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Let p be an odd prime number. The classification of irreducible representations of GL 2 (Q p ) over F p is known thanks to the works of . In the present paper we illustrate an exhaustive description of such irreducible representations, through the study of certain functions on the Bruhat-Tits tree of GL 2 (Q p ). In particular, we are able to detect the socle filtration for the KZ-restriction of supersingular representations, principal series and special series.

Introduction

Let p be a prime number, F a non-Archimedean local field, O F its ring of integers and k F the residue field, which will be assumed of characteristic p and cardinality q = p f . The -adic Local Langlands correspondence (for = p) provides us with a well understood dictionary between suitable representation of Gal(Q p /F ), n dimensional over Q , and suitable representations of GL n (F ) (two independent proofs due to Harris and Taylor in [HT01] and Henniart in [Hen00]). Moreover, via a process of reduction of coefficients modulo , Vignéras deduces a semi-simple mod Local Langlands correspondence, as it results from her study in [Vig].

The theory, in the p-adic case, is far more complicated: for instance Grothendieck's -adic monodromy theorem collapses, there are not reasonable analogues of the Haar measure, there are no Whittacker models, etc... After a first conjectural approach pointed out by Breuil in [Bre04] and [Bre03b], we dispose nowadays of a p-adic local Langlands correspondence in the 2-dimensional case for F = Q p by the works of many mathematicians (Berger [Ber], Berger-Breuil [BB], Colmez [Col], Paskunas [Pas1], etc...). This correspondence is compatible with the reduction of coefficients modulo p and enables us to establish a semi-simple mod p-Langlands correspondence for GL 2 (Q p ) (again, such a process has been conjectured and proved in few cases by Breuil in [Bre03b] and in generality by Berger in [Ber]).

A major problem for a conjectural mod p-Langlands correspondence is represented by the lack of a complete classification for smooth irreducible admissible GL 2 (Q p ) representations over F p . In [BL94] and [BL95], Barthel and Livné detect four families of such irreducible objects: besides a detailed study of principal and special series (and characters), the authors discover another class of smooth irreducible admissible representations, referred to as "supersingular", non-isomorphic to the previous ones. Recalling the notion of compact induction (see the end of the Introduction for the precise definition), a supersingular representation π is characterised up to twist as a subquotient of the cokernel of a canonical Hecke operator

T r ∈ End(c-ind GL 2 (F ) GL 2 (O F )F × σ r )
for a GL 2 (O F )F × representation σ r parametrised by an f -tuple of integers r (such an f -tuple depending on π).

Their nature is still very mysterious. For instance, if F = Q p , the aforementioned cokernels are not even admissible and the works of Paskunas [Pas], Breuil-Paskunas [BP] and Hu [Hu] show the existence of a huge number of supersingular representations relative to the number of Galois representations (whose classification is indeed well known).

The case F = Q p is far different. The cokernels of the Hecke operators, which depend here on a single parameter r ∈ {0, . . . , p -1}, are irreducible and we deduce a complete description of supersingular representations for GL 2 (Q p ). The first proof of this phenomenon, due to Breuil, appears in [Bre03a]: the author is able to compute explicitly the space of I 1 -invariants studying the behaviour of certain functions, denoted as X 0 n and X 1 n , on the Bruhat-Tits tree for GL 2 (Q p ). Here I 1 denotes the pro-p-Iwahori of GL 2 (Z p ). Nowadays others ways to prove the irreducibility of coker(T r ) have been discovered: see for instance the papers of Ollivier ( [Oll]), Emerton ([Eme08]), Berger ([Ber1]).

In the present paper we describe completely, through a wide generalisation of the techniques of [Bre03a], the cokernel of the Hecke operators T r , giving their GL 2 (Z p )-socle filtration. We stress out that the techniques of this paper can be generalised to unramified extensions of Q p , giving the Iwahori structure for the canonical Hecke operators in terms of euclidean structures (see [Mo2]). As a byproduct, we give the GL 2 (Z p )-socle filtration for unramified principal series.

Using the notations of §2.2 for the characters χ s r and a and the formalism presented in the end of this § concerning the socle filtration, the main result of the paper is the following: Theorem 1.1 (Propositions 6.6,7.1,8.1,9.1). Let r ∈ {0, . . . , p -1}, p odd. Then the GL 2 (Z p )Q × p restriction of the supersingular representation coker(T r ) consists of two direct summands of infinite length, whose socle filtration is described by With suitable restriction on the value of r, Theorem 1.1 shows that the socle filtration for π(r, 0, 1)| GL 2 (Zp)Q × p looks as follows:

Sym r F 2 p Sym p-3-r F 2 p ⊗ det r+1 Sym r+2 F 2 p ⊗ det p-2 Sym p-5-r F 2 p ⊗ det r+2 . . . . . . Sym p-1-r F 2 p ⊗ det r Sym r-2 F 2 p ⊗ det Sym p+1-r F 2 p ⊗ det r-1 Sym r-4 F 2 p ⊗ det 2 . . .
If moreover we write un λ for the unramified character of Q p sending the arithmetic Frobenius to λ ∈ F p and ω 1 for the cyclotomic character, we are able to prove: Theorem 1.2 (Propositions 6.6, 10.4). For p an odd prime number, let λ ∈ F × p , r ∈ {0, . . . , p -1} and assume (r, λ) / ∈ {(0, ±1), (p -1, ±1)}. The socle filtration for the GL 2 (Z p )Q × p -restriction of the GL 2 (Q p )-principal series Ind a 2 )-. . .

The strategy of the proof of Theorems 1.1 and 1.2 has been inspired by Breuil's notes [Bre] and the keypoint relies on subtle and delicate manipulations on Witt vectors. Apart from these elaborate computations, we can sum up the main ideas in the next paragraph.

Strategy of the proof1 . Fix r ∈ {0, . . . , p -1} and consider the algebraic representation σ def = Sym r F 2 p of GL 2 (F p ), which will be seen as a representation of GL 2 (Z p )Q × p in the usual way. For n ∈ N we consider the induction R n+1

def = Ind GL 2 (Zp) K 0 (p n+1 ) σ where K 0 (p n+1
) is the subgroup of elements of GL 2 (Z p ) reducing to upper triangular matrices modulo p n+1 . Thus the elements of R n+1 are in a natural (equivariant) bijection with the functions f ∈ c-ind

GL 2 (Qp) GL 2 (Zp)Q × p
σ having support on the circle of radius n + 1 on the Bruhat-Tits tree of GL 2 (Q p ):

Proposition 1.3 (Corollary 3.5). We have a GL 2 (Z p )Q × p equivariant isomorphism c-ind GL 2 (Qp) GL 2 (Zp)Q × p σ ∼ → n∈N R n
Therefore the canonical Hecke operator T = T r acting on the compact induction c-ind

GL 2 (Qp) GL 2 (Zp)Q × p σ
induces a family of operators T ± n on the representations R n ( §3.2): Proposition 1.4 (Definitions 3.6,3.7,Lemma 3.8). For all n 1 we have an equivariant monomorphism T + n and an equivariant epimorphism T - n :

T + n : R n → R n+1 , T - n : R n R n-1 .
For n = 0 we have an equivariant monomorphism T + 0 : R 0 → R 1 . In particular, R n can be identified with a subrepresentation of R n+1 via the monomorphism T + n . We will see ( §4) that Propositions 1.3 and 1.4 let us deduce a natural equivariant filtration on the restriction Coker(T )| GL 2 (Zp)Q × p . More precisely, Proposition 1.5 (Propositions 3.9, 4.1). We have an equivariant isomorphism

Coker(T )| GL 2 (Zp)Q × p ∼ → π r ⊕ π p-1-r where π r ,π p-1-r are convenient, explicit, representations of GL 2 (Z p )Q × p . Moreover π r (resp. π p-1-r ) is endowed with a natural equivariant filtration {F il (r) n } n∈N (resp. {F il (p-1-r) n } n∈N ), the graded pieces being of the form F il (r) n+1 /F il (r) n ∼ = R 2n /R 2n-1 (resp. F il (p-1-r) n+1 /F il (p-1-r) n ∼ = R 2n+1 /R 2n ).
We would like to emphasize that the previous results can be generalised without much effort to any finite extension of Q p , see [Mo2].

Thanks to Proposition 1.5 we can first reduce to the study of the inductions R n+1 . Moreover, the natural K 0 (p n+1 )-filtration on σ induces a natural filtration {Fil t (R n+1 )} t∈{0,...,r} on R n+1 , the graded pieces being isomorphic to an induction of the form Ind K K 0 (p n+1 ) χ for a suitable (explicit) character χ depending on t and r.

The inductions of the form Ind

K 0 (p m ) K 0 (p n+1
) χ, for 0 m n, are studied in §5 and §6. The keypoints of such study can be summed up as follows.

1) For m n we detect a family of functions F lm,...,ln ∈ Ind K 0 (p m ) K 0 (p n+1 ) χ, depending on parameters l m , . . . , l n ∈ {0, . . . , p -1}. Such functions are well behaved with respect to computations with Witt vectors and to the induction functor.

2) The parameters l j appearing in 1) let us deduce a F p -linear filtration, and the compatibility with the induction functor lets us show that such filtration is equivariant, with graded pieces of lenght one (if m 1) or two (if m = 0). 3) Thanks to the compatibility with Witt vectors we check that the extensions between the graded pieces of the filtration in 2) are nonsplit.

Part 3) relies crucially on some explicit manipulations2 on the ring of Witt vectors for

F p : if µ, λ j ∈ F p then [µ] + n j=0 p j [λ j ] ≡ n j=0
p j [λ j + P ...,λ j-2 (λ j-1 )] mod p n+1

where P ...,λ j-2 (λ j-1 ) is a polynomial of degree p -1 in λ j-1 and leading coefficient P ...,λ j-3 (λ j-2 ) (and [•] denotes the usual Teichmüller lift). Thus:

Proposition 1.6 (Proposition 5.10). Let 1 m n be integers and χ a smooth character of K 0 (p n+1 ). Then the socle filtration for Ind

K 0 (p m ) K 0 (p n+1 ) χ is described by χ-χa-χa 2 -χa 3 -. . .
(see the end of this § for the definition of the character a).

We similarly deduce :

Proposition 1.7 (Proposition 6.10). Let χ be a smooth character of the group K 0 (p n+1 ). The representation Ind GL 2 (Zp) K 0 (p n+1 ) χ has a natural equivariant filtration whose graded pieces are described by

Ind GL 2 (Zp) K 0 (p) χ-Ind GL 2 (Zp) K 0 (p) χa-Ind GL 2 (Zp) K 0 (p) χa 2 -. . . the extensions being non-split.
Once the socle filtration for the representations Ind GL 2 (Zp) K 0 (p n+1 ) χ has been established we have to "glue" them together in order to obtain the socle filtration for the spaces R n+1 and, more generally, for the spaces π r and π p-1-r .

The gluening for the graded pieces Fil t (R n+1 )/Fil t-1 (R n+1 ) is worked out in §7; the arguments are similar to those which led to the description of the socle filtration for Ind

GL 2 (Zp) K 0 (p n+1 ) χ.
The main result is Proposition 1.8 (Proposition 7.1). Let 0 j < t r and let Q Fil j (R n+1 ) be a subrepresentation coming from the socle filtration for Fil j (R n+1 ). Then

soc(Fil t-1 (R n+1 )/Q) = soc(Fil t (R n+1 )/Q).
In other words, the socle filtration of R n+1 is compatible with the filtration {Fil t (R n+1 )} t∈{0,...,r} on R n+1 .

We are finally concerned with the socle filtration for the spaces π r , π p-1-r . As the reader will see in §8 such filtration is obtained again, by glueing, from the socle filtration of the spaces R n+1 /R n .

The keypoint is a compatibility of the functions3 F lm,...,ln with the Hecke operators T ± n : we are then able to adapt in a natural way the arguments of §7 to obtain the main result.

Proposition 1.9 (Proposition 8.1, 9.1). The socle filtration for the space π r (resp. π p-1-r ) is compatible with the filtration {F il Hereafter we give the plan of the article. In §2 we recall the structure of compact inductions ind

GL 2 (Qp) GL 2 (Zp)Q × p
, their relations with the Bruhat-Tits tree for GL 2 (Q p ) and the structure of the Hecke algebra for compact inductions. We summarise the main properties of the parabolic induction for the finite case in §2.2, recalling in particular the description of their socle filtration.

Section 3 is devoted to the description of the GL 2 (Z p )Q × p -restriction of supersingular representations in terms of simpler objects, namely the representations R n ( §3.1) and their amalgamated sums (cf. §4) by means of convenient Hecke operators T ± n on R n (defined in §3.2). Such objects will be endowed with filtrations in §4.

Sections 5, 6, 7 and 8 are devoted to the study, and the glueing, of the socle filtations on the representations introduced in 4; in particular, in §8, such glueing are made by means of the Hecke operator T .

Finally, in §9, we make explicit how the right exactness of lim -→ makes possible to deduce the socle filtration for supersingular representations from the results in §8. The final section §10 shows how we can deduce easily the socle filtration for principal and special series using the techniques in §6.

We wish to outline that such an explicit nature for the description of supersingular GL 2 (Q p )representations (as well as principal and special series) let us describe in greatest detail the K t and I t invariant elements, where K t (resp. I t ) denotes the kernel (resp. the inverse image of upper unipotent matrices) of the reduction mod p t morphism of elements of K (resp. of elements of K t-1 ). Such a study has been pursued in [Mo1].

We introduce now the main notations, convention and structure of the paper.

We fix a prime number p. We write Q p (resp. Z p ) for the p-adic completion of Q (resp. Z) and F p the field with p elements; F p is a fixed algebraic closure of F p . For any λ ∈ F p (resp. x ∈ Z p ) we write [λ] (resp. x) for the Teichmüller lift (resp. for the reduction modulo p), defining [0]

def = 0. We write G def = GL 2 (Q p ), K def = GL 2 (Z p
) the maximal compact subgroup, I the Iwahori subgroup of K (i.e. the elements of K whose reduction modulo p is upper triangular) and I 1 for the pro-piwahori (i.e. the elements of I whose reduction is unipotent). Moreover, let

Z def = Z(G) ∼ = Q × p be the center of G and B(Q p ) (resp. B(F p )) the Borel subgroup of upper triangular matrices in GL 2 (Q p ) (resp. GL 2 (F p )).
For r ∈ {0, . . . , p -1} we denote by σ r the algebraic representation Sym r F 2 p (endowed with the natural action of GL 2 (F p )). Explicitly, if we consider the identification Sym r F

2 p ∼ = F p [X, Y ] h r (where F p [X, Y ] h
r means the graded component of degree r for the natural grading on

F p [X, Y ]) then σ r ( a b c d )X r-i Y i def = (aX + cY ) r-i (bX + dY ) i
for any a b c d ∈ GL 2 (F p ), i ∈ {0, . . . , r}. We then endow σ r with the action of K obtained by inflation K GL 2 (F p ) and, by imposing a trivial action of p 0 0 p , we get a smooth KZrepresentation. Such a representation is still denoted σ r , not to overload the notations.

If H stands for the maximal torus of GL 2 (F p ) and χ : H → F × p is a multiplicative character we will write χ s for the conjugate character defined by χ s (h)

def = χ( 0 1 1 0 h 0 1 1 0 ) for h ∈ H.
Characters of H will be seen as characters of B(F p ) or, by inflation, as characters of any subgroup of K which reduces to B(F p ) modulo p, without any commentary.

By "representation" we always mean a smooth representation with central character with coefficients in F × p . If V is a K-representation, for K a subgroup of K, and v ∈ V , we write K • v to denote the sub-K representation of V generated by v. For a K-representation V we write soc K (V ) (or soc(V ), or soc 1 (V ) if K is clear from the context) to denote the maximal semisimple sub-representation of V . Inductively, the subrepresentation soc i (V ) of V being defined, we define soc i+1 (V ) as the inverse image of soc 1 (V /soc i (V )) via the projection V V /soc i (V ). We therefore obtain an increasing filtration {soc n (V )} n∈N> which will be referred to as the socle filtration for V ; we will say that a subrepresentation W of V "comes from the socle filtration" if we have W = soc n (V ) for some n ∈ N > (with the convention that soc 0 (V ) def = 0). The sequence of the graded pieces of the socle filtration for V will be shortly denoted by

SocFil(V ) def = soc 1 (V )-soc 1 (V )/soc 0 (V )-. . . -soc n+1 (V )/soc n (V )-. . .
We finally recall the Kroneker delta: if S is any set, and s 1 , s 2 ∈ S we define

δ s 1 ,s 2 def = 0 if s 1 = s 2 1 if s 1 = s 2 .

Preliminaries and definitions

The aim of this section is to recall some classical facts concerning compact inductions of p-adic representations ( §2.1 and §2.2), and to give some explicit computations in the ring of p-adic integers Z p ( §2.3): such computations will play a key role in the rest of the article.

Compact induction of KZ-representations

For the details and proofs, the reader is invited to see [Ser77] or ([Bre03a], §2). We write T for the tree of GL 2 (Q p ). It is well known that we have an explicit G-equivariant bijection (with respect to the natural left G-action defined on the two sets) between the vertices V of T and the right cosets of G/KZ. We define the following elements of G:

α def = 1 0 0 p , w def = 0 1 1 0
and recall the Cartan decomposition

G = n∈N KZα -n KZ;
then, for all n ∈ N, the classes in KZα -n KZ/KZ correspond to the vertices of the tree at distance n from the central vertex.

We set I 0 def = {0} and for n ∈ N > we define the following subset of Z p :

I n def = { n-1 j=0 p j [µ j ] for µ j ∈ F p }.
For n 1 we have a set-theoretic map

[•] n-1 : I n → I n-1 n-1 j=0 p j [µ j ] → n-2 j=0 p j [µ j ].
Moreover for n ∈ N, µ ∈ I n we put

g 0 n,µ def = p n µ 0 1 g 1 n,µ def = 1 0 pµ p n+1 .
We have then the following family of representatives for G/KZ:

G = n∈N, µ∈In g 0 n,µ KZ n∈N, µ∈In g 1 n,µ KZ; (1) 
more precisely, we have

KZα -n KZ = µ∈In g 0 n,µ KZ µ∈I n-1 g 1 n-1,µ KZ
for n ∈ N > . Heuristically, the g 0 n,µ 's correspond to the vertices at distance n from the central vertex, located in the "positive part" of the tree, while the g 1 n-1,µ 's correspond to the vertices at distance n from the central vertex, located in the "negative" part of the tree.

Let σ be a smooth KZ-representation over F p , V σ the underlying F p -vector space. The induced representation from σ, noted by Ind G KZ σ, is defined as the F p -vector space of functions f : G → V σ , compactly supported modulo Z and verifying the condition f (κg) = σ(κ) • f (g) for any κ ∈ KZ, g ∈ G, this space being endowed with a left G-action defined by right translation of functions (i.e. (g

• f )(t) def = f (tg) for any g, t ∈ G). It turns out that Ind G KZ σ is again a smooth representation of G over F p . For g ∈ G, v ∈ V σ , we define the element [g, v] ∈ Ind G KZ σ as follows: [g, v](t) def = σ(tg) • v if t ∈ KZg -1 [g, v](t) def = 0 if t / ∈ KZg -1 .
Then we have the equalities

g 1 • [g 2 , v] = [g 1 g 2 , v] and [gκ, v] = [g, σ(κ) • v] for g 1 , g 2 , g ∈ G and κ ∈ KZ. Moreover: Proposition 2.1. Let B an F p -basis of V σ ,
and G a system of representatives for the left cosets of G/KZ. Then, the family

I def = {[g, v], for g ∈ G , v ∈ B} is an F p -basis for the induced representation Ind G KZ σ.
Proof: Omissis (cf. [BH06], Lemma 2.5 or [Bre], Lemma 3.5).

If f ∈ Ind G KZ σ, the T -support (or simply the support) of f is defined as the set of vertices gKZ of the tree T such that f (g -1 ) = 0; this notion does not depend on the chosen representative g of the vertex gKZ. We define for n ∈ N the following subspace of Ind G KZ σ:

W (n) def = {f ∈ Ind G KZ σ, the support of f is contained in KZα -n KZ}.
We see (by Cartan decomposition) that the subspaces W (n) are KZ-stable, for all n ∈ N, and therefore Lemma 2.2. There exists a family {Ψ n } n∈N of natural KZ-equivariant epimorphisms

Ψ n : Ind G KZ σ W (n) inducing a natural KZ-equivariant isomorphism Ind G KZ σ ∼ → n∈N W (n).
Proof: Obvious.

Some Hecke Operators. The Hecke algebra for the induced representation from σ is defined by

H def = End G (Ind G KZ σ).
It is an F p algebra; moreover, there exists a canonical operator T ∈ H which induces an isomorphism of F p -algebras

H ∼ → F p [T ] (cf. [BL95], §3
). If we specialise to the case σ = σ r for 0 r p -1 we have the following explicit description of the Hecke operator T : Lemma 2.3. For n ∈ N > , µ ∈ I n and 0 j r we have:

T ([g 0 n,µ , X r-j Y j ]) = µn∈Fp [g 0 n+1,µ+p n [µn] , (-µ n ) j X r ] + [g 0 n-1,[µ] n-1 , δ j,r (µ n-1 X + Y ) r ] T ([g 1 n,µ , X r-j Y j ]) = µn∈Fp [g 1 n+1,µ+p n [µn] , (-µ n ) r-j Y r ] + [g 0 n-1,[µ] n-1 , δ j,0 (X + µ n-1 Y ) r ].
For n = 0, 0 j r we have

T ([1 G , X r-j Y j ]) = µ 0 ∈Fp [g 0 1,[µ 0 ] , (-µ 0 ) j X r ] + [α, δ j,r Y r ] T ([α, X r-j Y j ]) = µ 1 ∈Fp [g 1 1,[µ 1 ] , (-µ 1 ) r-j Y r ] + [1 G , δ j,0 X r ]
.

Proof: Cf. [Bre03a], §2.5 and lemme 3.1.1

We are going to fix the notations for supersingular representations of GL 2 (Q p ): if r ∈ {0, . . . , p -1} we write π(r, 0, 1)

def = coker(T : Ind G KZ σ r → Ind G KZ σ r ).

Induction of B(F p )-representations

For details and proofs we invite the reader to see §1 and §2 in Breuil and Paskunas's article [BP].

Let η be an F p -character of the Borel subgroup B(F p ); it is by inflation a character of the Iwahori subgroup K 0 (p) of K and we have a natural isomorphism

Ind K K 0 (p) η ∼ → Ind GL 2 (Fp)
B(Fp) η. For i ∈ N we define the following F p -characters of the Borel subgroup B(F p ):

χ s i : B(F p ) → F p a b 0 d → d i and a : B(F p ) → F p a b 0 d → ad -1 . If e η is an F p -basis of η, the element [1 K , e η ] is a K-generator of Ind K K 0 (p) η.
The structure of the induced representations Ind K K 0 (p) η is completely known, and the following proposition collects the main results which will be needed in the rest of the paper. We introduce the following notation: for any x ∈ Z, define x ∈ {1, . . . , p -1} (resp. x ∈ {0, . . . , p -2}) by x ≡ x mod p -1 (resp.

x ≡ x mod p -1).

Proposition 2.4. Let i, j ∈ {0, . . . , p -1}, χ def = χ s i a j . Then the induction Ind K K 0 (p) χ has length 2, with components: i) Sym i-2j F 2 p ⊗ det j , which is isomorphic to the K-subrepresentation generated by the element µ 0 ∈Fp [µ 0 ] 1 1 0 [1 K , e χ ]; ii) Sym p-1-i-2j F 2 p ⊗ det i-j . Moreover i ) if χ = χ s the short exact sequence 0 → Sym i-2j F 2 p ⊗ det j → Ind K K 0 (p) χ → Sym p-1-i-2j F 2 p ⊗ det i-j → 0 is nonsplit; ii ) if χ = χ s (i.e. i-2j ≡ 0 mod [p-1]) then Ind K K 0 (p) χ is semisimple and Sym p-1-i-2j F 2 p ⊗det i-j (i.e. det j ) is the K-subrepresentation of Ind K K 0 (p) χ generated by µ 0 ∈Fp [µ 0 ] 1 1 0 [1 K , e χ ] + (-1) j [1 K , e χ ].
Proof: It is a well known result about representations of GL 2 (F p ) over F p . See also [BP], Lemmas 2.2, 2.6, 2.7 Remark 2.5. It is possible to detect an F p basis of H-eigenvector for the irreducible fators of the induction Ind K K 0 (p) χ described in Proposition 2.4 (see [BP], Lemmas 2.6 and 2.7). Indeed, an F p -basis of H-eigenvectors for the subrepresentation Sym i-2j F 2 p ⊗ det j is given by the elements

µ 0 ∈Fp µ l 0 [µ 0 ] 1 1 0 [1 K , e χ ] for 0 l < i -2j µ 0 ∈Fp µ l 0 [µ 0 ] 1 1 0 [1 K , e χ ] + (-1) i-j [1 K , e χ ] for l = i -2j ,
while the homomorphic image of the elements

µ 0 ∈Fp µ l 0 [µ 0 ] 1 1 0 [1 K , e χ ] for i -2j l p -1 describes an F p -basis of H-eigenvectors in the quotient Ind K K 0 (p) χ/Sym i-2j F 2 p ⊗ det j (which is naturally isomorphic to Sym p-1-i-2j F 2 p ⊗ det i-j ).
The next lemma will play a crucial role in the sequel.

Lemma 2.6. Let 0 r p -1, 0 t p -2 be integers, and consider the natural projection

Ind K K 0 (p) χ s r a t π Sym p-1-r-2t F 2 p ⊗ det r-t . If f ∈ Ind K K 0 (p) χ s r a t is such that [a] 0 0 [d] f = a r-(t+1) d t+1
for any a, d ∈ F × p then π(f ) is of the following form (up to multiplication by a scalar multiple):

i) if r -2t ≡ 0, 1 [p -1] then π(f ) = 0; ii) if r -2t ≡ 1 [p -1] then π(f ) = X p-2 ; iii) if r -2t ≡ 0 [p -1] then π(f ) = X p-2 Y . More precisely, the image of f via the isomorphism Ind K K 0 (p) det t ∼ → det t ⊕ Sym p-1 F 2 p ⊗ det t is (0, X p-2 Y ).
Proof: The H-eigencharacters of Sym p-1-r-2t F 2 p ⊗ det r-t are a p-1-(r-2t)+r-t-j d r-t+j for j ∈ {0, . . . , p -1 -r -2t }, each of them corresponding respectively to the H-eigenvector X p-1-r-2t -j Y j . Therefore, the condition on π(f ) to be an H-eigencharacter gives

a t-j d r-t+j = a r-t-1 d t+1 for a suitable j ∈ {0, . . . , p -1 -r -2t } and for all a, d ∈ F × p ; in other words p -1 -r -2t ≡ j -1 [p -1] for some j ∈ {0, . . . , p -1 -r -2t }. This is possible iff j = 0 and r -2t ≡ 1 [p -1] or j = 1 and r -2t ≡ 0 [p -1].

Computations on Witt vectors

In this section we are going to describe the p-adic expansion of some elements in Z p . The explicit description of Lemmas 2.7 and 2.8 is one of the key arguments to describe the socle filtration for the KZ-restriction of supersingular representations. The main reference for this section is [Ser63], Ch. II.

For λ, µ ∈ F p we define the following element of F p :

-P λ (µ) def = p-1 j=1 p j p λ p-j µ j .
Note that P λ (µ) is a polynomial in µ, of degree p -1 and whose leading coefficient is -λ. We have the Lemma 2.7. Let λ, µ ∈ F p . Then i) the following equality holds in Z p :

[λ] + [µ] = [λ + µ] + p[P λ (µ)] + p 2 t λ,µ
where t λ,µ ∈ Z p is a suitable p-adic integer depending only on λ, µ;

ii) the following equality holds in F p P λ (µ -λ) = -P -λ (µ).

Proof: Omissis.

We can use Lemma 2.7 to deduce more general results.

Lemma 2.8. Let λ ∈ F p , n j=0 p j [µ j ] ∈ I n+1 . Then the following equality holds in Z p /(p n+1 ):

[λ] + n j=0 p j [µ j ] ≡ [λ + µ 0 ] + p[µ 1 + P λ (µ 0 )] + • • • + p n [µ n + P λ,...,µ n-2 (µ n-1 )]
where, for all j = 1, . . . , n-2, the P λ,...,µ j (X)'s (resp. P λ,µ 0 (X), resp. P λ (X)) are suitable polynomials in F p [X], of degree p -1, depending only on λ, . . . , µ j (resp. on λ, µ 0 , resp. on λ), and whose leading coefficient is -P λ,...,µ j-1 (µ j ) (resp. -P λ (µ 0 ), resp. -λ).

Proof: It is an immediate induction using Lemma 2.7-i).

Lemma 2.9.

Let λ ∈ F p , z def = n j=1 p j [µ j ] and let k 0. There exists a p-adic integer z = n j=1 p j [µ j ] ∈ Z p such that z ≡ z (1 + zp k [λ]) mod p n+1 .
Furthermore, for j = k + 3, . . . , n (resp. j = k + 2, resp. j k + 1) we have the following equality in F p :

µ j = µ j + µ j-k-1 µ 1 λ + • • • + µ 1 µ j-k-1 λ + S j-2 (µ j-1 ) (resp. µ k+2 = µ k+2 + µ 1 µ 1 λ if j = k + 2, resp. µ j = µ j if j k + 1) where S j-2 (X) ∈ F p [X] is
a polynomial of degree p -1, depending only on λ, . . . , µ j-2 and leading coefficient -s λ,...,µ j-2

def = µ j-1 -µ j-1 .
Proof: Exercise on Witt vectors.

To conclude this section we recall two elementary results which will be used in the rest of the paper: Lemma 2.10. i) For 0 j p -1 we have the equality in F p :

µ∈Fp µ j = -δ j,p-1 .
ii) Let V be an F p -vector space and let v 0 , . . . , v p-1 ∈ V be any p-tuple of elements of V . The sub F p -vector space of V generated by p-1 j=0 µ j v j for µ varying in F p coincide with the F p -subvector space of V generated by the elements v 0 , . . . , v p-1 .

Proof: The assertions are both elementary; the second comes from the fact that the Vander-

monde matrix        1 0 0 . . . 0 1 1 1 . . . 1 1 2 2 2 . . . 2 p-1 . . . . . . . . . . . . . . . 1 p -1 (p -1) 2 . . . (p -1) p-1       
is invertible modulo p.

Reinterpretation of the KZ-restriction of supersingular representations: the KZ-representations R n

The goal of this section is to give a precise description of the KZ-restriction of supersingular representations π(r, 0, 1)| KZ ; the main result is then Proposition 3.9, whose formulation is due to Breuil ( [Bre], §4.2). To be more precise, the first step is to introduce, in §3.1, the K-representations R n , from which we get an alternative description of the compact induction Ind G KZ σ (cf. Proposition 3.5). Subsequently, we endow the R n 's with suitable Hecke operators T ± n : R n → R n±1 which let us define the amalgamated sums (4); Proposition 3.9 will then be a formal consequence.

Defining the K-representations R n

For all n ∈ N we define the following subgroup of K:

K 0 (p n ) def = { a b p n c d ∈ K, where c ∈ Z p }
(in particular, K 0 (p 0 ) = K and K 0 (p) is the Iwahori subgroup). For 0 r p -1 and n ∈ N we define the following K 0 (p n )-representation σ n r over F p : the associated F p -vector space of σ n r is Sym r F 2 p , while the left action of K 0 (p n ) is given by

σ n r ( a b p n c d ) • X r-j Y j def = σ r ( d c p n b a ) • X r-j Y j
for any a b p n c d ∈ K 0 (p n ), 0 j r; in particular, σ 0 r is isomorphic to σ r . Finally, we define

R n r def = Ind K K 0 (p n ) σ n r . If r is clear from the context, we will write simply R n instead of R n r .
In order to establish the relation between the R n r 's and the compact induction Ind G KZ σ r we need the following elementary lemma:

Lemma 3.1. Fix n ∈ N. Right translation by α n w induces a bijection K/K 0 (p n ) ∼ → KZα -n KZ/KZ. Proof: Elementary, noticing that ( 0 1 p n 0 KZ 0 1 p n 0 ) ∩ K = K 0 (p n ).
For any n ∈ N > , µ ∈ I n and µ ∈ I n-1 we see that

g 0 n,µ = µ 1 1 0 α n w, g 1 n-1,µ w = 1 0 pµ 1 α n w
from which we deduce the following corollaries.

Corollary 3.2. Let n ∈ N > . We have the following decomposition for K:

K = µ∈In µ 1 1 0 K 0 (p n ) µ ∈I n-1 1 0 pµ 1 K 0 (p n ).
Proof: Immediate from the decomposition given in (1).

Corollary 3.3. Let 0 r p -1, n ∈ N > . The family R n r def = {[ µ 1 1 0 , X r-j Y j ], [ 1 0 pµ 1 , X r-j Y j ] for µ ∈ I n , µ ∈ I n-1 , 0 j r}
is an F p -basis for the representations R n . Moreover, the element

[1 KZ , Y r ] ∈ R n r is a K-generator for the representation R n r .
Proof: Immediate from Proposition 2.1 and Corollary 3.2.

The following result is the key to establish the relation between the compact induction Ind G KZ σ r and the R n 's.

Proposition 3.4. Let 0 r p -1, n ∈ N and let W (n) be the KZ subrepresentation of Ind G KZ σ r defined in §2.1. We have a KZ-equivariant isomorphism

Φ n : W (n) ∼ → R n such that for all 0 j r Φ n ([g 0 n,µ , X r-j Y j ]) = [ µ 1 1 0 , X r-j Y j ] Φ n ([g 1 n-1,µ , X r-j Y j ]) = [ 1 0 pµ 1 , X j Y r-j ]
if n > 0 and

Φ 0 ([1 G , X r-j Y j ]) = X j Y r-j if n = 0.
Proof: We fix an index n 1 (the case n = 0 is immediately verified). Thanks to Proposition 2.1 it is clear that Φ n is an F p -linear isomorphism. Concerning the KZ-equivariance, we fix κ ∈ K, l ∈ N and, for i ∈ {0, 1},

g i n-i,µ and µ ∈ I n-i . Then κp l g i n-i,µ = g i(κ) n-i(κ),µ(κ) κ 1 p l 1 for some κ 1 ∈ K, l 1 ∈ N while i(κ) ∈ {0, 1} and µ(κ) ∈ I n-i(κ) depend only on κ. If g i,µ (resp. g i(κ),µ(κ) ) is the representative of K/K 0 (p n ) corresponding to g i n-i,µ (resp. g i(κ) n-i(κ),µ(κ)
) via the bijection of Lemma 3.1 we get:

κg i,µ = g i(κ),µ(κ) κ 2 κp l g i n-i,µ = g i(κ),µ(κ) κ 1 p l 1
for some κ 2 ∈ K 0 (p n ) and since g i n-i,µ = g i,µ

0 1 p n 0 w i (and similarly for g

i(κ) n-i(κ),µ(κ) , g i(κ),µ(κ) ) we conclude 0 1 p n 0 κ 2 0 1 p n 0 w i = w i(κ) κ 1 p n+l 1 -l .
We finally need the equality

σ r ( 0 1 p n 0 κ 2 0 1 p n 0 ) = σ n r (κ 2 ).
to see that

Φ n (κp l • [g i n,µ , v]) = κ • Φ n ([g i,n , w • v]
) and the proof is complete.

We deduce immediately the main result of this section:

Corollary 3.5. Let r ∈ {0, . . . , p -1}. We have a KZ equivariant isomorphism

Ind G KZ σ r ∼ → n∈N R n r
3.2 Hecke operators on the R n 's, description of π(r, 0, 1)| KZ In this section we are going to define some Hecke operators T + n , T - n on the representations R n 's which allow us to give a description of the KZ-restriction of a supersingular representation π(r, 0, 1)| KZ in terms of the R n , T + n , T - n . The main result will be Proposition 3.9.

We start from the definition of the Hecke operators on the R n 's.

Definition 3.6. Let n ∈ N > . We define the F p -linear morphism T + n : R n → R n+1 by the conditions

T + n ([ µ 1 1 0 , X r-j Y j ]) def = µn∈Fp [ µ + p n [µ n ] 1 1 0 , (-µ n ) j X r ] T + n ([ 1 0 pµ 1 , X j Y r-j ]) def = µn∈Fp [ 1 0 p(µ + [µ n ]p n-1 ) 1 , (-µ n ) r-j X r ]
for µ ∈ I n , µ ∈ I n-1 and 0 j r.

We define the F p -linear morphism T + 0 : R 0 → R 1 by the condition:

T + 0 ([1 K , X r-j Y j ]) def = µ 0 ∈Fp [ [µ 0 ] 1 1 0 , (-µ 0 ) r-j X r ] + [1 K , δ j,0 X r ]
for 0 j r.

Identifying R n with W (n) via the isomorphism described in Proposition 3.4 and using the results of §2.1 we see that

T + n ([g, v]) = Ψ n+1 (T ([g, v])) (2) 
for all g ∈ KZα -n KZ, v ∈ σ r (i.e. T + n ([g, v] is described as the projection of T ([g, v]) on the W (n + 1) component of the compact induction).

Similarly, we have Definition 3.7. Let n ∈ N, n 2. We define the F p -linear morphism T - n : R n → R n-1 by the conditions:

T - n ([ µ 1 1 0 , X r-j Y j ]) def = [ [µ] n-1 1 1 0 , δ j,r (µ n-1 X + Y ) r ] T - n ([ 1 0 pµ 1 , X j Y r-j ]) def = [ 1 0 p[µ ] n-2 1 , δ j,0 (µ n-2 X + Y ) r ]
for µ ∈ I n , µ ∈ I n-1 and 0 j r.

For n = 1 we define T - 1 : R 1 → R 0 by the conditions:

T - 1 ([ [µ 0 ] 1 1 0 , X r-j Y j ]) def = δ j,r (X + µ 0 Y ) r T - 1 ([1 K , X j Y r-j ]) def = δ j,0 Y r .
for µ 0 ∈ F p , 0 j r.

Again, identifying R n with W (n) via the isomorphism described in Proposition 3.4 and using the results of §2.1 we see

T - n ([g, v]) = Ψ n-1 (T ([g, v])) (3) for all g ∈ KZα -n KZ, v ∈ σ r and n ∈ N > (i.e. T - n ([g, v] is described as the projection of T ([g, v]) on the W (n -1) component of the compact induction).
Thanks to the isomorphism of Proposition 3.4, we deduce the following properties of the Hecke operators T ± n :

Lemma 3.8. The operators T ± n enjoy the following properties:

1) For all n ∈ N > , the morphisms is

T + n , T - n are K-equivariant; for n = 0, the morphism T + 0 is K-equivariant.
2) For all n 0 the morphism T + n is injective. 3) For all n 1 the morphism T - n is surjective.

Proof: i). We recall that the KZ-action on the tree preserves the distances from the central vertex. The assertion is then clear from the KZ-equivariance of T and the equalities (2), (3).

ii) and iii). We recall that the matrix

       1 0 0 . . . 0 1 1 1 . . . 1 1 2 2 2 . . . 2 r . . . . . . . . . . . . . . . 1 r r 2 . . . r r       
is invertible modulo p. This implies, for any fixed i ∈ {0, 1}, the following facts:

-) by support reasons the condition

T + n ([g i,µ , v]) = 0 forces v = 0 for any choice µ ∈ I n-i ; -) if n 1+i and µ ∈ I n-1-i the F p -subvector space of R n-1 generated by T - n ([g i,p i µ+p n-1 [µ n-1 ] , Y r ]) for µ n-1 ∈ F p coincide with the F p -subvector space of R n-1 generated by [g i,p i µ , X r-j Y j ] for j ∈ {0, . . . , r}.
This ends the proof.

From now onwards we will consider R n as a K-subrepresentation of R n+1 via the monomorphism T + n , for any n ∈ N, without any further comment.

We can use the Hecke operators T ± n in order to construct a sequence of amalgamated sums of the R n 's. We define R 0 ⊕ R 1 R 2 as the amalgamated sum

R 1 T + 1 / / -T - 1 R 2 pr 2 R 0 / / R 0 ⊕ R 1 R 2
where the second projection pr 2 is epi by base change. For any odd integer n ∈ N > we define inductively the amalgamated sum

R 0 ⊕ R 1 R 2 ⊕ R 3 • • • ⊕ Rn R n+1 as: R n -pr n-1 •T - n T + n / / R n+1 pr n+1 R 0 ⊕ R 1 R 2 ⊕ R 3 • • • ⊕ R n-2 R n-1 / / R 0 ⊕ R 1 R 2 ⊕ R 3 • • • ⊕ Rn R n+1 ;
(4) once again, the second projection pr n+1 is epi by base change.

For any even positive integer m ∈ N > we define the amalgamated sum

R 1 /R 0 ⊕ R 2 • • • ⊕ Rm R m+1 in the evident similar way.
We are now ready to state the main result of this section Proposition 3.9. Let 0 r p -1. We have a KZ equivariant isomorphism

π(r, 0, 1)| KZ ∼ → lim -→ n odd (R 0 ⊕ R 1 • • • ⊕ Rn R n+1 ) ⊕ lim -→ m even (R 1 /R 0 ⊕ R 2 • • • ⊕ Rm R m+1 ).
Proof: We have the following commutative diagram, with KZ-equivariant arrows:

(Ind G KZ σ r )| KZ T | KZ / / (Ind G KZ σ r )| KZ n∈N R n T + 0 + n 1 (T + n +T - n ) / / n∈N R n ;
as the restriction functor is exact, we deduce that the isomorphism of corollary 3.5 induces an isomorphism π(r, 0, 1)

| KZ ∼ = coker(T + 0 + n 1 (T + n + T - n ))
. We dispose of the evident inductive systems: n j=1, j odd

T + j + T - j : n j=1, j odd R j → n+1 i=0, i even R i n∈N, n odd T + 0 + n j=1, j even T + j + T - j : n j=0, j even R j → n+1 i=0, i odd R i n∈N, n even
so that, by the right exactness of the functor lim -→

, the isomorphism of corollary 3.5 gives

π(r, 0, 1)| KZ ∼ = lim -→ n, odd coker j=1, j odd T + j + T - j ⊕ lim -→ n, even coker T + 0 + n j=1, j even T + j + T - j .
It follows finally from the definitions of the amalgamated sum (and an immediate induction) that (coker( j=1, j odd

T + j + T - j )) = R 0 ⊕ R 1 • • • ⊕ Rn R n+1 (coker(T + 0 + n j=1, j even T + j + T - j )) = R 1 /R 0 ⊕ R 2 • • • ⊕ Rn R n+1
and the proof is complete.

4. Defining the filtrations on the spaces

R n , R 0 ⊕ R 1 • • • ⊕ Rn R n+1
In this section, we fix once for all an integer r ∈ {0, . . . , p-1}. Our aim is to to point out, in definition 4.3, a filtration on lim

-→ n odd R 0 ⊕ R 1 • • • ⊕ Rn R n+1 (resp. lim -→ n even R 1 /R 0 ⊕ R 2 • • • ⊕ Rn R n+1
) which will let us describe explicitly the socle filtration for the KZ-restriction of the supersingular representation π(r, 0, 1)| KZ .

Proposition 4.1. For any odd integer n ∈ N > we have a natural commutative diagram

0 / / R n -pr n-1 •T - n T + n / / R n+1 / / R n+1 /R n / / 0 0 / / R 0 ⊕ R 1 • • • ⊕ R n-2 R n-1 / / R 0 ⊕ R 1 • • • ⊕ Rn R n+1 / / R n+1 /R n / / 0
with exact lines. We have an analogous result concerning the family

{R 1 /R 0 ⊕ R 2 • • • ⊕ Rn R n+1 } n∈2N\{0} .
Proof: The proof is by induction. We dispose of the commutative diagram:

R n T + n / / -pr n-1 •T - n R n+1 pr n+1 R 0 ⊕ R 1 • • • ⊕ R n-2 R n-1 / / R 0 ⊕ R 1 ⊕ Rn R n+1
where the morphism -pr n-1 •T - n is epi by the inductive hypothesis; it follows then from the universal property of the amalgamated sum that the morphism pr n+1 is epi too. Moreover, since the forgetful functor F or : Rep K → Vect Fp is right exact we deduce, by the injectivity of T + n and base change in the category Vect Fp , that the morphism

R 0 ⊕ R 1 • • • ⊕ R n-2 R n-1 → R 0 ⊕ R 1 • • • ⊕ Rn R n+1 is injective too.
From the universal property of the amalgamated sum we get the natural commutative diagram:

0 / / R n / / R n+1 / / R n+1 /R n / / 0 R 0 ⊕ R 1 • • • ⊕ R n-2 R n-1 / / 0 4 4 R 0 ⊕ R 1 • • • ⊕ Rn R n+1 ∃ ! / / R n+1 /R n
where the first line is exact. The exactness of the second line is then an immediate diagram chase.

From the proof of Proposition 4.1 we see that we have actually a much stronger result: if 0 j n -2 is odd and Q j+1 is any quotient of R j+1 we can still define the amalgamated sums

Q j+1 ⊕ R j+2 • • • ⊕ Rn R n+1 as in 4; then Corollary 4.2. Let 0 j n -2 be odd, Q j+1 be a quotient of R j+1 .
We have a natural commutative diagram:

0 / / R n T + n / / R n+1 / / R n+1 /R n / / 0 0 / / Q j+1 ⊕ R j+2 • • • ⊕ R n-2 R n-1 / / Q j+1 ⊕ R j+2 • • • ⊕ Rn R n+1 / / R n+1 /R n / / 0
with exact lines (and with the obvious convention

Q j+1 ⊕ R j R j+1 def = Q j+1 ).
We have an analogous result concerning the family

{R 1 /R 0 ⊕ R 2 • • • ⊕ Rn R n+1 } n∈2N\{0} .
For each n ∈ N we look at a natural filtration on R n+1 . The definition is the following:

Definition 4.3. Let n ∈ N, 0 t r. We define Fil t (R n+1 ) as the K-subrepresentation of R n+1 generated by [1 K , X r-t Y t ]. For t = -1, we define Fil -1 (R n+1 ) def = 0. We note that Lemma 4.4. Let n ∈ N. The family {Fil t (R n+1 )} t=r t=-1
defines a separated and exhaustive decreasing filtration on R n+1 . Moreover, for each t ∈ {0, . . . , r}, the family

B n+1,t def = [ µ 1 1 0 , X r-i Y i ], [ 1 0 pµ 1 , X r-i Y i ], µ ∈ I n+1 , µ ∈ I n , 0 i t
is an F p basis for Fil t (R n+1 ); in particular Fil t (R n+1 ) has dimension (p + 1)p n (t + 1) over F p .

Proof: It is immediate from corollary 3.3 and the definition of the σ n+1 r 's.

By Frobenius reciprocity, we have an explicit description of the graded pieces of the filtration defined in 4.3: Lemma 4.5. Let n ∈ N, and fix -1 t r. Then, we have a K-equivariant isomorphism:

Fil t (R n+1 )/Fil t-1 (R n+1 ) ∼ → Ind K K 0 (p n+1 ) χ s r a t .
where the characters χ s r , a, defined in §2.2, are seen as characters on K 0 (p n+1 ) by inflation K 0 (p n+1 ) B(F p ).

Proof: As the image of the element [1 K , X r-t Y t ] is a K-generator of the graded piece Fil t (R n+1 )/Fil t-1 (R n+1 ), and K 0 (p n+1 ) acts on it by the character χ s r a t we deduce by Frobenius reciprocity a K-equivariant epimorphism:

Ind K K 0 (p n+1 ) χ s r a t Fil t (R n+1 )/Fil t-1 (R n+1 ).
As the two spaces have the same F p -dimension, the latter is indeed an isomorphism.

We then see that the first step to understand the nature of π(r, 0, 1)| KZ consists in the study of the induced representations Ind K K 0 (p n+1 ) χ s r a t for n ∈ N, 0 t r; such a study will be the object of the following two sections ( §5, §6).

Study of an Induction-I

In this section, we will fix two integers 1 m n + 1 and η a character of B(F p ) (which will be considered as a continuous character of K 0 (p n+1 ) by inflation), and we will fix a basis {e η } for η. The object of this section is then (cf. Proposition 5.10) to describe explicitly the socle filtration for Ind K 0 (p m ) K 0 (p n+1 ) η and the proof will be essentially an induction on the length n + 1 -m ( §5.1, §5.2).

For 1 m n + 1 define a subset I n+1 /I m of Z p :

I n+1 /I m def = { n j=m p j [µ j ], µ j ∈ F p }.
We have the following elementary lemmas.

Lemma 5.1. For 1 m n + 1 we have the decomposition

K 0 (p m )/K 0 (p n+1 ) = x∈I n+1 /Im 1 0 x 1 K 0 (p n+1 ).
In particular, the family

I m,n+1 def = {[ 1 0 x 1 , e η ], x ∈ I n+1 /I m } is an F p -basis for Ind K 0 (p m ) K 0 (p n+1 ) η and dim Fp Ind K 0 (p m ) K 0 (p n+1 ) η = p n+1-m .
Proof: Immediate from corollary 3.3.

Lemma 5.2. Let 1 m n + 1 be integers and η a character of B(F p ). Then we have a K 0 (p m )equivariant canonical isomorphism:

Ind K 0 (p m ) K 0 (p n+1 ) η ∼ → (Ind K 0 (p m ) K 0 (p n+1
) 1) ⊗ η where η is seen (by inflation) as a character of K 0 (p n+1 ) and K 0 (p m ) in the left hand side and in the right hand side respectively.

Proof: The assignment, for x ∈ I n+1 /I m , [ 1 0 x 1 , e η ] → [ 1 0 x 1 , e 1 ] ⊗ e η defines an F p -isomorphism which is actually K 0 (p m )-equivariant, as 1 0 x 1 ∈ K 1 for all x ∈ I n+1 /I m .
In particular, by Lemma 5.2, we can assume η = 1.

The case m = n

We establish here the first step concerning the inductive description of the socle filtration for Ind K 0 (p m ) K 0 (p n+1 ) 1; fix once for all an F p -basis {e} for the underlying vector space of the trivial character 1. We introduce the objects: Definition 5.3. Let n ∈ N > and 0 l n p -1. Then: i) we define the following element of Ind

K 0 (p n ) K 0 (p n+1 ) 1: F (n) ln def = µn∈Fp µ ln n [ 1 0 p n [µ n ] 1
, e];

we define formally

F (n) -1 , F (n) p def = 0;
ii) we define the following quotient of Ind

K 0 (p n ) K 0 (p n+1 ) 1: Q (n,n+1) ln def = Ind K 0 (p n ) K 0 (p n+1 ) 1/ F (n) 0 , . . . , F (n) ln-1 Fp ;
we define formally

Q (n,n+1) p def = 0.
For any 0 l n , l n p -1 we will often commit the abuse to use the same notation for

F (n)
ln and its image in the quotient Q

(n,n+1) l n
. The meaning will be clear according to the context. The next computation is the main tool to describe the socle filtration for Ind

K 0 (p n ) K 0 (p n+1 ) 1. Lemma 5.4. Let g ∈ K 0 (p n+1 ), λ ∈ F p and 0 l n p -1.
Then we have the equalities in Ind

K 0 (p n ) K 0 (p n+1 ) 1: i) g • F (n) ln = a ln (g)F (n) ln ; ii) 1 0 p n [λ] 1 F (n) ln = ln j=0 ln j (-λ) j F (n) ln-j . Proof: i). If g = a b p n+1 c d
, then we can write

g 1 0 p n [µ n ] 1 = 1 0 p n [µ n a -1 d] 1 a b p n+1 c d where a , c , d ∈ Z p and a ≡ a [p], d ≡ d [p]. Thus, gF (n) ln = µn∈Fp µ ln n [ 1 0 p n [µ n a -1 d] 1 , e] = (ad -1 ) ln F (n) ln . Since [λ] + [µ n ] ≡ [λ + µ n ] modulo p, we deduce 1 0 p n [λ] 1 F (n) ln = µn∈Fp µ ln n [ 1 0 p n [µ n + λ] 1 , e].
The result follows.

As a consequence, we get the corollaries:

Corollary 5.5. For any 0

l n p -1, the sub-K 0 (p n ) representation of Q (n,n+1) l generated by F (n) ln is isomorphic to a ln . Proof: For any g ∈ K 0 (p n ) we can write g = 1 0 p n [λ] 1
κ with suitable elements λ ∈ F p , κ ∈ K 0 (p n+1 ) (Lemma 5.1). The result comes from Lemma 5.4 and the definition of Q

(n,n+1) ln .

Corollary 5.6. For any 0 l n p -1 we have K 0 (p n )-equivariant exact sequence

0 → F (n) ln → Q (n,n+1) ln → Q (n,n+1) ln+1 → 0 which is nonsplit if l n p -2. Moreover, dim Fp (Q (n,n+1) ln ) = p -l n .
Proof: The exact sequence is clear. Furthermore, if φ :

Q (n,n+1) ln → F (n) ln is any K 0 (p n )- equivariant morphism, we see that φ(F (n) ln ) = µn∈Fp µ ln n 1 0 p n [µ n ] 1 φ([1 K 0 (p n ) , e]) = φ([1 K 0 (p n ) , e]) µn∈Fp µ ln n .
Thus, there cannot be any K 0 (p n ) equivariant sections for

F (n) ln → Q (n,n+1) ln if 0 l n p -2.
The assertion concerning the dimension is immediate by induction.

Corollary 5.7. Let 0 l n p -1. Then the socle of Q (n,n+1) ln is given by:

soc(Q (n,n+1) ln ) = F (n) ln . Proof: We have Q (n,n+1) p-1 ∼ = F (n)
p-1 , as the two spaces are 1-dimensional. By a decreasing induction, assume soc(Q

(n,n+1) ln+1 ) = F (n)
ln+1 for l n p -2 and consider the exact sequence

0 → F (n) ln → Q (n,n+1) ln → Q (n,n+1) ln+1 → 0. If τ is an irreducible K 0 (p n )-subrepresentation of Q (n,n+1) ln such that τ ∩ F (n) ln = 0, we deduce that F (n) ln+1 + c 1 F (n) ln ∈ τ for a suitable c 1 ∈ F p . From the equality 1 0 p n [λ] 1 (F (n) ln+1 + c 1 F (n) ln ) = F (n) ln+1 -(l n + 1)λF (n) ln + c 1 F (n) ln in Q (n,n+1) ln
(where λ ∈ F × p ), we find F

(n) ln ∈ τ , contradiction.

The general case

Fix two integers 1 m n + 1. In this section we establish the inductive step which lets us describe the socle filtration for the representation Ind K 0 (p m ) K 0 (p n+1 ) 1. We recall the following result:

Proposition 5.8. Let 1 m n + 1. For any m j n + 1 we have a canonical isomorphism:

Ind K 0 (p m ) K 0 (p n+1 ) 1 ∼ → Ind K 0 (p m ) K 0 (p j ) Ind K 0 (p j ) K 0 (p n+1 ) 1.
For any two (n + 1 -m)-tuples (j m , . . . , j n ), (l m , . . . , l n ) ∈ {0, . . . , p -1} n-m+1 we define inductively (j m , . . . , j n ) ≺ (l m , . . . , l n ) if either (j m+1 , . . . , j n ) ≺ (l m+1 , . . . , l n ) or (j m+1 , . . . , j n ) = (l m+1 , . . . , l n ) and j m < l m . We can therefore introduce the objects: Definition 5.9. Let (l m , . . . , l n ) ∈ {0, . . . , p -1} n-m+1 be an (n + 1 -m)-tuples. Then: i) we define inductively the following element of Ind

K 0 (p m ) K 0 (p n+1 ) 1: F (m) lm * • • • * F (n) ln def = µm∈Fp µ lm m 1 0 p m [µ m ] 1 [1 K 0 (p m ) , F (m+1) 
l m+1 * • • • * F (n) ln ]
where we adopt the convention

F (m) lm+1 * • • • * F (n) ln def = F (m) 0 * F (m+1) l m+1 +1 * • • • * F (n) ln if l m = p -1.
ii) We define the following quotient of Ind

K 0 (p m ) K 0 (p n+1 ) 1: Q (m,n+1) lm,...,ln def = Ind K 0 (p m ) K 0 (p n+1 ) 1/ F (m) jm * • • • * F (n) jn for (j m , . . . , j n ) ≺ (l m , . . . , l n ) Fp
where we adopt the convention

Q (m,n+1) lm+1,...,ln def = Q (m,n+1) 0,l m+1 +1,...,ln if l m = p -1.
We give here the statement of the main result.

Proposition 5.10. Let 1 m n + 1 be integers, and (l m , . . . , l n ) ∈ {0, . . . , p -1} n-m+1 a (n -m + 1)-tuple. Then

i) The K 0 (p m )-subrepresentation of Q (m,n+1) lm,...,ln generated by F (m) lm * • • • * F (n) ln is isomorphic to 4 a lm ⊗ • • • ⊗ a ln = a lm+•••+ln ; ii) we have a K 0 (p m )-equivariant exact sequence: 0 → F (m) lm * • • • * F (n) ln → Q (m,n+1) lm,...,ln → Q (m,n+1) lm+1,...,ln → 0 (5) which is nonsplit if (l m , . . . , l n ) = (p -1, . . . , p -1). Moreover Q (m,n+1) 0,l m+1 ,...,ln = Ind K 0 (p m ) K 0 (p m+1 ) Q (m+1,n+1) l m+1 ,...,ln and dim Fp (Q (m,n+1) lm,...,ln ) = p n-m+1 - n-m j=0 p n-m-j l n-j .
iii) The socle of Q (m,n+1) lm,...,ln is given by

soc(Q (m,n+1) lm,...,ln ) = F (m) lm * • • • * F (n) ln .
As we said, the proof is an induction on the length n + 1 -m, the case m = n being proved in the previous section; in what follows, we will therefore assume Proposition 5.10 for any length l with l < n + 1 -m. We first need the following tools.

Lemma 5.11. Let (l m , . . . , l n ) ∈ {0, . . . , p-1} n-m+1 be an (n-m+1)-tuple. The following diagrams are commutative with exact lines i)

0 / / F (m) lm * • • • * F (n-1) l n-1 ⊗ a ln / / Q (m,n) lm,...,l n-1 ⊗ a ln _ / / Q (m,n) lm+1,...,l n-1 ⊗ a ln / / _ 0 0 / / F (m) lm * • • • * F (n) ln / / Q (m,n+1) lm,...,ln / / Q (m,n+1) lm+1,...,ln / / 0; ii) 0 / / Ind K 0 (p m ) K 0 (p m+1 ) F (m+1) l m+1 * • • • * F (n) ln / / Ind K 0 (p m ) K 0 (p m+1 ) Q (m+1,n+1) l m+1 ,...,ln / / Ind K 0 (p m ) K 0 (p m+1 ) Q (m+1,n+1) l m+1 +1,...,ln / / 0 0 / / Q (m,m+1) lm ⊗ a l m+1 ⊗ • • • ⊗ a ln / / Q (m,n+1) lm,...,ln / / Ind K 0 (p m ) K 0 (p m+1 ) Q (m+1,n+1) l m+1 +1,...,ln / / 0.
Proof: The proof will be an induction on the (n+1-m)-tuple (l m , . . . , l n ) ∈ {0, . . . , p-1} n+1-m . i) From corollary 5.6 and the exactness of the induction functor we dispose of the following exact sequence for any 0 l n p -1:

0 → Ind K 0 (p m ) K 0 (p n ) F (n) ln → Ind K 0 (p m ) K 0 (p n ) Q (n,n+1) ln → Ind K 0 (p m ) K 0 (p n ) Q (n,n+1) ln+1 → 0 and F (n) ln ∼ = a ln .
We assume, inductively, to have the commutative diagram with exact lines:

0 / / Ind K 0 (p m ) K 0 (p n ) 1 ⊗ a ln / / Ind K 0 (p m ) K 0 (p n ) Q (n,n+1) ln / / Ind K 0 (p m ) K 0 (p n ) Q (n,n+1) ln+1 / / 0 0 / / Q (m,n) lm,...,l n-1 ⊗ a ln / / Q (m,n+1) lm,...,ln / / Ind K 0 (p m ) K 0 (p n ) Q (n,n+1) ln+1 / / 0.
We can invoke Proposition 5.10 for Ind

K 0 (p m ) K 0 (p n ) 1 ⊗ a ln deducing the diagram: 0 0 F (m) lm * • • • * F (n-1) l n-1 ⊗ a ln / / Q (m,n) lm,...,l n-1 ⊗ a ln F (m) lm * • • • * F (n) ln / / Q (m,n+1) lm,...,ln 0 / / Ind K 0 (p m ) K 0 (p n ) Q (n,n+1) ln+1 0 0
and we are left to use the snake lemma to conclude the induction (notice that if (l m , . . . , l n-1 ) = (p -1, . . . , p -1) we just deduce the isomorphism Ind

K 0 (p m ) K 0 (p n ) Q (n,n+1) ln+1 ∼ = Q (m,n+1)
0,...,0,ln+1 ). ii). It is similar to i). The details are left to the reader. Lemma 5.12. Fix two integers 1 m n+1, let (l m , . . . , l n ) ∈ {0, . . . , p-1} n-m+1 be an (n-m+1)tuple and assume (l m , . . . , l n ) ≺ (p -1, . . . , p -1). Moreover, let λ ∈ F p and t = j∈N p j [t j ] ∈ Z p be a p-adic integer.

Then, the action of

1 0 p m [λ] + p m+1 t 1 on F (m) lm+1 * F (m+1) l m+1 * • • • * F n ln inside Q (m,n+1)
lm,...,ln is described by

1 0 p m [λ] + p m+1 t 1 • F (m) lm+1 * • • • * F (n) ln = = F (m) lm+1 * • • • * F (n) ln + (l j + 1)(-1) j-m+1 λF (m) lm * • • • * F (n) ln
where j ∈ {m, . . . , n} is minimal with respect to the property that l j + 1 ≡ 0 mod p.

Proof:

The case m = n is an immediate computation, and it is left to the reader. In order to establish the general step, we need to distinguish two cases:

Situation A). Assume l m p -2. It follows from Proposition 5.10 applied to Ind

K 0 (p m+1 ) K 0 (p n+1 ) 1 that 1 0 p m+1 Z p 1 acts trivially on F (m+1) l m+1 * • • • * F (n) ln in Q (m+1,n+1)
l m+1 ,...,ln , and we deduce the following equalities in Ind

K 0 (p m ) K 0 (p m+1 ) Q (m+1,n+1) l m+1 ,...,ln : 1 0 p m [λ] + p m+1 t 1 µm∈Fp µ lm+1 m 1 0 p m [µ m ] 1 [1, F (m+1) 
l m+1 * • • • * F (n) ln ] = = µm∈Fp µ lm+1 m 1 0 p m [λ + µ m ] 1 [1, F (m+1) 
l m+1 * • • • * F (n) ln ] = = lm+1 j=0 l m + 1 j (-λ) j [1, F (m+1) 
l m+1 * • • • * F (n) ln ].
We conclude using the projection Ind

K 0 (p m ) K 0 (p m+1 ) Q (m+1,n+1) l m+1 ,...,ln Q (m,n+1) lm,...,ln . Situation B). Assume l m = p -1; therefore F (m) lm+1 * • • • * F (n) ln = F (m) 0 * F (m+1) l m+1 +1 * • • • * F (n) ln .
Lemma 2.7 and the inductive hypothesis applied to F (m+1)

l m+1 +1 * • • • * F (n) ln ∈ Q (m+1,n+1)
l m+1 ,...,ln let us deduce the following equalities inside Ind

K 0 (p m ) K 0 (p m+1 ) Q (m+1,n+1) l m+1 ,...,ln : 1 0 p m [λ] + p m+1 t 1 µm∈Fp 1 0 p m [µ m ] 1 [1, F (m+1) 
l m+1 +1 * • • • * F (n) ln ] = = µm∈Fp 1 0 p m [µ m + λ] 1 [1, F (m+1) 
l m+1 +1 * • • • * F (n) ln ] + +(l j + 1)(-1) j-m µm∈Fp (P λ (µ m ) + t 0 ) 1 0 p m [λ + µ m ] 1 [1, F (m+1) 
l m+1 +1 * • • • * F (n) ln ] = F (m) lm+1 * • • • * F (n) ln + (l j + 1)(-1) j-m (t 0 F (m) 0 * F (m+1) l m+1 * • • • * F (n) ln + + p-1 s=1 p s p (-λ) p-s F (m) s * F (m+1) l m+1 * • • • * F (n) ln )
where j ∈ {m + 1, . . . , n} is minimal with respect to the property that l j < p -1. The conclusion comes using the projection Ind

K 0 (p m ) K 0 (p m+1 ) Q (m+1,n+1) l m+1 ,...,ln Q (m,n+1)
lm,...,ln .

We are now able to deduce easily Proposition 5.10.

Proof of Proposition 5.10: i) From Lemma 5.11-i) we have an isomorphism

F (m) lm * • • • * F (n-1) l n-1 ⊗ a ln ∼ → F (m) lm * • • • * F (n) ln
and we have

F (m) lm * • • • * F (n-1) l n-1 ∼ = a lm ⊗ • • • ⊗ a l n-1 by the inductive hypothesis.
ii) As in corollary 5.6, we see that for any K 0 (p m )-equivariant morphism φ :

Q (m,n+1) lm,...,ln → F (m) lm * • • • * F (n) ln we have φ(F (m) lm * • • • * F (n) ln ) = (-δ p-1,lm ) . . . (-δ p-1,ln )φ([1 K 0 (p n ) , e])
so that there cannot be any splitting for

F (m) lm * • • • * F (n) ln → Q (m,n+1) lm,...,ln if (l m , . . . , l n ) ≺ (p-1, . . . , p- 1). The identity dim Fp (Q (m,n+1) lm,...,ln ) = p n-m+1 - n-m j=0 p n-m-j l n-j
is now an immediate induction.

iii) The case (l m , . . . , l n ) = (p -1, . . . , p -1) is trivial. We will prove the general case by a descending induction on the (n + 1 -m)-tuple (l m , . . . , l n ). Consider the exact sequence 

0 → F (m) lm * • • • * F (n) ln → Q (m,
τ = F (m) lm+1 * • • • * F (n) ln + c 1 F (m) lm * • • • * F (n) ln ∼ = a lm+1 ⊗ . . . a ln
for a suitable c 1 ∈ F p . But by Lemma 5.12 we have the equalities in Q (m,n+1) lm,...,ln :

1 0 p m [λ] 1 (F (m) lm+1 * • • • * F (n) ln + c 1 F (m) lm * • • • * F (n) ln ) = = (F (m) lm+1 * • • • * F (n) ln + c 1 F (m) lm * • • • * F (n) ln ) + +λ(l j + 1)(-1) j-m+1 F (m) lm * • • • * F (n) ln
(where j ∈ {m, . . . , n} is defined as in Lemma 5.12) from which

F (m) lm * • • • * F (n) ln ∈ τ if λ = 0, contradiction. .

Study of an Induction -II

Throughout this section we consider integers r, t with 0 r p -1, 0 t p -2 and n ∈ N > . Our aim is to describe the socle filtration of the induction Ind K K 0 (p n+1 ) χ s r a t using the results of section §5; the main result is then Proposition 6.6.

We start by fixing the following elements of Ind K K 0 (p n+1 ) χ s r a t . Definition 6.1. Let (l 1 , . . . , l n ) ∈ {0, . . . , p -1} n be an n-tuple, and let t def = n i=1 l i . We define

F (0) 0 * F (1) l 1 * • • • * F (n) ln def =                      µ 0 ∈Fp [µ 0 ] 1 1 0 [1 K , F (1) 
l 1 * • • • * F (n) ln ] if r -2(t + t ) ≡ 0 [p -1]; µ 0 ∈Fp [µ 0 ] 1 1 0 [1 K , F (1) 
l 1 * • • • * F (n) ln ] + (-1) t+t [1 K , F (1) 
l 1 * • • • * F (n) ln ] if r -2(t + t ) ≡ 0 [p -1] F (0) 1 * F (1) l 1 * • • • * F (n) ln def =                  [1 K , F (1) 
l 1 * • • • * F (n) ln ] if r -2(t + t ) ≡ 0 [p -1]; µ 0 ∈Fp [µ 0 ] 1 1 0 [1 K , F (1) 
l 1 * • • • * F (n) ln ] if r -2(t + t ) ≡ 0 [p -1].
If (j 1 , . . . , j n ), (j 1 , . . . , j n ) ∈ {0, . . . , p -1} n are two n-tuples and i, i ∈ {0, 1} we define (i, j 1 , . . . , j n ) ≺ (i , j 1 , . . . , j n ) iff either (j 1 , . . . , j n ) ≺ (j 1 , . . . , j n ) or (j 1 , . . . , j n ) = (j 1 , . . . , j n ) and i < i . Finally Definition 6.2. Let (l 1 , . . . , l n ) ∈ {0, . . . , p -1} n be an n-tuple, i ∈ {0, 1} and let t def = n j=1 l j . We define the quotient Q (0,n+1) i,l 1 ,...,ln of Ind K K 0 (p n+1 ) χ s r a t as Q (0,n+1) i,l 1 ,...,ln def = Ind K K 0 (p n+1 ) χ s r a t /( (j,j 1 ,...,jn)≺(i,l 1 ,...,ln)

K • F (0) j * . . . F (n) jn )
where (j,j 1 ,...,jn)≺(i,l 1 ,...,ln)

K • F (0) j * . . . F (n) jn
denotes the sub-K-representation of Ind K K 0 (p n+1 ) χ s r a t generated by the elements

F (0) j * . . . F (n)
jn for (j, j 1 , . . . , j n ) ≺ (i, l 1 , . . . , l n ).

As usual, we adopt the convention

Q (0,n+1) i+1,l 1 ,...,ln def = Q (0,n+1) 0,l 1 +1,...,ln if i = 1.
We remark that in the previous definitions we do not keep track of the integers r, t: we adopted this choice in order not to overload the notations. We believe the values of r, t will be clear from the context (cf. §7, §8).

The study of the socle filtration starts from the following elementary lemma: Lemma 6.3. If (l 1 , . . . , l n ) ∈ {0, . . . , p -1} n is an n-tuple, we have the following commutative diagrams with exact rows: i)

0 / / K • F (0) 0 * F (1) l 1 * • • • * F (n) ln / / Ind K K 0 (p) F (1) l 1 * • • • * F (n) ln _ / / K • F (0) 1 * F (1) l 1 * • • • * F (n) ln / / _ 0 0 / / K • F (0) 0 * F (1) l 1 * • • • * F (n) ln / / Q (0,n+1) 0,l 1 ,...,ln / / Q (0,n+1) 1,l 1 ,...,ln / / 0; ii) 0 / / Ind K K 0 (p) F (1) l 1 * • • • * F (n) ln / / Q (0,n+1) 0,l 1 ,...,ln / / Q (0,n+1) 0,l 1 +1,...,ln / / 0 0 / / K • F (0) 1 * F (1) l 1 * • • • * F (n) ln / / Q (0,n+1) 1,l 1 ,...,ln / / Q (0,n+1) 0,l 1 +1,...,ln / / 0.
Proof: It is an induction on the n-tuple (l 1 , . . . , l n ). By Proposition 5.10 and the exactness of the induction functor we have the exact sequence 0 → Ind K K 0 (p) F

(1)

l 1 * • • • * F (n) ln → Ind K K 0 (p) Q (1,n+1) l 1 ,...,ln → Ind K K 0 (p) Q (1,n+1)
l 1 +1,...,ln → 0 and we dispose of the exact sequence (cf. Lemma 2.4)

0 → K • F (0) 0 * F (1) l 1 * • • • * F (n) ln → Ind K K 0 (p) F (1) l 1 * • • • * F (n) ln → K • F (0) 1 * F (1) l 1 * • • • * F (n) ln → 0.
The conclusion comes applying the snake lemma to the diagram 0 0

K • F (0) 0 * F (1) l 1 * • • • * F (n) ln / / Ind K K 0 (p) F (1) l 1 * • • • * F (n) ln K • F (0) 0 * F (1) l 1 * • • • * F (n) ln / / Ind K K 0 (p) Q (1,n+1) l 1 ,...,ln 0 / / Ind K K 0 (p) Q (1,n+1) l 1 +1,...,ln 0 0 assuming inductively that Ind K K 0 (p) Q (1,n+1) l 1 ,...,ln = Q (0,n+1) 0,l 1 ,...,ln .
We deduce the following two corollaries:

Corollary 6.4. Let (l 1 , . . . , l n ) ∈ {0, . . . , p -1} n be an n-tuple. Then:

i) The K-subrepresentation of Q (0,n+1) 0,l 1 ,...,ln generated by F (0) 0 * F (1) l 1 * • • • * F (n) ln is isomorphic to K • F (0) 0 * F (1) l 1 * • • • * F (n) ln ∼ → Sym r-2(t+t ) F 2 p ⊗ det t+t F (0) 0 * F (1) l 1 * • • • * F (n) ln → X r-2(t+t ) .
If, moreover, r -2(t + t ) ≡ 0[p -1], then the K-subrepresentation of Q (0,n+1) 0,l 1 ,...,ln generated by

F (0) 1 * F (1) l 1 * • • • * F (n) ln is isomorphic to K • F (0) 1 * F (1) l 1 * • • • * F (n) ln ∼ → Sym p-1 F 2 p ⊗ det t+t F (0) 1 * F (1) l 1 * • • • * F (n) ln → X p-1 . ii) The K-subrepresentation of Q (0,n+1) 1,l 1 ,...,ln generated by F (0) 1 * F (1) l 1 * • • • * F (n) ln is isomorphic to K • F (0) 1 * F (1) l 1 * • • • * F (n) ln ∼ → Sym p-1-r-2(t+t ) F 2 p ⊗ det r-(t+t ) F (0) 1 * F (1) l 1 * • • • * F (n) ln → X p-1-r-2(t+t ) . Proof: As F (1) l 1 * • • • * F (n) ln ∼ = χ s
r a t+t the statement is an immediate consequence of Lemma 6.3 and Proposition 2.4. Corollary 6.5. Let (l 1 , . . . , l n ) ∈ {0, . . . , p -1} n be an n-tuple. Then: i) If (l 1 , . . . , l n ) = (p -1, . . . , p -1) the exact sequences:

0 → K • F (0) 0 * F (1) l 1 * • • • * F (n) ln → Q (0,n+1) 0,l 1 ,...,ln → Q (0,n+1) 1,l 1 ,...,ln → 0; 0 → K • F (0) 1 * F (1) l 1 * • • • * F (n) ln → Q (0,n+1) 1,l 1 ,...,ln → Q (0,n+1) 0,l 1 +1,...,ln → 0 are non split. ii) If (l 1 , . . . , l n ) = (p -1, . . . , p -1) the exact sequence 0 → K • F (0) 0 * F (1) p-1 * • • • * F (n) p-1 → Q (0,n+1) 0,p-1,...,p-1 → Q (0,n+1) 1,p-1,...,p-1 → 0 is nonsplit iff r -2t ≡ 0[p -1].
iii) The dimension of the quotients Q (0,n+1) i,l 1 ,...,ln for i ∈ {0, 1} is:

dim Fp (Q (0,n+1) 0,l 1 ,...,ln ) = (p + 1)p n -(p + 1)( n j=1 p j-1 l j ) dim Fp (Q (0,n+1) 1,l 1 ,...,ln ) = (p + 1)p n -(p + 1)( n j=1 p j-1 l j ) -( r -2(t + t ) + 1). Proof: i) and ii). As the action of K 1 on K • F (0) i * F (1) l 1 * • • • * F (n) ln is trivial (for i ∈ {0, 1}), we deduce as in Proposition 5.10-ii) that φ(F (0) i * F (1) l 1 * • • • * F (n) ln ) = 0 for any K-equivariant morphism Q (0,n+1) i,l 1 ,...,ln → K • F (0) i * F (1) l 1 * • • • * F (n) ln
and for any (n + 1)-tuple (i, l 1 , . . . , l n ) ∈ {0, 1} × {0, . . . , p -1} n such that (l 1 , . . . , l n ) ≺ (p -1, . . . , p -1). The assertion ii) is then immediate from Proposition 2.4.

The proof on iii) is finally an obvious induction.

Study of the socle filtration

The present section is devoted to the proof of the following result:

Proposition 6.6. Assume p is odd; let (l 1 , . . . , l n ) ∈ {0, . . . , p -1} n be an n-tuple, and let

t def = n i=1 l i . Then i) the socle of Q (0,n+1) 1,l 1 ,...,ln is described by soc(Q (0,n+1) 1,l 1 ,...,ln ) = KF (0) 1 * F (1) l 1 * • • • * F (n) ln ii) the socle of Q (0,n+1) 0,l 1 ,...,ln is described by soc(Q (0,n+1) 0,l 1 ,...,ln ) =          K • F (0) 0 * F (1) l 1 * • • • * F (n) ln if r -2(t + t ) ≡ 0[p -1]; K • F (0) 0 * F (1) l 1 * • • • * F (n) ln ⊕ K • F (0) 1 * F (1) l 1 * • • • * F (n) ln if r -2(t + t ) ≡ 0[p -1].
The proof is a descending induction on the n-tuple (l 1 , . . . , l n ), the statement being clear if (l 1 , . . . , l n ) = (p -1, . . . , p -1).

We prove the result for a fixed n-tuple (l 1 , . . . , l n ), assuming it true for Q (0,n+1) 0,l 1 +1,...,ln (resp. for Q (0,n+1) 1,l 1 ,...,ln ).

Study of soc(Q (0,n+1) 1,l 1 +1,...,ln ). We dispose of the following commutative diagram with exact lines (cf. Lemma 6.3):

0 / / Ind K K 0 (p) F (1) l 1 * • • • * F (n) ln pr 1 / / Q (0,n+1) 0,l 1 ,...,ln pr 2 / / Q (0,n+1) 0,l 1 +1,...,ln / / 0 0 / / K • F (0) 1 * F (1) l 1 * • • • * F (n) ln / / Q (0,n+1) 1,l 1 ,...,ln / / Q (0,n+1) 0,l 1 +1,...,ln / / 0.
We define the elements of Q (0,n+1) 0,l 1 ,...,ln :

x def = µ 0 ∈Fp [µ 0 ] 1 1 0 [1 K , F (1) 
l 1 +1 * • • • * F (n) ln ] x def = [1 K , F (1) 
l 1 +1 * • • • * F (n) ln ] y def = x + (-1) t+t +1 x ;
the behaviour of the elements x, x in Q (0,n+1) 0,l 1 ,...,ln is the object of the next Lemma 6.7. We have the following equalities in Q (0,n+1) 0,l 1 ,...,ln for p odd5 

: i) if a, d ∈ F × p then [a] 0 0 [d]
x = a r-(t+t +1) d t+t +1 x;

[a] 0 0 [d] x = a t+t +1 d r-(t+t +1) x .

ii) Let j ∈ {1, . . . , n} be minimal with respect to the property that l j p -2 and let λ ∈ F p . Then 1 [λ] 0 1 x = x + (l j + 1)(-1) j µ 0 ∈Fp -P -λ (µ 0 ) [µ 0 ] 1 1 0 [1 K , F

(1)

l 1 * • • • * F (n) ln ];
1 [λ] 0 1 x = x + (l j + 1)(-1) j δ p,3 (1 -δ 1,j )λ[1 K , F

(1)

l 1 * • • • * F (n) ln ].
Proof: i) Follows easily from the definition of the elements x, x and the equalities

[a] 0 0 [d] z 1 1 0 = z[ad -1 ] 1 1 0 [d] 0 0 [a] [a] 0 0 [d] 1 0 z 1 = 1 0 z[a -1 d] 1 [a] 0 0 [d] for z ∈ Z p , a, d ∈ F × p
ii) The first equality is immediately deduced from Lemma 5.12 and the relation:

1 [λ] 0 1 [µ 0 ] 1 1 0 = [λ + µ 0 ] 1 1 0 1 0 p[P λ (µ 0 )] + p 2 h 1
for λ, µ 0 ∈ F p and h ∈ Z p a suitable p-adic integer.

The second equality is more delicate. From Lemma 2.9 we deduce

1 [λ] 0 1 1 0 p[µ 1 ] + • • • + p n [µ n ] 1 = 1 0 p[µ 1 ] + • • • + p n [µ n ] 1 Λ
In particular, the natural projection Q (0,n+1) 0,l 1 ,...,ln Q (0,n+1) 1,l 1 ,...,ln induces an isomorphism τ ∼ → soc(Q (0,n+1) 1,l 1 ,...,ln ). Assuming Proposition 6.6-i) for the representation Q (0,n+1) 1,l 1 ,...,ln , we deduce that it exists f ∈ K • F (0) 0 * F (1)

l 1 * • • • * F (n) ln such that f + F (0) 1 * F (1) l 1 * • • • * F (n) ln ∈ τ is a K-generator of τ , contradiction.
End of the proof of Proposition 6.6. The statement of Proposition 6.6 is trivially true for the n-tuple (l 1 , . . . , l n ) = (p -1, . . . , p -1), since Q (0,n+1) 0,p-1,...,p-1

∼ = Ind K K 0 (p) F (1) p-1 * • • • * F (n) p-1 ∼ = Ind K K 0 (p) χ s r a t .
The general case follows then from a descending induction, using Lemmas 6.8 and 6.9.

A weaker result. We can state a similar, although weaker, result concerning the structure of Ind K K 0 (p n+1 ) χ s r a t . Indeed, by exactness of the functor Ind K K 0 (p) and Proposition 5.10 we have a natural equivariant filtration on Ind K K 0 (p n+1 ) χ s r a t , whose graded pieces are isomorphic to finite inductions of characters, depending explicitely on χ s r a t and on the graded piece. The fact that the extensions between the graded pieces are non split can be deduced with the same techniques used for Proposition 6.6 and we get Proposition 6.10. Let r ∈ {0, . . . , p -1}, t ∈ {0, . . . , p -2} and n ∈ N. The representation Ind GL 2 (Zp) K 0 (p n+1 ) χ s r a t has a natural equivariant filtration whose graded pieces are described by Ind GL 2 (Zp) K 0 (p) χ s r a t -Ind GL 2 (Zp) K 0 (p) χ s r a t+1 -Ind GL 2 (Zp) K 0 (p) χ s r a t+2 -. . . -Ind GL 2 (Zp) K 0 (p) χ s r a t-1 -Ind GL 2 (Zp) K 0 (p) χ s r a t the extensions being non-split. Moreover, the number of finite parabolic inductions is p n .

Proof. Left to the reader.

Socle filtration for the spaces R n

In this section we will use the results of §6 to give an exhaustive description of the socle filtration for the R n 's, for any n ∈ N. The precise statement is the following:

Proposition 7.1. Assume p odd; let 1 r p -1, n ∈ N > and 1 t r be integers. Then soc(Fil t-1 (R n+1 )) = soc(Fil t (R n+1 )).

More generally, we have soc(Fil t-1 (R n+1 )/Q) = soc(Fil t (R n+1 )/Q)

for any subrepresentation Q of Fil j (R n+1 ), 0 j t -1 coming from the socle filtration of Fil j (R n+1 ).

The rest of the paragraph is devoted to its proof, which is very similar to the proof of Proposition 6.6. For a notational convenience, we will prove the result concerning the representations Fil t-1 (R n+1 ), Fil t (R n+1 ). In order to obtain the general result we just have repeat the same arguments replacing Fil t-1 (R n+1 ) and Fil t (R n+1 ) by Fil t-1 (R n+1 )/Q and Fil t (R n+1 )/Q respectively (and other similar formal adjustments which will be clear to the reader).

which gives an absurd for r -2(t -1) ≡ 0 [p -1] and r -2(t -1) ≡ 0 [p -1] respectively (cf. Remark 2.5).

Study of case B. Let f ∈ Fil t-1 (R n+1 ) be such that y + f ∈ τ . From the induced isomorphism τ ∼ → Ky and the behaviour of y in soc(Ind K K 0 (p n+1 ) χ s r a t ) we deduce the following necessary conditions:

1) for all a, d ∈ F × p we have

[a] 0 0 [d] (y + f ) -a r-t d t (y + f ) = 0 inside Fil t (R n+1 );

2) for all λ ∈ F p we have

1 [λ] 0 1 (y + f ) -(y + f ) = 0 inside Fil t (R n+1 ).
We deduce from condition 1) and Lemma 7.2 that pr tot (f ) is an H-eigenvector of Sym p-1-r-2(t-1) F 2 p ⊗ det r-(t-1) ∼ = Ind K K 0 (p) χ s r a t-1 /Sym r-2(t-1) F 2 p ⊗ det t-1 of associated eigencharacter a r-t d t and therefore, by Lemma 2.6

1 [λ] 0 1 pr tot (f ) -pr tot (f ) =            0 if r -2(t -1) ≡ 0 [p -1] (i.e. p = 3) c 1 µ 0 ∈Fp [µ 0 ] 1 1 0 [1, X r-(t-1) Y t-1 ]
if r -2(t -1) ≡ 0 [p -1] (i.e. p = 3) for a suitable c 1 ∈ F p . The conclusion follows from Lemma 7.2, similarly to the previous case. The proof of Proposition 7.1 is therefore complete.

Socle filtration for the spaces

R 0 ⊕ R 1 • • • ⊕ Rn R n+1
We are finally ready to describe the socle filtration for the K-representations

lim -→ n even (R 0 ⊕ R 1 • • • ⊕ Rn R n+1 ), lim -→ m odd (R 1 /R 0 ⊕ R 2 • • • ⊕ Rm R m+1 ).
The main statement is the following:

Proposition 8.1. Assume p is odd; let n ∈ N > (resp. m ∈ N > ) be an odd (resp. even) integer, 0 r p -2. Then :

i) soc(R 0 ⊕ R 1 • • • ⊕ R n-2 R n-1 ) = soc(R 0 ⊕ R 1 • • • ⊕ Rn R n+1 ) (resp. soc(R 1 /R 0 ⊕ R 2 • • • ⊕ R m-2 R m-1 ) = soc(R 1 /R 0 ⊕ R 2 • • • ⊕ Rm R m+1 ))
where we formally define

R 0 ⊕ R -1 R 0 def = R 0 (resp. R 1 /R 0 ⊕ R 0 R 1 def = R 1 /R 0 ).
ii) More generally, if 0 j n -1 is even (resp. 1 j m -1 is odd) and Q is a Ksubrepresentation of R j /R j-1 (resp. R j /R j -1 ) coming from the socle filtration of R j /R j-1

  a 3 )-. . . respectively (and I denotes the Iwahori subgroup of GL 2 (Z p )).

  GL 2 (Qp)B(Qp) (un λ ⊗ ω r 1 un λ ) is described by SocFil(Ind GL 2 (Zp) I χ s r )-SocFil(Ind GL 2 (zp) I χ s r a)-SocFil(Ind GL 2 (Zp) I χ s r a 2 )-. . .The socle filtration for the GL 2 (Z p )Q × p restriction of the Steinberg representation for GL 2 (Q p ) is Sym p

n

  } n∈N (resp. {F il (p-1-r) n} n∈N ) and Theorem 1.1 holds true.

  ..,ln be an irreducible subrepresentation such that τ ∩ F

in this paragraph, for the reader's convenience, we decided to use lighter notations which differ slightly from the notations used in the rest of the paper.

the aforementioned "delicate manipulations on Witt vectors".

more precisely, natural lifts inside πr, πp-1-r of the functions F lm,...,ln

as remarked by the referee, the notation with the tensor product may be confusing as it can be interpreted as a character of (n + 1 -m) copies of K0(p m ). As stressed in the statement of Proposition

5.10, the tensor product a lm ⊗ • • • ⊗ a ln we mean here is the classical tensor product of K0(p m )-representation, see for instance[Alp], II §5.

this is required only for the equality concerning x in ii)
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where Λ ∈ K 0 (p n+1 ) is upper unipotent modulo p and, for i 3 we have

where S i-2 ∈ F p [X] is a polynomial of degree p -1 and leading coefficient -s i-2 def = µ i-1 -µ i-1 , while, for i ∈ {1, 2} we have

If j ∈ {1, . . . , n} is as in the statement we can write F

(1)

(with the obvious convention if j = 1) and a direct computation in Ind K 0 (p) K 0 (p n ) χ s r a t gives:

If j < n we can now use the recursive property of the s i-1 's for i = j, . . . , n -1 and project v successively via the epimorphisms

l j+1 ,...,ln .

We see that v is sent to the following element v of Ind

l j+1 ,...,ln (with the convention that if j = n, we just have v = v and Q (j+1,n+1) l j+1 ,...,ln def = χ s r a t ):

This lets us deduce the statement if j = 1, while, if j 2 we map v in Ind

l j ,...,ln via the epimorphism Ind

l j ,...,ln to get:

We use again the recursive property of the s i-1 's for i = 2, . . . , j and the chain of epimorphisms Ind K 0 (p) K 0 (p j ) Q (j,n+1) l j ,...,ln

to see that the image of v in Q

(1,n+1) l 1 ,...,ln is F

(1)

ln + (l j + 1)(-1) j λδ p,3 F

(1)

ln . This let us conclude the proof.

We can now prove the main result of this paragraph (i.e. the proof of i) of Proposition 6.6) Lemma 6.8. Assume p is odd. Let (l 1 , . . . , l n ) ∈ {0, . . . , p -1} n be an n-tuple and assume that the statement of Proposition 6.6-ii) holds true for the n-tuple (l 1 + 1, . . . , l n ).

Then

ln .

Proof: Assume false. Let τ be an irreducible K-subrepresentation of Q

0,l 1 +1,...,ln induces an isomorphism of τ onto an irreducible summand of soc(Q (0,n+1) 0,l 1 +1,...,ln ). Assuming that Proposition 6.6-ii) holds true for the n-tuple (l 1 + 1, . . . , l n ) we can distinguish the situations:

A) the subrepresentation τ maps isomorphically into the K-subrepresentation of Q (0,n+1) 0,l 1 +1,...,ln generated by (the image of) x. B) We have r -2(t + t + 1) ≡ 0 [p -1] and the subrepresentation τ maps isomorphically into the K-subrepresentation of Q (0,n+1) 0,l 1 +1,...,ln generated by (the image of) y.

Study of case

0,l 1 +1,...,ln ) let us deduce the necessary conditions:

Condition 1) and Lemma 6.

for some c 1 ∈ F p . Thus, condition 2) and Lemma 6.7-ii) let us conclude that

for any λ ∈ F p , and by Lemma 2.10-ii) we can deduce in particular

Thanks to Remark 2.5 we see that both conditions are absurd, for the case r -2(t + t ) ≡ 0 [p -1] and r -2(t + t ) ≡ 0 [p -1] respectively.

(1)

ln be such that pr 2 (y + f ) ∈ τ . The induced isomorphism τ ∼ → K • y and the behaviour of y in soc(Q (0,n+1) 0,l 1 +1,...,ln ) let us deduce the necessary conditions:

We deduce from condition 1) and Lemma 6.

with associated eigencharacter a r-(t+t +1) d t+t +1 . Thus, by Lemma 2.10, we have

for some c 1 ∈ F p . The conclusion follows again from Lemma 6.7-ii), similarly to case A).

The proof of Lemma 6.8 is therefore complete.

Study of soc(Q (0,n+1) 0,l 1 ,...,ln ). We have the following commutative diagram with exact lines (cf. Lemma 6.3):

Lemma 6.9. Assume p is odd. Let (l 1 , . . . , l n ) ∈ {0, . . . , p -1} n be an n-tuple and assume that the statement of Proposition 6.6-i) holds true for the representation Q (0,n+1) 1,l 1 ,...,ln . Then soc(Q (0,n+1) 0,l 1 ,...,ln ) = soc(Ind K K 0 (p) F

(1)

Proof: Assume false. Let τ be an irreducible K-subrepresentation of Q (0,n+1) 0,l 1 ,...,ln and assume

We fix integers 0 r p -1, n ∈ N, 1 t r, and we define the elements of Fil t (R n+1 ):

Moreover, we consider the map

where the first arrow is the natural projection given by the reduction modulo Fil t-2 (R n+1 ) and the second arrow is more precisely described by the commutative diagram (cf. also Lemma 5.11)

We finally set

where π is the natural projection defined in Lemma 2.6. We start from the following computational lemma.

Lemma 7.2. We have the following equalities in Fil t (R n+1 ) for p odd 6 :

(where P -λ (µ 0 ) has been defined in §2.3) 6 the requirement p odd is used for the equality concerning x in ii)

Proof: i) It is analogous to the proof of Proposition 6.6-i).

ii) From Lemma 2.8 we deduce

for a suitable q ∈ Fil t-2 (R n+1 ) and where the elements P λ,...,µ j-1 (µ j ) for j ∈ {1, . . . , n} (resp. P λ (µ 0 )) are defined in Lemma 2.8. We are now left to map the element 1

and the result follows using the chain of epimorphisms

and the recursive property of the polynomials P λ,...,µ j-1 (X) ∈ F p [X] for j ∈ {1, . . . , n}.

Similarly, from Lemma 2.9 we deduce the following equality in Fil t (R n+1 ):

and the result follows using the chain of epimorphisms

and the recursive property of the s i for i ∈ {1, . . . , n} (here we need p 3).

End of the proof of Proposition 7.1. Let now τ be an irreducible K-subrepresentation of Fil t (R n+1 ), and assume τ ∩ Fil t-1 (R n+1 ) = 0. Therefore the natural projection Fil t (R n+1 )

Ind K K 0 (p n+1 ) χ s r a t induces an isomorphism of τ onto an irreducible factor of soc(Ind p) x ) by Proposition 6.6, we distinguish two situations:

A) the subrepresentation τ maps isomorphically into the K-subrepresentation of Ind K K 0 (p n+1 ) χ s r a t generated by (the image of) x. B) We have r -2t ≡ 0 [p -1] and the subrepresentation τ maps isomorphically into the Ksubrepresentation of Ind K K 0 (p n+1 ) χ s r a t generated by (the image of) y.

x and the behaviour of x in soc(Ind K K 0 (p n+1 ) χ s r a t ) we deduce the following necessary conditions:

Condition 1) and Lemma 7.2-i) imply in particular that pr tot (f ) is an H-eigenvector of

for a suitable c 1 ∈ F p . We conclude from condition 2) and Lemma 7.2-ii) 1) , and this is clearly impossible: by Lemma 2.10-ii) we would get in particular

where we formally define

The rest of the paragraph is devoted to its proof, starting with the following lemmas.

Lemma 8.2. Let n 2 be an integer and 0 r p -1. Proof: First of all, notice that for any m 1 we have a factorisation:

Thus, by the very definition of the operators T - j 's and Lemma 2.10-i) we deduce

(where we put

The previous epimorphism factors then through

and such a factorisation is indeed an isomorphism as the spaces Q (0,n) 0,p-1,...,p-1 and R 1 /Fil r-1 (R 1 ) have the same dimension.

Moreover, if r = 0, p -1, we see that

and therefore the morphism

1,p-1,...,p-1 ; again such a factorisation is an isomorphism by dimensional reasons.

Lemma 8.3. Let n 1 (resp. n = 0), and 0 r p -2. Then the natural map Fil 0 (R n+1 )

resp.)

Proof: Assume n 1. For any (n -1)-tuple (l 1 , . . . , l n-1 ) ∈ {0, . . . , p -1} n-1 and any j ∈ {0, . . . , r} we have

We thus conclude that the natural map

0,...,0,r+1 . Such a factorisation is indeed an isomorphism by dimensional reasons. The case n = 0 is similar and left to the reader.

We are now ready to prove Proposition 8.1 and the strategy will be analogous to the one used in the proof of Proposition 7.1. Once again, we will give a detailed proof for statement i). Statement ii) is obtained exactly in the same way, with formal adjustments which will be clear to the reader (e.g. replace

adjustment of the source of the morphism π n-1 below according to Q, etc...).

Let us fix integers n 3, n odd, 0 r p -2; the case n = 1 or m 2, m even will be treated exactly in the same manner and will be left to the reader. We recall the commutative diagram with exact lines (cf. Proposition 4.1):

We write π n-1 for the natural epimorphism

where the last isomorphism is the one described in Lemma 8.2. As we did in §7 we define the following elements in R n+1 :

A direct computation gives the key result:

Lemma 8.4. Assume p is odd 7 ; let a, d ∈ F × p , λ ∈ F p . Then: i) we have the following equalities in R n+1 :

x -x are in R n and we have:

(where P -λ (µ 0 ) has been defined in §2.3).

Proof: i) It is analogous to the proof of Lemma 7.2-i).

ii). First of all, we study the action of 1

7 such a requirement is needed for the equality concerning x in ii)

and therefore 1

where v ∈ R n is defined as

We are now left to study the image of -T - n (v) ∈ R n-1 via the epimorphism π n-1 : a direct computation using the recursive property of the Witt polynomials P λ,...,µ j-2 (X) ∈ F p [X] (for j ∈ {2, . . . , n}) together with Lemma 2.10-i) yields finally the result.

The behaviour of the element x ∈ R n+1 can be described in a similar way, using now Lemma 2.9 and the recursive property of the s λ,...,µ j-1 's for j ∈ {2, . . . , n}. The details are left to the reader.

End of the proof of Proposition

induces an isomorphism of τ onto an irreducible factor of soc(R n+1 /R n ). Thanks to Proposition 7.1, Lemma 8.3 and Proposition 6.6 we distinguish two situations:

A) the subrepresentation τ maps isomorphically into the K-subrepresentation of R n+1 /R n generated by (the image of) x. B) We have r = p-3 and the subrepresentation τ maps isomorphically into the K-subrepresentation of R n+1 /R n generated by (the image of) y.

Study of case A. Let f ∈ R n be such that pr n+1 (x + T + n (f )) ∈ τ . From the induced isomorphism τ ∼ → K • x and the behaviour of x in R n+1 /R n we deduce the following necessary conditions:

2) for all λ ∈ F p we have

From condition 1) and Lemma 8.4-ii) we see that

inside Ind K K 0 (p) 1, for a suitable c 1 ∈ F p . It follows then from condition 2) and Lemma 8.4 that for any λ ∈ F p the element

maps to zero via

giving an absurd for r = 0 and r = 0 respectively (cf. Remark 2.5).

Study of case

) and the behaviour of y in R n+1 /R n we deduce the following necessary conditions:

1) for all a, d ∈ F × p we have

2) for all λ ∈ F p we have

We then argue as in the previous case to get an absurd. The details are left to the reader.

This acheives the proof of Proposition 8.1 for n 3, n odd, and we leave it to the reader to check (by the explicit description of T - 1 ) that the same procedure applies also for n = 1. It is then obvious that the same proof applies to the case m ∈ N > even and, with formal adjustments, to part ii) of Proposition 8.1 (as remarked after the proof of Lemma 8.3).

Conclusion

We are now ready to describe the socle filtration for the KZ-restriction of supersingular representations of GL 2 (Q p ): it will be a formal consequence of the explicit computations given in paragraphs 6, 7, 8. Proposition 9.1. Assume p is odd; let r be an integer, with 0 r p -2. The socle filtration for lim

Proof:

The proof is by induction; we will treat the case n odd (the other is analogous). Fix an odd integer n ∈ N 1 and let Q be a quotient coming from the socle filtration of R n-1 /R n-2 . Assume (by inductive hypothesis) we dispose of an inductive system

) and where the amalgamated sums are defined through the Hecke operators T ± j for j n as in §3.2, as well as natural exact sequences:

for any m > n, m odd. We therefore get an inductive system:

and the statement is now clear from Proposition 8.1

The socle filtration for π(r, 0, 1)| KZ , with 0 r p -1 and p odd is then immediate from Proposition 3.9 and from the isomorphism π(0, 0, 1) ∼ = π(p -1, 0, 1).

We give now the idea of the socle filtration for lim

To be even more explicit, if we suppose 1 r p -6 the beginning of the socle filtration for lim

The principal series and the Steinberg

In this section we want to describe the socle filtration for the K-restriction of principal series and the Steinberg representation for GL 2 (Q p ). The techniques are very close to those of §6 and therefore will be mainly left to the reader. If λ ∈ F × p and r ∈ {0, . . . , p -1} we recall the parabolic induction Ind G B (un λ ⊗ ω r un λ -1 ). ( 6)

If V λ,r is the underlying vector space associated to the B-representation un λ ⊗ω r un λ -1 , the induction ( 6) is the F p -vector space of locally constant functions f :

the left G-action defined by right translation of functions gives (6) a structure of smooth G-representation.

We recall also that, for (λ, r) / ∈ {(0, ±1), (p -1, ±1)}, the representations (6) are irreducible (referred to as principal series), otherwise they fit into a short exact sequence 0 → 1 → Ind G B 1 → St → 0 and the quotient St is referred to as the "Steinberg" representation.

We turn our attention to the K-restriction of the inductions given by ( 6). Proof: It is a standard verification that the conditions in i) and ii) define K-equivariant morphisms ι n+1 , ι n+1,n+2 . Such morphisms are then injective by support reasons.

From the monomorphisms defined in Lemma 10.2 we deduce then a natural monomorphism: lim -→ n∈N (Ind K K 0 (p n+1 ) χ s r ) → Ind K K∩B χ s r .

(7)

As K is compact and all functions f ∈ Ind K K∩B χ s r are locally constant, we conclude that ( 7) is actually an isomorphism. Moreover: Lemma 10.3. Let n ∈ N, r ∈ {0, . . . , p -2}. Then coker(ι n+1,n+2 ) = Q (0,n+2) 0,...,0,1 .

Proof: From the definitions of Q (0,n+2) 0,...,0,1 and ι n+1,n+2 we deduce a natural epimorphism coker(ι n+1,n+2 ) Q (0,n+2) 0,...,0,1 . The result follows, as the two spaces have the same dimension.

We dispose now of K-equivariant exact sequences, where n ∈ N: 0 → Ind K K 0 (p n+1 ) χ s r → Ind K K 0 (p n+2 ) χ s r → Q (0,n+2) 0,...,0,1 → 0.

Thanks to the explicit description of soc(Q 0,n+2 (0,...,0,1) ) we deduce, with arguments which are very similar to those of Proposition 8.1, the following result Proposition 10.4. Let n ∈ N, r ∈ {0, . . . , p -2}. Then soc(Ind K K 0 (p n+1 ) χ s r ) = soc(Ind K K 0 (p n+2 ) χ s r ).

More generally, if Q Ind K K 0 (p n+1 ) χ s r is a K-subrepresentation coming from the socle filtration of Ind K K 0 (p n+1 ) χ s r , we have soc(Ind K K 0 (p n+1 ) χ s r /Q) = soc(Ind K K 0 (p n+2 ) χ s r /ι n+1,n+2 (Q)). Proof: It suffices to use the same arguments of the proof of Proposition 8.1, and similar explicit computations. The details are left to the reader.

Once again, we can use Proposition 10.4 to describe the behaviour of the socle filtration for Ind K K∩B χ s r . The graded pieces of such a filtration look as follows: SocFil(Ind K K∩B χ s r ) = SocFil(Ind K K 0 (p) χ s r )-SocFil(Q (0,2) 0,1 )-SocFil(Q (0,3) 0,0,1 )-. . . and, developing the socle filtration of Q (0,n+2) 0,...,0,1 , SocFil(Ind K K 0 (p) χ s r a)-SocFil(Ind K K 0 (p) χ s r a 2 )-SocFil(Ind K K 0 (p) χ s r a 3 )-. . .