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Invariant elements for p-modular representations of

GL2(Qp)

Stefano Morra

Abstract

Let p be an odd rational prime and F a p-adic field. We give a realization of the universal p-
modular representations of GL2(F ) in terms of an explicit Iwasawa module. We specialize
our constructions to the case F = Qp, giving a detailed description of the invariants
under principal congruence subgroups of irreducible admissible p-modular representations
of GL2(Qp), generalizing previous works of Breuil and Paskunas [BP]. We apply these
results to the local/global compatibility of Emerton [Eme10], giving a generalization of
the classical multiplicity one results for the Jacobians of modular curves with arbitrary
level at p.
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1. Introduction

Let F be a p-adic field, with ring of integers OF and residue field kF . This article is framed in
the broad context of the p-modular Langlands correspondence, aimed to match continuous Galois
representations of Gal(F/F ) over finite dimensional Fp vector spaces with certain Fp valued, smooth
representations of the F points of p-adic reductive groups.

This correspondence has first been defined in the particular case of F = Qp and the group GL2,
thanks to the parametrization of supersingular representation of GL2(Qp) (cf. [Bre03a]). It is now
completely established in the wide horizon of the p-adic Langlands correspondence for GL2(Qp)
(cf. [Col1], [Kis], [Pas10]) and admits a cohomological realization according to the Local/Global
compatibility of Emerton [Eme10].

For other groups the situation turns out to be extremely more delicate. While p-modular Ga-
lois representations are well understood, the theory of p-modular representation of p-adic reductive

Keywords: mod p Langlands correspondence, supersingular representations, socle filtration, quadratic extensions,
Iwahori structure, unramified extensions.
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groups is at its beginning, starting with the pionieristic works of Barthel and Livné [BL94], [BL95]
and recently achieved in greater generality by Herzig [Her2]. Even for GL2, recent constructions of
Breuil and Paskunas [BP] and Hu [Hu2] show a troubling proliferation of supersingular representa-
tions as soon as F 6= Qp. This phenomenon remains, at present, misunderstood.

Nevertheless, the works [BP], [Hu] highlight that the crucial point in order to understand an
irreducible admissible p-modular GL2(F ) representation π relies in a complete control of its internal
structure, i.e. of the extensions between irreducible representations of certain congruence subgroups
appearing as subquotients of π. A exhaustive study in this direction has started in [Mo1], where the
author realizes the GL2(Zp)-socle filtration for irreducible admissible GL2(Qp)-representations.

In this article we pursue the investigation undertaken in [Mo1], clarifying the internal behavior
of universal p-modular representations of GL2(F ) by means of structure theorems, showing the
prominent role of an explicit Iwasawa module. This enables us, in the particular case of F = Qp,
to describe exhaustively the space of fixed vectors of supersingular representations under principal
congruence subgroups, generalizing previous results of Breuil and Paskunas [BP]. Thanks to the
Local/Global compatibility theorems of Emerton [Eme10], we are able to generalize the classical
“multiplicity one” results ([Maz], [Rib], [Edi], [Kha]) in the case of modular curves whose level is
highly divisible by p.

We give a more precise account of the main results appearing in this paper.

Let k be a finite extension of kF (the “field of coefficients”): all representations are on k linear
spaces. From the classification of Barthel and Livné [BL94], a supersingular representation π of
GL2(F ) is, up to twist, an irreducible admissible quotient of an explicit universal representation
π(σ, 0). The latter is defined as the cokernel of a canonical Hecke operator on the compact induction

ind
GL2(F )
GL2(OF )F×σ, where σ is an irreducible smooth representation of GL2(OF )F×.

According to the works of Breuil and Paskunas [BP] and [Hu2], the representation π is completely
determined by its structure as GL2(OF ) and N representation, where N is the normalizer of the
Iwahori subgroup I of GL2(OF ).

Our first results give a realization of the GL2(OF ) and the N restriction of π(σ, 0) in terms of
certain k[I]-modules R−∞,0, R−∞,−1:

Theorem 1.1 (Corollary 3.4). There is a canonical GL2(OF )F×-isomorphism π(σ, 0)|GL2(OF )F×
∼=

R∞,0 ⊕R∞,−1 where the representations R∞,0, R∞,−1 fit in the following exact sequences of k[K]-
modules:

0→ V1 → indKI
(
R−∞,0

)
→ R∞,0 → 0

0→ V2 → indKI
(
R−∞,−1

)
→ R∞,−1 → 0

for suitable subquotients V1, V2 of a finite parabolic induction from a smooth character of the
Iwahori subgroup, depending on σ.

The second structure theorem clarifies a result already appearing in [Mo4] (Proposition 3.5) and
is concerned with the N -restriction of the universal representation π(σ, 0):

Theorem 1.2 (Propositions 3.5 and 3.6). In the notations of Theorem 1.1, we have the following
I-equivariant exact sequences

0→W1 →
(
R−∞,−1

)s ⊕R−∞,0→ R∞,0|I → 0

0→W2 →
(
R−∞,0

)s ⊕R−∞,−1→ R∞,−1|I → 0

where W1, W2 are convenient 1-dimensional k[I]-modules. Moreover, the action of the element
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0 1
$ 0

]
on the universal representation π(σ, 0) induces the k[I]-equivariant involution

(
R−∞,−1

)s ⊕R−∞,0 ∼−→
((
R−∞,0

)s ⊕R−∞,−1

)s
(v1, v2) 7−→ (v2, v1)

which restricts to an isomorphism W1
∼→W s

2 .

Here, the notation (∗)s means that we are considering the action of I on ∗ obtained by conju-

gation by the element

[
0 1
$ 0

]
(which is a representative for the only nontrivial coset of N/I).

An exhaustive control of the subquotients for the k[I]-modules R−∞,0, R
−
∞,−1 is crucial in order

to extract the most subtle properties of supersingular representations for GL2(F ). For instance, in
[Hu2] Hu gives a method to detect a subquotient of R−∞,0 ⊕ R

−
∞,−1 which essentially characterizes

a supersingular quotient of π(σ, 0) and the studies of Schraen on the homological properties of
R−∞,0, R

−
∞,−1 show that supersingular representations are not of finite presentation when [F : Qp] =

2 ([Sch]).

The k[I]-modules R−∞,0, R
−
∞,−1admit an explicit construction, which is recalled in §3.1. They are

obtained as co-limits (over N) of finitely presented modules, whose first syzygy requires a strictly
increasing number of generators as soon as F 6= Qp; in particular, they are not admissible unless
F = Qp. A first study of R−∞,0, R

−
∞,−1 has been pursued by the author in [Mo4] (by representation

theoretic methods) and in [Mo5], [Mo6] (using methods from Iwasawa theory).

In the case F = Qp the behavior of R−∞,0, R
−
∞,−1 is particularly simple:

Theorem 1.3 ([Mo1], Proposition 5.10). Let F = Qp. For • ∈ {0,−1} the k[I]-module R−∞,• is
uniserial.

This phenomenon, which is at the heart of the results in [Mo1], [Mo4], [AM], let us detect in
greatest detail the space of invariant vectors of supersingular representations π(σ, 0) of GL2(Qp)
under certain congruence subgroups.

The following result is a sharpening of the main result of [Mo1] and of [BP], Proposition 20.1:

Theorem 1.4 (Corollary 4.9). Let t > 1 and let Kt be the principal congruence subgroup of
GL2(OF ) of level pt. Assume σ = Symrk2 where r ∈ {0, . . . , p− 1}.

The space of Kt fixed vectors for the supersingular representation π(σ, 0) decomposes into the
direct sum of two k[K]-modules (π(σ, 0))Kt = (R∞,0)Kt ⊕ (R∞,−1)Kt . Each direct summand admits
a K-equivariant filtration whose graded pieces are described by:

(R∞,0)Kt : Symrk2—indKI χr+2det−1—indKI χr+4det−2— . . .—indKI χr—Symp−3−rk2 ⊗ detr+1

(R∞,−1)Kt : Symp−1−rk2 ⊗ detr—indKI χ−r+2detr−1—indKI χ−r+4detr−2— . . .—indKI χ−rdetr—Symr−2k2 ⊗ det

where we have pt−1−1 parabolic inductions in each line and the algebraic representation Symp−3−rk2⊗
detr+1 in the first line (resp. Symr−2k2⊗ det in the second line) appears only if p− 3− r > 0 (resp.
r − 2 > 0).

We recall that for any n ∈ N the natural GL2(Fp)-representation Symnk2 is viewed as a
GL2(Zp)-representation by inflation and that the smooth character χn of the Iwahori I is defined

by

[
a b
pc d

]
7→ an mod p. One can indeed prove that the GL2(Zp) socle filtration for (R∞,0)Kt ,
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(R∞,−1)Kt is obtained by the evident refinement of the filtration described by Theorem 1.4 (cf.
Corollary 4.9).

The statement of Theorem 1.4 is deduced from Theorem 1.1, through a careful study of the Kt

fixed vectors of the Iwasawa modules R−∞,0, R−∞,−1. As the latter are unserial, their Kt fixed vectors
can be easily recovered with a direct argument on Witt vectors (cf. Proposition 4.2).

In a similar fashion, we detect the fixed vectors for the congruence subgroup It, which is defined
as the subgroup of Kt−1 whose elements are upper unipotent modulo pt:

Theorem 1.5 (Corollary 3.9, Propositions 4.4, 4.5). Let t > 1 and assume σ = Symrk2 for r ∈
{0, . . . , p− 1}.

The space of It fixed vectors for the supersingular representation π(σ, 0) decomposes as (π(σ, 0))It =
(R∞,0)It ⊕ (R∞,−1)It . Each direct summand is a k[I]-module admitting an equivariant filtration
whose graded pieces are described by:

χr+2det−1 χr+4det−2 . . . χr

(R∞,0)It : χr

vvvvvvvvvv

HHHHHHHHHH ⊕ ⊕ ⊕

χr−2 det χr−4det2 . . . χr

χ−r+2detr−1 χ−r+4detr−2 . . . χ−rdetr

(R∞,−1)It : χ−rdetr

ppppppppppp

NNNNNNNNNNN
⊕ ⊕ ⊕

χ−r−2detr+1 χ−r−4detr+2 . . . χ−rdetr

and we have pt−1 − 1 characters on each horizontal line.

We point out that Theorem 1.4 and 1.5 had first been proved by the author in [Mo2], essentially
with the same technical tools, but the lack of the structure Theorems 1.1 and 1.2 required a consid-
erable amount of delicate estimates on Witt vectors. Moreover, our techniques could be applied to
detect the fixed vectors for irreducible admissible GL2(Qp)-representations under other congruence
subgroups (see for instance [Mo3]).

As we remarked above, a precise control of Kt, It invariants has global applications, thanks
to the geometric realization of the p-adic Langlands correspondence by Emerton [Eme10]. Let ρ :
Gal(Q/Q) → GL2(k) be a continuous, irreducible odd Galois representation which we assume to
be absolutely irreducible at p. Let N be its Artin conductor and k its level (cf. [Ser87]); up to twist,
we may assume 2 6 k 6 p. Let Y (Npt) be the modular curve (defined over Q) of level Npt and mρ

the maximal ideal in the Hecke algebra of H1
ét(Y (Npt)×Q Q, k) corresponding to ρ.

The result is the following:

Theorem 1.6 (Proposition 6.1). Let K(N) be the kernel of the map∏
`|N

GL2(Z`)→
∏
`|N

GL2(Z`/N)
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and define

d
def
= dimk

(⊗
`|N

π(ρ|Gal(Q`/Q`)

)K(N)

where π(ρ|Gal(Q`/Q`)
) is the smooth GL2(Q`)-representation attached to ρ|Gal(Q`/Q`)

by the Emerton-

Helm p-modular Langlands correspondence ([EH]).

If t > 1 and Npt > 4 we have

dimk

(
H1
ét(Y (Npt)×Q Q, k)[mρ]

)
= 2d

(
2pt−1(p+ 1)− 3

)
if k − 2 = 0

dimk

(
H1
ét(Y (Npt)×Q Q, k)[mρ]

)
= 2d

(
2pt−1(p+ 1)− 4

)
if k − 2 6= 0.

Thanks to the relation between the étale cohomology of the modular curve Y (Npt) and the
Tate module of its Jacobian, Theorem 1.6 generalizes the classical multiplicity one theorems ([Rib],
[Maz]) to modular curves of arbitrary level at p. It is consistent with the results of Khare [Kha],
where it is shown that the dimension of the ρ-isotypical component of the Jacobian of Y (Npt) tends
to infinity as the level at p increases.

The organization of the paper is the following.

We start (§2) by recalling the construction of the universal representation π(σ, 0) for a p-adic
field F , as well as some properties of finite parabolic induction for GL2(Fp) which will be used later
on to describe the Kt-invariants for irreducible admissible representations of GL2(Qp).

Section §3 is devoted to the realization of the structure theorems for universal representations.
We first refine the constructions of §2 in order to define the Iwasawa modules R−∞,0, R−∞,−1 (§3.1);
we subsequently specialize to the case F = Qp (§3.2).

The space of invariant vectors for irreducible admissible representations is worked out in section
4. We first detect the invariants for the Iwasawa modules R−∞,0, R−∞,−1 (§4.1), relying crucially on
the fact that such modules are unimodular (Proposition 4.2). We then use the structure theorems
of section 3 to deduce the space of Kt and Iy fixed vectors for supersingular representations of
GL2(Qp).

Section 5 is devoted to the case of principal and special series representations for GL2(Qp). The
results are somehow similar, but can be detected with much less efforts.

Finally, we give in §6 a precise description of the global application of Theorems 1.4, 1.5 for the
multiplicity spaces of mod p cohomology of modular curves.

1.1 Notation

Let p be an odd prime. We consider a p adic field F , with ring of integers OF , uniformizer $ and
residue field kF . We assume that [kF : Fp] = f is finite and we set q

def
= Card(kF ) for its cardinality.

We write x 7→ x for the reduction morphism OF → kF and x 7→ [x] for the Teichmüller lift k×F → O×F
(we set [0]

def
= 0).

Consider the general linear group GL2. We fix the maximal torus T of diagonal matrices and
the unipotent radical U of upper unipotent matrices, so that B

def
= T n U is the Borel subgroup of

upper triangular matrices. We write T for the Bruhat-Tits tree associated to GL2(F ) (cf. [Ser77])

and we consider the hyperspecial maximal compact subgroup K
def
= GL2(OF ).

The object of study of this article are the following congruence subgroups of K:

Kt
def
= ker

(
K

redt−→ GL2(OF /($
t))
)
, It

def
=

(
red←t

(
U(OF /($

t))
))
∩Kt−1

5
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where t ∈ N and redt denotes the mod $t reduction map. For notational convenience, we introduce
the following objects

ω
def
=

[
0 1
1 0

]
∈ GL2(F ), α

def
=

[
0 1
ω 0

]
∈ GL2(F ), K0($)

def
= red←t

(
B(kF )

)
.

Let E be a p-adic field, with ring of integers O and finite residue field k (the “coefficient field”).
Up to enlarging E, we can assume that Card

(
HomFp(kF , k)

)
= [kF : Fp].

A representation σ of a subgroup H of GL2(Qp) is always understood to be smooth with
coefficients in k. If h ∈ H will sometimes write σ(h) to denote the k-linear automorphism induced
by the action of h on the underlying vector space of σ. We denote by (σ)H the linear space of H
fixed vectors of σ.

Let H2 6 H1 be compact open subgroups of K. For a smooth representation σ of H2 we write
indH1

H2
σ to denote the (compact) induction of σ from H2 to H1. If v ∈ σ and h ∈ H1 we write [h, v]

for the unique element of indH1
H2
σ supported in H2h

−1 and sending h to v. We deduce in particular
the following equalities:

h′ · [h, v] = [h′h, v], [hk, v] = [h, σ(k)v] (1)

for any h′ ∈ H1, k ∈ H2.

The previous construction will mainly be used when H1 = K, H2 = K0($). In this situation we
define, for any v ∈ σ and l ∈ N, the element

fl(v)
def
=
∑
λ∈kF

λl
[

[λ] 1
1 0

]
[1, e] ∈ indKK0($)σ.

If Z ∼= F× is the center of GL2(F ) and σ is a representation of KZ we will similarly write

ind
GL2(F )
KZ σ for the subspace of the full induction Ind

GL2(F )
KZ σ consisting of functions which are

compactly supported modulo the center Z (cf. [Bre03a], §2.3). For g ∈ GL2(F ), v ∈ σ we use the

same notation [g, v] for the element of ind
GL2(F )
KZ σ having support in KZg−1 and sending g to v;

the element [g, v] verifies similar compatibility relations as in (1).

A Serre weight is an absolutely irreducible representation of K. Up to isomorphism they are of
the form ⊗

τ∈Gal(kF /Fp)

(
dettτ ⊗kF Symrτk2

F

)
⊗kF ,τ k (2)

where rτ , tτ ∈ {0, . . . , p − 1} for all τ ∈ Gal(kF /Fp) and tτ < p − 1 for at least one τ . This
gives a bijective parametrisation of isomorphism classes of Serre weights by 2f -tuples of integers
rτ , tτ ∈ {0, . . . , p− 1} such that tτ < p− 1 for some τ .

Recall that the K representations Symrτk2
F can be identified with kF [X,Y ]hrτ , the homogeneous

component of degree rτ of the monoidal algebra kF [X,Y ]. In this case, the action of K is described
by [

a b
c d

]
·Xrτ−iY i def

= (aX + cY )rτ−i(bX + dY )i

for any 0 6 i 6 rτ .

We fix once for all a field homomorphism kF ↪→ k. The results of this paper do not depend on
this choice.

Up to twist by a power of det, a Serre weight has now the more concrete expression

σr ∼=
f−1⊗
i=0

(
Symrik2

)Frobi

6
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where r = (r0, . . . , rf−1) ∈ {0, . . . , p − 1}f and
(
Symrik2

)Frobi
is the representation of K obtained

from Symrik2 via the homomorphism GL2(kF ) → GL2(kF ) induced by the Frobenius x 7→ xp
i

on
kF .

We will usually extend the action of K on a Serre weight to the group KZ by imposing the
scalar matrix $ ∈ Z to act trivially.

A k-valued character χ of the torus T(kF ) will be considered, by inflation, as a smooth character
of any subgroup of K0($). We will write χs to denote the conjugate character of χ, defined by

χs(t)
def
= χ(ωtω)

for any t ∈ T(kF ).

Similarly, if τ is any representation of K0($), we will write τ s to denote the conjugate repre-
sentation, defined by

τ s(h) = τ(αhα)

for any h ∈ K0($).

Finally, if σ is a Serre weight, we write σ[s] for the unique Serre weight non isomorphic to σ
and whose highest weight space affords the character

(
(σ)K0($)

)s
. Concretely, if σ appears in the

K socle of an induction indKK0($)χ, then σ[s] appears in the cosocle of indKK0($)χ
s.

If r = (r0, . . . , rf−1) ∈ {0, . . . , p− 1}f is an f -tuple we define the characters of T(kF ):

χr

([
a 0
0 d

])
def
= a

∑f−1
i=0 p

iri , a

([
a 0
0 d

])
def
= ad−1.

If H 6 K is an open subgroup and τ is a representation of H we write
{

soci(τ)
}
i∈N to denote

its socle filtration (we set soc0(τ)
def
= soc(τ)). We will use the notation

soc1(τ)—soc1(τ)/soc0(τ)— . . .—socn+1(τ)/socn(τ)— . . .

to denote the sequence of consecutive graded pieces of the socle filtration for τ (in particular, each
soci+1(τ)/soci(τ)—soci+2(τ)/soci+1(τ) is a non-split extension).

More generally, if τ is an H-representation endowed with an increasing filtration
{
τ
}
i∈N we will

write

socfil(τ0)—socfil(τ1/τ0)— . . .—socfil(τi+1/τi)— . . .

to mean that

i) the socle filtration for τ is obtained as the refined filtration induced from the socle filtration
on each graded piece τi+1/τi;

ii) the sequence of consecutive graded pieces of the socle filtration for τ is obtained as the juxta-
position of the sequences of the graded pieces associated to the socle filtration of each τi+1/τi.

If S is any set, and s1, s2 ∈ S we define the Kronecker delta

δs1,s2
def
=

{
0 if s1 6= s2

1 if s1 = s2.

Moreover, for x ∈ Z, we define bxc ∈ {0, . . . , p − 2} (resp. dxe ∈ {1, . . . , p − 1}) by the condition
bxc ≡ x ≡ dxemod p− 1.

7
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2. Reminders on the universal representations for GL2

We recall here the precise definition of the universal representation of GL2. We provide an explicit
construction in terms of Hecke operators and Mackey decomposition, which turns out to be useful to
realize the structure theorems of §3. We end the section collecting some results on finite inductions
for smooth characters of the Iwahori subgroup.

The main references are the work of Breuil [Bre03a], §2 and [Mo1], §2 and §3.

2.1 Construction of the Universal representation

We fix an f -tuple r ∈ {0, . . . , p − 1}f and write σ = σr for the associated Serre weight described
in (1.1). In particular, the highest weight space of σ affords the character χr. We recall ([BL95],
[Her1]) that the Hecke algebra HKZ(σ) is commutative and isomorphic to the monoidal algebra of
N on k:

HKZ(σ)
∼→ k[T ].

The Hecke operator T is supported on the double coset KαKZ and completely determined as a
suitable linear projection on σ (cf. [Her1], Theorem 1.2); it admits an explicit description in terms
of the Bruhat-Tits tree of GL2(F ) (cf. [Bre03a], §2.5).

The universal representation π(σ, 0, 1) for GL2 is then defined by the exact sequence

0→ indGKZσ
T→ indGKZσ → π(σ, 0, 1)→ 0.

In the rest of this section we study the KZ-restriction of π(σ, 0, 1) in terms of its Mackey
decomposition, giving a precise construction by means of a family of suitable Hecke operators.

Let n ∈ N. We consider the anti-dominant co-weight λn ∈ X(T)∗ characterized by

λn($) =

[
1 0
0 $n

]
and we introduce the subgroup

K0($n)
def
= λn($)K ∩K =

{[
a b
$nc d

]
∈ K

}
.

The element

[
0 1
$n 0

]
normalizes K0($n) and we define the K0($n)-representation σ(n) as the

K0($n) restriction of σ endowed with the twisted action of K0($n) by the element

[
0 1
$n 0

]
.

Explicitly,

σ(n)

([
a b
pnc d

])
·Xr−jY j def

= σ

([
d c
pnb a

])
Xr−jY j .

Finally, we write

Rn(σ)
def
= indKK0($n)

(
σ(n)

)
.

If the Serre weight σ is clear from the context, we set Rn = Rn(σ). For notational convenience we

define R−1
def
= 0.

We have a K-equivariant isomorphism (deduced from Frobenius reciprocity)

Rn
∼−→ k[Kλn($)KZ]⊗k[KZ] σ (3)

[1, v] 7−→ λn($)⊗ v

8
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which realizes the Mackey decomposition for indGKZσ:(
indGKZσ

)
|KZ

∼−→
⊕
n∈N

Rn.

The interpretation in terms of the tree of GL2 is clear: the k[K]-module Rn maps isomorphically
onto the space of elements of indGKZσ having support on the double coset Kλn($)KZ. In particular,
if σ is the trivial weight, a linear basis for Rn is parametrized by the vertices of T lying at distance
n from the central vertex.

The Hecke endomorphism T induces, by transport of structure, a family of K-equivariant mor-
phisms Tn defined on the k[K]-modules Rn: Tn

def
= T |Rn . From the explicit description of the Hecke

operator T one sees (cf. [Mo4], §2.2.1) that Im(Tn) is a sub-object of Rn+1 ⊕ Rn−1 so that we can
further consider the composition with the canonical the projections

T±n : Rn
Tn−→ Rn+1 ⊕Rn−1 −→ Rn±1.

It turns out that, for n > 1, the operators T±n are obtained by compact induction (from K0($n) to
K) from the following morphisms t±n :

t+n : σ(n) ↪→ ind
K0($n)
K0($n+1)

σ(n+1)

Xr−jY j 7→
∑
λn∈kF

(−λn)j
[

1 0
$n[λn] 1

]
[1, Xr];

t−n+1 : ind
K0($n)
K0($n+1)

σ(n+1) � σ(n)

[1, Xr−jY j ] 7→ δj,rY
r.

For n = 0 we similarly have

T+
0 : σ(0) ↪→ R1

Xr−jY j 7→
∑
λ0∈kF

(−λ0)r−j
[

[λn] 1
1 0

]
[1, Xr] + δj,0[1, Xr]

T−1 : R1 � σ(0)

[1, Xr−jY j ] 7→ δj,rY
r.

In particular, T+
n (resp. T−n ) are monomorphisms (resp. epimorphisms).

We deduce the following exact sequence of K-representations

0→
⊕
n∈N

Rn

⊕
n Tn−→

⊕
n∈N

Rn → π(σ, 0, 1)|KZ → 0

so that, by the exactness of filtered co-limits and the definition of the Hecke operators Tn we obtain(
lim
−→
n odd

coker
( n−1

2⊕
j=0

T2j+1

))
⊕

(
lim
−→
n even

coker
( n

2⊕
j=0

T2j

)) ∼= π(σ, 0, 1)|KZ (4)

The representations coker
(⊕n−1

2
j=0 T2j+1

)
can be described in a more expressive way as a suitable

push-out of the partial Hecke operators T±n . Indeed one verifies that coker(T1) = R0 ⊕R1 R2, where

9
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the push out is defined by the following co-cartesian diagram

R1

−T−1 ����

� � T+
1 // R2

pr2
����

R0
� � // R0 ⊕R1 R2.

If we assume we have inductively constructed prn−1 : Rn−1 � R0⊕R1 · · · ⊕Rn−2 Rn−1 (where n > 3
is odd), we define the amalgamated sum R0⊕R1 · · ·⊕RnRn+1 by the following co-cartesian diagram:

Rn

−prn−1◦T−n

����

� � T+
n // Rn+1

prn+1

����
R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn−2 Rn−1

� � // R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn Rn+1

and, using the universal properties of push-outs and cokernels, one obtains a canonical isomorphism
of k[K]-modules

coker
( n−1

2⊕
j=0

T2j+1

) ∼= R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn Rn+1

(cf. [Mo4], Proposition 2.9) together with a commutative diagram with exact lines

0 // Rn

����

T+
n // Rn+1

����

// Rn+1/Rn // 0

0 // R0 ⊕R1 · · · ⊕Rn−2 Rn−1
ιn // R0 ⊕R1 · · · ⊕Rn Rn+1 // Rn+1/Rn // 0

(5)

We construct in a completely analogous fashion the amalgamated sums (R1/R0)⊕R2 · · ·⊕RnRn+1

for n ∈ 2N, obtaining an isomorphism(
lim
−→
n even

coker
( n

2⊕
j=0

T2j

)) ∼= (R1/R0)⊕R2 · · · ⊕Rn Rn+1

and a similar commutative diagram as in (5).

In order to lighten notations, we put

R∞, odd
def
= lim
−→
n, odd

R0 ⊕R1 · · · ⊕Rn Rn+1

(where the inductive system is defined by the natural morphisms ιn appearing in the diagram (5))
and, similarly,

R∞, even
def
= lim

−→
n, even

(R1/R0)⊕R2 · · · ⊕Rn Rn+1.

If we need to emphasize their dependence on the Serre weight σ we will write R∞,0(σ), R∞,−1(σ).

2.1.1 Induced representations for B(Fp). In this section we specialize to kF = Fp the results
of [BP], §2 (see also [BS00]), which describe the structure of a GL2(kF )-representation paraboli-
cally induced from a character of a Borel subgroup. The results here will be used to complete the
computations for the Kt invariant vectors of supersingular representations for GL2(Qp).

10
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Let i, j ∈ {0, . . . , p− 1} and let us consider the B(Fp)-character χsia
j . If e is a fixed linear basis

for the underlying vector space associated to χsia
j and if l ∈ Z, we recall the elements fl

def
= fl(e) ∈

ind
GL2(Fp)
B(Fp) χsia

j defined in 1.1.

The following result clarifies the relation between the elements fl and the socle filtration for the
finite parabolic induction:

Proposition 2.1. Let i, j ∈ {0, . . . , p− 1}. Then

i) for l ∈ {0, . . . , p−1}, fl is an T(kF )-eigenvector, whose associated eigencharacter is χi−2jdetja−l,
and the set

B
def
= {fl, [1, e] 0 6 l 6 p− 1, }

is an linear basis for ind
GL2(Fp)
B(Fp) χsia

j .

ii) If i− 2j 6≡ 0 [p− 1] then we have a nontrivial extension

0→ Symbi−2jck2 ⊗ detj → ind
GL2(Fp)
B(Fp) χsia

j → Symp−1−bi−2jck2⊗deti−j → 0.

The families

{f0, . . . , fbi−2jc−1, fbi−2jc + (−1)i−j [1, e]}, {fi−2j , . . . , fp−1}

induce a basis for the socle and the cosocle of ind
GL2(Fp)
B(Fp) χsia

j respectively.

iii) If i− 2j ≡ 0 [p− 1] then ind
GL2(Fp)
B(Fp) χsia

j is semi-simple and

ind
GL2(Fp)
B(Fp) χsia

j ∼−→
(
1⊕ Symp−1k2

)
⊗ detj .

The families

{f0 + (−1)j [1, e]}, {f0, f1, . . . , fp−2, fp−1 + (−1)j [1, e]}

induce an k-basis for detj and Symp−1k2 ⊗ detj respectively.

Proof. Omissis. Cf. [BP], Lemmas 2.5, 2.6, 2.7.

We end this section with a technical remark on Witt polynomials, which, combined with Lemma
2.1, enables us to conclude the delicate computations needed to describe the Kt fixed vectors for
supersingular representations of GL2(Qp) (§4.2). We recall ([AC], Chapitre 9, §1, partie 4) that if
F is a finite extension of Fp we have the following equality in the associated ring of Witt vectors
W(F):

[µ] + [λ] ≡ [λ+ µ] + p[S1(λ, µ)] mod p2

where µ, λ ∈ F, [·] : F →W(F) is the usual Teichmüller lift and S1 ∈ Z[X,Y ] is an homogeneous
polynomial of degree p:

S1(X,Y ) = −
p−1∑
s=1

(
p
s

)
p
Xp−sY s. (6)

An immediate manipulation gives

S1(X − Y, Y ) = −S1(X,−Y ). (7)

3. Structure theorems for universal representations

The aim of this section is to introduce some structure theorems for the universal representation
π(σ, 0, 1) of GL2. These results concern both the KZ-restriction and the N -restriction of π(σ, 0, 1)

11
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and show that the behavior of universal representations is controlled by a certain, explicit, Iwasawa
module R−∞. If F = Qp such module turns out to be of finite type over a suitable discrete valua-
tion ring : this is the crucial phenomenology which let us dispose of a complete understanding of
irreducible admissible representations of GL2(Qp). If F is a nontrivial finite extension of Qp the
situation is extremely delicate: R−∞ is defined over a complete Noetherian regular local ring of Krull
dimension [F : Qp] and is not any longer of finite type (if F is of characteristic p the module is
defined over a non-noetherian profinite ring, and still not of finite type, cf. [Mo6]).

We keep the notation of the previous section, in particular σ is a fixed Serre weight. We invite
the reader to refer to [Mo4] for the omitted details.

3.1 Refinement of the Iwahori structure

Let n ∈ N>. Restriction of functions from K to K0($) gives a K0($)-equivariant exact sequence

0→ R+
n → Rn → ind

K0($)
K0($n)

(
σ(n)

)
→ 0

which is easily checked to be split, therefore realizing the Mackey decomposition for Rn|K0($). We
thus define for n > 1

R−n
def
= ind

K0($)
K0($n)

(
σ(n)

)
and one verifies (cf. [Mo4], §3.1) that the partial Hecke morphisms T±n give rise to a family of
K0($)-equivariant morphisms

(T+
n )neg : R−n ↪→ R−n+1, (T+

n )pos : R+
n ↪→ R+

n+1

(T−n+1)neg : R−n+1 � R−n , (T−n+1)pos : R+
n+1 � R+

n .

For technical reasons we define

R+
0

def
= R0|K0($), R−0

def
= cosocK0($)(R

−
1 ), R+

−1
def
= cosocK0($)(R

+
0 ), R−−1

def
= 0

as well as the operators

(T+
0 )neg : R−0

0→ R−1 , (T+
0 )pos : R+

0 ↪→ R1 � R+
1

(T−1 )neg : R−1 � R−0 , (T−1 )pos = T−1 |R+
1

: R+
1 � R+

0

(T−0 )neg : R−0
0→ R−−1, (T−0 )pos : R+

0 � R+
−1.

We leave as an exercise to the reader to check that the morphism (T+
0 )pos is injective and

the amalgamated sum R+
−1 ⊕R+

0
R+

1 with respect to the couple (−(T−0 )pos, (T+
0 )pos) is canonically

isomorphic to the image of the K0($)-morphism R+
1 → R1 → R1/R0.

Following the procedures of section 2.1 we can construct inductive systems of amalgamated sums
via the partial Hecke operators (T±n )pos, neg:{

R∗• ⊕R∗•+1
· · · ⊕R∗n R

∗
n+1

}
n∈2N+•+1

(8)

where • ∈ {0,−1}, ∗ ∈ {+,−}.
For • ∈ {0,−1}, ∗ ∈ {+,−} we write

R∗∞,•
def
= lim

−→
n∈2N+•+1

R∗• ⊕R∗•+1
· · · ⊕R∗n R

∗
n+1.

The relation between the amalgamated sums (8) and the ones defined in §2.1 is given by the
following

12
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Proposition 3.1. Let • ∈ {0,−1}, ∗ ∈ {+,−} and n ∈ 2N + •+ 1, n > 2. We have a commutative
diagram of K0($)-representations, with exact rows

0 // R∗n //

yysssssssssssssssssssssss

����

R∗n+1
//

zztttttttttttttttttttt

����

R∗n+1/R
∗
n //

�����������������
0

0 // Rn

����

// Rn+1

����

// Rn+1/Rn // 0

0 // R∗•⊕R∗•+1
···⊕R∗n−2

R∗n−1 //
kK

yysssssssssssssssssssss
R∗•⊕R∗•+1

···⊕R∗n
R∗n+1 //

lL

zzuuuuuuuuuuuuuuuuuuuu
R∗n+1/R

∗
n //

q Q

�����������������
0

0 // (R•⊕R•+1
···⊕Rn−2

Rn−1)|K0($) // (R•⊕R•+1
···⊕Rn2

Rn+1)|K0($) // (Rn+1/Rn)|K0($) // 0.

Proof. This is proved in [Mo4], in the proof of Proposition 3.5, by induction.

Remark 3.2. We write explicitly the morphisms which initialize the inductive argument of Propo-
sition 3.1. Concerning R+

0 , R−1 we have the evident monomorphisms

R+
0
∼→ R0; R−−1 ⊕R−0 R

−
1 = R−1 ↪→ R1;

concerning R−0 we have

R−0 ↪→ R0

e 7→ Y r.

Finally, it is easy to verify that the morphism R+
−1 ⊕R+

0
R+

1 ↪→ R1/R0 is induced by the couple:

R+
1 → R1/R0; R+

−1 ↪→ R1/R0;

e 7→ [1, Xr].

It is therefore convenient to write Y r, Xr for a linear basis for R−0 and R+
−1 respectively.

We are now ready to introduce the first structure theorem for universal representations of GL2.
If χ is a smooth regular character of K0($) we write

Rad(χ)
def
= Rad

(
indKK0($)χ

)
, Soc(χ)

def
= Soc

(
indKK0($)χ

)
. (9)

We have

Proposition 3.3. For any n ∈ 2N + 1, m ∈ 2N we have the following exact sequence of k[K]-
modules:

0→ Rad(χr)→ indKK0($)

(
R−0 ⊕R−1 · · · ⊕R−n R

−
n+1

)
→ R0 ⊕R1 · · · ⊕Rn Rn+1 → 0

0→ Soc(χsr)→ indKK0($)

(
R−1 ⊕R−2 · · · ⊕R−m R

−
m+1

)
→ (R1/R0)⊕R2 · · · ⊕Rm Rm+1 → 0

where we define

Rad(χr)
def
= St, Soc(χsr)

def
= 1 if r = 0 (10)

Rad(χr)
def
= 1, Soc(χsr)

def
= St if r = p− 1 (11)

13
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Proof. We start proving the first exact sequence. Recall that R−0 is isomorphic to the character χr
and therefore

0→ Rad(χr)→ indKK0($)

(
R−0
)
→ R0 → 0

is true by definition. By induction we assume the statement holds true for all −1 6 j 6 n − 2, j
odd (the case j = −1 being the initialization of the inductive argument).

Recall that for all i ∈ N> the natural K0($)-monomorphism R−i ↪→ Ri gives rise to a K-
isomorphism indKK0($)R

−
i
∼→ Ri and, by exactness of compact induction, we get an exact sequence

0→ indKK0($)

(
R−n
)
→ indKK0($)

(
R−n+1

)
→ Rn+1/Rn → 0.

We therefore deduce from Proposition 3.1, using Frobenius reciprocity and exactness of compact
induction, the following commutative diagram with exact lines

0 // indK
K0($)

(R−n ) //

∼=

}}zzzzzzzzzzzzzzzzz

����

indK
K0($)

(R−n+1) //

∼=

~~~~~~~~~~~~~~~~~~

����

Rn+1/Rn //

��������������

��������������
0

0 // Rn

����

// Rn+1

����

// Rn+1/Rn // 0

0 // indK
K0($)

(
···⊕

R−n−2

R−n−1

)
//

}}|||||||||||||||||

indK
K0($)

(
···⊕

R−n
R−n+1

)
//

������������������

Rn+1/Rn //




0

0 // ···⊕Rn−2
Rn−1 // ···⊕RnRn+1 // Rn+1/Rn // 0.

In particular we deduce

0 // indKK0($)

(
· · · ⊕R−n−2

R−n−1

)
����

// indKK0($)

(
· · · ⊕R−n R

−
n+1

)
//

��

Rn+1/Rn // 0

0 // · · · ⊕Rn−2 Rn−1 // · · · ⊕Rn Rn+1
// Rn+1/Rn // 0

and the conclusion follows from the Snake lemma and the inductive hypothesis on the morphism
indKK0($)

(
· · · ⊕R−n−2

R−n−1

)
� · · · ⊕Rn−2 Rn−1.

The second exact sequence is proved in the evident, similar fashion, noticing that the K-sub-
representation of R1/R0 generated by [1, Xr] is isomorphic to coker

(
Soc(χsr)→ indKK0($)χ

s
r

)
.

As a corollary, we deduce the first structure theorem for the universal representations of GL2:

Corollary 3.4. We have the following exact sequences of k[K]-modules:

0→ Rad(χr)→ indKK0($)

(
R−∞,0

)
→ R∞,0 → 0

0→ Soc(χsr)→ indKK0($)

(
R−∞,−1

)
→ R∞,−1 → 0

where Rad(χr), Soc(χsr) are defined by (9), (10), (11) according to the f -tuple r.

Proof. The functor indKK0($)( ) commutes with co-limits, as it is exact and commutes with (arbi-
trary) co-products. Since filtered co-limits are exact the result follow from Proposition 3.3.
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We can now introduce the second structure theorem for universal representations of GL2, which
gives a description of the action of the normalizer N of the Iwahori subgroup K0($) on π(σ, 0, 1).

We start recalling the structure theorem for the K0($)-restriction of π(σ, 0, 1) (cf. [Mo4], Propo-
sition 3.5).

Proposition 3.5. We have the following K0($)-equivariant exact sequences

0→W1 → R+
∞,0 ⊕R

−
∞,0 → R∞,0|K0($) → 0

0→W2 →R+
∞,−1 ⊕R

−
∞,−1→ R∞,−1|K0($) → 0

where W1, W2 are the 1-dimensional spaces defined by W1
def
= 〈Y r,−Y r〉 and W2

def
= 〈Xr,−Xr〉.

Proof. This is [Mo4], Proposition 3.5 (notice that, in the notation of loc. cit., the elements (−1)rF
(0)
r (0)

and −[1, Xr] of R1 coincide in the quotient R1/R0, by the definition of the operator T0).

In order to control the action of the normalizer N we are therefore left to study the action of

the element

[
0 1
$ 0

]
. The result is the following:

Proposition 3.6. There exists two K0($)-equivariant isomorphisms

ι−1 : R−∞,−1
∼→
(
R+
∞,0
)s

ι0 : R−∞,0
∼→
(
R+
∞,−1

)s
such that

i) ι−1(Xr) = Y r and ι0(Y r) = Xr;

ii) The isomorphisms ι−1, ι0 induce a commutative diagram (of k-linear spaces) with exact lines

0 // W1 ⊕W2

o
��

// R−∞,0 ⊕R
+
∞,0 ⊕R

−
∞,−1 ⊕R

+
∞,−1

o
��

// π(σ, 0, 1)

o
��

// 0

0 // W1 ⊕W2
// R−∞,0 ⊕R

+
∞,0 ⊕R

−
∞,−1 ⊕R

+
∞,−1

// π(σ, 0, 1) // 0

where the right vertical arrow the automorphism induced by the action of

[
0 1
$ 0

]
on

π(σ, 0, 1).

Proof. We start showing that, for any n > −1, we have a K0($)-equivariant isomorphism

rn : R−n+1
∼−→ (R+

n )s.

The case n = −1 is trivial, as the spaces R−0 , R+
−1 are 1-dimensional, affording the characters χr and

χsr respectively and we have R−0 = 〈Y r〉, R+
−1 = 〈Xr〉 via the equivariant embeddings R−0 ↪→ R0,

R+
−1 ↪→ (R1/R0)+ respectively (cf. Remark 3.2).

Assume now n > 0. Recall that for any j > 0 we have a K-equivariant isomorphism (cf. (3)):

indKK0($j)

(
σ(j)

) ∼→ k[Kλj($)KZ]⊗k[KZ] σ

[1, v] 7→
[

0 1
$j 0

]
⊗ (ω · v).

We deduce the following k-linear morphism:

R−n+1 ↪→ Rn+1
∼→ k[Kλn+1($)KZ]⊗k[KZ] σ

∼→ k[Kλn($)KZ]⊗k[KZ] σ
∼→ Rn � R+

n

15
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where the central arrow is induced by the action of

[
0 1
$ 0

]
on the compact induction (indGKZσ)|KZ .

As

[
0 1
$ 0

]
normalizes K0($) we deduce that the composite arrow rn : R−n+1 → (R+

n )s is K0($)-

equivariant and an easy check shows that rn is an epimorphism, hence an isomorphism by dimension
reasons. As the Hecke operator T is equivariant, we deduce furthermore that the diagram

R−n+1
rn
∼

//

(T−n+1)neg

����

(R+
n )s

(T−n )pos

����
R−n

rn−1

∼
// (R+

n−1)s

(12)

commutes for all n > 0.

Finally, for n = 0, we have r0(Xr) = Y r (this can be checked by hand, or noticing that, byK0($)-
equivariance, r0 induces an isomorphism between the highest weight spaces of the representations
R−1 , R+

0 ).

The Proposition will be completely proved once we show that for any n > −1 we have a
K0($)-equivariant isomorphism fn : · · · ⊕R−n R

−
n+1 → (· · · ⊕R+

n−1
R+
n )s which verifies the prescribed

conditions on the images of Xr, Y r (for n even, odd respectively).

We treat the case when n is even, the other being symmetric. It is an induction on n where the
case n = 0 is given by r0 : R−1

∼→ (R+
0 )s.

Assume n > 2 and that we have an isomorphism fn−2 making the following diagram commute:

R−n
// //

o
��

R−1 ⊕R−2 · · · ⊕R−n−2
R−n−1

o
��

(R+
n−1)s // // (R+

0 ⊕R+
1
· · · ⊕R+

n−3
R+
n−2)s

(with the prescribed property on the image of the element Xr ∈ R−1 ).

Using (12) we deduce the commutative diagram with exact lines

0 // R−n //

∼=

������������������

����

R−n+1
//

∼=

�����������������

����

R−n+1/R
−
n

//

∼=

��













0

0 // (R+
n−1)s

����

// (R+
n )s

����

// (R+
n /R

+
n−1)s // 0

0 // ···⊕
R−n−2

R−n−1 //

∼=
fn−2

�����������������

···⊕
R−n

R−n+1
//

∃!
fn

��

R−n+1/R
−
n

//

∼=

�����������������
0

0 //
(
···⊕

R+
n−3

R+
n−2

)s
//
(
···⊕

R+
n−1

R+
n

)s
// (R+

n+1/R
+
n )s // 0

where the morphism fn is obtained from the universal property of · · · ⊕R−n R
−
n+1 (notice also that
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· · · ⊕R+

n−1
R+
n

)s
= · · · ⊕(R+

n−1)s (R+
n )s). The morphism fn is moreover an isomorphism, verifying

the prescribed property on the image of the element Xr ∈ R−1 .

This completes the inductive step and, passing to co-limits, one gets the isomorphism ι−1 as in
the statement.

3.2 The case F = Qp

We specialize some of the previous constructions to the case F = Qp. By Corollary 3.4, Proposition
3.5 and Proposition 3.6 we see that the structure of the universal representation π(σ, 0, 1) depends
crucially on the Iwasawa modules R−∞,•, where • ∈ {−1, 0}.

It can be shown that R−∞,• is a module on the Iwasawa algebra k[[OF ]], and is not of finite
type as soon as F 6= Qp. Moreover k[[OF ]] is a complete regular noetherian local ring of dimension
[F : Qp] if F is a finite extension of Qp and is not even noetherian if char(F ) = p (see also [Mo5],
[Mo6]).

When F = Qp the situation is much simpler : R−∞,• turns out to be a monogenous module over
a discrete valuation ring.

We start recalling the following result:

Proposition 3.7. Let n > 0. The k[K0(p)]-module R−n+1 is uniserial, of dimension (r + 1)pn, and
its socle filtration is descibed by

χsr—χsra—χsra
2— . . .—χsra

(r+1)pn−1.

Proof. This is [Mo4], Theorem 5.18. It can equally be deduced from [Mo1], Proposition 5.10 and

the fact that we have a K0(pn+1)-equivariant embedding σ(n+1) ↪→ ind
K0(pn+1)
K0(pn+2)

χsr.

The statement of Proposition 3.7 can be made more expressive.

We recall from [Mo4] that for a finite unramified extension F/Qp the module k[K0(p)] admits
a linear basis B−n+1 which is endowed with a partial order (cf. op. cit., Lemma 2.6). The partial
ordering on B−n+1 induces therefore a k-linear filtration on the space R−n+1 and one of the main
result of [Mo4] (cf. op. cit., Proposition 4.10) is to show that such filtration is K0(p)-stable.

When F = Qp such ordering is indeed total (this is linked with the aforementioned phenomenon
that we are considering modules over a complete local noetherian regular ring of Krull dimension
[F : Qp]).

Explicitly, we have a bijection{
0, . . . , p− 1

}n × {0, . . . , r
} ∼−→ B−n+1 (13)

(l1, . . . , ln+1) 7−→ F
(1,n)
(l1,...,ln)(ln+1)

where we define the element

F
(1,n)
(l1,...,ln)(ln+1)

def
=
∑
λ1∈Fp

λl11

[
1 0

p[λ1] 1

]
. . .

∑
λn∈Fp

λlnn

[
1 0

pn[λn] 1

]
[1, Xr−ln+1Y ln+1 ] ∈ R−n+1.

The total ordering on B−n+1 is then induced from the order of N via the injective map

B−n+1

P
↪→ N

F
(1,n)
(l1,...,ln)(ln+1) 7→ P (F

(1,n)
(l1,...,ln)(ln+1))

def
=

n∑
j=0

pjlj+1

(and thus coincides with the anti-lexicographical order ≺ on the LHS of (13)). If F1, F2 ∈ B−n+1, we
write F1 ≺ F2 if P (F1) < P (F2).

17



Stefano Morra

Since R−n+1 is uniserial, it is easy to describe the amalgamated sum · · · ⊕R−n R
−
n+1:

Proposition 3.8. Let n > 1. The kernel of the projection map R−n+1 � · · · ⊕R−n R
−
n+1 is described

by:

ker
(
R−n+1 � · · · ⊕R−n R

−
n+1

)
=


〈F ∈ B−n+1, F ≺ F

(1,n)
r,p−1−r,...,p−1−r,r(0)〉 if n ∈ 2N + 1

〈F ∈ B−n+1, F ≺ F
(1,n)
p−1−r,r,,...,p−1−r,r(0)〉 if n ∈ 2N + 2.

Proof. We consider the case where n is odd (the other is similar). Since R−n+1 is uniserial and the
linear filtration on R−n+1 induced by the linear order on B−n+1 coincides with the socle filtration, it
will be enough to show that

dim
(〈
F ∈ B−n+1, F ≺ F

(1,n)
r,p−1−r,...,p−1−r,r(0)

〉)
= dim(R−n+1)− dim(· · · ⊕R−n R

−
n+1).

This is a straightforward check: indeed

dim
(〈
F ∈ B−n+1, F ≺ F

(1,n)
r,p−1−r,...,p−1−r,r(0)

〉)
= r(

n−1
2∑
j=0

p2j) + p(p− 1− r)(

n−3
2∑
j=0

p2j)

= (p− r)p
n−1 − 1

p+ 1
+ rpn−1

and

dim(· · · ⊕R−n R
−
n+1) = 1 + (r + 1)(−1)

n∑
j=0

(−p)j = (r + 1)
pn+1 − 1

p+ 1
+ 1;

dim(R−n+1) = pn(r + 1).

As R−∞,• is a co-limit of the modules · · · ⊕R−n R
−
n+1, the transition maps being monomorphisms,

we deduce

Corollary 3.9. For • ∈ {0,−1} the k[K0(p)]-module R−∞,• is uniserial. Its socle filtration is
descibed by

(R−∞,0) : χsra
r—χsra

r+1—χsra
r+2— . . .

(R−∞,0) : χsr—χsra—χsra
2— . . .

respectively.

We write
{
Fn

}
n∈N for the socle filtration for R−∞,0 (in particular, F0 is the socle of R−∞,0 and

Fn is the n+ 1-dimensional sub-module of R−∞,0).

4. Study of Kt and It invariants

In this section we assume F = Qp. The aim is to describe in detail the Kt and It invariants for
supersingular representations π(σ, 0, 1) of GL2(Qp).

Thanks to the structure theorems of §3 we are essentially left to understand the invariants for
the Iwasawa modules R−∞,•. This is developed in section 4.1: the argument follows easily from the
uniserial property of R−∞,•, but one should carefully carry out computations in order to handle some
delicate K-extensions which will appear later on in section 4.2.

The invariants for the supersingular representation π(σ, 0, 1) will be then determined in §4.2,
combining the results on R−∞,• with the structure theorems.
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4.1 Invariants for the Iwasawa modules R−∞,•
We are going to describe in detail the spaces of Kt invariants (resp. It invariants) for the k[K0(p)]-
modules R−∞,• (resp. R∗∞,•).

Recall (§1.1) that for a Serre weight σ we write σ[s] for its conjugate weight. We start from the
following

Lemma 4.1. The intertwining operator π(σ, 0, 1)
∼→ π(σ[s], 0, 1) induces a KZ-isomorphism

R∞,0(σ)
∼−→ R∞,−1(σ[s]).

Proof. We have a KZ-equivariant monomorphism

R∞,0(σ) ↪→ π(σ, 0, 1)|KZ
∼→ π(σs, 0, 1)|KZ

∼→ R∞,0(σ[s])⊕R∞,−1(σ[s]).

As R∞,0(σ) and R∞,0(σ[s]) have irreductible non isomorphic socles, we deduce that the composite

φ1 : R∞,0(σ) ↪→ π(σ, 0, 1)|KZ
∼→ π(σ[s], 0, 1)|KZ � R∞,−1(σ[s])

is a KZ-equivariant monomorphism. Similarly, the composite

φ2 : R∞,−1(σ) ↪→ π(σ, 0, 1)|KZ
∼→ π(σ[s], 0, 1)|KZ � R∞,0(σ[s])

is a KZ-equivariant monomorphism. As φ1 ⊕ φ2 coincides (by construction) with the intertwining
operator π(σ, 0, 1)

∼→ π(σ[s], 0, 1) via the isomorphism (4) we deduce that φ1, φ2 are epimorphisms
and the proof is complete.

By virtue of Lemma 4.1 (resp. Proposition 3.6) it will be enough to study the Kt invariants
(resp. It invariants) for the Iwasawa module R−∞,0 (resp. R−∞,0 and R−∞,−1).

Recall that R−∞,0 is unserial, and we denoted by
{
Fn

}
n∈N its socle filtration (cf. Corollary 3.9).

The Kt invariants of R−∞,0 are then described by the following

Proposition 4.2. Let t > 1. We have a K0(p)-equivariant exact sequence

0→
(
R−∞,0

)Kt → Fpt−1 → χsra
r+1 → 0.

Moreover, for any lift e1 ∈ Fpt−1 of a linear basis of χsra
r+1 we have([

1 + pa b
pc 1 + pd

]
− 1

)
· e1 = cκe1e0

where a, b, c, d ∈ Zp, κe1 ∈ k× is a suitable nonzero scalar depending only on e1 and e0 is a linear
generator of soc

(
R−∞,0

)
.

Proof. As R−∞,0 is admissible uniserial and Kt is normal in K0(p) we deduce that
(
R−∞,0

)Kt = Fn(t)

where n(t) ∈ N is defined by

n(t) = max

{
n ∈ N, s.t. Fn =

(
Fn

)Kt}
and hence we are left to prove that n(t) = pt−1 − 1 (an elementary computation shows that the
graded piece Fpt−1/Fpt−1−1 affords the character χsra

r+1).

This will be a careful computation, using the properties of Witt polynomials. We remark that
the cases where r ∈ {0, p− 1} are slightly more delicate to verify.

We start from the following
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Lemma 4.3. Let K1(pt+2) be the maximal pro-p subgroup of K0(pt+2). Let z
def
=
∑t

j=1 p
j [λj ] ∈ Zp

and a, b, c, d ∈ Zp. Then we have[
1 + pta ptb
ptc 1 + ptd

] [
1 0
z 1

]
=

[
1 0
z′ 1

]
κ′

for a suitable element κ′ ∈ K1(pt+2) and

z′ =

t−1∑
j=1

pj [λj ] + pt[λt + c] + pt+1[S1(λt, c) + r(λ1)]

where S1(λt, c) is the specialization of the Witt polynomial (6) and r ∈ Fp[λ1] is a linear polynomial
in λ1 depending on a, b, c, d.

Proof. We have[
1 0
−z′ 1

] [
1 + pta ptb
ptc 1 + ptd

] [
1 0
z 1

]
=

[
1 + pt(a+ bz) ptb

w 1 + pt(d− bz′)

]
where w

def
= −z′(1 + pt(a + bz)) + z + pt(c + dz). Thus z′ ≡ (z + ptc + ptdz)(1 + pta)−1 mod pt+2

(notice that ptbzz′ ≡ 0 mod pt+2) and we deduce

z′ ≡ (z + ptc+ ptdz)(1− pta) mod pt+2

≡ z + ptc+ ptdz − ptaz − p2tac mod pt+2

(the first line is deduced noticing that (z + ptc + ptdz)p2t ≡ 0 mod pt+2 and the second noticing
that p2tz ≡ 0 mod pt+2).

The result follows from an immediate computation on Witt vectors.

In order to complete the proof of the Proposition we now distinguish two cases.

Case A: t is odd. It suffices to show that (R−0 ⊕R−1 · · ·⊕R−t R
−
t+1)Kt is a proper sub k[K0(p)]-module

of dimension pt−1 sitting insideR−0 ⊕R−1 · · ·⊕R−t R
−
t+1 (notice that dim(R−0 ⊕R−1 · · ·⊕R−t R

−
t+1) > pt−1+1

is verified for all values of t > 1, p > 3 and r ∈ {0, . . . , p− 1}).

We recall that, for an t-tuple (l1, . . . , lt) ∈ {0, . . . , p− 1}t, we have

F
(1,t)
l1,...,lt

(0) ≡

{
0 if (l1, . . . , lt) ≺ (r, p− 1− r, . . . , p− 1− r, r)

F
(1,t)
r,p−1−r,...,p−1−r,r(0) if (l1, . . . , lt) = (r, p− 1− r, . . . , p− 1− r, r)

(14)

in R−0 ⊕R−1 · · · ⊕R−t R
−
t+1, by Proposition 3.8.

We again have to distinguish two situations

Sub-case A1: r < p − 1. By the unseriality of R−0 ⊕R−1 · · · ⊕R−t R−t+1 and the compatibility

between the K0(p)-action and the linear ordering on B−n+1 we deduce that the pt−1 + 1-dimensional

sub-module of R−0 ⊕R−1 · · · ⊕R−t R
−
t+1 is generated by the element F

(1,t)
r,p−1−r,...,p−1−r,r+1(0) ∈ B−t+1

If (l1, . . . , lt−1) ∈ {0, . . . , p − 1}t−1 is a (t − 1)-tuple we deduce, from Lemma 4.3 and (14), the
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following equality in R−0 ⊕R−1 · · · ⊕R−t R
−
t+1:([

1 + pta ptb
ptc 1 + ptd

]
− 1

)
· F (1,t)

l1,...,lt−1,r+1(0) =

=

r+1∑
j=1

(
r + 1

j

)
(−c)jF (1,t)

l1,...,lt−1,r+1−j(0) ≡

≡

{
0 if (l1, . . . , lt−1) ≺ (r, p− 1− r, . . . , p− 1− r)

−(r + 1)cF
(1,t)
r,p−1−r,...,p−1−r,r(0) if (l1, . . . , lt−1) = (r, p− 1− r, . . . , p− 1− r)

This proves the Proposition for t odd and r < p− 1.

Sub-case A2: r = p− 1.

This situation is slightly more delicate and we need to know the properties of the homogeneous
degree of the Witt polynomial S1(X,Y ) defined in (6).

As in case A1 we see that the pt−1 + 1-dimensional sub-module of R−0 ⊕R−1 · · · ⊕R−t R
−
t+1 is

generated by the element F
(1,t)
r,p−1−r,...,p−1−r,0(1) ∈ B−t+1.

We now have, for a (t− 1)-tuple (l1, . . . , lt−1)([
1 + pta ptb
ptc 1 + ptd

]
− 1

)
· F (1,t)

l1,...,lt−1,0
(1) =

∑
λ1∈Fp

λl11

[
1 0

p[λ1] 1

]
· · ·

· · ·
∑

λt−1∈Fp

λ
lt−1

t−1

[
1 0

pt−1[λt−1] 1

] ∑
λt∈Fp

[
1 0

pt[λt + c] 1

] (
S1(λt, c) + r

)
[1, Xr]

where S1(λ1, c) + r is defined as in Lemma 4.3. Thanks to (7) we can write∑
λt∈Fp

[
1 0

pt[λt + c] 1

] (
S1(λt, c) + r

)
[1, Xr] =

∑
λt∈Fp

[
1 0

pt[λt] 1

] (
− S1(λt,−c) + r′

)
[1, Xr]

where r′ ∈ Fp[λ1] is a convenient polynomial of degree 1 in λ1 (depending on a, b, c, d). In particular,

−S1(λt,−c) + r′ = (−c)λp−1
t + P (λt) for a convenient polynomial of degree p− 2 in λt and hence,

by (14), ([
1 + pta ptb
ptc 1 + ptd

]
− 1

)
· F (1,t)

l1,...,lt−1,0
(1) ≡ (−c)F 1,t

l1,...,lt−1,p−1(0).

Again, we have

F
(1,t)
l1,...,lt−1,p−1(0) ≡

{
0 if (l1, . . . , lt−1) ≺ (r, p− 1− r, . . . , p− 1− r)

−(r + 1)cF
(1,t)
r,p−1−r,...,p−1−r,r(0) if (l1, . . . , lt−1) = (r, p− 1− r, . . . , p− 1− r).

This let us conclude the case r = p−1 (the Kt invariance of the elements F
(1,t)
l1,...,lt

(0) is indeed clear).

Case B: t is even.

The argument are completely analogous to those of Case A the details are left to the reader. We
distinguish again two situations.

Sub-case B1: r > 0.

We now consider the element F
(1,t−1)
r,p−1−r,...,p−1−r,r(1) ∈ B−t as a linear generator for the pt−1-

dimensional sub-module of R−0 ⊕R−1 · · · ⊕R−t−1
R−t .
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As we have seen for the Case A1 we have([
1 + pta ptb
ptc 1 + ptd

]
− 1

)
· F (1,t−1)

l1,...,lt−1
(1) ≡

≡

{
0 if (l1, . . . , lt−1) ≺ (r, p− 1− r, . . . , p− 1− r, r)

cF
(1,t−1)
r,p−1−r,...,p−1−r,r(0) if (l1, . . . , lt−1) = (r, p− 1− r, . . . , p− 1− r, r)

Sub-case B1: r = 0. In this situation we have to consider the element F
(1,t+1)
r,p−1−r,...,r,0,1(0) ∈ B−t+2

as a linear generator for the pt−1-dimensional sub-module of R−0 ⊕R−1 · · · ⊕R−t+1
R−t+2.

A direct computation together with an argument on Witt polynomials (as in Case A2) shows
that ([

1 + pta ptb
ptc 1 + ptd

]
− 1

)
· F (1,t+1)

l1,...,lt−1,0,1
(0) ≡

≡

{
0 if (l1, . . . , lt−1) ≺ (r, p− 1− r, . . . , p− 1− r, r)

cF
(1,t+1)
r,p−1−r,...,p−1−r,r(0) if (l1, . . . , lt−1) = (r, p− 1− r, . . . , p− 1− r, r)

We turn now our attention to the analysis of It invariants for the modules R−∞,•. The result is
the following:

Proposition 4.4. If either t > 1 and p > 5 or t > 2 and p = 3 we have the equalities(
R−∞,•

)It =
(
R−∞,•

)Kt .
and

(
R−∞,•

)It is a pt−1-dimensional sub-module of R−∞,•.

Proof. Using the Iwasawa decomposition and the fact that It is a subgroup of Kt it suffices to show

that any element in
(
R−∞,•

)Kt is fixed under the action of

[
1 pt−1Zp
0 1

]
.

Again, we can check this by an explicit argument on Witt vectors. We notice that, for z =∑t+1
j=1 p

j [λj ] and b ∈ Zp we have[
1 pt−1b
0 1

] [
1 0
z 1

]
=

[
1 0
z′ 1

]
κ

where κ ∈ K1(pt+2) (the maximal pro-p subgroup of K0(pt+2)) and z′ =
∑t

j=1 p
j [λj ] + pt+1[λt+1 −

λ2
1b].

We distinguish several cases according to the values of t and r.

Case A: t is odd.

A direct computation gives the following equality inside Rt+1:([
1 pt−1b
0 1

]
− 1

)
F

(1,t)
l1,...,lt

(lt+1) =

{
0 if lt+1 = 0

−bF (1,t)
dl1+2e,l2,...,lt(0) if lt+1 = 1.

This proves the result for R−∞,0 when t > 1 is odd and r < p − 1, by the description of
(
R−∞,0

)Kt
given in case A1 in the proof of Proposition 4.2.

As far as the case r = p − 1 is concerned, we recall that F
(1,t)
dl1+2e,l2,...,lt−1,0

(0) ≡ 0 inside the

amalgamated sum R−0 ⊕R−1 · · · ⊕R−t R
−
t+1 as soon as t > 1. If t = 1 we have F

(1)
2 (0) ≡ 0 as soon

as 2 < r. This let us deduce the required result for R−∞,0 when r = p − 1 and t > 2 (or t = 1 and

p > 3), using the description of
(
R−∞,0

)Kt given in case A2 in the proof of Proposition 4.2.
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Case B: t is even. Since ([
1 pt−1b
0 1

]
− 1

)
F

(1,t−1)
l1,...,lt−1

(lt) = 0

inside R−t , the result is clear for r > 0 via the description of
(
R−∞,0

)Kt (cf. the case B1 in the proof
of Proposition 4.2).

Concerning the case r = 0 we similarly have([
1 pt−1b
0 1

]
− 1

)
F

(1,t+1)
l1,...,lt−1,0,1

(0) = bF
(1,t+1)
dl1+2e,...,lt−1,0,0

(0)

which is zero in the amalgamated sum R−0 ⊕R−1 · · · ⊕R−t+1
R−t+2.

The arguments concerning the It invariants for the module R−∞,−1 are completely analogous and
are left to the reader.

4.2 Invariants for supersingular representations.

We are now in the position to determine precisely the space of Kt, It fixed vectors for supersingular
representations of GL2(Qp).

The case of It fixed vectors is an immediate consequence of Proposition 3.6 and Proposition 4.4:

Proposition 4.5. Let t > 1 and p > 5 (or t > 2 and p = 3). We have a short exact sequence of
k[K0(p)]-modules

0→W1 → (R−∞,0)It ⊕ (R+
∞,−1)It → (R∞,0)It → 0 (15)

(where W1 is the 1-dimensional space defined in Proposition 3.5).

In particular, for any t > 1 and p > 3 we have

dimk(π(σ, 0, 1))It = 2(2pt−1 − 1).

Proof. Applying the functor H0(It, ) to the first exact sequence of Proposition 3.6 we obtain

0→ (W1)It → (R−∞,0)It ⊕ (R+
∞,−1)It → (R∞,0)It

Since the space W1 is fixed under the action of It, we deduce that the last arrow is indeed surjective,
yielding (15).

Thanks to Proposition 4.4 and the isomorphism R−∞,0
∼→ (R+

∞,−1)s (Proposition 3.6) we deduce
that

dimk(R∞,0)It = (2pt−1 − 1)

if either t > 1 and p > 5 or t > 2 and p = 3, and hence (by generality of σ and Proposition 4.1)

dimk(π(σ, 0, 1))It = 2(2pt−1 − 1).

if either t > 1 and p > 5 or t > 2 and p = 3. The remaining case t = 1 and p = 3 is covered in
[Bre03a] and the proof is complete.

We turn our attention to the analysis of Kt fixed vectors for supersingular representations of
GL2(Qp). We start recalling some results (cf. [Mo1]) concerning the KZ-socle filtration for the
representations indKK0(p)(R

−
∞,0) and π(σ, 0, 1).

The K0(p)-socle filtration R−∞,0 induces a K-equivariant filtration on indKK0(p)(R
−
∞,0) (hence on

R∞,0); the extensions between its first graded pieces look as follow:

indKK0(p)χ
s
ra
r—indKK0(p)χ

s
ra
r+1—indKK0(p)χ

s
ra
r+2—indKK0(p)χ

s
ra
r+3— . . . (16)
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One can show ([Mo1], Lemmas 6.8 and 6.9 or [AM]) that the KZ-equivariant filtration on
indKK0(p)(R

−
∞,0) obtained by the evident refinement of (16) is indeed the KZ-socle filtration for

indKK0(p)(R
−
∞,0).

In particular, if e1 ∈ Fpt−1 is a linear generator for the socle

socK0(p)

(
R−∞,0/F(pt−1−1)

)
= χsra

r+1

we see that

socK

(
indKK0(p)

(
R−∞,0/F(pt−1−1)

))
= socK

(
indKK0(p)χ

s
ra
r+1
)
,

where the finite induction of the RHS is generated under K by the image of the element [1, e1]
via the map indKK0(p)(R

−
∞,0)� indKK0(p)

(
R−∞,0/F(pt−1−1)

)
. Notice moreover that if R∞,t denotes the

image of indKK0(p)(F(pt−1−1)) inside R∞,0 via the epimorphism of Corollary 3.4, we have

indKK0(p)

(
R−∞,0/F(pt−1−1)

) ∼→ R∞,0/R∞,t.

We define the following element of indKK0(p)(R
−
∞,0):

f(e1)
def
=
∑
λ0∈Fp

[
[λ0] 1
1 0

]
[1, e1]− δr,p−3[1, e1] ∈ indKK0(p)(R

−
∞,0). (17)

By Proposition 2.1 we see that

Lemma 4.6. Via the natural epimorphism indKK0(p)(R
−
∞,0)� indKK0(p)

(
R−∞,0/F(pt−1−1)

)
the element

f(e1) maps to a highest weight vector for the Serre weight Symbp−3−rck2 ⊗ detr+1 appearing in
socK

(
indKK0(p)χ

s
ra
r+1
)
, unless (r, p) = (p − 1, 3) (in which case it maps to a highest weight vector

for St⊗ det).

The sub-module R∞,t is formed by Kt fixed vectors. Nevertheless, for r 6 p − 3, it is strictly
contained in (R∞,0)Kt :

Lemma 4.7. Assume r 6 p− 3. The natural morphism〈
indKK0(p)

(
F(pt−1−1)

)
, f(e1)

〉
k[K]

↪→ indKK0(p)(R
−
∞,0)� R∞,0

factors through (R∞,0)Kt ↪→ R∞,0.

Proof. It suffices to show that for any κ ∈ Kt we have

(κ− 1) · f(e1) ∈ ker
(
indKK0(p)(R

−
∞,0)� R∞,0

)
.

For a, b, c, d ∈ Zp we have[
1 + pta ptb
ptc 1 + ptd

] [
[λ0] 1
1 0

]
=

[
[λ0] 1
1 0

] [
1 + pta′ ptb′

ptc′ 1 + ptd′

]
(18)

with c′ = b+ (a− d)λ0 − cλ2
0.

We therefore deduce from Proposition 4.2 the following equality in indKK0(p)(R
−
∞,0):([

1 + pta ptb
ptc 1 + ptd

]
− 1

)
· f(e1) = bf0(e0) + (a− d)f1(e0)− c(f2(e0) + δr,p−3[1, e0]).

where e0 is a convenient linear generator of socK0(p)(R
−
∞,0).
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Since the kernel of the epimorphism indKK0(p)(R
−
∞,0)� R∞,0 is linearly generated by the elements

ker
(
indKK0(p)(R

−
∞,0)� R∞,0

)
= 〈f0(e0), . . . , fp−2−r(e0), fp−1−r(e0) + [1, e0]〉k

(cf. Proposition 2.1) the required result follows.

We can now describe completely the Kt fixed vectors of R∞,0:

Proposition 4.8. Let t > 1. The space of Kt fixed vectors of R∞,0 is given by

(R∞,0)Kt =


〈

indKK0(p)

(
F(pt−1−1)

)
, f(e1)

〉
k[K]

if r 6 p− 3

indKK0(p)

(
F(pt−1−1)

)
if r ∈ {p− 2, p− 1}.

Proof. In order to ease notations we write

M
def
=


〈

indKK0(p)

(
F(pt−1−1)

)
, f(e1)

〉
k[K]

if r 6 p− 3

indKK0(p)

(
F(pt−1−1)

)
if r ∈ {p− 2, p− 1}.

Assume that RKt∞,0/M 6= {0}.
Then, by the description of the K-socle filtration for R∞,0, we see that

soc
(
RKt∞,0/M

)
= soc

(
R∞,0/M

)
=


cosoc(indKK0(p)χ

s
ra
r+1) if r 6 p− 4

St⊗ det−1 if r = p− 3

soc(indKK0(p)χ
s
ra
r+1) if r ∈ {p− 2, p− 1}.

Moreover, the following elements of indKK0(p)(R
−
∞,0)

fp−3−r(e1) if r 6 p− 3
f0(e1) if r ∈ {p− 2, p− 1} and (r, p) 6= (p− 1, 3)

f0(e1), f0(e1)− [1, e1] if (r, p) = (p− 1, 3).
(19)

are mapped to a linear basis for the highest weight space of soc
(
R∞,0/M

)
(in the case (r, p) =

(p − 1, 3) then f0(e1), f0(e1) − [1, e1] are mapped to the highest weight space of St ⊗ det, det
respectively).

Since we have assumed RKt∞,0/M 6= {0} (and M is formed by Kt fixed vectors) the elements
described in (19) should be Kt fixed vectors of R∞,0. This is absurd, as we show in the following
lines.

We treat first the case r 6 p − 3. Thanks to (18) and Proposition 4.2 we have the following
equality in indKK0(p)(R

−
∞,0):([

1 + pta ptb
ptc 1 + ptd

]
− 1

)
· fp−3−r(e1) = bfp−3−r(e0) + (a− d)fp−2−r(e0)− cfp−1−r(e0).

Via Proposition 2.1 and the epimorphism of Corollary 3.4 we deduce the following equality in R∞,0:([
1 + pta ptb
ptc 1 + ptd

]
− 1

)
· fp−3−r(e1) = −cfp−1−r(e0).

But fp−1−r(e0) is a linear generator for the highest weight space of soc(R∞,0) (Proposition 2.1) and
hence fp−3−r(e1) can not be a Kt fixed vector in R∞,0.
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The case r ∈ {p− 2, p− 1} is completely analogous: we have([
1 + pta ptb
ptc 1 + ptd

]
− 1

)
· f0(e1) = bf0(e0) + (a− d)f1(e0)− cf2(e0)

(resp.([
1 + pta ptb
ptc 1 + ptd

]
− 1

)
· (f0(e1)− [1, e1]) = bf0(e0) + (a− d)f1(e0)− c(f2(e0) + [1, e0])

when (r, p) = (p−1, 3)) and it is easy to see (Proposition 2.1) that the RHS is mapped to a linearly
independent family inside soc(R∞,0) via the epimorphism indKK0(p)(R

−
∞,0)� R∞,0.

This completes the proof.

As a corollary, we get the desired structure for Kt fixed vectors of supersingular representations
of GL2(Qp):

Corollary 4.9. Let t > 1. The space of Kt fixed vectors for the supersingular representa-
tion π(σ, 0, 1) decomposes into the direct sum of two k[K]-modules (π(σ, 0, 1))Kt = (R∞,0)Kt ⊕
(R∞,−1)Kt , whose socle filtration is respectively described by:

(R∞,0)Kt : Symrk2—socfil(indKK0(p)χ
s
ra
r+1)—socfil(indKK0(p)χ

s
ra
r+2)— . . .—socfil(indKK0(p)χ

s
ra
r)—Symp−3−rk2 ⊗ detr+1

(R∞,−1)Kt : Symp−1−rk2 ⊗ detr—socfil(indKK0(p)χ
s
ra)—socfil(indKK0(p)χ

s
ra

2)— . . .—socfil(indKK0(p)χ
s
r)—Symr−2k2 ⊗ det

where we have pt−1−1 parabolic inductions in each line and the weight Symp−3−rk2⊗detr+1 in the
first line (resp. Symr−2k2 ⊗ det in the second line) appears only if p− 3− r > 0 (resp. r − 2 > 0).

Proof. The statement concerning the direct summand (R∞,0)Kt follows immediately from Corollary
3.4 and Proposition 4.8. By the generality of σ and Proposition 4.1 one deduces the result for
(R∞,−1)Kt .

In particular, we have

Corollary 4.10. Let t > 1. The dimension of Kt invariant for the supersingular representation
π(σ, 0, 1) is given by

dimk((π(σ, 0, 1))Kt) = (p+ 1)(2pt−1 − 1) +

{
p− 3 if r /∈ {0, p− 1}
p− 2 if r ∈ {0, p− 1}.

5. The case of principal series and the Steinberg.

In order to complete the picture concerning Kt and It invariants for irreducible admissible repre-
sentations of GL2(Qp) we are left to treat the case of principal and special series.

Recall ([BL94], [Her2]) that the irreducible principal series for GL2(Qp) are described by the
parabolic induction

ind
GL2(Qp)
B(Qp) (unµ ⊗ ωrunµ−1)

where µ ∈ k
×

, r ∈ {0, . . . , p − 1} and (µ, r) /∈ {(0,±1), (p − 1,±1)}, while the special series are
described (up to twist) by the short exact sequence

0→ 1→ ind
GL2(Qp)
B(Qp) 1→ St→ 0. (20)

It is easy to see that we have K-equivariant isomorphisms (see for instance [Mo1], §10):
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(
ind

GL2(Qp)
B(Qp) (unµ ⊗ ωrunµ−1)

)
|K ∼= indKK0(p∞)χ

s
r
∼= lim
−→
n>1

(
indKK0(pn+1)χ

s
r

)
where Kp∞

def
= B(Zp) and the transition morphisms for the co-limit are obtained inducing the natural

monomorphisms of K0(pn)-representations

χsr ↪→ ind
K0(pn)
K0(pn+1)

χsr.

Moreover by the Bruhat-Iwahori and Mackey decompositions, we have a K0(p)-equivariant split
exact sequence

0→
(
indKK0(p∞)χ

s
r

)+ → indKK0(p∞)χ
s
r → ind

K0(p)
K0(p∞)χ

s
r → 0.

The following results are formal

Lemma 5.1. Let µ ∈ k× and r ∈ 0, . . . , p− 1}. We have a K-equivariant isomorphism(
ind

GL2(Qp)
B(Qp) (unµ ⊗ ωrunµ−1)

)
|K ∼= indKK0(p)

(
lim
−→
n>1

(
ind

K0(p)
K0(pn+1)

χsr
))
.

The action of

[
0 1
p 1

]
on the principal series ind

GL2(Qp)
B(Qp) (unµ ⊗ ωrunµ−1) induces an isomorphism

(
ind

K0(p)
K0(p∞)χ

s
r

)s ∼−→
(
indKK0(p∞)χ

s
r

)+
.

Proof. The first isomorphism comes from the continuity and transitivity of the induction functor
indKK0(p)( ). The second comes from a direct computation on the explicit isomorphism

(ind
GL2(Qp)
B(Qp) (unµ ⊗ ωrunµ−1)

)
|K0(p)

∼= ind
K0(p)
K0(p∞)χ

s
r ⊕

(
indKK0(p∞)χ

s
r

)+
given by Mackey decomposition (recalling that

[
0 1
p 0

]
normalizes K0(p)).

The Kt, It fixed vectors for the co-limit lim
−→
n>1

(
ind

K0(p)
K0(pn+1)

χsr
)

are described by the

Proposition 5.2. Let t > 1 and r ∈ {0, . . . , p− 2}. Then(
lim
−→
n>1

(
ind

K0(p)
K0(pn+1)

χsr
))Kt

= ind
K0(p)
K0(pt)χ

s
r =

(
lim
−→
n>1

(
ind

K0(p)
K0(pn+1)

χsr
))It

.

Proof. We know that ind
K0(p)
K0(pn+1)

χsr is uniserial for all n > 1, in particular the co-limit lim
−→
n>1

(
ind

K0(p)
K0(pn+1)

χsr
)

is uniserial.

It is therefore sufficient to prove the result of the statement replacing the co-limit by ind
K0(p)
K0(pt+1)

χsr.

In this case, we have again an explicit linear basis B−t+1 for the induced representation ind
K0(p)
K0(pt+1)

χsr,

endowed with a linear ordering which is compatible with the K0(p)-socle filtration (see [Mo1] §5 or
[Mo4], §4):

B−t+1 3 F
(1,t)
l1,...,lt

def
=
∑
λ1∈Fp

λl11

[
1 0

p1[λ1] 1

]
. . .

∑
λt∈Fp

λltt

[
1 0

pt[λt] 1

]
[1, e]

where (l1, . . . , lt) ∈ {0, . . . , p−1}t and e is a linear basis for the character χsr (again B−t+1 is endowed
with the lexicographical order).
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The statement can be now directly verified, as for Proposition 4.2, 4.4, but the computations
are much easier.

We finally deduce:

Proposition 5.3. Let µ ∈ k× and r ∈ {0, . . . , p − 1} and let t > 0. The K-socle filtration for the

Kt invariants of the principal series ind
GL2(Qp)
B(Qp) (unµ ⊗ ωrunµ−1) is described by

socfil(indKK0(p)χ
s
r)—socfil(indKK0(p)χ

s
ra)—socfil(indKK0(p)χ

s
ra

2)— . . .—socfil(indKK0(p)χ
s
r)

where the number of parabolic induction is pt−1.

Moreover, the It fixed vectors for the principal series ind
GL2(Qp)
B(Qp) (unµ ⊗ ωrunµ−1) are described

by (
ind

GL2(Qp)
B(Qp) (unµ ⊗ ωrunµ−1)

)It ∼= ind
K0(p)
K0(pt)χ

s
r ⊕

(
ind

K0(p)
K0(pt)χ

s
r

)s
.

The Steinberg representation verifies in particular

(St)Kt : St—socfil(indKK0(p)a)—socfil(indKK0(p)a
2)— . . .—socfil(indKK0(p))

(where the number of parabolic induction is pt−1 − 1) and

(St)It ∼= ind
K0(p)
K0(pt)1⊕1

(
ind

K0(p)
K0(pt)1

)s
where the amalgamated sum on the RHS is defined through the natural K0(p)-equivariant morphism

1 ↪→ ind
K0(p)
K0(pt)χ

s
r.

Proof. This is an immediate consequence of Lemma 5.1 and Proposition 5.2 (using the fact that Kt

is normal in K).

The statement concerning the Steinberg representation is clear from the exact sequence (20)

Notice that from the uniseriality of ind
K0(p)
K0(p∞)χ

s
r and Lemma 5.1 we have an isomorphism(

ind
K0(p)
K0(pt)χ

s
r

)s ∼−→
(
indKK0(pt−1)χ

s
r

)+
for any t > 1 and any smooth character χsr (by a counting dimension argument).

6. Global applications

In this section we describe the relation between the results of §4.2 and the local/global compatibility
of the p-modular Langlands correspondence recently established by Emerton. We first need to recall
some of the constructions of [Eme10] (see also [Bre11]).

Let Af be the ring of finite adeles of Q, GQ be the absolute Galois group of Q and write GQ`

for its decomposition group at `.

For a compact open subgroup Kf of the adelic group GL2(Af ) we write Y (Kf ) to denote the
modular curve (defined over Q) whose complex points are

Y (Kf )(C) = GL2(Q)\
(
(C \R)×GL2(Af )/Kf

)
.

For A ∈ {O, k} we consider the first étale cohomology group

H1(Kf )A
def
= H1

ét(Y (Kf )Q, A)

where Y (Kf )Q is the base change of Y (Kf ) to Q.
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For a fixed compact open subgroup Kp of GL2(Ap
f ) we introduce the following modules, endowed

with commuting actions of GQ and GL2(Qp):

H1(Kp)k
def
= lim
−→
Kp

H1(KpK
p)k, and Ĥ1(Kp)O

def
=
(
lim
−→
Kp

H1(KpK
p)O

)∧
where Kp runs over the compact open subgroups of GL2(Qp) and the hat ∧ denotes the p-adic
completion of the O-module lim

−→
Kp

H1(KpK
p)O .

Let Σ0 be a finite set of non-archimidean places of Q, not containing p and let Σ
def
= Σ0 ∪ {p}.

We will be interested in compact open subgroups of GL2(Ap
f ) of the form KΣ0K

Σ
0 , where KΣ0 is

a compact open subgroup of GΣ0

def
=
∏
`∈Σ0

GL2(Q`) and KΣ
0

def
=
∏
`/∈Σ GL2(Z`); we will write for

short

H1(KΣ0)k
def
= H1(KΣ0K

Σ
0 )k, and Ĥ1(KΣ0)O

def
= Ĥ1(KΣ0K

Σ
0 )O .

For a compact open subgroup Kp in GL2(Qp) we write T(KpKΣ0K
Σ
0 ) for the sub O algebra of

EndO[GQ](Ĥ
1(KpKΣ0K

Σ
0 )O)

generated by the Hecke operators T`, Sell for those primes ` /∈ Σ.

If K ′p 6 Kp are compact open in GL2(Qp) we have a (surjective) transition homomorphism

T(K ′pKΣ0K
Σ
0 )� T(KpKΣ0K

Σ
0 ), which is compatible, in the evident sense, with the actions on the

étale cohomologies. We deduce a GQ ×GL2(Qp) equivariant action of

T(KΣ0)
def
= lim
←−
Kp

T(KpKΣ0K
Σ
0 )

on the module Ĥ1(KΣ0)O , hence ([Eme10], (5.1.2)) on H1(KΣ0)k.

By construction, the action of T(KΣ0) on the sub-module Ĥ1(KpKΣ0K
Σ
0 )O (resp.H1(KpKΣ0K

Σ
0 )k)

factors through the surjection T(KΣ0)� T(KpKΣ0K
Σ
0 ).

Let ρ : GQ → GL2(k) be a continuous, absolutely irreducible Galois representation. We assume
moreover that ρ is modular and we define Σ0 to be the set of primes dividing the Artin conductor
of ρ ([Ser87], §1.2).

We recall that a compact open subgroup KΣ0 of GΣ0 is an allowable level for ρ if there exists a
maximal ideal m of T(KΣ0), having residue field k and such that

T` ≡ tr(ρ(Frob`)) modm, S` ≡ `−1det(ρ(Frob`)) modm.

Since ρ is modular we deduce from the level part of Serre conjecture that any compact open subgroup
in the Σ0-component of ker

(
GL2(Ẑ)→ GL2(Ẑ/(N))

)
is an allowable level for ρ.

If KΣ0 is allowable and m is a maximal ideal associated to ρ in the previous sense, we consider
the following m-adic completion:

T(KΣ0)ρ
def
= T(KΣ0)m, Ĥ1(KΣ0)O,ρ

def
=
(
Ĥ1(KΣ0)O

)
m
, H1(KΣ0)k,ρ

def
=
(
H1(KΣ0)k

)
m
.

The action of the completed Hecke algebra T(KΣ0)ρ on the GQ ×GL2(Qp)-modules Ĥ1(KΣ0)O,ρ,

H1(KΣ0)k,ρ is equivariant. Moreover for an inclusion of allowable levels K ′Σ0
6 KΣ0 we dispose of

a surjective transition homomorphism T(K ′Σ0
)ρ � T(KΣ0)ρ which is compatible, in the evident

sense, with the actions on the completed étale cohomologies.

Therefore, the co-limit Ĥ1
O,ρ,Σ

def
= lim
−→
KΣ0

Ĥ1(KΣ0)O,ρ is naturally a module over the O-algebra
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Tρ,Σ
def
= lim
←−
KΣ0

T(KΣ0)ρ and the same holds for the co-limit H1
k,ρ,Σ

def
= lim
−→
KΣ0

H1(KΣ0)k,ρ ([Eme10], (5.3.4)).

The modules Ĥ1
O,ρ,Σ, H1

k,ρ,Σ are furthermore endowed with a linear action of GQ×GL2(Qp)×GΣ0

which turns out to be Tρ,Σ-linear. Notice again that, by construction, the action of Tρ,Σ on the sub-

module Ĥ1(KΣ0)O,ρ (resp. H1(KΣ0)k,ρ) factors through the surjection of local O-algebras Tρ,Σ �
T(KΣ0)ρ.

We can now introduce a local/global application of the results in section 4.2.

Proposition 6.1. Let p > 3 and ρ : GQ → GL2(k) be an odd, continuous, absolutely irreducible
Galois representation such that ρ|GQp

is absolutely irreducible. Let Σ0 be the set of primes dividing
the Artin conductor of ρ and let k be the minimal weight associated to ρ|GQp

(cf. [Ser87], §2.2).

Let KΣ0 be an allowable level for ρ and define

d
def
= dimk

( ⊗
`∈Σ0

π(ρ|GQ`
)
)KΣ0 (21)

where π(ρ|GQ`
) is the smooth p-modular representations of GL2(Q`) attached to ρ|GQ`

via the
p-modular Langlands correspondence of Emerton-Helm ([EH]).

Then, if either t > 1 and p > 5 or t > 2 and p = 3 we have

dimk

(
H1
ét(Y (KtKΣ0K

Σ
0 )Q, k)[m]

)
= 2d

(
2pt−1(p+ 1)− 3

)
if k − 2 ≡ 0 mod p+ 1

dimk

(
H1
ét(Y (KtKΣ0K

Σ
0 )Q, k)[m]

)
= 2d

(
2pt−1(p+ 1)− 4

)
if k − 2 6≡ 0 mod p+ 1

dimk

(
H1
ét(Y (ItKΣ0K

Σ
0 )Q, k)[m]

)
= 4d

(
2pt−1 − 1

)
.

where KΣ
0

def
=
∏
`/∈(Σ0∪{p}) GL2(Z`) and m is a maximal ideal associated to ρ in the Hecke algebra

T(KΣ0).

Proof. Let m be a maximal ideal of the Hecke algebra T(KΣ0) associated to ρ. We will use the same
notation m for the maximal ideals of the local O-algebras Tρ,Σ, T(KΣ0)ρ.

Assume that either t > 1 and p > 5 or t > 2 and p = 3. Then for Kp ∈ {Kt, It}, the congruence
subgroup Kp

∏
6̀=p GL2(Z`) is neat in the sense of [Eme10], Definition 5.3.7 (the proof of Lemme 2

(1) in §5.5 of Carayol’s article [Car] applies line to line).

We can therefore use [Eme10] Lemma 5.3.8 (2) and the equivariance of the Hecke action on the
cohomology spaces to obtain(

H1
k,ρ,Σ

)KpKΣ0 [m] = H1(KpKΣ0K
Σ
0 )k,ρ[m] = H1(KpKΣ0K

Σ
0 )k[m]

(where m is seen as an ideal of Tρ,Σ, T(KΣ0)ρ or T(KΣ) thanks to the compatibility of the Hecke
action on the sub-modules of H1

k,ρ,Σ, H1(KpKΣ0K
Σ
0 )k).

Let k − 2 ∈ {0, . . . , p} be defined by k − 2 ≡ k − 2 mod p + 1 (we know from [Ser87] that
k − 2 < p−1). From the proof of Proposition 6.1.20 in [Eme10] we have an equivariant isomorphism

H1
k,ρ,Σ[m] ∼= ρ⊗ πp ⊗ πΣ0(ρ)

where πΣ0(ρ)
def
= ⊗`∈Σ0π(ρ|GQl

) and πp is a supersingular representation whose KZ-socle contains,

up to twist, the weight σ
def
= Symk−2k2 (more precisely, πp is, up to twist, the supersingular repre-

sentation attached to ρ|GQp
in [Bre03a]).

We deduce

H1(KpKΣ0K
Σ
0 )k[m] ∼= ρ⊗

(
πp)

Kp ⊗
(
πΣ0(ρ)

)KΣ0

and the result follows from Proposition 4.5, Corollary 4.10 and the definition of d, noticing that
πp ∼= π(σ, 0, 1) up to twist.
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Remark 6.2. By the level part of the refined Serre conjecture ([Ser87]) one expects the subgroup

K1,Σ0(N)
def
=

{[
a b
c d

]
∈
∏
`∈Σ0

GL2(Z`)| c ≡ d− 1 ≡ 0 modN

}
to be an allowable level for which d = 1 in (21), at least if the semi-simplifications ρ|ssGQ`

are not

twists of 1⊕ | · |.
In the classical `-adic correspondence this is indeed the compatibility between the Artin and

adelic conductor but in the `-modular case, such compatibility does not seem to appear in the
current literature.
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179-230.

Stefano Morra stefano.morra@univ-montp2.fr
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