion follows

easily (notice that Z;Liols(gj) >1).
The proof of Proposition 5.3 is therefore complete.

REMARK 5.4. The reader has noticed that if we assume rs < p— 2 for all s € {0,...,f — 1} then
the inequality (11) in the statement can be replaced by the following, stronger, inequality

NO,TH—I@O(Z.O)v s 7£n+1(i0)) < pn +J -2

5.1.2 The casen = 0. In this section we show that the Ko (p)-structure of (Ry/Rp)" is actually
slightly more complicated than expected, at least under some particular conditions on the f-tuple
r. The negative counterpart will be the Ko(p)-structure of Ry & RT R, which is left to the reader.
The aim is to give an analogue of Proposition 5.3 in the case n = 0: in the next three paragraphs we
will analyse where and how a statement of such a kind fails to hold true, detecting some condition
on the f-tuple r. The main statements are Propositions 5.6, 5.7 and 5.8, where we see that the

Koy(p)-socle filtration for (Ry/Ry)" can be obtained from the associated lattice %;r/o, with some

harmless adjustment in few special cases (according to the combinatoric of r).

In what follows, we fix k € {0,...,f — 1} and an element FL(OO) (1) € Vs, \h \ (Fﬂ(o) (0)f,- Let
g € Ko(p). We fix an element v = F [(g())]((ﬁl]) appearing (with a nonzero linear coefficient) in the

F,-linear development of gFlgo) (1), for suitable integers kg, k; € N.
We assume there exists an integer k' € {k +1,..., f — 1} such that v ¢ U\ Y, and ¥’
is minimal with respect to this property.

The next lemma can be verified by an easy computation on the ring W1 (F,):

LEMMA 5.5. In the previous hypothesis we have

NO,l(ﬁo;ﬁ1) = N0,1(£07£1) — €

where
: (1 Op ‘ N ~ , ,
1) ifge 0 1 then € = s(iy) + (i) + j(p — 1) where j > 1 and s(iy) + s(i;) > 1;
. [ 1 +pOr 0 . ~ . ~
2) ifge _ 0 | + pOy then e =s(i;)(p— 1)+ j(p — 1) where s(i;) > 1 and j € N;
3) ifge p; (1) ] then e = s(i;)(p — 2) + j(p — 1) where s(i;) > 1 and j € N.
| POF
Moreover:
14) if in case 1) we have j =1 then we necessarly have Smak = |+ 1] for an index s verifying
8 € {smy--ySmrk} and [s+ 1] & {sm, ..., Smir}; moreover rs ., > 0;

2g) if in case 2) we have j = 0 and s(i;) = 1 then we have
[0l = (8, 80, 0t bt )y
where the index s verify s € {Sm,...,Sm+k} and |s + 1] & {sm,...,Sm+k}. Furthermore
Tls41] = sy > 0.
3p) if in case 3) we have j =0 and s(i;) = 1 then we have
Thol = (10, .18 ikt g b2l ol
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where the index s verify s € {sm,...,Sm+k} and |[s + 1| ¢ {sm,...,Sm+k}. Furthermore
Tls+1] = Tspipr > 0.

Proof. The proof, a direct computation, is left to the reader. O

Thanks to its explicit nature, the description of the socle filtration for (R;/Rp)" can be easily
deduced from Lemma 5.5. We have to distinguish three cases, according to the combinatoric of the
f-tuple r; the proofs are left as an exercie to the reader (see [Mol] for details).

PROPOSITION 5.6. Assume that the f-tuple verifies one of the following hypothesis:

I4). For each s € {0,..., f — 1} the condition
{ Ts 2 rLs—&-lj =1
Ts = T|s+1] € {p—2,p — 3}
is false.
Ig). The f-tuple is of the form (0,...,0,7s,,0,...,0).

Then the socle filtration, together with the extensions between two consecutive graded pieces, of

(R1/Ro)™ is described by the associated lattice %f/o.

Proof. Omissis. O

PROPOSITION 5.7. Assume that for all s € {0,...,f — 1} we have Zg;é(rs) > rs+ 1 and that the
condition
{ Ts = Ts4+1] 21
Ts = T|s41] =P — 2
is false.
Then the socle filtration for (Ry1/Ry)" is described by the lattice %1/0

Proof. Omissis. O

We finally deal with the remaining case -the socle filtration is here slightly more complicated:
in euclidean terms, the blocks s, ., for rs .. = p — 1 should be cutted by the hyperplanes
Xo+-+Xp 1= (rs,, +1)+Jor Xo+---+ Xy 1 = (rs,,, +1)+J—1 according to a condition
ON Ts, 4\ +1-

PROPOSITION 5.8. Assume there exists an index s € {0,...,f — 1} such that rs = p — 1 and
Tls+1) = 1. Up to reordering, we assume there exists integers 0 < k1 < ko such that rs,, , =p—1
for all j € {0,...,ko} and

{ L5m+3+1J7£1 if 0<j<k —1,
Plsmy+1] =1 I k1 < j < ko

Then the J-th factor for the socle filtration of (Ry/Ro)™" is described by the subspace
¥y E(FO(0 NE, + Z (Fi, (L) € Vs Nyl by) < (rs,0p 1) +J = Ok <o) T,

In particular, the socle filtration is deduced from the lattice Z;,, by cutting the k-th block by the

1/0
hyperplane Xo + -+ Xp_1 = (rs,,,, + 1) +J — Ok, <hho-
Proof. Omissis. O
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5.1.3 Application: the universal representation contains infinitely many compact in-
ductions. As annonced in the introduction of §5 we are able to describe a G-equivariant natural
injection

c—Ind%,V < 7(r,0,1)
for r ¢ {0,p — 1} where V is a convenient K Z-subrepresentation of 7(r,0,1)|xz. An analogous
result has been discovered by Paskunas in an unpublished draft.

The proof can be outlined as follow. Via the isomorphism of Proposition 2.9 we define the repre-
sentation V' as a suitable subrepresentation of R;/Ry: by Frobenius reciprocity we get a morphism
¢ : c—Ind%,V — 7(r,0,1). From a basis of V' we construct a convenient F,-basis for the compact
induction c— Ind?(ZV and therefore we only have to check that ¢ maps such basis into a linearly
independent family of 7(r,0, 1).

This can be easily verified combinig Proposition 3.5, Lemma 5.1 and Proposition 3.6.

We start from the following elementary fact:

LEMMA 5.9. The K subrepresentation Fil’(R;) of Ry generated by [1,Xﬂ] is naturally isomorphic
to the finite principal series Indllgo(p)xz and soc(Fil%(R;)) = Ry via the monomorphism Ry < Rj.

Proof. Obvious. O

Let V denote the kernel of the natural map
Fil%(R;)/Ry — cosoc(Fil%(Ry));

we define V' < 7(r,0,1)|xz as the homomorphic image of V via the isomrphism given in 2.9.
Therefore, by Frobenius reciprocity, we get a morphism

¢ :c—Ind%,V — n(r,0,1).
We claim that
THEOREM 5.10. Assume r ¢ {0,p — 1}. Then ¢ is a monomorphism.
Proof. We show that the composite morphism of ¢ with the isomorphism (3)
c—Ind$,V % x(r,0,1) lim (Ro @p, -+ ®r, Rot1) @ lim (Ri/Ro &, - Sr, Rut1)
nodd neven

maps an Fp—basis of c—Ind?( 7V onto a linearly independent family of the amalgamed sums on the
right hand side.
By the well known results concerning the structure of finite principal series for GLo(F,) we have

LEMMA 5.11. Assume r ¢ {0,p —1}. For an f-tuplet € {0,...,p — 1}/ such that t £ r and r £ t
the element v, € V' is defined as

S Hg[g ol ] 1, X7].

Ho€Fq

An Fp—basis V for the compact induction is described by the elements

Géﬂ,—l) (£> def [1 Ut]

" » 1 1 0
G O YT (Dh [p[ ;
1

AMEF, M EF
O ) def 1 1,n
lo: 7 Z )\ |: :| [1 Gl(()) )7l ():|
I
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wheren € N, [; € {0,...,p— 1}/ forall j € {0,...,n}, and t € {0,...,p— 1} verify the conditions
tLrandr £t

Proof. 1t is elementary and left to the reader. See [Mol], Lemma 5.13 for details. O]

We recall that the morphism ¢ is G-equivariant and the isomorphism (3) is K Z-equivariant. We
deduce the equalities

(G, () = pr(E"T(0)
oG, () = pr(F"T(0)

(GO (®) = pr(FO(0))

where we wrote pr to denote the natural epimorphisms of Proposition 3.6.
As the kernel of the epimorphism pr is known and we dispose of a suitable F,-basis of the
inductive limits h_I}n R Ope - Ope Rirl, 11_1’1)1 (R1/Ro)* Opt - Dp RfLH we conclude that the

nodd neven

elements pr(ﬂiofﬁrl)g(g)), pT(FL(llf?Jil’)i(Q)) and pr(FéO) (0)) of the inductive limits h_r}n Ry®R, - ®r,
nodd
Ryi1, h_n>1 (R1/Ro) ®R, - - - ®R, Rny1 are linearly independent, as required. O

neven

REMARK 5.12. Let U the image of the composite map obtained by ¢ and the isomorphism (3). By
the proof of Proposition 5.10 the reader can easily describe, in terms of the lattices - - - Sope %ﬁ;l,
the inverse image of 0 by the natural epimorphism pr of Proposition 3.6.

5.2 The structure of the amalgamed sums

We are now ready to describe two blocks R}, /R and R;_,/R; _, should be glued together. We
will see that such glueing is more or less a formal consequence of the geometric interpretation of
the amalgamed sums, as annonced in the introduction of §5.

Like in section 5.1 we will give the detailed proofs for the positive case: the negative part is
deduced analogously.

First, we want to understand the image of an element FIEan)l (lpy1) € RYEL (vesp. Fl(lln)

coylbgy N

(ln—i-l) €

el b
pos

R, ) via the projection (pry,41)P° (resp. (prn41)"*®) of Lemma 3.5.

LEMMA 5.13. Let n € Nxj. The image of the element Fl(oojn) (L11) € R/}, via the projection

"7ln

priy is described as follow:

1) Ifeitherl,,; #0orl,,; =0 andl, £ r then
0s 0,n 0,n
Tt (g1 )PP (FL™) (Lyan)) = Tt (B, ()
2) Ifl,,1=0,1,=randl, ; >p—1—r then
r 0s 0,n 0,n—2 S 0,n—2
(=D rn )P (FC") (Ls)) = B (FO™ ) (loi—p = 1= 1) +0mp 18y, po1th S (B

LO:'“J

in—

3) Ifeitherl, ;=0,l,=randl,  2p—1—rorl,,;=0andl, <r then

(pra )P (FO™, (1,41)) = 0.

lov"'in

Proof. Assertion 1) is clear by Lemma 5.1. We assume now that [,, . ; =0 and [,, < r. Thus,

F ) = (FD)EHPES Y (1)

LZoEXERELP 200 in—1 7
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so that we get the following equality in the amalgamed sum --- @ R R:Lr e
0, - 0,n—1
(pras1)P (B (0)) = 1y o priy o (=T P (=D (F" Y (1,)).

In order to get the statement, we are now left to describe

(T )P (B D (L)),

Let assume n > 2 (the case n = 1 is treated in an analogous way and is left to the reader). By the
characterisation of the operator 7, we have

(T, P (R (1,)) =0

n Loyl 1 V=

if [, # r, while, for [, = r, we have

(T )P ((E" D @,)))

LO?"'7,n71 -

n—2 1 1 0 1 1
S s ofp| ) |0 T aET 0T xe -
; j An—1€F,

An—1€Fy

r\ o7 1 0 o 1 4
(z) Z ()‘;J ) [ R ] [1, X"y Z (A2 )ln_ﬁzﬂ]_
N i€Fq j
By Lemma 3.1, the quantity

_1 .
5
An—1€Fy

is non zero (indeed assuming the value —1) if and only if lpy1+r—i=0modg—1landl, +r—i#0.
The result follows. ]

The result concerning the negative part is similar

Fl(llﬁ)l (lyy1) € R, via the projection

LEMMA 5.14. Let n € Nx1. The image of the element
pry<f is described as follow:

1) Ifeitherl,, #0orl,,; =0 andl, £ r then

7Tn+1(p7“n+1)neg( Lyl LI,?,,_

2) Ifl,,,=0,l,=randl, > p—1—r (the latter condition being empty if n = 1) then

r ne. 1,n ne 1,n—2
(=D prne)"S(F) (L)) = 0 (2

seroin T in—2

(Lyo1—2 = 1= ) Hopp1dl, b (B2 (0));

117---7,7172 -

3) Ifeitherl,  =0,1, =1 andl, | # p—1—r (the latter condition being empty if n = 1) or
lyyy =0 andl, <r then

(prn+1)pOS(F(Ln)l (Lh41)) = 0.

L0l

Proof. 1t is analogous to the proof of Proposition 5.13 and it is left to the reader. O

Interpretation in terms of euclidean data. We dispose of a canonical F,-basis for the rep-
resentation - - - @ p+ Rff 1, Which is obtained in the obvious way by an induction from Proposition
3.5 and Lemma 5.1.

Exactly as we did in §5.1 we have a natural way to associate an element of such canonical basis
to a point in R/: again, we obtain a lattice, which we will denote by - - - DB g %,irl.
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FIGURE 9. Again, the glueing and the fractal structure.

In such euclidean setting Proposition 5.13 is clear: it tells that lattice - - -&® s %:{ 1 is obtained as
the union of the lattice ‘%):H /n, associated to R ,/R} and the image of the lattice - - - @ z a0
associated to the amalgamed sum - - - @ p+ , R;Lll (which, inductively, can be assumed to be known)

by the traslation
R/ - R/ (12)
()i = (@i + " (0 = 1= T{in_1)) + D" |i4n))-
Notice that in particular the lattice - - - Dot , ;| is glued inside the F}*(0)-block of R e
We stress again in figure 9 the glueing and the fractal structure for f = 2 (noticing the glueing
of --- Dyt % | inside the Fﬁ(n) (0)-block of ,%’;H/n).

The evident analogous considerations for the negative part --- @©,- %, | are left to the reader.

REMARK 5.15. Notice that if f = 1 then it follows directly from Propositions 5.13 and 5.14 that
the Ko(p)-structure (and the extensions between two consecutive graded pieces) of the represen-
tations ...gs R} ., are given by the associated lattices - -- ©ge %5 1. In particular, each of these
representations has a space of I invariants of dimension 1.

By remark 5.15 we can assume f > 2. In the next proposition we describe the socle filtration (and
the extension between two consecutive graded pieces) of the Ky(p)-representations - - @ R R;{ 41

for n > 1; the corresponding result for --- @ R R, | is similar and left to the reader.
The euclidean leitfaden which we are going to follow in order to prove the main result given in
Proposition 5.16 is the following. As --- Ort Rt | is a Ko(p)-subrepresentation of - - - DBr+ R:{H

the only thing we have to check is the following:
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each of the J-th cutting hyperplanes Xo + -+ Xy_1 = p" (1|45 + 1) + J of the lattice
Jr
’%n—&—l/n
Ay
Note that, as the cutting hyperplanes are parallel, we can assume J = 0.
Fix n > 1 and define

lies strictly below ® any of the J — 1-cutting hyperplanes of the lattice - - - D p+ ,

-1

an_l(p —-1- T|_s+n—1j) + pans—s—nJ
s=0

def

M, &

(so that the hyperplane Xo+---+ X f—1 = M, contains the image of the point 0 via the translation
(12)).
THEOREM 5.16. Let n > 1 and consider the K(p)-representation - - - D g+ R;{H.

The socle filtration and the extensions between two consecutive graded pieces are described by
the associated lattice - - - D g+ %;[H, with the conventions of section §5.1.2 and Propositions 5.6, 5.7

and 5.8 concerning the lattice associated to the Ko(p)-structure of (R1/Rp)™.

Proof. By the eucildean interpretation of the Ko(p)-structure of - @®p+ R, and an immediate
induction we see that it is enough to prove the inequalities

1) forn >3
p"(rsy + 1) < M, +pn_2(7’51 +1)

for any all indexes sg,s1 € {0,...,f —1};
2 for n =2 and sg,s; € {0,...,f—1}

p2(7’50 +1) < My+ (rs;, +1)—0

where ¢ € {0,1} is nonzero if and only if either the f-tuple r verifies the hypothesis Ip) of
Proposition 5.6 and s; = s,, or the the f-tuple r verifies the hypothesis of Proposition 5.8
S1 € {Sm+k17 - 73m+k0}-

3) ifn=1

p(rsy +1) < M.

Inequality 1) is immediately verified, and 2), 3) are trivial if f > 3 or f = 2 and (r9,71) ¢
{(p—1,0),(0,p—1),(p—2,0),(0,p — 2)}. Notice that if f =2 and (rg,m1) € {(p—1,0),(0,p—1)}
then U, = {0} so that it sufficies to prove inequalities 2) and 3) only for sy = Sp41, i.€. rs, =0,
which is true. The remaining case f = 2 and (ro,71) € {(p —2,0), (0,p—2)} is trivially checked and
the proof is complete. O

6. Appendix A: Some remarks on Witt polynomials

The aim of this appendix is to collect some technical results concerning Witt polynomials. After
a section of general reminders (§6.1), we will treat in detail the case of the universal polynomials
for the sum and the product (§6.2 and §6.3). In section §6.4 we study the Witt polinomials of a
certain power series in the ring W (F,): in this situation it is more complicate to keep track of the
exponents of such polynomials. We are therefore led to introduce the notion of “pseudo homogeneity”
(definition 6.11), a weak condition which nevetheless gives us a small control, sufficient for our aim
(see also Proposition 7.4 and 7.5).

3if f =2 and n = 1 we will see that, in few cases depending on the f-tuple r, the J-th cutting hyperplane Xo + - - - +
Xs—1=p("|nss) + 1)+ J of Ry /R} coincide with a J-th cutting hyperplane for Ry. A direct check shows that the
Ko(p)-structure is the desired one.
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6.1 Reminder on Witt polynomials

The description of the socle filtration for the aforementioned representations of GLa(F') relies cru-
cially on the behaviour of the universal Witt polynomials. After some generalities, we focus on
specific situations related to the study of the action of lower unipotent, diagonal and upper unipo-
tent matrices in GLao(OF).

For n € N the n-th Witt polynomial W,,(X) € Z[Xy,..., X, is defined by
Wn (&) d:ef Z X’Lpnfzpz
i=0

As the ring endomorphism

1 |
Z[;][X(), s 7Xn] — Z[E][X()? e Xn]
Xj — Wj(XO, - ,Xj)

is bijective, we get a family of polynomials My(Xy),..., M,(Xo,...,Xp) € Z[%HXQ, ..., Xy] which
are uniquely determined by the condition:

M;(Wo(X), ..., Wn(X)) = Xj.

They are of course described inductively by

1 _ e "
M, = E(Xn — " My (X)P — - — pMi(Xo, X1)P — Mo(Xo)"").

The following lemma let us deduce the universal Witt polynomials describing the ring structure
of W(F,):

PROPOSITION 6.1. Let ® € Z[(,&]| be a polynomial in the variables (,£. For all n € N there exist
polynomials ¢y, € Z[Xo,...,Xn, Y0,...,Ys], uniquely determied by the conditions

Wi(do, ..., 0n) = P(Wp(Xo, ..., Xn), Wn(Yo,..., Yy)).

Sketch of the proof.. The proof is constructive: we considering the commutative diagramm

~

;

Z(2)[Xo, ., X, Yo, Vo] P22 Z[A[X, o, X, Yo, V)

Z[;][Xo, .- ., Xn] = Z[%}[Xoj.--,Xn]

where f : Z[2][X] — Z[L][X,Y] is defined by f(X;) & ®(X;,Y;) for any j € {0,...,n}; the
polynomial ¢,, is then given by
def

(X, Y) = (wn ®wy)o f Owgl(Xn)-

The fact that such ¢,’s have integer coefficients is then an induction on n. O

We apply then Proposition 6.1 to the polynomials
(¢, 8) =¢+¢&, (¢, &) = ¢¢

to get the universal polynomials for the sum and the product respectively. They will be denoted as

o1
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Sp, Prod,, € Z[Xy,...,Xp,Yy,...,Y,] and are described inductively by

1 n— T
Sn(X,Y) = E(Wn@) F W (Y) = p" 18, 1 (X, Y)P — - = pSi (X, YY) — 55(X, Y)P)
Prod,(X,Y) = ;L(WAX)WTL(Y) — " Prod,_1(X,Y)? — - — pPrody(X,Y)""" — Prody(X,Y)"").

In section 4 we are interested in such operations as either rise to the N-power or the sum of NV
elements. We can of course adapt the arguments of Proposition 6.1 (or, use an induction on N) to
determine the universal Witt polynomials associated to such operations. We will write Pot (X) €
Z[Xo,..., X, SN(X(1),...,X(N)) € ZIX(1)g,...,X()p,..., X(N)o,...,X(N),] for the n-th
Witt polinomial associated to the rise to the N-power and the sum of N elements respectively. We
have then the recursive relations:

1
Pot;} (X) = — (W (X)™ = p" " Poty 1 (X)P —
p

.- = pPott (X)P"" — Pot) (X)P")

N
Sp(X(1),..., X(N)) = pln(z Wa(X(5)) =" 1S (X (1), ..., X(N))P —
j=1

e pSN(X (1), XN = SN (X (1), X (N)P.

6.2 Some special polynomials-I
In this paragraph we collect some thechnical results concerning some Witt polynomials which appear

pOF

1 ] ) for the representations of §4.2

naturally in the study of the action of 10 (resp. 1
Or 1 0
(resp. of §4.1).

For n € N we define S,,(X,Yy) € Z[Xy,..., Xn, Yo| as the specialisation of S,,(X,Y) at ¥ =
(Y0,0,...,0,...). We recall

LEMMA 6.2. For n € N the polynomial S,,(X,Y) is an homogeneous polinomial in X,Y , of degree
p" if we define the elemets X;,Y; to be homogeneous of degree .

Proof. Elementary. O

Thus, if we set
= def

Sn(X,Y0) = Sn(X, Y0) — Xn
we see that §j (X, Y)) is a polynomial in Z[Xy, ..., X,,—1, Yo, homogeneous of degree p". Moreover,
as §n(X, 0) = 0 we see that gn(X, Yy) belongs to the ideal generated by Y.
We define inductively the following family of automorphisms: we put

50+ Z[Xo, Yo] — Z[Xo, Yo)

X() — XO — Yb
Yo — Yo
and, assuming s;_1 : Z[Xo,..., X;_1,Yy] = Z[Xo, ..., X;_1, Yp] being constructed, we define

s;: Z[Xo, ..., X;,Yo] = Z[Xo, ..., X;, Y]
Xj = Xj —s5-1(55)

By their very construction, the s;’s are graded homomorphisms; in particular s;(.S;) is homo-
geneous of degree p’, and belongs to the ideal (Yy) inside Z[Xy, ..., X, Yy]. We can actually prove
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the following result

LEMMA 6.3. For any n > 1 we have

Sn—l(Sn(Xy YO) - Xn) = _(Sn(57 _Yb) - Xn)-
Proof. The case n =1 is elementary:
1 1
50(S1 (X0, X1, ¥0)=X1) = so(J (XG+Ye'—(Xo+30)") = (Xo=¥0)"+¥§'=XG) = —($1(Xo, X1, Y0) = X3).

Concerning the general case, we write

1 n n _

Sn(Xoy .., X, Yo) — X = E[Xg +Y7 = p" N (S (XL Yo)P = XP_ ) — .. (13)

n— n—1 n
= p(SU(Xo, X Yol - XD ) = (Ko + Yo (14)

For j € {1,...,n — 1} we have

. L - .
5i(Sj(Xo, -, X5, Yo)' 7 = XT ) = (55-1(85(Xos - -, X5, Yo) — Xj) 4 55 (X)) — (s5(X))"

=X — (X = 55-1(8(Xo, . X, Vo) = X)P

n—j

n—j
:Xf — (X + 5;(Xo,...,X;,—Yo) — X))
n—j n—Jj
= —(55(Xo,..., X5, Yo" T =X ).
As 8p—1(Sn(Xo, -+, Xn, Y0) — X)) = 80(Sn(Xo, - .-, X, Yo) — X)) we are left compute
1 n n _
sn(ﬁ[xg + Y —p" (S (X, Yo)P — XE ) — ...
n— n—1 n
- — p(S1(Xo, X1, Yo)? = XU )= (Xo+Y)P]) =
1 n n _
— [(X(] — Yo)p + }/Op - pn lsnfl(Snfl(X’ }/O)p - ngl) T
) — (Xo)""]
n—1 n—j

and the result follows as s;(S;(Xo, ..., X;, Yo)?" ~ — X7 ) =—(5(Xo,..., X, —Yo)P" 7 — X7
for all j € {1,...n —1}.

n—1

= ps1(S1(Xo, X1, Yoy — X7

We will also need a cleaner statement concerning the monomials of S, (Xo, ..., X,, Yo):

LEMMA 6.4. For all n > 1 the coefficient of the monomial Xgil .. .ngYo appearing in the devel-
opment of the universal Witt polynomial S, (Xo, ..., Xn, Yp) is 1.

Proof. The proof is again an induction on n: the case n =1 is evident.
For the general case, consider

1 u n— n
= E(Wn(l) HYY = p S (X V)P — e = pSHXL Vo) = So(X, Vo).

Sn(X, Yo)

A monomial of the form X} -1 .XﬁjYO lies therefore inside

1 _
—E(an(Xo,---7Xn—1,Y0)p—Xﬁ_})

and the inductive hypothesis yields
Sn1(Xoy -, X 1,Y0) = X1 4+ XE7H XTIV + 2(Xo, ., Xo, Y0)
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where z(Xo, ..., Xp—2,Yy) € Z[X,...,Xn—2,Yp] doesn’t contains the monomial Xgil . Xﬁ:éYO.
Finally, we have

o B o
(Snc1(Xoye o, X, Yo)P = > 2o Xi (KB XPTYo) (@(Xo, -, X, Yo))F

iljlk!
i+j+k=p
0<4,5.k

and the conclusion follows. O

6.3 Some special polynomials -IT
In this section we deal with some Witt polynomials which appear naturally when we study the
14+ pOF 0

0 1+ 0p | Recall that

action of the diagonal matrices

LEMMA 6.5. Let n € N. The n-th universal Witt polynomial of the product Prod,(X,Y) is an
homogeneous element of (Z[Y])[X] (resp. (Z[X])[Y]) provided that X; (resp. Y;) is homogeneous
of degree p? for any 0 < j < n.

Proof. Elementary. O

REMARK 6.6. In the present paragraph, we will be concerned with the image in F,[X,Y] of
the universal Witt polynomials S,(X,Y), Prod,(X,Y). Such images will be denoted again by
Sn(X,Y), Prod,(X,Y), in order not to overload notations. As p -1 = 0 multiplication by p is
the composite of Frobenius and Verschiebung.

For N € N, let 2/ = (A\},...,Xy,0...,0,...) € W(F,) and let @ = (ag,1,...) € W(F,); we
need to describe
2 +pa-2 mod pN Tt (15)
in terms of the universal Witt polynomials.

LEMMA 6.7. For 0 < j < he j-th Witt polynomial of the development of (15) is an homogeneous
element Q;(N, ) of degreepj in (Fplao, ..., a;j-1])[Xy, ..., N;] if we define, for 0 < s < j, X to be
homogeneous of degree p°.

Proof. 1t is a strightforward consequence of Lemmas 6.2 and 6.5. More precisely, from 6.5 we see
that

p-Z -a=(0,Prody(Ng,ap), ..., Prod;_1(Ng, ..., A% _1,00,...,08_1)...)

jth entry

where each Prodj_1(), a)P is homogeneous of degree p? (provided that )\, is homogeneous of degree
p® for 0 < s < j—1). Furthermore, Q; (), a) is the specialisation of S;(X,Y) at X =2 Y =p-2' -«
and we use Lemma 6.2 to get the desired result. O

As we did in §6.2 we define (for 0 < j < N)

Q; = Qi(N,a) — X,

For j # 0 it is a polynomial in (Fy[ag, ..., a;-1])[Ag, - .., Aj_;], homogeneous of degree P
We can finally define, inductively, a famlly of rlng homomorphisms: we let

90 : Fp[Xg] — Fy[ o]
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be the identity map, and, assuming g;_; being constructed for j > 1, we define

. / / /
q; Fp[ 0,...,/\j,a0,...,aj,1]—>Fp[ 0,...,)\]-,(10,...,01]',1]

by the condition
A= N = qi-1(Qy)
Q1 — Q-1
QJ|Fp[,\6,...,,\j,1,ao,...,aj,z] = qj—1

(and the obvious formalism: if j = 1 we just forget a;;_o from the formulas).
We deduce:

LEMMA 6.8. For 0 < j < N, the polynomial qj_l(()j) is homogeneous of degree p’ in \j, ..., YIRS

Proof. The morphism ¢;_1 is a graded ring homomorphism. O

6.4 Some special Witt polynomials -IT1
In this paragraph we study some Witt polynomials giving the action of [ é ﬁl)F ] (resp. [ pé’ (1) } )
F

for the representations of §4.1 (resp. of §4.2). Such study is more delicate than the previous sections
(§6.2 and §6.3) and relies crucially on the fact that we deal with Witt vectors z € W (F,) which are
NOT invertible.

We start with a general remark

LEMMA 6.9. Let N,n € N.

i) The n-th universal Witt polynomial of the rise to the N-th power PotlY (X) is an homogeneous
element of degree Np" in Z[ Xy, ..., X,] provided that X; is homogeneous of degree o’ for any
0<jsn.

ii) The n-th universal Witt polynomial associated to the sum of N elements S (X (1),..., X(N))
is an homogeneous element of degree p"™ in Z[X (1)o,..., X(1)n,..., X(N)o,..., X(N)y] if we
define X (1); to be homogeneous of degree p’, for any | € {1,...,N}.

Proof. Elementary. O
As in §6.3 we have the following

REMARK 6.10. In the present paragraph, we will be concerned with polynomials with coefficients
in F), obtained by reducing modulo p the coefficients of the universal Witt polynomials S’év (X,Y),
Potl(X), S,(X,Y), Prod,(X,Y). In order not to overload notations, such images will be denoted
again by Sf]V(X, Y),.... Asp-1 =0, recall that multiplication by p is the composite of Frobenius
and Verschiebung.

Fix 0 < m < n and consider the ring Fy[ Ay, ..., Ay).

DEFINITION 6.11. Let M € N. A monomial AJ;* ... \5" € FplAm, ..., A\y] is said to be pseudo-
homogeneous of degree M if the following holds:
there exist an integer L € N and integers ;(j) for j € {1,...,L}, 1 € {m,...,n} such that

i) foralll € {m ...,n} we have

L
a =Y ' Bi(j)
=
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1) we have
L L
(S Bn) 4 7S Bali)) < M.
j=1 j=1

A polynomial in Fp[Ap, ..., \,] is said to be pseudo-homogeneous of degree M if it is a sum of
monomials each of which is pseudo homogeneous of degree M .

The following result is imediate

LEMMA 6.12. Fix m,n as above. Then:
i) If P1, Py € Fp[Ap, ..., \s] are pseudo-homogeneous of degree M, M, respectively, then Py Ps
is pseudo-homogeneous of degree My + Mo.

it) if Py € Fp[Am, ..., Ay Is pseudo-homogeneous of degree M, then P} is again pseudohomoge-
neous of degree Mj.

Proof. Omissis. O

REMARK 6.13. If P € Fp[\p,, ..., \,] is pseudo-homogeneous and we specialise P on an element of
F’;_mH, we see that the integer L in definition 6.11 can be assumed to verify L < f.

We are now ready to focus our attention some Witt vectors in W (Fy).

6.4.1 The negative case. For 1 < m < n, let z = (0,...,0, Ay s An, 0,000 ) and [y] o

(1,0,...) be elements of W(F,). We are interested in the Witt development of
N . .
A4 mod prH (16)
5=0

def

where N = |%tl] For j € {m,...,n} write finally U;(A, ) € Fp[Am, ..., A}, u] for the j-th poly-
nomial of the Witt development of (16) and put

il def

Uj(A ) = Uj — A

We notice that l~]j =0ifm<j<2m—1 and ﬁgm = )\%’L)m.

We have a rough estimate of the degree of the U,

LEMMA 6.14. Let h € {2m,...,n}. Then ﬁh € Fp[Am, ..., An—1, ] and is pseudo homogeneous of
degree p — p™(p™ — 2).

1 1 .
Proof. TEZ < NET ... AET,0,. .. ) then we recall that Pot?“(%} is homogeneous of degree (5 + 1)p"
(if \s is homogeneous of degree p*). Thus the Witt development of 2/7![u])/ has the form

. pm(j+l)+l

i . i+1 mg . pm(j+1) i1 mj mj
S = (0,0, Poth ™ ) (Y L ot T L ) () )
positionm(j+1) position m(j+1)+1
dP Jj+1 )\ij )\ij 7 pmHFL h fd : I+m(j+1) d v i
and Pot; " (Nm 5., A ) (1) is homogeneous of degree (j + 1)p and actually is

pseudo-homogeneous of degree (j 4 1)p!™™.
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Thus, if a(j41)m(5), ap(j) is an h — (j + 1)m + 1-tuple of integers, the polynomial
h—=(j+1)m ‘
1 mj j m( +1)+1 .
| A AR O AU A 172} S LRI ERIC)
1=0

is pseudo-homogeneous of degree
(G + D@ agrm() + -+ 0" an ().
By Lemma 6.9 we see that a monomial of S}JLVH(X(l), ..., X (N +1)) has the following form:

h h
%d:ef H Xlo(l)alo(o) e H XlN(N+ 1)alN(N)

lo=0 InN=0
where
h h
> p0an(0)+ -+ D pNay (N) =p"
lo=0 IN=0
As Uy, is the specialisation of S(N+1) at

(X + D)jefo,.ny = F ) je0,.80

we see in particular that U, € Fphmy .oy An1, ).
Assume now that

1) for A > (j + 1)m we have a;;(j) = 0 for all [; < (j +1)m
2) for h < (j + 1)m we have a;,(j) = 0.

Then Lemma 6.12 shows that the specialisation of X is pseudo-homogeneous of degree

N h
dEDGHDC D pIMa())).
Jj=0 i=(+1)m

Letting

h
i = Y P Ma)
i=+1)m
for 7 €{0,...,h} we get
N

d=p" > (" - (j+ 1)z,
=0
and the conclusion follows from Lemma 6.15 below.

LEMMA 6.15. Let j € {0,..., N} and let

h
v [0 I .05 o
lo=0 In=0

be a monomial of S(NH)(X(l), L, X(N+1)).
If a;;(i) = 0 for all i # j and l; € {0,...,h} then

X = Xu(j).

Proof. An immediate induction on h shows that if we specialise S} (NHL) 5

(Xo(4), ..., Xn()) = (0,...,0)
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for i # j we get
SN, . .,0,X(4),0,...,0) = Xu(5)

and the claim follows. O

We finally introduce a family of ring homomorphisms, for m < j < n,
uj - Fp[)\m; ey )\j,,u] — Fp[)\ma cey )\j,,u]

defined inductively as follow: w,, is the identity map and, assuming w;_; being constructed, we
define u; as the unique extension of u;_1 to Fp[Ap,, ..., Aj, u] such that

)‘j — )\j — uj—l(ﬁj)-
We have the
LEMMA 6.16. Let h € {2m,...,n}. Then uh(ﬁh) is pseudo homogeneous of degree p" — p™(p™ — 2).

Proof. Arguing by induction, we can assume that u;()\;) is pseudohomogeneous of degree p for all
l€{m,...,h—1}. As U, is pseudohomogeneous of degree pl — p"(p™ — 2) by Lemma 6.14, the
claim follows from Lemma 6.12. O

6.4.2 The positive case This section is essentially a re-edition of §6.4.1, where we take m = 0.
The interest of this case will appear in §4.2, where we give a description of the Ky(p)-representations
Ri.

Let (Xo,...,An,0,...) € W(Fy).
We are interested in the Witt development (Up (Ao, 1), U1 (Ao, A1y 1) -« s Unt1(Xoy - ooy A1, 1), 0, .. )

of
n+1

2(1+plplz) ™ = Pl mod p™t2.
=0

We check immediately that Uy = \g and Uy = A\ + )\(2]p,u.

def

We define for h =0,...,n+1 ﬁh = Up — M. The following result is the analogous of Lemma
6.14

LEMMA 6.17. Let h € {1,...,n+1}. Then Uy € F,[ Ao, ..., An_1, p] is pseudohomogeneous of degree
h
p"—(p—2).

Proof. The proof is completely analogous to the proof of Lemma 6.14 and left to the reader (see
[Mol] for details). O

As in section §6.4.1 we define inductively, for h = 0,...,n + 1, the ring morphisms
wp t Fp[Xos oo A i) = FplXo, .., Ap, g
by the condition uy(\p) L V- uh_l(ﬁh) for h > 1 and up & id. Then
LEMMA 6.18. Let 1 < h<n+ 1. Then uh(ﬁh) is pseudo homogeneous of degree p" — (p — 2).

Proof. As for Lemma 6.16 it is a consequence of Lemma 6.12 and Lemma 6.17. O

Still others remarks on some universal Witt polynomials. In this paragraph we are going
to pursue the technical computations of §6.4.2. Indeed, the structure of the quotients Ry, ,/Rp (cf.
§5.1) can not be deduced simply from Lemma 6.18, as for Ry ;. We should instead look more closely

the structure of the polynomial U1 and u, (U, + 1) (the notations being the same as for §6.4.2).
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The following description is deduced as in the proof of Lemma 6.14. Let z = (Ao, ..., \p,0) €
W, 4+1(Fy) and write
n+1

> P = W )
for U; € Fylho, ..., A\j, u]. We recall that Uy is obtained by specializing the universal polynomial
SpH(X(1),..., X(n+2)) at
X(G+1) = (0,....0, (Poth ™ )P (). (Pot] T )P ().
position j position j+1

We recall moreover that a monomial X of S7™(X(1),...,X(n +2)) has the form

h h
¥ = H Xlo(l)alo(o) A H Xln+1 (n + 2)azn+1(n+1)
lp=0 ln+0=0

where the integers a;, (i) verify

h
> pa (0) + -+ Z prtiay,, (n+1) =
1o=0 Int1
Therefore a monomial Ag® - - - - - /\ " issued from Uj, verifies
n+1 h
pra () Z (G+1) Zp’ Tai(4)) =p" =Y (0 — (j+ 1),
j=1

where we have set

h

ef j— 1 .

2, Y P a))
i

We focus our attention for the case h = n + 1, obtaining thus the following

LEMMA 6.19. A monomial of fjn+1 has the following form
n (0 n+1(1 n—
A (0)+pan+1(1) AomtLL Ag0

whose the exponents verify the following properties:

1) we have an( )€ {0,...,p—1} and ap41(1) € {0,1},
2) letting x; = Z:LJFJI p*Ja;(j) we have

h
ij5aj an(0) + any1(1 Z -(+1)

Jj=1

3) if ant+1(1) =1 then the monomial has the form
n+1

NN

Proof. The fact that a,(0) # p follows from the fact that in the polynomial S”+ the coefficient
of X,(1)P is zero (the proof is the usual one: see Lemma 6.15). Assertion 2) is deduced from 1)

(and the fact that f > 2). Assertion 3) follows noticing that (Pot2(z))P = 2)\75n+1)\ﬁ + = where
$€Fp[>\0,-~a)\n—1]- L]

We recall the ring morphism w, : Fy[Xo,..., A\pp] = Fplho, ..., Appu] (cf. 6.4.2). If zf;)_l eN
deduce the following
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~ .(s)
LEMMA 6.20. In the preceeding notations, a monomial issued from u,(Uy+1)"»+1 has the following
form

n (s s
AZ" ALY B (D \BIT©) (B o

where the exponents verify the following properties:

1) we have
n+1n+1
s(Bo +p" B (1) +Zzﬂs B) +p"(BY(0) + BYL (1) <p il = SN0 - (G + 1) Ai()
Jj=1 Jj=11i=j

for suitable integers A;(j) € N;
2) we have A;(j) = 0 for all couples (i, j) if and only if iii)rl = 0;

3) we have 0 < B}, (1) < AP, (1) <),

Proof. By the argument appearing in the proof of Lemma 6.14 (see also [Mol], Lemma 6.17) we

see that a fixed monomial AG® - --- - A% issued from Un"jll is pseudohomogeneous of degree d e
prtLil n+1 ZnH anjl (Pt =+ 1))A (7), where the integers A;(j) € N are not all equal to zero,
(s)

except if 4,7}, = 0. By Lemma 6.19 we see moreover that a monomial issued from Un’fll has the
form

(AAD) A1 (DA @ pyem-1 | yao

n—1
and A,41(1) < iiﬁl. Recall now that u;(\;) is pseudohomogeneous of degree p/ (Lemma 6.18) and

Un(An) = A\ — un_l(ﬁn), where U, € Fy[Xo, ..., An—1, ). It follows then from Lemma 6.12 that a
monomial issued from w,(Ag° - - - - A9m) has the form

. (s) (s)
A D R
for convenient integers 37(18-217 BY (0), Bj, satisfying Bfl‘izl(l) < Affll(l) and, being pseudohomoge-
neous of degree d, it verifies

n n+1n+1
S ps(8) <l - S0 S0 — (G + 1) AG).
7=0 7=11=j

7. Appendix B: Two rough estimates

In this appendix use the material of appendix A to estimate the behaviour of (the reduction modulo
p/ — 1 of) some elements which appear naturally in the study of the socle filtration for the repre-

sentations R:fﬂ, In d?gi+l)1, etc...

The first tool is discussed in §7.1: it is an elementary description of the function s giving the
cipher sum of the reduction modulo pf —1 of a natural number. In §7.2 the properties of the function
s and the results on Witt polynomials stated in §6 will be used to describe in detail some explicit

vectors of the aforementioned representations (Propositions 7.3, 7.4 and 7.5).

7.1 Remark on the proof of Stickelberger’s theorem

In this section we recall the construction and the properties of a certain function s : Z — N which
appears in the proof of Stickelberger’s theorem.
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If p is a prime of Q({;,—1) lying above p, the reduction modulo p, Z[(,—1] — F, admits a
multiplicative section

wy : Fy — Z[; 1]
which induces an isomorphisms on the group p4—1 of ¢ — 1-th roots of unity. If 8 is the prime of
Q(¢4—1,¢p) lying above p, we define a function s : Z — N by
s(n) dof valp(g(w, ™))
where valp denotes the B-adic valuation and g(w, ") denotes the Gauss sum of the character
"IFS = g1
We need to modify slightly this function as follow:
s:N—-N
s(n)if eithern Z Omodqg—1 orn =20
n— .
f(p—1) otherwise

The following lemma is then easily deduced from the well known properties of the function s (cf.
[Was], §6.2):
LEmMA 7.1. Let n,m € N. Then:
a) 5(0) =0 and s(1) = 1;
b) 0 <s(m+n)<s(n)+s(m);
¢) s(pn) = s(n);
)

if0<n<q—1and (aog,...,ar_1) are the cyphers of the p-adic development of n, we have

=9

s(n) =ap+ar+---+ap_1.
In particular, s(n) < n for any n € N, with equality if and only if n € {0,...,p — 1}.
We can improve the statement of b):

LEMMA 7.2. Let by,...,by_1 € N be integers.
Then there exists integers mg, ng, where s € {0, ..., f — 1} such that:

1) for all s € {0,...,f—1}

Cs d:efbs—pms—i—nLS_lJ €{0,...,p—1};

2) we have

T
L
T
L

=2
&
3
»
I
S
M

w
Il
o
w
Il
o

3) we have

f-1 f-1
Zpsbs = Zpscs mod pf — 1;
s=0 s=0

4) we have the equality

f—1
5(2]9%5) = st —Jjlp—1).
s=0
Proof. Assume first that bs € {0,...,p — 1} for all s > 1 and by > p. There exist (unique) integers
mg, for s =0,..., f — 1 such that
i) bs+ms—1 —pms €{0,...,p— 1} for all s > 1 and by — pmg € {0,...,p — 1};
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1) we have the equality
f-1

Z bsp® = (bp — pmo) + Zps(bs +ms_1 —pms) +p Tmyy. (17)
5=0

As we work modulo ¢ — 1 the equality (17) reads
f-1

stp = (bg —pmo +my_q) + Zps(bs +ms_1 — pms) modq — 1.
s=0

If bg — pmo + my_1 € {0,...,p — 1} we get the result. If not, we only have to check that 0 <
bg — pmo + mys_1 < by (so that the iteration of the preceeding procedure eventually stops). As

_ . . s+1__
—pm1+bi+mg > 0and by < p—1we get m; < pl% and, inductively, ms11 < pzﬁ%. Thus

f-1_1
p + mo
_pm0+mf 1 —pmo+T<O
if mg > 1.
For the general case, we notice that there exists unique integers m/, such that bs+ms_1 —pms €
{0,...,p—1} forall s > 1 and bg — mg € {0,...,p — 1}. As we work modulo ¢ — 1 we get

f-1 f-1
> bep® = (bo — pmo +myp_1) + Y p*(bs + ms_1 — pmg)modg — 1.
s=0 5=0
and we are in the previous case. O

7.2 Two rough estimates

In this section we study some elements of Indgggi :21)1 which appear naturally in the study of the

(™)

socle filtration for Indgg (o +1)1 (but the results adapt immediately for the representations Rf 1)

In particular, we will be able to have a partial control of the action of Ky(p™) on Indgggz :21)1 (and
not only on the graded pieces of the socle filtration).

The following proposition holds for a fixed couple

—~

m,n) of integers such that 0 < m < n; for the

0 : Ao] 1. '
P Am] 1 } Wlth[ 1 0 in the expressions

(18) and (19). Finally we recall the definition of the F,-linear subspace W .1 of IHdKOEzn+)1)1
for a given (n+1—m)f-tuple (I,,,...,1,) € {{0,...,p— l}f}n+1_m, given in §4.1.2.

[

m = 0 case we just have to replace the matrix [

def l

PROPOSITION 7.3. Let Fm”l € #B, and N = Nmn(l ol

=n

). For m < j < nlet Tj €
F,[Am,...,A\j—1] be a polynomial of degree deg(T;) < p’~™ (where, for j € {0,...,n — 1}, we

define \j1,, to be homogeneous of degree p’), and ij be a f-tuple such that i; < l;. Finally, fix

M < p! — 1. Then the image inside Indgg:ﬂzl)lﬂ\f — M of the element x defined as

1 0 L 1 0
def Z Z )\p] 72 TpJJF ) i1 [ s ] Z ()\Tpln )l —ip [ 1 ] |:]_’ €:| (18)
j=m X\;€F, o P‘;]] 1 A €F, Pt ] 1
is contained in the image inside Ind o +1 1/N — M of the subspace
Wq,....d,)-
Proof. The technique of the proof is very simple: we fix 0 < M and n € N such that n(p—1) <

t < (n+1)(p—1). If we write = as a suitable sum of elements Fl/ the statement is proved if we

=mt

v
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check that any such element lying in the antidiagonal Xo+---+X¢_1 = N —t verifies 2/, 5 < @j+nfor
all j =0,...,f—1 (where, as usual, (zo,...,z5_1), (z(,.. mf 1) are the coordinates of F;"" | |

F;ﬁn  Via the map (5)). el
This is a long computation. If we expand each of the polynomials T;;’ff, . ,T}L", we obtain:
1 0 1 ) 1 0
Z/B’L Z Hm(l) [ % ] e Z (Aﬁn )/{n(l) [ i’n [17 €:| (19)
i€l Am€F, p™ [)‘TP}L ] 1 An€F, p WZ ] 1

where I is a suitable set of indices, 3; € F,, and the exponents «;(i) (for j € {m,...,n}) admit the
following explicit description: 4
kg = plmHiletD) oy pl=tnmall ) g
and (for a +1 < b < n)
k) = 010 4 p®)L g pf 1)1
where each li((lb)7s is the exponent of A\, apperaring in a fixed monomial of (Tb)iISS).

Recall that, by the hypothesys on the Tj’s, we have
,{7(_2)78 _{_pH?(/Z)J;i + .. b 1—- m’{'l()b)]_ < pb_mll(f) (20)

Thanks to Lemma 7.1, we have the following inequalities:

5("’$m) +p5(/€m+1) + - +pn—m5(/€n) < (21)
K(5(ly — i) + 5P AT 4o s(pl TR
(5Lt — bsr) + 5 UETED) 4 g(pl (D) )
T 8Ly — i) + s RE ) 4 p (s, — d,)) < (22)
f—1
<5y — i) + sk ) +
s=0
f—1
(5Lt — 1)) + (O (-T2 4 ps(sTED o)) 4
s=0
f—1
4 OGRS 4 (R + - p T s(R)) s (L, — ) < (23)
s=0

< 5@m - Lm) +p5@m+1) +p5(£m+1 - zm—i—l) + e +pn_m5(l.n) +pn_m5@n - ln)

where the inequality (23) is deduced from (20) and Lemma 7.1-d).
If we impose our function to lie on the hyperplane Xo + --- + X;_1 = ¢ we get a “control” on
the exponents /{Elb)’s. More precisely,
i) the inequality (21) give rise to the conditions:
s(ra) = 5(ly —ig) +s(RI) + -+ 5(k(Y) = ua(p — 1)

for a € {m,...,n — 1} and some u, € N;

. . def .
“from now on, we fix an index i € I, and we put x; = s;(4)
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i1) the inequality (22) give rise to the conditions:
s(k0) = (kP 0) 4 4 5(kP ) — W) (p — 1)
where a € {m,...,n—1},b€ {a+1,...,n} and some wg) e N;
i1i) the inequality (23) give rise to the conditions

s(x%) = w0 —o®e(p - 1)

a
where a € {m,...,n—1}, b€ {a+1,...,n}, s€{0,..., f — 1} and some véb)’s € N;
iv) condition t < (n+ 1)(p — 1) imposes finally

n—1 n—1 n n—1 n f-1
YDURIES SUCLP SRUUES DD ID I LU
a=m a=m b=a+1 a=m b=a+1 s=0

First, notice that the condition n(p — 1) < p/ — 1 imply k((lb)’s < pf — 1 for all possible choices
of a,b,s (as 5(1{:((11))’3) < [k:((lb)’s]). If k,(lb)’s(i), for i € {0,...,f — 1}, are the cyphers of the p-adic
development of /iflb)’s, we then see that iii) gives the necessary condition

ZH <vb)S

(indeed, o can uniquely written as ol = gps(1)+ @+ 1)agys(2)+- -+ agys(f—1)(1+p+
-+ p/~1) for suitable integers agps(j))-
Fix now a € {m,...,n—1}, b€ {a+1,...,n}. Working in Z/(p/ — 1), we see that
f-1
L = Zp? G) + PN = 1)) + - 4+ 5PN (G - (F = D))

Using Lemma 7.2 we see that condition i) let us deduce the p-adic expansion of /ﬂ'/,(lb):

KO(G) = KOO + -+ wOTNG = (F = D)) = pald () + B) (24
— W30+ A1) - pall )

where the integers ong) (7), Béb) (7) verify

-1

Z af B () = wil

7=0

and
-1
®)(5) = (ORI ®) () < (b),s (0)
Pa (]) sG{O‘..,]’?—l}\{j}a (Lj SJ)+/BCL (]) ~ SZ:;U(Z +wa

Similarly, condition i) let us deduce the p-adic development of k,:

ka(j) = )+ Z (lJ +b—a)) = pAa(j) + Ba(j)
b= a+1
)+ Z PAUHmal(0) + Ra () —p( D a5 +b—al) + Aa(h))
b=a+1 b=a+1
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where the integers A,(j), Ba(j), Ra(j) verify

f—1 f—1
Aa ZBOL(]) = Uq
7=0 7=0

and

n

Ra(i) = > AV +b—a)) + Balj) < ua + Zn: Z ORSC

b=a+1 b=a+1 s=0

We finally have all the ingredients to give the rough estimate of the statement. We fix a “coor-
dinate” j. A strightforward but tedious computation gives

2P ali) = 20 i)+ S RO 0) 4 9,(7) - p)

b=a+1
n n—1 n—1
Z | j+a— mJ+ Z Zpa m’% Jg+b— mj+zpa MR, ( ) p(z Qla(]))
a=m b=m-+1a=m a=m
The conclusion follows as
n—1 n—1 n n f-1
Do TR < YT et Y W)+ Y D el <
a=m a=m b=a+1 b=a-+1 s=0
and
b—1
Z /i(b)’s(O) < pb—mZ(S)
forany be {m+1,...,n} and s € {0,..., f — 1}. O

The following rough estimate will help us to understand the action of [ (1) ﬁlF ] (resp. of

1
{ 06 (1] }) on the representations in §4.1 (resp. §4.2). Apparently, the result is unsatisfactory if
F

we want to describe the K-socle filtration for the representations 7(r, A, 1), unless we impose some
conditions, depending on p, on the residue degree f (we expect a condition of the form f < %)

PROPOSITION 7.4. Let 1 < m < n be integers and consider F}" 7...l € #B; let N d:eme’n(Lm, b))
For2m < j <nletV; € Fp[\n, ..., \j—1] be a pseudo- homogeneous polynomial of degree deg(Vj) <
P —p™(p™—2) and i; be a f—tuple such that i; < l;. Finally, fix M < p™—2 and define V £, i,=0

form<j<2m—1.
The image inside Ind nﬂ)l/N M of the element x defined as

1 1 0 1 . 1 0
defz Z )\pﬂ Vpa+ ) 1[ oo ] Z (AL )lnln[ a1 ] [1,6]

P
)

coincides with the image of F(m nl .

’rn7 =n

Proof. The idea of the proof is completely analogous of that of Proposition 7.3 the main difference
being that here we are not able to give an estimate of the coordinates of the points appearing in
the development of x.
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As in 7.3 we consider an element appearing in the development of z:

L . 1 0 1 1 0
Z ()\&m)l’im(l) [ 1 ] Z ()\;’in)l’in(l) [ 1 ] [l,e].
Am€F, pAm ] 1 =y PPN 1
The exponents k, (for a € {m,...,n}) admit the following explicit description:

Kg = pLilJ K’Eba+1) + .- _{_an*CLJ K/((ln) + l(l _ z(l

and (for a +1 < b < n)
KO = OW0 4 p®)L g pf =101

. . . . ;(s)
where each li((lb)7s is the exponent of )\, apperaring in a fixed monomial of (V)" .

As each V, is pseudo-homogeneous, for each triple (a,b, s) we have
pe = B ) e+ p TP
where the integers Ba *(j) verify
/

/
b 3S (1 —m— b),s/ . —m m (S
>80 () + o7 B D) + 4 p I B 6) < @ - (0 - 2))ilY).
j=1 j=1 j=1
As for the inequalities (21), (22), (23), we use Lemma 7.1 to obtain

Y 0" s(ka) SN = (0" = 2)( Y (i)

a=m a=2m

and the conclusion follows. O

We state an analogous result in the case m = 0.

PROPOSITION 7.5. Let n > 0 and Fy") € #1151t N Nopyr(lg, - Lojr). For 1 <h <n+1
let Vi, € Fplho, ..., Ap—1] be a pseudo homogeneous po]ynormal of degree p" — (p —2) and i), < I,

def

be an f-tuple. We finally fix M € {0,...,p — 3} and put i, = <0, Voo = 1.
The image inside (Indfo(pnw)l)*/N M of the element

. , n+1 1 1 0
xEZWWW[ ]ZZ'%WTWIw-]M

MoEeF, J=1 \,CF P 1

coincides with the image of Fl(o0 n)l o

Proof. The proof is completely analogous to the proof of Proposition 7.4 and is left to the reader
(see [Mol] for details). O
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