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Abstract

We study the discrete-time approximation for solutions of forward-backward stochas-

tic differential equations (FBSDEs) with a jump. In this part, we study the case of

Lipschitz generators, and we refer to the second part of this work [15] for the quadratic

case. Our method is based on a result given in the companion paper [14] which allows

to link a FBSDE with a jump with a recursive system of Brownian FBSDEs. Then

we use the classical results on discretization of Brownian FBSDEs to approximate the

recursive system of FBSDEs and we recombine these approximations to get a dis-

cretization of the FBSDE with a jump. This approach allows to get a convergence

rate similar to that of schemes for Brownian FBSDEs.

Keywords: discrete-time approximation, forward-backward SDE, Lipschitz generator, pro-
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1 Introduction

In this paper, we study a discrete-time approximation for the solution of a forward-backward

stochastic differential equation (FBSDE) with a jump of the form














Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs +

∫ t

0

β(s,Xs−)dHs ,

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs, Us)ds−

∫ T

t

ZsdWs −

∫ T

t

UsdHs ,

where Ht = 1τ≤t and τ is a jump time, which can represent a default time in credit risk

or counterparty risk. Such equations naturally appear in finance, see for example Bielecki

and Jeanblanc [2], Lim and Quenez [18], Peng and Xu [21], Ankirchner et al. [1] for an

application to exponential utility maximization and Kharroubi and Lim [14] for the hedging

problem in a complete market. Our work is divided into two parts. In this part, we study

the case where the generator f is Lipschitz. The case of a generator f with quadratic growth

w.r.t. Z is studied in the second part [15].

For Lipschitz generators, the discrete-time approximation of FBSDEs with jumps is

studied by Bouchard and Elie [4] in the case of Poissonian jumps. Their approach is based

on a regularity result for the process Z, which is given by Malliavin calculus tools. This

regularity result for the process Z was first proved by Zhang [23] in a Brownian framework

to provide a convergence rate for the discrete-time approximation of FBSDEs.

In our case, we only assume that the random jump time τ admits a conditional density

given W , which is assumed to be absolutely continuous w.r.t. the Lebesgue measure. In par-

ticular, we do not specify a particular law for τ and we do not assume that τ is independent

of W as for the case of a Poisson random measure.

To the best of our knowledge, no Malliavin calculus theory has been set for such a

framework. Thus, the method used by in [4] fails to provide a rate of convergence for the

approximation in this context.

We therefore follow another approach, which consists in using the decomposition result

given in the companion paper [14] to write the solution of a FBSDE with a jump as a

combination of solutions to a recursive system of FBSDEs without jump. We then use the

existing results on the discretization of Brownian FBSDEs with a Lipschitz generator, which

is a well understood problem, see e.g. Chevance [5], Bouchard and Touzi [3], Zhang [23],

Gobet et al. [8], Delarue and Menozzi [6]. Finally, we recombine the approximations of the

recursive system of Brownian FBSDEs to get a discretization of the solution to the FBSDE

with a jump.

We notice that our approach also allows to weaken the assumption on the forward jump

coefficient. More precisely, we only assume that β is Lipschitz continuous, contrary to [4]

who assumes that β is regular and the matrix Id +∇β is elliptic.

As said upper, this kind of FBSDEs with a jump appears in finance. The wide assump-

tions made on the jump τ allow to modelize general phenomenon as a default of an asset

or simpler as a jump that can be seen as contagion from the default of another asset of the
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market, see e.g. [13] for some examples. In particular, the approximation of these FBS-

DEs has its own interest, since it provides approximations of optimal gains and strategies

of the studied investment problems. We study in this part the case of FBSDEs with Lips-

chitz generators, which is related to valuation in complete markets (see [14]) and the utility

maximization in incomplete markets with compact investment constraints (see [18]). The

study of the discretization of FBSDEs with a quadratic generator, which are related to more

general investment problems (see [1]), is postponed to the second part of this work.

We choose to present our results in the case of a single jump for the sake of simplicity.

We notice that they can easily be extended to the case of multiple jumps with eventually

random marks, as in [14], taking values in a finite space.

The paper is organized as follows. The next section presents the framework of progressive

enlargement of a Brownian filtration by a random jump, and the well posedness of FBSDEs

in this context. In Section 3, we present the discrete-time schemes for the forward and

backward solutions based on the decomposition given in the previous section. Finally, in

Sections 4 and 5, we study the convergence rate of these schemes respectively for the forward

and the backward solutions.

2 Preliminaries

2.1 Notation

Throughout this paper, W denotes a d-dimensional Brownian motion, defined on a proba-

bility space (Ω,G,P). F = (Ft)t≥0 denotes the completion of the filtration generated by W .

We also consider on this space a random time τ , i.e. a nonnegative G-measurable random

variable, and we denote classically the associated jump process by H which is given by

Ht = 1τ≤t , t ≥ 0 .

We denote by D = (Dt)t≥0 the smallest right-continuous filtration for which τ is a stopping

time. The global information is then defined by the progressive enlargement G = (Gt)t≥0

of the initial filtration where G := F ∨ D. This kind of enlargement was studied by Jacod,

Jeulin and Yor in the 80s (see e.g. [10], [11] and [9]). We introduce some notations used

throughout the paper:

– P(F) (resp. P(G)) is the σ-algebra of F (resp. G)-predictable measurable subsets

of Ω × R+, i.e. the σ-algebra generated by the left-continuous F (resp. G)-adapted

processes,

– PM(F) (resp. PM(G)) is the σ-algebra of F (resp. G)-progressively measurable

subsets of Ω× R+.

We shall make, throughout the sequel, the standing assumption in the progressive enlarge-

ment of filtrations known as density assumption (see e.g. [12, 13, 14]).
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(DH) There exists a positive and bounded P(F)⊗ B(R+)-measurable process γ such that

P[τ ∈ dθ|Ft] = γt(θ)dθ , t ≥ 0 .

Using Proposition 2.1 in [14] we get that Assumption (DH) ensures that the process H

admits an intensity.

Proposition 2.1. The process H admits a compensator of the form λtdt, where the process

λ is defined by

λt =
γt(t)

P[τ > t|Ft]
1t≤τ , t ≥ 0 .

We impose the following assumption to the process λ:

(HBI) The process λ is bounded.

We also introduce the martingale invariance assumption known as the (H)-hypothesis.

(H) Any F-martingale remains a G-martingale

We now introduce the following spaces, where a, b ∈ R+ with a ≤ b, and T < ∞ is the

terminal time:

– S∞
G
[a, b] (resp. S∞

F
[a, b]) is the set of PM(G) (resp. PM(F))-measurable processes

(Yt)t∈[a,b] essentially bounded:

‖Y ‖S∞[a,b] := ess sup
t∈[a,b]

|Yt| < ∞ .

– S2
G
[a, b] (resp. S2

F
[a, b]) is the set of PM(G) (resp. PM(F))-measurable processes

(Yt)t∈[a,b] such that

‖Y ‖S2[a,b] :=
(

E

[

sup
t∈[a,b]

|Yt|
2
])

1

2

< ∞ .

– L2
G
[a, b] (resp. L2

F
[a, b]) is the set of P(G) (resp. P(F))-measurable processes (Zt)t∈[a,b]

such that

‖Z‖L2[a,b] :=
(

E

[

∫ b

a

|Zt|
2dt

])
1

2

< ∞ .

– L2(λ) is the set of P(G)-measurable processes (Ut)t∈[0,T ] such that

‖U‖L2(µ) :=
(

E

[

∫ T

0

|Us|
2λsds

])
1

2

< ∞ .
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2.2 Forward-Backward SDE with a jump

Given measurable functions b : [0, T ]×Rd → Rd, σ : [0, T ]×Rd → Rd×d, β : [0, T ]×Rd → Rd,

g : Rd → R and f : [0, T ] × Rd × R × Rd × R → R, and an initial condition x ∈ Rd, we

study the discrete-time approximation of the solution (X, Y, Z, U) in S2
G
[0, T ]× S∞

G
[0, T ]×

L2
G
[0, T ]× L2(λ) to the following forward-backward stochastic differential equation:

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs +

∫ t

0

β(s,Xs−)dHs , 0 ≤ t ≤ T , (2.1)

Yt = g(XT ) +

∫ T

t

f
(

s,Xs, Ys, Zs, Us(1−Hs)
)

ds

−

∫ T

t

ZsdWs −

∫ T

t

UsdHs , 0 ≤ t ≤ T , (2.2)

when the generator of the BSDE is Lipschitz.

Remark 2.1. In BSDE (2.2), the jump component U of the unknown (Y, Z, U) appears in

the generator f with an additional multiplicative term 1 − H . This ensures the equation

to be well posed in S∞
G
[0, T ] × L2

G
[0, T ] × L2(λ). Indeed, the component U lives in L2(λ),

thus its value on (τ ∧ T, T ] is not defined, since the intensity λ vanishes on (τ ∧ T, T ]. We

therefore introduce the term 1 −H to kill the value of U on (τ ∧ T, T ] and hence to avoid

making the equation depends on it.

We first prove that the decoupled system (2.1)-(2.2) admits a solution. To this end, we

introduce several assumptions on the coefficients b, σ, β, g and f . We consider the following

assumption for the forward coefficients:

(HF) There exists a constant K such that the functions b, σ and β satisfy

|b(t, 0)|+ |σ(t, 0)|+ |β(t, 0)| ≤ K ,

and

|b(t, x)− b(t, x′)|+ |σ(t, x)− σ(t, x′)|+ |β(t, x)− β(t, x′)| ≤ K|x− x′| ,

for all (t, x, x′) ∈ [0, T ]× Rd × Rd.

For the backward coefficients g and f , we impose the following assumption:

(HBL) There exists a constant K such that the functions g and f satisfy

|f(t, x, 0, 0, 0)|+ |g(x)| ≤ K ,

and

|f(t, x, y, z, u)− f(t, x, y′, z′, u′)| ≤ K
(

|y − y′|+ |z − z′|+ |u− u′|
)

,

for all (t, x, y, y′, z, z′, u, u′) ∈ [0, T ]× Rd × [R]2 × [Rd]2 × [R]2.
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Following the decomposition approach of [14], we introduce the recursive system of FBSDEs

associated to (2.1)-(2.2):

• Find (X1(θ), Y 1(θ), Z1(θ)) ∈ S2
F
[0, T ]× S∞

F
[θ, T ]× L2

F
[θ, T ] such that

X1
t (θ) = x+

∫ t

0

b
(

s,X1
s (θ)

)

ds+

∫ t

0

σ
(

s,X1
s (θ)

)

dWs + β
(

θ,X1
θ−(θ)

)

1θ≤t , 0 ≤ t ≤ T , (2.3)

Y 1
t

(

θ
)

= g
(

X1
T (θ)

)

+

∫ T

t

f
(

s,X1
s (θ), Y

1
s (θ), Z

1
s (θ), 0

)

ds−

∫ T

t

Z1
s (θ)dWs , θ ≤ t ≤ T , (2.4)

for all θ ∈ [0, T ].

• Find (X0, Y 0, Z0) ∈ S2
F
[0, T ]× S∞

F
[0, T ]× L2

F
[0, T ] such that

X0
t = x+

∫ t

0

b(s,X0
s )ds+

∫ t

0

σ(s,X0
s )dWs , 0 ≤ t ≤ T , (2.5)

Y 0
t = g(X0

T ) +

∫ T

t

f
(

s,X0
s , Y

0
s , Z

0
s , Y

1
s (s)− Y 0

s

)

ds−

∫ T

t

Z0
sdWs , 0 ≤ t ≤ T . (2.6)

Then, the link between FBSDE (2.1)-(2.2) and the recursive system of FBSDEs (2.5)-(2.6)

and (2.3)-(2.4) is given by the following result.

Theorem 2.1. Assume that (HF) and (HBL) hold true. Then, FBSDE (2.1)-(2.2) admits

a unique solution (X, Y, Z, U) ∈ S2
G
[0, T ]× S∞

G
[0, T ]× L2

G
[0, T ]× L2(λ) given by























Xt = X0
t 1t<τ +X1

t (τ)1τ≤t ,

Yt = Y 0
t 1t<τ + Y 1

t (τ)1τ≤t ,

Zt = Z0
t 1t≤τ + Z1

t (τ)1τ<t ,

Ut =
(

Y 1
t (t)− Y 0

t

)

1t≤τ ,

(2.7)

where (X1(θ), Y 1(θ), Z1(θ)) is the unique solution to FBSDE (2.3)-(2.4) in S2
F
[0, T ]×S∞

F
[θ, T ]×

L2
F
[θ, T ], for θ ∈ [0, T ], and (X0, Y 0, Z0) is the unique solution to FBSDE (2.5)-(2.6) in

S2
F
[0, T ]× S∞

F
[0, T ]× L2

F
[0, T ].

Proof.

Step 1. Solution to (2.1) under (HF).

Under (HF) there exist unique processes X0 ∈ S2
F
[0, T ] satisfying (2.5), andX1(θ) ∈ S2

F
[0, T ]

satisfying (2.3) for all θ ∈ [0, T ] such that X1 is PM(F) ⊗ B(R+)-measurable. Then, from

the definition of H , we easily check that the process X defined by

Xt = X0
t 1t<τ +X1

t (τ)1t≥τ , (2.8)

satisfies (2.1). We now check that X ∈ S2
G
[0, T ]. We first notice that from (HF), there

exists a constant K such that

E

[

sup
t∈[0,T ]

∣

∣X0
t

∣

∣

2
]

≤ K . (2.9)
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Then, from the definition of X1, we have

sup
s∈[θ,t]

∣

∣X1
s (θ)

∣

∣

2
≤ K

(

∣

∣X0
θ

∣

∣

2
+
∣

∣β(θ,X0
θ )
∣

∣

2
+

∫ t

θ

∣

∣b(u,X1
u(θ))

∣

∣

2
du+ sup

s∈[θ,t]

∣

∣

∣

∫ s

θ

σ(u,X1
u(θ))dWu

∣

∣

∣

2)

.

Using (HF) and BDG-inequality, we get

E

[

sup
s∈[θ,t]

∣

∣X1
s (θ)

∣

∣

2
]

≤ K
(

1 +

∫ t

θ

E

[

sup
u∈[θ,s]

∣

∣X1
u(θ)|

2
]

du
)

,

for some constant K which does not depend on θ. Applying Gronwall’s lemma, we get

sup
θ∈[0,T ]

∥

∥X1(θ)
∥

∥

S2

F
[θ,T ]

≤ K . (2.10)

Combining (2.8), (2.9) and (2.10), we get that X ∈ S2
G
[0, T ]. Moreover still using (HF) we

get the uniqueness of a solution to (2.1) in S2
G
[0, T ].

Step 2. Solution to (2.2) under (HBL).

To follow the decomposition approach initiated by the authors in [14], we need the generator

to be predictable. To this end, we notice that in BSDE (2.2), we can replace the generator

(t, y, z, u) 7→ f(t, Xt, y, z, u(1−Ht)) by the predictable map (t, y, z, u) 7→ f(t, Xt−, y, z, u(1−

Ht−)).

Using the decomposition (2.8), we are able to write explicitly the decompositions of the

GT -measurable random variable g(XT ) and the P(G) ⊗ B(R) ⊗ B(Rd) ⊗ B(R)-measurable

map (ω, t, y, z, u) 7→ f(t, Xt−(ω), y, z, u(1−Ht−(ω))) given by Lemma 2.1 in [14]:

g(XT ) = g(X0
T )1T<τ + g(X1

T (τ))1T≥τ ,

f(t, Xt− , y, z, (1−Ht−)u) = f 0(t, y, z, u)1t≤τ + f 1(t, y, z, u, τ)1t>τ ,

with f 0(t, y, z, u) = f(t, X0
t , y, z, u) and f 1(t, y, z, u, θ) = f(t, X1

t−(θ), y, z, 0), for all (t, y, z, u, θ) ∈

[0, T ]× R× Rd × R× R+.

Suppose now that (HBL) holds true. Then, BSDE (2.6) admits a solution (Y 0, Z0)

and from Proposition C.1 in [14] BSDE (2.4) admits a P(F)⊗B([0, T ])-measurable solution

(Y 1, Z1). Using Proposition 2.1 in [17], we obtain the existence of a constant K such that

‖Y 1(θ)‖S∞[θ,T ] + ‖Z1(θ)‖L2[θ,T ] ≤ K ,

for all θ ∈ [0, T ], and

‖Y 0‖S∞[0,T ] + ‖Z0‖L2[0,T ] ≤ K .

We can then apply Theorem 3.1 in [14] and we get the existence of a solution to (2.2) in

S∞
G
[0, T ]× L2

G
[0, T ]× L2(λ).

Let (Y, Z, U) and (Y ′, Z ′, U ′) be two solutions to (2.2) in S∞
G
[0, T ] × L2

G
[0, T ] × L2(λ).

Since f(t, x, y, z, u(1−Ht)) = f(t, x, y, z, 0) for all t ∈ (τ ∧T, T ] and λ vanishes on (τ ∧T, T ],

7



we can assume w.l.o.g. that Ut = U ′
t = 0 for t ∈ (τ ∧ T, T ]. Then, from (HBL), we can

apply Theorem 4.1 in [14] and we get that Y ≤ Y ′. Since Y and Y ′ play the same role,

we obtain Y = Y ′. Identifying the pure jump parts of Y and Y ′ gives U = U ′. Finally,

identifying the unbounded variation gives Z = Z ′. 2

In the following, sections we give an approximation of the solution to FBSDE (2.1)-(2.2)

by studying the approximation of the solutions to the recursive system of FBSDEs (2.3)-

(2.4) and (2.5)-(2.6). For that we use the classical results of discretization in the case of

Lipschitz Brownian FBSDEs.

3 Discrete-time scheme for the FBSDE

In this section, we introduce a discrete-time approximation of the solution (X, Y, Z, U) to

FBSDE (2.1)-(2.2), based on its decomposition given by Theorem 2.1.

Throughout the sequel, we consider a discretization grid π = {t0, . . . , tn} of [0, T ] with

0 = t0 < t1 < . . . < tn = T . For t ∈ [0, T ], we denote by π(t) (resp. π+(t)) the largest (resp.

smallest) element of π smaller (resp. larger) than t:

π(t) := max
{

ti , i = 0, . . . , n | ti ≤ t
}

(resp. π+(t) := min
{

ti , i = 0, . . . , n | ti ≥ t
}

) .

We also denote by |π| the mesh of π:

|π| := max
{

ti+1 − ti , i = 0, . . . , n− 1
}

,

and by ∆W π
i (resp. ∆tπi ) the increment of W (resp. the difference) between ti and ti−1:

∆W π
i := Wti −Wti−1

(resp. ∆tπi := ti − ti−1), for 1 ≤ i ≤ n.

3.1 Discrete-time scheme for X

We introduce an approximation of the process X based on the discretization of the processes

X0 and X1.

• Euler scheme for X0. We consider the classical scheme X0,π defined by
{

X0,π
t0

= x ,

X0,π
ti

= X0,π
ti−1

+ b(ti−1, X
0,π
ti−1

)∆tπi + σ(ti−1, X
0,π
ti−1

)∆W π
i , 1 ≤ i ≤ n .

(3.11)

• Euler scheme for X1. Since the process X1 depends on two parameters t and θ, we

introduce a discretization of X1 in these two variables. We then consider the following

scheme1










X1,π
t0

(tk) = x+ β(t0, x)δk=0 , 0 ≤ k ≤ N ,

X1,π
ti

(tk) = X1,π
ti−1

(tk) + b(ti−1, X
1,π
ti−1

(tk))∆tπi + σ(ti−1, X
1,π
ti−1

(tk))∆W π
i

+ β(ti−1, X
1,π
ti−1

(tk))δi=k , 1 ≤ i, k ≤ n .

(3.12)

1δi=k = 0 if i 6= k and δi=k = 1 if i = k.
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We are now able to provide an approximation of the process X solution to FSDE (2.1). We

consider the scheme Xπ defined by

Xπ
t = X0,π

π(t)1t<τ +X1,π
π(t)(π(τ))1t≥τ , 0 ≤ t ≤ T . (3.13)

We shall denote by {F0,π
i }0≤i≤n (resp. {F1,π

i (θ)}0≤i≤n) the discrete-time filtration associated

to X0,π (resp. X1,π)

F0,π
i := σ(X0,π

tj
, j ≤ i)

(resp. F1,π
i (θ) := σ(X1,π

tj
(θ), j ≤ i)) .

3.2 Discrete-time scheme for (Y, Z)

We introduce an approximation of (Y, Z) based on the discretization of (Y 0, Z0) and (Y 1, Z1).

To this end we introduce the backward implicit schemes on π associated to BSDEs (2.4)

and (2.6). Since the system is recursively coupled, we first introduce the scheme associated

to (2.4). We then use it to define the scheme associated to (2.6).

• Backward Euler scheme for (Y 1, Z1). We consider the classical implicit scheme (Y 1,π, Z1,π)

defined by


















Y 1,π
T (π(θ)) = g(X1,π

T (π(θ))) ,

Y 1,π
ti−1

(π(θ)) = E
1,π(θ)
i−1

[

Y 1,π
ti

(π(θ))
]

+ f(ti−1, X
1,π
ti−1

(π(θ)), Y 1,π
ti−1

(π(θ)), Z1,π
ti−1

(π(θ)), 0)∆tπi ,

Z1,π
ti−1

(π(θ)) =
1

∆tπi
E
1
i−1

[

Y 1,π
ti

(π(θ))∆W π
i

]

, ti−1 ≥ π(θ) ,

(3.14)

where E
1,θ
i = E[ . |F1,π

i (θ)] for 0 ≤ i ≤ n and θ ∈ [0, T ].

• Backward Euler scheme for (Y 0, Z0). Since the generator of (2.6) involves the process

(Y 1
t (t))t∈[0,T ], we consider a discretization based on Y 1,π. We therefore consider the scheme

(Y 0,π, Z0,π) defined by


















Y 0,π
T = g(X0,π

T ) ,

Y 0,π
ti−1

= E
0
i−1

[

Y 0,π
ti

]

+ f̄π(ti−1, X
0,π
ti−1

, Y 0,π
ti−1

, Z0,π
ti−1

)∆tπi ,

Z0,π
ti−1

=
1

∆tπi
E
0
i−1

[

Y 0,π
ti

∆W π
i

]

, 1 ≤ i ≤ n ,

(3.15)

where E
0
i = E[ . |F0,π

i ] for 0 ≤ i ≤ n, and f̄π is defined by

f̄π(t, x, y, z) = f
(

t, x, y, z, Y 1,π
π(t)(π(t))− y

)

,

for all (t, x, y, z) ∈ [0, T ]× Rd × R× Rd.

We then consider the following scheme defined by














Y π
t = Y 0,π

π(t)1t<τ + Y 1,π
π(t)(π(τ))1t≥τ

Zπ
t = Z0,π

π(t)1t≤τ + Z1,π
π(t)(π(τ))1t>τ

Uπ
t =

(

Y 1,π
π(t)(π(t))− Y 0,π

π(t)

)

1t≤τ

(3.16)
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for t ∈ [0, T ].

4 Convergence of the scheme for the FSDE

We introduce the following assumption, which will be used to discretize X .

(HFD) There exists a constant K such that the functions b, σ and β satisfy

∣

∣b(t, x)− b(t′, x)
∣

∣+
∣

∣σ(t, x)− σ(t′, x)
∣

∣ ≤ K|t− t′|
1

2 ,
∣

∣β(t, x)− β(t′, x)
∣

∣+
∣

∣σ(t, x)− σ(t′, x)
∣

∣ ≤ K|t− t′| ,

for all (t, t′, x) ∈ [0, T ]× [0, T ]× Rd.

We now provide an error estimate of the approximation schemes for X0 and X1. We

then use these estimates to control the error between X and Xπ.

4.1 Error estimate for X0 and X1

Under (HF) and (HFD), the upper bound of the error between X0 and its Euler scheme

X0,π is well understood, see e.g. [16], and we have

E

[

sup
t∈[0,T ]

∣

∣X0
t −X0,π

π(t)

∣

∣

2
]

≤ K|π| , (4.17)

for some constant K which does not depend on π.

The next result provides an upper bound for the error between X1 and its Euler scheme

X1,π defined by (3.12).

Theorem 4.2. Under (HF) and (HFD), we have the following estimate

sup
θ∈[0,T ]

E

[

sup
t∈[θ,T ]

∣

∣X1
t (θ)−X1,π

π(t)(π(θ))
∣

∣

2
]

≤ K|π| ,

for a constant K which does not depend on π.

Proof. Fix θ ∈ [0, T ], we then have

E

[

sup
t∈[θ,T ]

∣

∣X1
t (θ)−X1,π

π(t)(π(θ))
∣

∣

2
]

≤ 2E
[

sup
t∈[θ,T ]

∣

∣X1
t (θ)−X1

t (π(θ))
∣

∣

2
]

+2E
[

sup
t∈[θ,T ]

∣

∣X1
t (π(θ))−X1,π

π(t)(π(θ))
∣

∣

2
]

. (4.18)

We study separately the two terms of right hand side.
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Since π(θ) ≤ θ ≤ t, X1
s (π(θ)) = X0

s for all s ∈ [0, π(θ)), and X1
s (θ) = X0

s for all s ∈ [0, θ),

we have

X1
t (θ)−X1

t (π(θ)) =

∫ θ

π(θ)

b(s,X0
s )ds+

∫ θ

π(θ)

σ(s,X0
s )dWs + β(θ,X0

θ ) +

∫ t

θ

b
(

s,X1
s (θ)

)

ds

+

∫ t

θ

σ
(

s,X1
s (θ)

)

dWs − β(π(θ), X0
π(θ))−

∫ θ

π(θ)

b
(

s,X1
s (π(θ))

)

ds

−

∫ θ

π(θ)

σ
(

s,X1
s (π(θ))

)

dWs −

∫ t

θ

b
(

s,X1
s (π(θ))

)

ds

−

∫ t

θ

σ
(

s,X1
s (π(θ))

)

dWs ,

for all t ∈ [θ, T ]. Hence, there exists a constant K such that

∣

∣X1
t (θ)−X1

t (π(θ))
∣

∣

2
≤ K

{
∣

∣

∣

∫ θ

π(θ)

b(s,X0
s )ds

∣

∣

∣

2

+
∣

∣

∣

∫ θ

π(θ)

σ(s,X0
s )dWs

∣

∣

∣

2

+
∣

∣

∣

∫ θ

π(θ)

b(s,X1
s (π(θ)))ds

∣

∣

∣

2

+
∣

∣

∣

∫ θ

π(θ)

σ(s,X1
s (π(θ)))dWs

∣

∣

∣

2

+
∣

∣β
(

θ,X0
θ

)

− β
(

π(θ), X0
π(θ)

)
∣

∣

2
+

∫ t

θ

∣

∣

∣
b
(

s,X1
s (θ)

)

− b
(

s,X1
s (π(θ))

)

∣

∣

∣

2

ds

+
∣

∣

∣

∫ t

θ

(

σ
(

s,X1
s (θ)

)

− σ
(

s,X1
s (π(θ))

)

)

dWs

∣

∣

∣

2}

. (4.19)

From (HF) and (HFD), we have

E
∣

∣β
(

θ,X0
θ

)

− β
(

π(θ), X0
π(θ)

)
∣

∣

2
≤ K

(

|π|+ E|X0
θ −X0

π(θ)|
2
)

,

which gives with (4.17)

E
∣

∣β
(

θ,X0
θ

)

− β
(

π(θ), X0
π(θ)

)
∣

∣

2
≤ K|π| .

We have also from (HF)

E

[
∣

∣

∣

∫ θ

π(θ)

b(s,X0
s )ds

∣

∣

∣

2

+
∣

∣

∣

∫ θ

π(θ)

σ(s,X0
s )dWs

∣

∣

∣

2]

≤ K|π| ,

and with (2.10)

E

[
∣

∣

∣

∫ θ

π(θ)

b(s,X1
s (π(θ)))ds

∣

∣

∣

2

+
∣

∣

∣

∫ θ

π(θ)

σ(s,X1
s (π(θ)))dWs

∣

∣

∣

2]

≤ K|π| ,

where K does not depend on θ.

Combining these inequalities with (4.19), (HF) and BDG-inequality, we get

E

[

sup
u∈[θ,t]

∣

∣X1
u(θ)−X1

u(π(θ))
∣

∣

2
]

≤ K
(

∫ t

θ

E

[

sup
u∈[θ,s]

∣

∣X1
u(θ)−X1

u(π(θ))
∣

∣

2
]

ds+ |π|
)

.
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Applying Gronwall’s lemma, we get

E

[

sup
t∈[θ,T ]

∣

∣X1
t (θ)−X1

t (π(θ))
∣

∣

2
]

≤ K|π| , (4.20)

where K does not depend on θ.

To find an upper bound for the term E[supt∈[θ,T ] |X
1
t (π(θ))−X1,π

π(t)(π(θ))|
2] we introduce the

scheme X̃π
. (π(θ)) defined by

{

X̃π
π(θ)(π(θ)) = X1

π(θ)(π(θ)) ,

X̃π
ti
(π(θ)) = X̃π

ti−1
(π(θ)) + b

(

ti−1, X̃
π
ti−1

(π(θ))
)

∆tπi + σ
(

ti−1, X̃
π
ti−1

(π(θ))
)

∆W π
i , ti > π(θ) .

We have the inequality

E

[

sup
t∈[θ,T ]

∣

∣X1
t (π(θ))−X1,π

π(t)(π(θ))
∣

∣

2
]

≤ 2E
[

sup
t∈[θ,T ]

∣

∣X1
t (π(θ))− X̃π

π(t)(π(θ))
∣

∣

2
]

+2E
[

sup
t∈[θ,T ]

∣

∣X̃π
π(t)(π(θ))−X1,π

π(t)(π(θ))
∣

∣

2
]

. (4.21)

We first notice that under (HF) the initial value of X̃π(π(θ)) satisfies

|X̃π
π(θ)(π(θ))| = |X1

π(θ)(π(θ))| =
∣

∣X0
π(θ) + β

(

π(θ), X0
π(θ)

)
∣

∣ ≤ C
(

1 + sup
t∈[0,T ]

|X0
t |
)

. (4.22)

Hence, it is bounded by a square integrable random variable which does not depend on θ.

Moreover X̃π(π(θ)) is the Euler scheme of X1(π(θ)) on [π(θ), T ]. Therefore, we have under

(HF) and (HFD) (see e.g. [16])

E

[

sup
t∈[θ,T ]

∣

∣X1
t

(

π(θ)
)

− X̃π
π(t)

(

π(θ)
)
∣

∣

2
]

≤ K
(

1 + E

[

∣

∣X1
π(θ)(π(θ))

∣

∣

2
])

|π| ,

for some constant K which neither depends on π nor on θ. From (4.22), we get

E

[

sup
t∈[θ,T ]

∣

∣X1
t

(

π(θ)
)

− X̃π
π(t)

(

π(θ)
)
∣

∣

2
]

≤ K
(

1 + ‖X0‖
2

S2[0,T ]

)

|π| . (4.23)

We now study the term E
[

supt∈[θ,T ]

∣

∣X̃π
π(t)(π(θ)) − X1,π

π(t)(π(θ))
∣

∣

2]
. We first notice that

we have the following identity

E

[

sup
t∈[θ,T ]

∣

∣X̃π
π(t)(π(θ))−X1,π

π(t)(π(θ))
∣

∣

2
]

= E

[

sup
t∈[π(θ),T ]

∣

∣X̃π
π(t)(π(θ))−X1,π

π(t)(π(θ))
∣

∣

2
]

.

Hence we can work with the second term. From the definition of X̃π and X1,π, there exists

a constant K such that

sup
u∈[π(θ),t]

∣

∣X̃π
π(u)(π(θ))−X1,π

π(u)(π(θ))
∣

∣

2
≤

K
(

∣

∣X1
π(θ)(π(θ))−X1,π

π(θ)(π(θ))
∣

∣

2
+

∫ π(t)

π(θ)

∣

∣b(π(s), X̃π
π(s)(π(θ)))− b(π(s), X1,π

π(s)(π(θ)))
∣

∣

2
ds

+ sup
u∈[π(θ),t]

∣

∣

∣

∫ π(u)

π(θ)

(

σ(π(s), X̃π
π(s)(π(θ)))− σ(π(s), X1,π

π(s)(π(θ)))
)

dWs

∣

∣

∣

2)

.
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Then, using (HF) and BDG-inequality, we get

E

[

sup
u∈[π(θ),t]

∣

∣X̃π
π(u)(π(θ))−X1,π

π(u)(π(θ))
∣

∣

2
]

≤K
(

E
∣

∣X1
π(θ)(π(θ))−X1,π

π(θ)(π(θ))
∣

∣

2

+

∫ t

π(θ)

E

[

sup
u∈[π(θ),s]

∣

∣X̃π
π(u)(π(θ))−X1,π

π(u)(π(θ))
∣

∣

2
]

ds
)

.

Using (4.20) with π(θ) instead of θ and Gronwall’s lemma, we get

E

[

sup
t∈[π(θ),T ]

∣

∣X̃π
π(t)(π(θ))−X1,π

π(t)(π(θ))
∣

∣

2
]

≤ K|π| . (4.24)

Combining (4.18), (4.20), (4.21), (4.23) and (4.24), we get the result. 2

4.2 Error estimate for the FSDE with a jump

We are now able to provide an estimate of the error approximation of the process X by its

scheme Xπ defined by (3.13).

Theorem 4.3. Under (HF) and (HFD), we have the following estimate

E

[

sup
t∈[0,T ]

∣

∣Xt −Xπ
t

∣

∣

2
]

≤ K|π| ,

for a constant K which does not depend on π.

Proof. Fix t ∈ [0, T ]. From the definition of Xπ we then have

E

[

sup
t∈[0,T ]

∣

∣Xt −Xπ
t

∣

∣

2
]

≤ E

[

sup
t∈[0,τ ]

∣

∣X0
t −X0,π

π(t)

∣

∣

2
]

+ E

[

sup
t∈[0,T ]

∣

∣X1
t (τ)−X1,π

π(t)(π(τ))
∣

∣

2
1t≥τ

]

≤ E

[

sup
t∈[0,T ]

∣

∣X0
t −X0,π

π(t)

∣

∣

2
]

+

∫ T

0

E

[

sup
t∈[θ,T ]

∣

∣X1
t (τ)−X1,π

π(t)(π(τ))
∣

∣

2
γT (θ)

]

dθ.

Using (4.17) and (DH), we have

E

[

sup
t∈[0,T ]

∣

∣Xt −Xπ
t

∣

∣

2
]

≤ K
(

|π|+ sup
θ∈[0,T ]

E

[

sup
s∈[θ,T ]

∣

∣X1
s (θ)−X1,π

π(s)(π(θ))
∣

∣

2
])

.

From Theorem 4.2, we get

E

[

sup
t∈[0,T ]

∣

∣Xt −Xπ
t

∣

∣

2
]

≤ K|π| .

2
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5 Convergence of the scheme for the BSDE

To provide error estimates for the Euler scheme of the BSDE, we need an additional regu-

larity property for the coefficients g and f . We then introduce the following assumption.

(HBLD) There exists a constant K such that the functions g and f satisfy

∣

∣g(x)− g(x′)
∣

∣+
∣

∣f(t, x, y, z, u)− f(t′, x′, y, z, u)
∣

∣ ≤ K
(

|x− x′|+ |t− t′|
1

2

)

,

for all (t, t′, x, x′, y, z, u) ∈ [0, T ]2 × [Rd]2 × R× Rd × R.

We are now ready to provide error estimates of the approximation schemes for (Y 0, Z0) and

(Y 1, Z1), and then for (Y, Z).

5.1 Error estimates for the recursive system of BSDEs

We first state an estimate of the approximation error for (Y 1, Z1).

Proposition 5.2. Under (HF), (HFD), (HBL) and (HBLD), we have the following

estimate

sup
θ∈[0,T ]

{

sup
t∈[θ,T ]

E

[

∣

∣Y 1
t (θ)− Y 1,π

π(t)(π(θ))
∣

∣

2
]

+ E

[

∫ T

θ

∣

∣Z1
s (θ)− Z1,π

π(s)(π(θ))
∣

∣

2
ds
]}

≤ K|π| ,

for some constant K which does not depend on π.

Proof. Fix θ ∈ [0, T ] and t ∈ [θ, T ]. We then have

E

[

∣

∣Y 1
t (θ)− Y 1,π

π(t)(π(θ))
∣

∣

2
]

≤ 2E
[

∣

∣Y 1
t (θ)− Y 1

t (π(θ))
∣

∣

2
]

+2E
[

∣

∣Y 1
t (π(θ))− Y 1,π

π(t)(π(θ))
∣

∣

2
]

. (5.25)

We study separately the two terms of right hand side.

Define δY 1
t (θ) = Y 1

t (θ) − Y 1
t (π(θ)) and δZ1

t (θ) = Z1
t (θ) − Z1

t (π(θ)). Applying Itô’s

formula, we get

|δY 1
T (θ)|

2 − |δY 1
t (θ)|

2 =

2

∫ T

t

δY 1
s (θ)

[

f
(

s,X1
s (π(θ)), Y

1
s (π(θ)), Z

1
s (π(θ)), 0

)

− f
(

s,X1
s (θ), Y

1
s (θ), Z

1
s (θ), 0

)

]

ds

+2

∫ T

t

δY 1
s (θ)δZ

1
s (θ)dWs +

∫ T

t

|δZ1
s (θ)|

2ds .

From (HBL) and (HBLD), there exists a constant K such that

E
[

|δY 1
t (θ)|

2
]

≤ K
(

E
[
∣

∣X1
T (θ)−X1

T (π(θ))
∣

∣

2]
+ E

[

∫ T

t

|δY 1
s (θ)|

∣

∣X1
s (θ)−X1

s (π(θ))
∣

∣ds
]

+E

[

∫ T

t

|δY 1
s (θ)|

2ds
]

+ E

[

∫ T

t

|δY 1
s (θ)||δZ

1
s (θ)|ds

])

− E

[

∫ T

t

|δZ1
s (θ)|

2ds
]

.
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Using the inequality 2ab ≤ a2/η + ηb2 for a, b ∈ R and η > 0, we can see that there exists a

constant K such that

E
[

|δY 1
t (θ)|

2
]

+ E

[

∫ T

t

|δZ1
s (θ)|

2ds
]

≤ K
(

E
[
∣

∣X1
T (θ)−X1

T (π(θ))
∣

∣

2]
+

∫ T

t

E
[

|δY 1
s (θ)|

2
]

ds

+E

[

∫ T

t

∣

∣X1
s (θ)−X1

s (π(θ))
∣

∣

2
ds
])

. (5.26)

From Theorem 3.12 and Gronwall’s lemma, we get

E
[
∣

∣Y 1
t (θ)− Y 1

t (π(θ))
∣

∣

2]
≤ K|π| , (5.27)

for some constant K which does not depend on π.

We now study the second term of the right hand side of (5.25). Since it is the classical

error estimate of an Euler approximation, we get from [23]

E

[

∣

∣Y 1
t (π(θ))− Y 1,π

π(t)(π(θ))
∣

∣

2
]

≤ K
(

1 + E
[

|X1
π(θ)(π(θ))|

2
]

)

|π|

≤ K
(

1 + E

[

∣

∣X0
π(θ) + β

(

π(θ), X0
π(θ)

)
∣

∣

2
])

|π| ,

for some constant K which neither depends on π nor on θ. Since β satisfies (HF) and

(HFD), we get

E

[

∣

∣Y 1
t (π(θ))− Y 1,π

π(t)(π(θ))
∣

∣

∣

2
]

≤ K
(

1 + ‖X0‖
2

S2[0,T ]

)

|π| .

This last inequality with (5.25) and (5.27) give

sup
θ∈[0,T ]

sup
t∈[θ,T ]

E

[

∣

∣Y 1
t (θ)− Y 1,π

π(t)(π(θ))
∣

∣

2
]

≤ K|π| .

We now turn to the error on the term Z1(θ). We first use the inequality

E

[

∫ T

θ

∣

∣Z1
t (θ)− Z1,π

π(t)(π(θ))
∣

∣

2
dt
]

≤ 2E
[

∫ T

θ

∣

∣Z1
t (π(θ))− Z1,π

π(t)(π(θ))
∣

∣

2
dt
]

+2E
[

∫ T

θ

∣

∣δZ1
t (θ)

∣

∣

2
dt
]

. (5.28)

Using (5.26) and (5.27) with t = θ, we get

E

[

∫ T

θ

∣

∣δZ1
s (θ)

∣

∣

2
ds
]

≤ K|π| , (5.29)

for some constant K which neither depends on π nor on θ. The other term in the right hand

side of (5.28) is the classical error in an approximation of BSDE. Therefore, we have from

[23]

E

[

∫ T

θ

∣

∣Z1
t (π(θ))− Z1,π

π(t)(π(θ))
∣

∣

2
dt
]

≤ K
(

1 + E
∣

∣X1
π(θ)(π(θ))

∣

∣

2
)

|π|

≤ K
(

1 + E
∣

∣X0
π(θ) + β(π(θ), X0

π(θ))
∣

∣

2
)

|π| ,
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for some constant K which neither depends on π nor on θ. Since β is Lipschitz continuous

we get

E

[

∫ T

θ

∣

∣Z1
t (π(θ))− Z1,π

π(t)(π(θ))
∣

∣

2
dt
]

≤ K|π| . (5.30)

Combining (5.28), (5.29) and (5.30), we get

E

[

∫ T

θ

∣

∣Z1
t (θ)− Z1,π

π(t)(π(θ))
∣

∣

2
dt
]

≤ K|π| ,

for some constant K which neither depends on π nor on θ. 2

We now turn to the estimation of the error between (Y 0, Z0) and its Euler scheme

(3.15). Since BSDE (2.6) involves Y 1, we need to introduce an intermediary quantity to

control the error due to the approximation of Y 1 by Y 1,π. We therefore consider (Ỹ π, Z̃π) ∈

S2
F
[0, T ]× L2

F
[0, T ] solution to

Ỹ π
t = g(X0

T ) +

∫ T

t

f̄π(s,X0
s , Ỹ

π
s , Z̃

π
s )ds−

∫ T

t

Z̃π
s dWs , 0 ≤ t ≤ T , (5.31)

where we recall that f̄π is defined by

f̄π(t, x, y, z) = f
(

t, x, y, z, Y 1,π
π(t)(π(t))− y

)

,

for all (t, x, y, z) ∈ [0, T ]× Rd × R× Rd.

Proposition 5.3. Under (HF), (HFD), (HBL) and (HBLD), we have the following

estimate

sup
t∈[0,T ]

E

[

∣

∣Y 0
t − Ỹ π

t

∣

∣

2
]

+ E

[

∫ T

0

∣

∣Z0
t − Z̃π

t

∣

∣

2
dt
]

≤ K|π| ,

for some constant K which does not depend on π.

Proof. Applying Itô’s formula, we get

E
[

|Y 0
t − Ỹ π

t |
2
]

= 2E
[

∫ T

t

(Y 0
s − Ỹ π

s )
(

f(s,X0
s , Y

0
s , Z

0
s , Y

1
s (s)− Y 0

s )− f̄π(s,X0
s , Ỹ

π
s , Z̃

π
s )
)

ds
]

−E

∫ T

t

|Z0
s − Z̃π

s |
2ds .

for t ∈ [0, T ]. Using the Lipschitz condition on f , we can see that there exists a constant K

such that

E
[
∣

∣Y 0
t − Ỹ π

t

∣

∣

2]
+ E

[

∫ T

t

|Z0
s − Z̃π

s |
2ds

]

≤

K
(

∫ T

t

E
[
∣

∣Y 0
s − Ỹ π

s

∣

∣

2]
ds+

∫ T

t

E
[
∣

∣Y 1
s (s)− Y 1,π

π(s)(π(s))
∣

∣

2]
ds
)

, (5.32)
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for all t ∈ [0, T ]. Proposition 5.2 and Gronwall’s inequality imply that there exists a constant

K such that

sup
t∈[0,T ]

E
[

|Y 0
t − Ỹ π

t |
2
]

≤ K|π| . (5.33)

Combining (5.32) and (5.33), we get

E

[

∫ T

0

|Z0
t − Z̃π

t |
2dt

]

≤ K|π| .

2

Using the classical error estimates of the approximation scheme for a Brownian BSDE (see

e.g. [23]), we get

sup
t∈[0,T ]

E

[

∣

∣Ỹ π
t − Y 0,π

π(t)

∣

∣

2
]

+ E

[

∫ T

0

∣

∣Z̃π
t − Z0,π

π(t)

∣

∣

2
dt
]

≤ K|π| ,

for some constant K which does not depend on π.

Applying Proposition 5.3 and the last inequality, we get the following estimate for the

error of the backward equation (2.6).

Proposition 5.4. Under (HF), (HFD), (HBL) and (HBLD), we have the following

estimate

sup
t∈[0,T ]

E

[

∣

∣Y 0
t − Y 0,π

π(t)

∣

∣

2
]

+ E

[

∫ T

0

∣

∣Z0
t − Z0,π

π(t)

∣

∣

2
dt
]

≤ K|π| ,

for some constant K which does not depend on π.

5.2 Error estimate for the BSDE with a jump

We now give an error estimate of the approximation scheme for the BSDE with a jump.

Theorem 5.4. Under (HF), (HFD), (HBL) and (HBLD), we have the following error

estimate for the approximation scheme

sup
t∈[0,T ]

E

[

∣

∣Yt − Y π
t

∣

∣

2
]

+ E

[

∫ T

0

∣

∣Zt − Zπ
t

∣

∣

2
dt
]

+ E

[

∫ T

0

∣

∣Ut − Uπ
t

∣

∣

2
λtdt

]

≤ K|π| ,

for some constant K which does not depend on π.

Proof.

Step 1. Error for the variable Y . Fix t ∈ [0, T ]. From Theorem 2.1 and (3.16), we have

E

[

∣

∣Yt − Y π
t

∣

∣

2
]

= E

[

∣

∣Y 0
t − Y 0,π

π(t)

∣

∣

2
1t<τ

]

+ E

[

∣

∣Y 1
t (τ)− Y 1,π

π(t)(π(τ))
∣

∣

2
1t≥τ

]

.
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Using (DH), we get

E

[

∣

∣Yt − Y π
t

∣

∣

2
]

≤ E

[

∣

∣Y 0
t − Y 0,π

π(t)

∣

∣

2
]

+

∫ T

0

E

[

∣

∣Y 1
t (θ)− Y 1,π

π(t)(π(θ))
∣

∣

2
1t≥θγT (θ)

]

dθ

≤ K
(

E

[

∣

∣Y 0
t − Y 0,π

π(t)

∣

∣

2
]

+ sup
θ∈[0,T ]

sup
s∈[θ,T ]

E

[

∣

∣Y 1
s (θ)− Y 1,π

π(s)(π(θ))
∣

∣

2
])

.

Using Propositions 5.2 and 5.4, and since t is arbitrary chosen in [0, T ], we get

sup
t∈[0,T ]

E

[

∣

∣Yt − Y π
t

∣

∣

2
]

≤ K|π| ,

for some constant K which does not depend on π.

Step 2. Error estimate for the variable Z. From (2.7) and the definition of Zπ, we have

E

[

∫ T

0

∣

∣Zt − Zπ
t

∣

∣

2
dt
]

= E

[

∫ T∧τ

0

∣

∣Z0
t − Z0,π

π(t)

∣

∣

2
dt
]

+ E

[

∫ T

0

∣

∣Z1
t (τ)− Z1,π

π(t)(π(τ))
∣

∣

2
1t>τdt

]

.

Using (DH), we get

E

[

∫ T

0

∣

∣Zt − Zπ
t

∣

∣

2
dt
]

=

∫ T

0

∫ θ

0

E

[

∣

∣Z0
t − Z0,π

π(t)

∣

∣

2
γT (θ)

]

dtdθ

+

∫ T

0

∫ T

θ

E

[

∣

∣Z1
t (θ)− Z1,π

π(t)(π(θ))
∣

∣

2
γT (θ)

]

dtdθ .

≤ K
(

E

[

∫ T

0

∣

∣Z0
t − Z0,π

π(t)

∣

∣

2
dt
]

+ sup
θ∈[0,T ]

∫ T

θ

E

[

∣

∣Z1
t (θ)− Z1,π

π(t)(π(θ))
∣

∣

2
]

dt
)

.

From Propositions 5.2 and 5.4, we get

E

[

∫ T

0

∣

∣Zt − Zπ
t

∣

∣

2
dt
]

≤ K|π| ,

for some constant K which does not depend on π.

Step 3. Error estimate for the variable U . From (2.7) and the definition of Uπ, we have

E

[

∫ T

0

∣

∣Ut − Uπ
t

∣

∣

2
λtdt

]

≤ KE

[

∫ T

0

(

|Y 1
t (t)− Y 1,π

π(t)(π(t))|
2 + |Y 0

t − Y 0,π
π(t)(π(t))|

2
)

λtdt
]

.

Using (HBI), we get

E

[

∫ T

0

∣

∣Ut − Uπ
t

∣

∣

2
λtdt

]

≤ K
(

sup
θ∈[0,T ]

sup
t∈[θ,T ]

E

[

∣

∣Y 1
t (θ)− Y 1,π

π(t)(π(θ))
∣

∣

2
]

+ sup
t∈[0,T ]

E

[

∣

∣Y 0
t − Y 0,π

π(t)

∣

∣

2
])

.

Combining this last inequality with Propositions 5.2 and 5.4, we get the result. 2

Remark 5.2. Our decomposition approach allows us to suppose that the jump coefficient

β is only Lipschitz continuous. We do not need to impose any regularity condition on β and

any ellipticity assumption on Id+∇β as done in [4] in the case where µ is a Poisson random

measure independent of W .
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