N

N
N

HAL

open science

A Coalgebraic Perspective on Linear Weighted
Automata

Filippo Bonchi, Marcello Bonsangue, Michele Boreale, Jan Rutten, Alexandra

Silva

» To cite this version:

Filippo Bonchi, Marcello Bonsangue, Michele Boreale, Jan Rutten, Alexandra Silva. A Coalgebraic
Perspective on Linear Weighted Automata. Information and Computation, 2012, 211, pp.77-105.
hal-00576921

HAL Id: hal-00576921
https://hal.science/hal-00576921
Submitted on 15 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00576921
https://hal.archives-ouvertes.fr

A Coalgebraic Perspective on Linear Weighted Automata

Filippo Bonchi**, Marcello Bonsangld, Michele Borealg, Jan Ruttef®, Alexandra Silva

2CNRS - Laboratoire de I'Informatique du Parallélisme (EN& Allé d'ltalie, 69364 Lyon, France
bLeiden Institute Advanced Computer Science, Niels Bohiw2§33 CA Leiden, The Netherlands
¢Centrum Wiskunde & Informatica, Science Park 123, 1098 XGtémtam, The Netherlands
dDipartimento di Sistemi e Informatica, Universita di Firze, Viale Morgagni 65, 1-50134 Firenze, ltaly
®Radboud Universiteit Nijmegen, Heyendaalseweg 135, 6328ijfnegen, The Netherlands

Abstract

Weighted automata are a generalization of non-deterrdrEistomata where each transition, in addition to an input
letter, has also a quantity expressing the weight (e.g. @ogtobability) of its execution. As for non-deterministic
automata, their behaviours can be expressed in terms ef éitleighted) bisimilarity or (weighted) language equiva-
lence.

Coalgebras provide a categorical framework for the unifetuty of state-based systems and their behaviours.
In this work, we show that coalgebras can suitably model iateigj automata in two different ways: coalgebras on
Set (the category of sets and functions) characterize weidbishilarity, while coalgebras oWect (the category of
vector spaces and linear maps) characterize weighteddgegruivalence.

Relying on the second characterization, we show threerdiiteprocedures for computing weighted language
equivalence. The first one consists in a generalizion of salpartition refinement algorithm for ordinary automata.
The second one is the backward version of the first one. The phocedure relies on a syntactic representation of
rational weighted languages.

1. Introduction

Weighted automata were introduced in Schitzenbergeassidal paper [33]. They are of great importance in
computer science [9], arising in different areas of appilica such as speech recognition [23], image compressipn [2
control theory [16] and quantitative modelling [21, 3]. Thean be seen as a generalization of non-deterministic
automata, where each transition has a weight associatedTthis weight is an element of a semiring, representing,
for example, the cost or probability of taking the trangitio

The behaviour of weighted automata is usually given in teofmseighted languages (also called formal power
series [32, 5]), that are functions assigning a weight tddaite stringw € A* over an input alphabed. For
computing the weight given to a certain word, the semiringcitire plays a key role: the multiplication of the
semiring is used to accumulate the weight of a path by myltigithe weights of each transition in the path, while the
addition of the semiring computes the weight of a strinigy summing up the weights of the paths labeled witf20].
Alternatively, the behaviour of weighted automata can b@essed in terms of weighted bisimilarity [7], that is an
extension of bisimilarity (for non-deterministic autormpsubsuming several kinds of quantitative equivalencels su
as, for example, probabilistic bisimilarity [17]. As in tikase of non-deterministic automata, (weighted) bisintylar
implies strictly (weighted) language equivalence.

Weighted automata still retain non-deterministic behg\vés two different transitions outgoing from the same
state may be labelled by the same input action, possibly eiffarent weights. Deterministic weighted automata
are of interest because their construction is tightly cetegkwith the existence of minimal automata recognizing
the same weighted language. The classical powerset cotistrdior obtaining a language-equivalent deterministic

*Corresponding author

Preprint submitted to Elsevier March 15, 2011

automaton from a non-deterministic one can be general@zeeeighted automata, as long as the semiring respects
certain restrictions [24, 19]. The states of the determaitiautomaton are finite “subsets of weighted states” of
the original non-deterministic automaton, or, more foilgdlnctions from the set of states to the semiring that are
almost everywhere zero. Differently from the classicakg#isough, the weighted automaton obtained by the powerset
construction might be infinite. Usually, one restricts ttteration to semirings for which determinization is guaestt

to terminate and produce a finite result, such as locallyefiaitd tropical semirings, and extensions thereof [24, 19].

In this paper, we studiinear weighted automatavhich are deterministic weighted automata where the set of
states forms a vector space. A linear weighted automatomeasewed as the result of determinizing an ordinary
weighted automaton with weights in a gendi@dd, using a weighted powerset construction. As such, lineighted
automata are typically infinite-state. The key point is ttheg linear structure of the state-space allows for finite
representations of these automata and effective algositiparating on them.

To be more specific, the goal of the present paper is to urdeatystematic study of the behavioural equivalences
and minimization algorithms for (linear) weighted automato achieve this goal, we will benefit from a coalgebraic
perspective on linear weighted automata. The theory ofgedmbs offers a unifying mathematical framework for
the study of many different types of state-based systemsrdimite data structures. Given a functgr C — C
on a category’, a G-coalgebra is a pair consisting of an objéctin C' (representing the state space of the system)
and a morphisny: X — GX (determining the dynamics of the system). Under mild caodd, functorsG have
a final coalgebra (unique up to isomorphism) into which evgigoalgebra can be mapped via a unique so-called
g-homomorphism. The final coalgebra can be viewed as the rgeive all possibléj-behaviours: the unique homo-
morphism into the final coalgebra maps every state of a cbedge a canonical representative of its behaviour. This
provides a general notion of behavioural equivaleneg)(two states are equivalent if and only if they are mapped to
the same element of the final coalgebra.

Our first contribution in this paper is to recast both weighibésimilarity and weighted language equivalence
in the theory of coalgebras. We see weighted automata fotcafieand alphabeti, as coalgebras of the functor
W =K x K~ on Set (the category of sets and functions). Concretelyy-@oalgebra consists of a set of stafés
and a functiono, t): X — K x KX" where, for each state € X, 0: X — K assigns an output weight K and

t: X — KX* assigns a function ilkX". For each symbal € A and stater’ € X, t(z)(a)(2’) is a weightt € K

representing the weight of a transition frammo z’ with labela, in symbolsx T t(z)(a)(z’) = 0, then there
is noa-labeled transition fromx to z’. Note that there could exist several weighted transitioitk the same label

a,kn

. a,k1 a,ks
outgoing from the same state: = x1, © = 23, ..., & = Ty.

Adapting the above reasoning, we model linear weightednaata as coalgebras of the functor= K x (—)4
on Vect (the category of vector spaces and linear maps). A lineagiwed automaton consists of a vector spece
and a linear mago, t): V — K x V4 where, as before,: V — K defines the output and V' — V4 the transition
structure. More precisely, for eache V anda € A, t(v)(a) = v’ means that there is a transition franto v" with
labela, in symbolsy % +’. Note that the transition structure is now “deterministisihce for eachy anda there is
only onev’ € V. WhenV = K¥, each vectop € V can be seen as a linear combination of states. ., z, € X,

e, v = kizy + - + ko, for somek,, ..., k, € K. Therefore, the transitions “%' z1, ...,z “5" 2, ofa
weighted automaton correspond to a single transitich (kiz1 + - - - + knxy,) Of a linear weighted automaton.

We show thateyy (i.e., the behavioural equivalence inducedWYy coincides with weighted bisimulation while
=~ coincides with weighted language equivalence. Determatitun is the construction for moving from ordinary
weighted automata and weighted bisimilarity to linear viagdgl automata and weighted language equivalence.

Once we have fixed the mathematical framework, we investigiaee different types of algorithms for computing
~;. These algorithms work under the assumption that the uyidgrizector space has finite dimension. The first
is a forward algorithm that generalizes the usual partitefimement algorithm for ordinary automata: one starts by
decreeing as equivalent states with the same output vdhessrefines the obtained relation by separating states for
which outgoing transitions go to states that are not alreayphyvalent. Linearity of the automata plays a crucial role
to ensure termination of the algorithm. Indeed, the eqaiveés computed at each iteration can be represented as
finite-dimensional sub-spaces in the given vector space. Th#ingsdescending chain of sub-spaces must therefore
converge in a finite number of steps, despite the fact thastidie-space itself is infinite. We also show that each
iteration of the algorithm coincides with the equivaleneagrated by each step of the (standard) construction of the

2

final coalgebra via the final sequence. The minimal linearasgntations of weighted automata over a field was first
considered by Schutzenberger [33]. This algorithm wasrnefidated in a more algebraic and somewhat simplified
fashion in Berstel and Reutenauer book [5]. Their algoriierdifferent from our method, as it is related to the
construction of a basis for a subgroup of a free group. Furtieevident connections can be traced between their
treatment and the notions of bisimulation and coalgebras.

The second algorithm proceeds in a similar way, but uses kwaad procedure. It has been introduced by the
third authors together with linear weighted automata [B]this case, the algorithm starts from t@mplementin a
precise geometrical sense — of the relation identifyingamsavith equal weights. Then it incrementally computes the
space of all states that apackwardreachable from this relation. The largest bisimulationbitamed by taking the
complement of this space. The advantage of this algorithen the previous one is that the size of the intermediate
relations is typically much smaller. The presentation & #igorithm in [6] is somewhat more concrete, as there is no
attempt at a coalgebraic treatment and the underlying fielikeéd toR (for example, this leads to using orthogonal
complements rather than dual spaces and annihilatorshwiéaconsider in Section 4). No connection is made with
rational series.

Finally, the third algorithm is new and uses the fact thaivejant states are mapped by the unique homomorphism
into the same element of the final coalgebra. We charactérzdinal morphism in terms of so-called rational
weighted languages (which are also known as rational fopoader series). This characterization is useful for the
computation of the kernel of the final homomorphism, whichsists of weighted language equivalence. Taking again
advantage of the linear structure of our automata, caicgigihe kernel of the above homomorphism will correspond
to solving a linear system of equations.

Structure of the paperin Section 2 we introduce weighted automata and coalgeWasiso show thatV-coalgebras
characterize weighted automata and weighted bisimilatitySection 3.2, after recalling some preliminary notions
of linear algebras, we show that each weighted automatorbea®en as a linear weighted automaton, i.e£an
coalgebra. This change of perspective allows us to coaddmdily capture weighted language equivalence. In Section
4, we show the forward and the backward algorithm while, ictia 5, we first introduce a syntactic characterization
of rational weighted languages and then we shows how to gmplo order to computex,. In Section 6, after
summarizing the main results of the paper, we discuss howtéme them to the case of automata with weights in a
semiring.

Section 2.2 and Section 4.3 show some interesting minoltsabat could be safely skipped by the not interested
reader. The presentation is self-contained and does nairesany prior knowledge on the theory of coalgebras.

2. Weighted Automata as Coalgebras

We introduce weighted automata, weighted bisimilarity #meir characterization as coalgebras oet, the
category of sets and functions.

First we fix some notation. We will denote sets by capitable}, Y, Z . .. and functions by lower casg g, h
Given a setX, idx is the identity function and, given two functiorfs X — Y andg: Y — Z, g o f is their
composition. The product of two seX§ Y is X x Y with the projection functions;: X xY — X andry: X xY — Y.
The product of two functiong;: X; — Y7 and fo: Xo — Yo is f1 x fo defined for all{z1,z2) € X7 x Xo
by (f1 x fo){x1,22) = (f(x1), f(z2)). The disjoint union ofX,Y is X + Y with injectionsk;: X — X +Y
andxo:Y — X 4+ Y. The union off;: X; — Yy andfo: Xo — Yo is fi + fo defined forallz € X +Y
by (f1 + f2)(ki(2)) = ki((fi(2))) (for i € {1,2}). The set of functions>: Y — X is denoted byXY. For
f: X1 — X, the functionf¥ : X — X is defined for ally € X} by f¥ (p) = \y € Y.f(¢(y)). The collection
of finite subsets ofX is denoted by?,,(X) and the emptyset b§§. For a set of lettersi, A* denotes the set of all
words overA; e the empty word; ana; wo the concatenation of words; , ws € A*.

We fix a fieldK. We useky, ko, . .. to range over elements &. The sum ofK is denoted by, the product by,
the additive identity by) and the multiplicative identity by. Thesupportof a functiony from a setX to a fieldK is
the set{z € X | o(x) # 0}.

Weighted automata [33, 9] are a generalization of ordinatgmata where transitions in addition to an input letter
have also a weight in a field and each state is not just accepting or rejecting but hassatiased output weight in
K.

3
Figure 1: The weighted automat&, (ox,tx)) anda(Y, {(oy,ty)) (from left to right). The dashed arrow denotes the

'W-homomorphisnh: X — Y. This induces the equivalence relatify = X x X that equates all the statesih

Formally, aweighted automatogwaA, for short) with input alphabed is a triple (X, (o, t)), whereX is a set
of states,o: X — K is an output function associating to each state its outpighwendt: X — (KX)4 is the

transition relation that associates a weight to each ttiansiWe shall use the following notation: ol y means that
t(z)(a)(y) = k. Weight0 means no transition.

If the set of states is finite,\®A can be conveniently represented in form of matrices. Ffralipwe have to fix an
ordering(z1, ..., x,) of the set of stateX . Then the transition relatiohcan be represented by a family of matrices
{T.}aca Where eacll, € K™*" is anK-valued square matrix, with, (i, j) specifying the value of the-transition
fromz; to z;, i.e.,t(z;)(a)(z;). The output weight function can be represented asErvalued row vector ifK! "
that we will denote by the capital lettér.

For a concrete example, [& = R (the field of real numbers) andl = {a, b} and consider the weighted automata
(X, (ox,tx)) and(Y, (oy,ty)) in Fig. 1. Their representation as matrix is the following.

a

100 3 3 3
Ox=(111)Tx,=| 130 |Tx={000]| Oy=(1)Tyv,=(3)Ty,=(3)
10 3 00 0

Weighted bisimilaritygeneralizes the abstract semantics of several kind of pilidiec and stochastic systems.
This has been introduced by Buchholz in [7] for weighted mdta with a finite state space. Here we extend that
definition to (possibly infinite-states) automata withite branching i.e., those(X, (o,t)) such that for allz €
X,a € A, t(x)(a)(2") # 0 for finitely manyz’. This is needed in the following to ensure that,, . t(x)(a)(2’) is
always defined.

Hereafter we will always implicitly refer to weighted autata with finite branching. Moreover, given anc X
and an equivalence relatidh C X x X we will write [z] z to denote the equivalence classwofvith respect taR.

Definition 1. Let (X, (o,t)) be aweighted automaton. An equivalence relaftof X x X is aweighted bisimulation
if for all (x1,z2) € R, it holds that:

1. o(x1) = o(x2),
2.Vae A,z € X, Zw,,e[w,h t(z1)(a)(2") = Zw,,e[x,h t(ze)(a)(x").
Weighted bisimilarityin symbols~,,) is defined as the largest weighted bisimulation.

For instance, the relatioR;, in Fig.1 is a weighted bisimulation.

Now, we will show that weighted automata and weighted bilsirity can be suitably characterized througtal-
gebrag27].

We first recall some basic definitions about coalgebras. rGavéunctorG: C — C on a categonC, a G-
coalgebrais an objectX in C together with an arrowf: X — §X. For many categories and functors, such pair
(X, f) represents a transition system, tigpe of which is determined by the funct&. Viceversa, many types of
transition systems (e.g., deterministic automata, labetnsition systems and probabilistic transition sysjecas
be captured by a functor.

A G-homomorphisnfrom a §-coalgebrg X, f) to aG-coalgebrgY, g) is an arrowh : X — Y preserving the
transition structurd,e., such that the following diagram commutes.

X —" oy

1| |s

X g Y

A G-coalgebra(2,w) is said to befinal if for any G-coalgebra(X, f) there exists a uniqu§-homomorphism
Hg; X — Q. Final coalgebra can be viewed as the universe of all pasSiblehaviours the unique homomor-
phism[—]3-: X — Q maps every state of a coalgeb¥ao a canonical representative of its behaviour. This presid
a general notion of behavioural equivalence: two staies. € X areG-behaviourally equivalentr; ~g x2) iff
[#1]% = [22]% "

The functors corresponding to many well known types of systare shown in [27]. In this section we will show
afunctorW: Set — Set such thats\y coincides with weighted bisimilarity. In order to do thag weed to introduce
thefield valuation functor

Definition 2 (Field valuation Functor). Let K be a field. The field valuation funct®_, : Set — Set is defined as
follows. For each sek, KX is the set of functions fronX to K with finite support. For each functidn: X — Y,
K" : KX — KY is the function mapping each € KX into o" € K}, defined, forally € Y, by

)= D> o)

z’€h—1(y)

Note that the above definition employs only the additive mood K, i.e., the elemerlt and the+ operator. For this
reason, such functor is often defined in literature (e.g[liB]) for commutative monoids instead of fields.

We need two further ingredients. Given a #gtthe functorB x —: Set — Set maps every seX into B x X
and every functiorf: X — Y intoidg x f: B x X — B x Y. Given a finite se#4, the functor—4: Set — Set
mapsX into X4 andf: X — Yinto f4: X4 — Y4,

Now, the functor corresponding to weighted automata withutralphabetd over the fieldK is W = K x
(K;)#: Set — Set. Note that every functiorf: X — W(X) consists of a pair of function®, t) with o: X — K
andt: X — (KX)4. Therefore anyv-coalgebrg X, f) is a weighted automataX, (o, t)) (and viceversa).

Proposition 1 ([34]) The functorW has a final coalgebra.

In order to show that the equivalence induced by the fiiadoalgebra4\y) coincides with weighted bisimilarity
(~w), itis instructive to spell out the notion 6#-homomorphism. A functioh: X — Y is aW-homomorphism
between weighted automalta’, (ox,tx)) and(Y, (oy, ty)) if the following diagram commutes.

h

X Y
<0X-,tX>J/ l(OY-,tﬂ
X\A Y\A
KX(KQ}) ldX(Kg)A KX(KUJ)

This meansthatforalt € X,y € Y,a € A,

ox () = oy (h(x)) @and}_, cj,-1(y) tx (2)(a)(2) = ty (A(x))(a)(y)-

IHere we are implicitly assuming thét is a concrete category [1], i.e., there exists a faithfulldior U : C — Set. By writing =1, z2 € X,
we formally mean that1, z2 € UX and by[z;], we mearl/ ([—]5).

For every W-homomorphismh: (X, (ox,tx)) — (Y,{oy,ty)), the equivalence relationR, =
{(z1,22) | h(z1) = h(z2)} is a weighted bisimulation. Indeed, by the propertiesA\bhomomorphisms and by
definition of Ry, for all (z1,22) € Ry,

ox(x1) = oy (h(x1)) = oy (h(x2)) = ox(x2)
andforalla € A, forally € Y
> tx(@)(@)(@”) =ty (h(x))(@)(y) =ty (h(z2))(a)(y) = Y tx(@2)(a)(@").
& €h—1(y) z'"eh=1(y)
Trivially, the latter implies that for alt’ € X
Yo txe)@@) = D tx(w2)(a)@”).
I”E[I’]Rh I”E[I’]Rh

For an example look at the functiégndepicted by the dotted arrows in Fig. Ais aW-homomorphism and;,
is a weighted bisimulation.

Conversely, every bisimulatioR on (X, (ox,tx)) induces the coalgeb@ /R, (ox/r,tx/r)) WhereX/R is
the set of all equivalence classesXfw.r.t. R andox/r: X/R — Kandtx/r: X/R — (Kff/R)A are defined for
allzy,z0 € X,a € Aby

ox/r([t1]r) = ox (1) tx/r([m]r)(@)(za]r) = Y tx(e1)(a)(@).
z'€x2]r

Note that bottvy,r andtx,r are well defined (i.e., independent from the choice of theasgntative) sinc& is a
weighted bisimulation. Most importantly, the functiep: X — X/R mappingz into [z]z is aW-homomorphism.

..... [[_]]? .
£€R [[*H}QZ/R A
X X/R > ()
|
(OXatX>l/ (ox/R'tx/R) w
WIX) WX/ R) oo - W(Q
() e W) = WIO)
W([[f]]}?])

Theorem 1 Let(X, (o, t)) be aweighted automaton and let, - be two states iX. Thenx; ~, x2 iff 21 &w 2,
i.e.,[[lﬂl]]y = II:EQ]]?

PrROOF The proof follows almost trivially from the above obseivas.

If 21 2w x2, 1.8, [21]¥ = [22]¥, then(z:, 22) € Rp_jw andRj_jw is a weighted bisimulation becaufse] ¥
is aW-homomorphism. Thus; ~,, x2

If 21 ~, w2, then there exists a weighted bisimulatinsuch that(z,72) € R. Let (X/R,{ox/r,tx/Rr))
ander: X — X/R be theW-coalgebra and th&-homomorphism described above. Since there exists a unique
W-homomorphism fronfX, (ox, tx)) to the final coalgebra, thep-1¥ = [-]¥) 0 €. Sincesr(z1) = er(z2),
then[[xl]]}’(v = [[.172]]?, i.e.,r; ~w xa2.

2.1. Weighted language equivalence

The semantics of weighted automata can also be defined irs fweighted languagesA weighted language
over A andK is a functiono: A* — K assigning to each word id* a weight inK. For eachwa (X, (o, t)), the
functionly : X — K4 assigns to each statec X its recognized weighted language. For all wodgls. . a,, € A*,
it is defined by

Ix(@)(ay...an) = Z{kzl coiikn k=12 awfr | andn g ando(z,) = k}.
6

1 o1 1 ,2
090
%@ 0 0 2 0 0 1
0

Figure 2: The states; in the above automata recognize the language mappininto 2 and the other words int6.
Although they are all language equivalent, they are notrblar.

We will often use the following characterization: for alle A*,

| o(x), if w=c¢;
@0 = 8)1,

Two statesr;, x2 € X are said to beveighted language equivalefienoted by, ~; x2) if Ix(21) = Ix(z2).

In [7], it is shown that if two states are weighted bisimilaeh they are also weighted language equivalent. For
completeness, we recall here the proof.

Proposition 2 ~,,C~;

PrROOF We prove that ifR is a weighted bisimulation, then for dlt1, x2) € R, [x(x1) = Ix(z2). We use induction
onwordsw € A*.
If w = ¢, thenix (z1)(w) = o(x1) andix (z2)(w) = o(x2) ando(x1) = o(x2) sinceR is a weighted bisimulation.

If w=aw’, then
Ix(z1)(w) = Y (Hx1)(a) (@) - Ix (a") ().
z'eX
By induction hypothesis for alt” € [2']g, Ix(2”)(w') = Ix(2’)(w"). Thus in the above summation we can group
all the states” € [2/] g as follows.

x(z)w) = > |lx@)w)-| > tz)a)")

[']rEX/R z"€lz'|r

Since(z1,x2) € R andR is a weighted bisimulation, the above summation is equitdte

Yo @) | Y ta)(a)")

[z'|REX/R z"€lz'lr
that, by the previous arguments, is equaltdz)(w).

The inverse inclusion does not hold: all the statesn Fig.2 are language equivalent but they are not equivalent
according to weighted bisimilarity.

2.2. On the difference betwe&-bisimilarity andW-behavioural equivalence

We conclude this section with an example showing the diffeeebetweeriW-behavioral equivalence (and
hence weighted bisimulation) and another canonical etprica notion from the theory of coalgebra, nam#ély
bisimulation. This result is not needed for understandimgriext sections, and therefore this sub-section can be
safely skipped.

The theory of coalgebras provides an alternative definifogquivalence, namel§-bisimilarity (~g), that coin-
cides withG-behavioural equivalence whenever the fun@qreservesveak pullback$27]. In the case of weighted
automata, the functow does not preserve weak pullbacks ang), is strictly included into~y. Since weighted
automata are one of the few interesting cases where thipfemon arises, we now show an example of two states
that are incyy, but not in~yy (the paper [12] was of great inspiration in the constructibthis example).

7

Figure 3: From left to right, three weighted automata dRef X, (ox,tx)), (Z, (0oz,tz)) and(Y, (oy, ty)). The dashed
arrows denotes th#&-homomorphisms,: X — Z andhs: Y — Z. The states; andy; are behaviourally equivalent,
but they are noW-bisimilar.

First, let us instantiate the general coalgebraic defmitibbisimulation and bisimilarity to the functdw. A
'W-bisimulationbetween twoW-coalgebrag X, (ox,tx)) and (Y, (oy,ty)) is a relationR C X x Y such that
there existog, tr): R — W(R) making the following diagram commute. The bigg>bisimulation is called
W-bisimilarity (~w).

X iL R ik Y
(ox,tx) (oR,tr) <OY\|£,ty>
W(X W(R WY

(X) < W(R) —5s W)

Note that the actual definition efy relates the states of a single automaton. We can extendritiér to relate states
of possibly distinct automata: givéiX, (ox,tx)) and(Y, (oy,ty)), the states € X andy € Y are equivalentw.r.t.
~w iff [21Y = []Y.

Consider now the coalgebras in Fig8; ~w y1, butz; 2w y;. For the former, it is enough to observe that
the functionh; and h, (represented by the dashed arrows) Whomomorphisms, and by uniqueness[ef]*’:
[21]¥ = [h(z)]Y = [21]Y = [ha(w)]Y = [w1]}¥. Fora; % 1, note that there exists nB C X x Y
that is aW-bisimulation and such thdt;,y;) € R. Sincex, andzs are both different fromy; (their output values
are different), then neithdts, y1) nor (z3,y1) can belong to a bisimulation. Thus the only remaining retatin
X x Y is the one equating just; andy, i.e., R = {(x1,y1)}. But this is not @¥-bisimulation since there exists
no (or,tr) Making the leftmost square of the above diagram commuterderdo understand this fact, note that
77 (x2) = 0 andxy (x3) = (. Thus for all possible choices dbg,tz), the functionW(r,) o (og,tr) maps
(z1,y1) into a pair(k, ¢) wherep(a)(xz2) = 0 andp(a)(z3) = 0. On the other side of the square, we have that
(ox,tx)om(z1,y1) = (ox(x1),tx(x1)) andtx (z1)(a)(x2) = L andtx (z1)(a)(z3) = —1.

3. Linear Weighted Automata as Linear Coalgebras

In this section we will introduce linear weighted automagacaalgebras for an endofunctdr Vect — Vect,
whereVect is the category of vector spaces and linear maps over aiielthe goal of this change is to characterize
weighted language equivalence as the behavioural eqoa@iaeduced by the final-coalgebra.

3.1. Preliminaries

First we fix some notations and recall some basic facts orowegiaces and linear maps. We useuvs, ... to
range over vectors afid W . .. to range over vector spaces on a figldGiven a vector spacé, a vector € V and
ak € K, the scalar product is denoted bywv (or kv for short). Thespace spannely an/-indexed family of vectors
B = {v; }icr is the spacepan(B) of all v such that

v = klvil + k/’gviz —+ -4 k:nvin

where for allj, v;; € B. In this case, we say thatis alinear combinationof the vectors inB. A set of vectors
is linearly independenif none of its elements can be expressed as the linear cotidira the remaining ones. A
basisfor the spacé’ is a linearly independent set of vectors that spans the wiiolsll the basis ofi” have the same
cardinality which is called thdimensiorof V' (denoted bylim (V). If (v4,...v,) is a basis fol/, then each vector

8

v € Vis equal tokyvy + - - - + k,v, fOor someky, ..., k, € K. For this reason, each vectocan be represented as a

n x 1-column vector
k1

kn,

We usef,q,... to range over linear maps. Identity and composition of mapsdenoted as usual. By, =
(v1,...v,) and By = (w1 ...w,,) are, respectively, the basis for the vector spaceand 1V, then every linear
map f: V. — W can be represented as x n-matrix. Indeed, for eachh € V, v = kyv; + -+ + k,v, and
f) =k1f(v1) + -+ knf(v,), by linearity of f. For eachy;, f(v;) can be represented as x 1 column vector
by taking as basi®y,. Thus the matrix corresponding fo(w.r.t. By and Byy) is the one having asth column the
vector corresponding tfi(v;). In this paper we will use capital lettef§ G . . . to denote the matrices corresponding
to linear mapg, g inlower case. By multiplying the matrik for the vectow (in symbols,F' x v) we can compute
f(v). More generally, matrix multiplication corresponds to gasition of linear maps, in symbols:

gof=GxF

The product of two vector spac&sW is written asV’ x W, and the product of two linear maygs, f2 is f1 x fa,
defined as for functions. It will be clear from the context wtes x refer to multipliaction of matrix or product of
spaces (or maps). Given a s€t and a vector spack, the setV’~ (i.e., the set of functiong: X — V) carries a
vector space structure where sum and scalar product aredegfaint-wise. Hereafter we will uSéX to denote both
the vector space and the underlying carrier set. Given afdimapf: V; — V5, the linear magf X : VX — VX is
defined as for functions. &l is a finite set we can conveniently thifrk! as the product of with itself for | A|-times
(|A| is the cardinality ofd). A linear mapf: U — V# can be decomposed in a family of maps indexed4py
f=A{fa: U= V}aea,suchthatforalk € U, fo(u) = f(u)(a).

For a setX, the setkX (i.e., the set of all finite support functiops X — K) carries a vector space where sum
and scalar product are defined in the obvious way. This igdalefree vector spacgenerated byX and can be
thought of as the space spanned by the elemenis:aefach vectok,x;, + koxi, + - - + knx;, COrresponds to a
functiony: X — K such thatp(z;,) = k; and for allz ¢ {4, }, o(z) = 0; conversely, each finite support function
© corresponds to a vecter(x;,)x; + (i,)zi, + -+ - + (i,)i, -

A fundamental property holds in the free vector space geeekay X : for all functionsf from X to the carrier-set
of a vector spac#’, there exists a linear maff : KX — V that is called thdinearizationof f. For allv € KX,

v =kixi, + kotiy + - A ko, andfH(v) = ki f(2i,) + ke f(2iy) + - 4 ko f(2,)-

Note thatf* is the only linear map such thfit= f* o nx, wherenx (z) is the function assigning to = and0 to all
the other elements of .

Thekernelker(f) of a linear mapf: V. — W is the subspace df containing all the vectors € V such that
f(v) = 0. Theimageim(f) of f is the subspace 6% containing all thev € W such thatv = f(v) for somev € V.
If V has finite dimension, the kernel and the imag¢ afe related by the following equation:

dim(V') = dim(ker(f)) + dim(im(f)). 1)

Given two vector spacédg andVa, their intersectiori; N V4 is still a vector space, while their unidq U V5 is not.
Instead of union we consider the coproduct of vector spaseswrite V; + V5 to denote the spacgan(V; U Va)
(note that in the category of vector spaces, product ancbcloet coincide).

3.2. From Weighted Automata to Linear Weighted Automata

We have now all the ingredients to introduce linear weighdatbmata and a coalgebraic characterization of
weighted language equivalence.

Definition 3 (LwA). A linear weighted automatofLwA, for short) with input alphabet over the fieldK is a coal-
gebra for the functof = K x —4: Vect — Vect.

More concretely [6], awA is a triple(V, (o, t)), whereV is a vector space (representing the states spac&),—
K is a linear map associating to each state its output weightali — V4 is a linear map that for each inputc A
associates a next state (i.e., a vectoryinwe will write v; % v; for t(v1)(a) = vs.

The behaviour of linear weighted automata is expressednmstef weighted languages. Ttenguage recognized
by a vectory € V of aLwa (V, (o, t)) is defined for all words:; . . .a,, € A* as[v]& (a1 ... a,) = o(v,) wherev,
is the vector reached fromthrougha . .. a,, i.e.,v = ... %3 v,. We will often use the following (more compact)
definition: for allw € A*,

c [o(v), if w=e¢;
[olv (w) = { [t()(@)]4 (w'), if w=aw'.
Here we use the notatidn-]{; because this is the unigdehomomorphism into the final-coalgebra. In Section 3.3,

we will provide a proof for this fact and we will also discukgtexact correspondence with the functigrintroduced
in Section 2.

Given a weighted automatdiX, (o, t)), we can build a linear weighted automat@@’, (of, t*)), whereKX is
the free vector space generated¥yando? andt’ are the linearizations af andt. If X is finite, we can represent
t* andof by the same matrices that we have introduced in the previect®os fort ando. By fixing an ordering
x1,...,z, Of the states inX, we have a basis fdk, i.e., every vectow € KX is equal tok1z; + -+ + kn2y,
and it can be represented assanx 1-column vector. The valuet(v)(a) andof(v) can be computed via matrix
multiplication asT, x v andO x wv.

For a concrete example, look at the weighted autom&fon(ox,tx)) in Fig. 1. The corresponding linear
weighted automato(RX, (o’ix, t”X>) has as state space the space of all the linear combinatitims states inX (i.e.,
{k1$1 + koxo + k3$3 | k; € R}) The fUnCtionOg(mapsv = kixy + koxs + k3$3 into klox(l'l) + k20x($2) +
ksox(x3), i.e., k1 + ka2 + k3. By exploiting the correspondence between functions amtbove in KX (discussed
in Section 31), we can Writéx (v)(a) = kitx (:cl)(a) + kotx (mg)(a) + kstx (mg)(a) that isk; (.%’1 + 2o + 173) +
ko3wo + k333 andtﬁ((v)(b) = k13x1 + k23x1 + ks3z1. This can be conveniently expressed in terms of matrix
multiplication.

Ky 100 ky 33 3 k1
AW =(1 1 1) ke |th@@=[1 3 0 ks |t @)@ =10 0 0 ks
1{33 1 0 3 k3 0 0 0 k3

Alinear maph: V — W is anL-homomorphism betweamwa (V, (ov, tv)) and(W, (ow, tw)) if the following
diagram commutes.
h

14 W
(Ovatv>l l(OW,tW>

Kx VA K x W4

idxh™

This means that for ath € V,a € A, oy (v) = ow (h(v)) andh(ty (v)(a)) = tw(h(v))(a). If V andW have finite
dimension, then we can represent all the morphisms of theeadiagram as matrices. In this case, the above diagram
commutes if and only if for alb € A,

OV:OWxH HXTVa:TWaXH

whereTy, andTyy, are the matrix representationff andty, for anya € A.
10

a,l
5
a,l

Figure 4: The weighted automatX’, (ox,tx)) (left) and (Y, (oy, ty)) (right). The corresponding linear weighted au-
tomata(RY, (o, %)) and(RY, (0%, 1)) are isomorphic.

For a functionh: X — Y, the functionK”: KX — KY (formally introduced in Definition 2) is a linear
map. Note that ifh is @ W-homomorphism between thea (X, (ox,tx)) and (Y, (oy,ty)), thenK" is an £-
homomorphism between theva (K, <0g(, tg(>) and(KY', <0§/,t§,>). For an example, look at ti&-homomorphism
h: (X, (ox,tx)) — (Y, {oy,ty)) represented by the dotted arrows in Fig. 1. The linear ®apRX — RY is
represented by the matril = (1 1 1) and it is an{-homomorphism betweef®R X, <0ﬁX, t§(>) and(RY, (o%,,t%).
This can be easily checked by showingthat = Oy x H, H x Tx, =Ty, x H andH x Tx, =Ty, x H.

Note that two different weighted automata capresenthe same (up to isomorphism) linear weighted automaton.
As an example, look at the weighted autom@a (ox, tx)) and(Y, (oy, ty)) in Fig. 4. They represent, respectively,
the linear weighted automat®* <oﬁ(, t§(>) and(RY, <o§,, t§/>) that are isomorphic. The transitions and the output

functions for the two automata are described by the follgwiratrices.

0 00 30 3
_ _ | 1 i _
Tx,=| 1 1 0 |Ox=(11 1) Tyv,=| 53 1 5 |Oy=(2 2 2)
-1 0 1 “3 0 -1

Note thatTx, andTy, aresimilar, i.e., they represent the same linear map. This can be inatedylichecked by
showing thafly, = j~!otx, oj, wherej: RY — RX is the isomorphic map representing the change of bases form
Y = (z1 + @2, 22 + w3, 23 + 11) 10 X = (21,79, 23) andj~1: RX — RY is its inverse. The matrix representation
of j and; ! is the following.

1 01 %%
J=|110 Jt=| -3 3
0 1 1

Also Ox andOy represents the same map in different bases. Indegds Ox x J.

At this point, it is easy to see that the linear isomorphism: RX — RY is an £-homomorphism, because
Ox =0x xJxJ1'=0y xJ tandJ ' xTx, = J ' xTx, x J x J-t = Ty, x J~1. Analogously for
j: RY — RX,

3.3. Language equivalence and finaicoalgebra

We introduce the final-coalgebra and we show that the behavioural equivalenceanduced by the functof,
coincides with weighted language equivalence.

The set of all weighted languagks'” carries a vector space structure: the sum of two languages ¢ K4~
is the language; + o2 defined for each word € A* asoy + o2(w) = o1 (w) + o2(w); the product of a language
for a scalak € K is ko defined ago(w) = k - o(w); the elemen6 of K4 is the language mapping each word into
theO of K.

The empty functiore: K4* — K and thederivative functioni: K4~ — (K4")4 are defined for alb € K4~,
a€Aas

e(o) =0(e) d(o)(a) =0,

11

whereo,:A* — K denotes the-derivativeof o that is defined for allv € A* as
oa(w) = o(aw).
Proposition 3 The maps: K4~ — K andd: K4~ — (K4)4 are linear.

PROOF We show the proof fod. The one fok is analogous.

Letoy, o be two weighted languagesi& . Now foralla € A, w € A*, d(oy + 02)(a)(w) = o1 + o2(aw) =
01 (aw) + o (aw) = d(o)(a)(w) + d(02)(a)(w).

Let k be a scalar ik ando be a weighted language i84". Now foralla € A,w € A*, k - d(0)(a)(w) =
k- o(aw) = d(ko)(a)(w).

SinceK#™ is a vector space and sineandd are linear maps(K*", (¢, d)) is an£-coalgebra. The following
theorem shows that it is final.

Theorem 2 (finality) From everyC-coalgebra(V, (o, t)) there exists a uniqué-homomorphism int¢K*", (e, d)).

-1v

V > KA*
(o,t)l l<57d>
LV s > L(KA

) L£(1-1%) K5

PROOF. The only function making the above diagram commutef-i$, i.e., the function mapping each vector
v € V into the weighted language thatécognizesHereafter we show tht-] is a linear map.

By induction orw, we prove that for alby, ve € V, for allw € A*, [or1 + va] & (w) = [o1]& (w) + [v2] & (w).

Suppose thaty = €. Then[v; + v2]{(e) = o(v1 + v2). Sinceo is a linear map, this is equal tgv;) + o(v2) =
o118 () + [a]& o).

Now suppose that = aw’. Then[v; + ve]{(aw’) = [t(vi + v2)(a)]& (w'). Sincet is a linear map, this is
equal tot(v1)(a) + t(v2)(a)]& (w’) that (by induction hypothesis) is equalfidv,) (a)] (w') + [t(v2)(a)]{ (w') =
[or] (aw') + [va] & ().

We can proceed analogously for the scalar product.

Thus, two vectors, vy € V are L-behaviourally equivalent ~. v,) iff they recognize the same weighted
language (as defined in Section 3.2). Proposition 4 belowsttioat]—]<, : KX — K4 is the linearization of the
functionlx : X — K" (defined in Section 2) or, in other words, is the only lineapmeaking the following diagram
commute.

KX

[
nx

X—— KA
Ix

Lemmal Let (X, (o,t)) be awa and (KX, (of,*)) be the corresponding linear weighted automaton. Then for al
rxeX,lx(x)= [[x]]éx.

PROOFE We prove it by induction o € A*.

If w = e, thenly (z)(w) = ox (z) = o’ (z) = [2] % (w).

If w = aw’, then[z]£ (w) = [t*(x)(a)]gx (w'). Note that by definition;*(z)(a) = 3", x t(x)(a)(z')2’, thus
the latter is equal to) :

[Y @) -] w)

which, by linearity of[—]]KX, coincides with
Y @) (@)@ - [2TEx (w).
r'eX
By induction hypothesifiz']% « (w') = Ix(a’)(w’) and thus the above coincides with
Y t@) (@) (@) - Lx () (w)
r'eX
thatisix (x)(w).

Proposition 4 Let (X, (o,t)) be awA and (KX, (of, %)) be the corresponding linear weighted automaton. Then, for
all v = k1$i1 + -+ kn$in, [[’U]]ng = kllX(zil) + -4 kan(zzn)

PrROOFE By induction onw E A*.
If w = ¢, then[v]£x (w) = of(v). Sinceof is a linear map and is a base foKKY, o (v) = kio(z;,) + -+ +
kno(x;,). For a”j lX(xl)(€) = o(x;;), thuskio(w;,) + - - - + kno(xs,) = kilx (x4,) (w) 4 - - 4 Eplx (24,) (w).

If w = aw’, then[[v]]KX (w) = [t*(v)(a) ﬁf (w'). Sincet? is linear andX is a base folKX, thent*(v)(a) =
klt(x“)()+ + t(zln)(a) For all j,
ta,)(a) = Y (Hai)(@)() - 2'),

thus[t*(v)(a)£x (w') is equal to
[;x (:,)(ke, ;{ (21,)(.wf)ﬂ;((w/)
which, by linearity of[£, is equal to
ki %(t@m(a)u')-ux’nﬁg()+ ;(z,)(@) @) - [Ty ().
By induction hypothesife']« (') = ix («')(w') and thus the latter coincides with
b 3 ()@@ b)) 4tk 3 () @) b)),

By definition, I x (z;,)(w) = >, cx (t(zi,)(a)(2) - Ix(«')(w’)) and thus we can concisely express the above
formula as
kilx (z1)(w) + - + knlx (z0)(w).

3.4. Linear Bisimulations and Subspaces

We now introduce a convenient characterization of langeagavalence by means bhear weighted bisimula-
tions Differently form ordinary (weighted) bisimulations, $ecan be seen both as relations and as subspaces. The
latter characterization will be exploited in the next sewtfor defining an algorithm for checking language equiva-
lence.

First, we show how to represent relations over a vector spaae sub-spaces &f, following [35, 6].

Definition 4 (linear relations). LetU be a sub-space 6f. The binary relatior?;; overV is defined by
vy Ry vpifandonly ifv; — v € U .
Arelation R is linear if there is a subspadé such thatR = Ry .
13

Note that a linear relation is a total equivalence relationla Let now R be any binary relation overl/.
There is a canonical way of turning into a linear relation, which we describe in the following.héelkernel
of R (in symbolsker(R)) is the set{v; — v |v; Rvo}. Thelinear extensiorof R, denotedR’, is defined by:
vy Rfvy ifand only if (v; — v2) € span(ker(R)).

Lemma 2 LetU be a sub-space df, thenker(Ry) = U.

According to the above lemma, a linear relatims completely described by its kernel, which is a sub-spidwee,
is

vy Rvy ifandonlyif (vy —w2) € ker(R). 2)

Conversely, for any sub-spateC V there is a corresponding linear relati®y whose kernel i¢/. Hence, without
loss of generalitywe can identify linear relations oW with sub-spaces df. For example, by slight abuse of notation,
we can writev; U vy instead ofv; Ry v2; and conversely, we will sometimes denote®yhe sub-spacker(R). The
context will be sufficient to tell whether we are actuallyeeing to a linear relation or to the corresponding sub-epac
(kernel). Note that the sub-spaf@} corresponds to the identity relation ¥ thatisRyoy = Idy. Infact: vy Idy v2
iff v1 = vy iff v1 — vy = 0. Similarly, the spac#’ itself correspondst®, =V x V.

We are now ready to define linear weighted bisimulation. Teinition relies on the familiar step-by-step game
played on transitions, plus an initial condition requirthgt two related states have the same output weight. We call
this form of bisimulatiorinear to stress the difference with the one introduced in Definifio

Definition 5 (linear weighted bisimulation). Let (V, (o, t)) be a linear weighted automaton. A linear relati®rc
V x V is alinear weighted bisimulatioif for all (v1,v2) € R, it holds that:

(1) ofv1) = o(v2),
(2) VYa € A, t(v1)(a) R t(va)(a).

For a concrete example, consider the automaloh, <oﬁX,t§(>) in Fig 4. The relation? = {(x2,x3)} is not
linear, becaus®& = {x, — x3} is not a subspace @& X . However, we can tur® into a linear relation by employing
its kernelker(R) = {x2—x3}. The linear extension aR is R® = {(k1x1 + kawa + ks, ki x1 +khwo + khas) | ki =
ky andks + k3 = kb + k4 }. Itis easy to see thdt’ is a linear weighted bisimulation.

The following lemma provides a characterization of lineaighted bisimulation as a subspace. Let us say that a
sub-spacé/ is f-invariantif f(U) C U. Bisimulations are transition-invariant relations thefime the kernel of the
output map.

Lemma 3 Let(V, (o, t)) be aLwa and R be linear relation oveW. R is a linear weighted bisimulation if and only if

(1) R C ker(o),
(2) Rist,-invariant for eachu € A.

This lemma will be fundamental in the next section for defijnen algorithm computing the greatest linear
weighted bisimulation. In the remainder of this section, stew that the greatest linear weighted bisimulation
coincides with the kernel of the final mdp-]{. More generally, the kernel of eactrhomomorphism is a linear
weighted bisimulatiom? and, viceversa, for each linear weighted bisimulatidbthere exists ar-homomorphism
whose kernel ifk.

Proposition 5 Let (V, (ov,ty)) be aLwa. If f: V — W is an £L-homomorphism (for someva (W, (ow, tw)))
thenker(f) is a linear weighted bisimulation. ConverselyHfis a linear weighted bisimulation fqiV/; (o, t)), then
there exists awa (W, (ow, tw)) and anL-homomorphisnf: V — W such thaker(f) = R.

PROOF First, we suppose thgt: V' — W is an£-homomorphism and we prove thiair(f) satisfies (1) and (2)
of Lemma 3. Take a vectar € ker(f). Thus, f(v) = 0 and, sinceoyy andtyy are linear mapsow (f(v)) = 0
andtw (f(v))(a) = 0 foralla € A. Sincef is an£-homomorphism, we have that (&) (v) = ow (f(v)) = 0,
i.e., ker(f) C ker(oy) and (2) f(tv(v)(a)) = tw(f(v))(a) = 0 meaning thaty (v)(a) € ker(f), i.e.,ker(f) is
ty, -invariant.

14

In order to prove the second part, we need to repadtient spaceandquotient map$rom [14]. Given a subspace
U of V, the equivalence class ofw.r.t. U is [v]y = {v+u | u € U}. Note thatv; € [vo]y if and only if v1 Ryyvs.
The quotient spac¥®/U is the space of all equivalence clasgds where scalar produédt[v]y is defined agkv]y
and the sunjuv; |y + [v2]u as[vr + ve]u. Itis easy to check that these operations are well-defined ifidependent
from the choice of the representative) and tUifU into a vector space where the elemems U. Most importantly,
the quotient functiosy : V' — V/U mapping each vectarinto [v]y is a linear map such thatr(sy) = U.

Now, letU be the subspace corresponding to the linear weighted Hisliow 2. We can také?V = V/U and we
defineow asow ([v]y) = ov (v) andtw astw ([v]y)(a) = [t(v)(a)]u. Note that bothvy, andty, are well defined:
forallv’ € [v]y = {v+u|u € U}, ow (v') = ow (v) (sinceoy (u) = 0forallu € U) andtw (v')(a) € [tw(v)(a)]u
(sincety (u)(a) € U forall u € U). Itis also easy to check that they are linear.

Finally, we takef: V' — W asey and with the previous definition @f;; andty, is trivial to check thaty is an
L-homomorphism. As said above, its kerneliis

Theorem 3 Let (V, (o,t)) be aLwa and let[-]&: V' — K4~ be the uniqueC-morphism into the final coalgebra.
Thenker([—]{) is the largest linear weighted bisimulation h

PROOF. First of all, note that by the first part of Propositiorker([—]+) is a linear weighted bisimulation.

Then suppose that is a linear weighted bisimulation. By the second part of Bgdion 5, there exists awA
(W, {ow, tw)) and anL-homomorphisny : V' — W such thatR = ker(f). Now note that, sincéW, (ow , tw)) is
an £-coalgebra there exists @ixhomomorphisnf—]&,: W — K" to the final coalgebra. Since the composition of
two £-homomorphismsis still ad-homomorphism, alsp-]5, o f: V — K4 ™ is anL-homomorphism. Sincg-]&
is the uniqueC-homomorphism fronV to K™, then[—]&, o f = [—]&. Finally, R = ker(f) C ker([-]§ o f) =
ker([-]4).

The characterization of bisimulations as subspaces seednestossible iV ect and not inSet because the former
category isabelian[10]: every map has a kernel that is a subspace and everyaudipthe kernel of some map. We
leave as future work to study (at a more general level) thegoaiical machinery allowing to characterize bisimulasion
as subspaces.

4. Linear Partition Refinement

In the previous section, we have shown that weighted largyeggivalence~;) can be seen as the largest linear
weighted bisimulation. In this section, we exploit this caerization in order to provide a “partition refinement”
algorithm that allows to compute;. We will examine below two versions of the algorithm, a fordmeersion (Section
4.1) and a backward one (Section 4.2). The former is striigh&rd but computationally not very convenient; the
latter is more convenient, although it requires the intidaun of some extra machinery. In both cases, we must réstric
to LWA’s where the state space is finite dimension.

4.1. A forward algorithm

Lemma 3 suggests that, in order to compute the largest liwegghed bisimulation for awa (V, (o, t)), one
might start fromker(o) and refine it until the condition (2) given in the lemma is siid. This is indeed the case.

Proposition 6 (partition refinement, forward version) Let(V, (o, t)) be aLwA. Consider the sequen¢®;);> of
sub-spaces df defined inductively by

Ry = ker(o) Riy1 = RN ﬂ t(Ri)(a)™!

a€A

wheret(R;)(a)~! is the spacdv € V | t(v)(a) € R;}. Thenthereig < dim(V') such that?; 1 = R;. The largest
linear weighted bisimulation iss ;= R;.

15

1% 1 0 0
_ _ trn 1
O=(2 1 1)T,=| 0 0 Ty=| 0 0 3
0 0 03 0

Figure 5: A weighted automatd/, (o, t)) (left) and its reversedV;, (o, °t)) (right).

PrROOF The R;'s form a descending chain of sub-spaceslaf The corresponding dimensions form a non-
increasing sequence, hence the existencgad required is obvious. Thd; is a bisimulation follows by apply-
ing Lemma 3: indeed, it is obvious that (kyr(0) O R;, while as to (2) we have that, sind®,.; = R;, then
Rj N ﬂaGA t(Rj)(a)_l = Rj, i.e., foralla € A, t(Rj)(a) - Rj.

We finally show that any linear weighted bisimulatiéhis included inR;. We do so by proving that for each
i, R C Ry, thus, in particulal? € R;. We proceed by induction o Again by Lemma 3, we know that, =
ker(o) 2 R. Assume nowR C R;. For each actiom, by Lemma 3 we have thatR)(a) C R, which implies
R C {U €R; | Va € A, t(v)(a) S Rl} =Rit1.

Concretely, the algorithm iteratively computes a bdsigor each spac;. This can be done by solving systems
of linear equations expressing the constraints in the dieimof R;. Since the backward algorithm presented in the
next section is computationally more efficient, we avoiditedurther details about its implementation and we show,
as an example, the algorithm at work with the linear autortidt#o, t)) in Fig.5.

At the beginning, we compute a basis ®§ = ker(o). This is

() ()

In the first iteration, we compute one basis for the spé@é®)(a)~* and one for the spadgR,)(b)~!. These are

respectively
_ -1 _ _%
B¢ = 1 |, o andB’ = |, o
0 1 0 1

Then,R; is given by the intersectioRy N ¢(Ro)(a)~* Nt(Ro)(b)~t. Abasis forR; is

W=
=

In the second iteration, we compute one basis for the sgdtg (a) ! and one for the spacéR;)(b)~!. These are

especny Bs{(g),((1})} anng{(:)}

16

Wl

Then, R, is the intersectiol?; N ¢(R1)(a)™! Nt(Ry)(b)~!. A basis forR; is

By = 3
1

that is equal taB;. SinceR; = Rs the algorithm terminates and returRs. Now, in order to check if two vectors
v1,v2 € V accept the same weighted language (ve.~; v2), we have to look ifu; — vo belongs toR;. For
instancez; ~ 2z, + 13 becauser; — 3z, — fa3 € Ry.

We note thaker(o) is in general a large sub-space: sincd” — K with dim(K) = 1, by virtue of equation (1)
we have thatlim(ker(o)) > dim (V') — 1. This might be problematic in the actual computation of thei® of~ .
We present an alternative version in the next subsectiootwiill avoid this problem.

4.2. A backward algorithm

Two well-known concepts from linear algebra will be religzbm to describe the basic operations of the backward
algorithm. More precisely, annihilators will be used to ctése the complement of a relation, while transpose maps
will be used to describe the operation of “reversing arroinsin automaton. These operations are carried out within
thedual spaceof V. So we start by reviewing the concept of dual space; an ithdiepatment can be found in e.g.
[14].

Let K be any field and” a vector space ovék. Thedual spaceof V, denoted’*, is the set of all linear maps
V — K, with K seen as a 1-dimensional vector space. The elements afe often calledunctionalsand we use
1,19, ... to range over them. The sum of two functiongls—+ v)» and the scalar multiplicatioh - ¢ (for & € K)
are defined point-wise as expected, and furninto a vector space ové&. We will denote functional application
1 (v) as[v, ¢], the bracket notation intending to emphasize certain giedavith inner products. Fix an ordered basis
B = (v1,...,v,) 0f V and consideB* = (v, ..., v};), where the functionals? are specified byv;, v}] = 4;; for
eachi andj. Here,d;; denotes the Kronecker symbol, which equiaisi = j and 0 otherwise. It is easy to check that
B* forms a basis o¥/*, referred to as thdual basisof B. Hencedim(V*) = dim(V). In particular, the morphism
(—)": V. — V* that sends each; into v¥ is an isomorphism betweevi andV*. A crucial definition is that of
transpose morphism.

Definition 6 (transpose linear map). Let f: V' — V be a linear map. We let theanspose off be the endomor-
phism®f: V* — V* defined for alkp € V* as® f(¢)) = o f.

Itis easy to check that thatf is the matrix representingin V w.r.t. to B, then the transpose matfik’ represents
tfin V* w.r.t. B*, whence the terminology and the notation. It is quite exgethat, by taking the transpose twice
one gets back the original morphism. This is in fact the cakbough one has to take care of identifying things up
to isomorphism. Denote by ** the spacégV *)*, called double dual of. There is a natural isomorphisietween
V andV**, given byi: v — [v, —] (note that this isomorphism does not depend on the choicebaEs). In the
sequel, we shall freely identifi andV** up to this isomorphism, i.e. identifyand[v, —] for eachv € V. With this
identification, one has that' f) = f.

We need another concept from duality theory. Given a sulesijaaf 1/, we denote by/° theannihilator of U,
the subset of functionals that vanish@n

Definition 7 (annihilator). ForanyU C V, we letU° = {¢ € V*|[u, 9] = 0 for eachu € U}.

Once again, the notation makes the analogy with inner pitsdexplicit. We use the following properties of
annihilators, wheré/, W are a sub-spaces of: (i) U° is a sub-space df*; (ii) (—)° reverses inclusions, i.e. if
U C W thenWe C U®?; (i) (—)° is an involution, that iU°)° = U up to the natural isomorphism betweErand
its double dual. These three properties suggestifliatan be regarded ascamplementor negation, o/ seen as a
relation. Another useful property is: (iMim(U°) + dim(U) = dim(V'). Transpose morphisms and annihilators are
connected via the following property, which is crucial te tthevelopment of the algorithm. It basically asserts that
f-invariance ofR corresponds tbf-invariance of the complementary relation representefty

17

Lemma 4 LetU be a sub-space df and f be an endomorphism dn. If U is f-invariant thenU? is t f-invariant.

We are now ready to give the backward version of the partitedimement algorithm. An informal preview of
the algorithm is as follows. Rather than computing direttly sub-space representing , the algorithm computes
the sub-space representing the complementary relatiothiI@nd, the algorithm starts from a relati®g that is
the complement of the relation identifying vectors with abweights, then incrementally computes the space of all
states that arbackwardreachable fromR,. The largest bisimulation is obtained by taking the com@etrof this
space. Geometrically, “going backward” means working wlith transpose transition functiohtg rather than with
t,. Taking the complement of a relation actually means takisgannihilator. This essentially leads one to work
within V* rather tharV/. Recall that/ + W denotespan(U U W).

Theorem 4 (partition refinement, backward version) Let (V, (o,t)) be aLwa. Consider the sequen¢®;);>o of
sub-spaces df * inductively defined by:

Ry = ker(0)° Riy1 = Ri+ Y ,cq'ta(Ri). 3

Then there i < dim(L) such thatR;,; = R;. The largestC-bisimulation~ is B¢, modulo the natural isomor-
phism betweelr andV**,

PROOFE SinceRy € Ry C Ry C --- C V*, the sequence of the dimensions of these spaces is noradigyeAs
a consequence, for somie< dim(V*) = dim(L), we getdim(R;) = dim(R;11). SinceR; C R,41, this implies
RJ - Rj+1.

We next show thatR? is an £-bisimulation. Indeed, by the properties of annihilatorsl aip to the natu-
ral isomorphism: (1)ker(0)° C R; implies (ker(0)?)° = ker(o) 2 R?. Moreover: (2) for anya € A,
‘ta(Rj) C “ta(Rj) + R; € Rjp1 = R; implies, by Lemma 4, that(*t.(R9)) = t.(R}) € R?; by (a), (b) and
Lemma 3, we conclude that? is an{-bisimulation.

We finally show that anyC-bisimulation R is included inR¢. We do so by proving that for each S C Ry,
thus, in particularS C R?. We proceed by induction on Again by Lemma 3, we know that§ = ker(o) 2 R.
Assume nowR C R?, thatis,R° O R;. For each actiom, by Lemma 3 we have that(R) C R, which implies
', (R°) C R° by Lemma 4. Henc&® 2 *%,(R°) D *t.(R;), where the last inclusion stems froRt 2 R;. Since
this holds for eacla, we have tha® O > *t,(R;) + R; = R;4+1. Taking the annihilator of both sides reverses the
inclusion and yields the wanted result.

We note that what is being “refined” in the algorithm above ao¢ of course, the sub-spac&s, but their
complementsR§ D R D --- D R{ ==g. In particular, we start with a “small” spadef; of dimension< 1: this
may represent an advantage in a practical implementatitreclgorithm.

To conclude the section, we briefly discuss some practigaas involved in the implementation of the algorithm.
By virtue of (2), checking: =, v, for any pair of vectors;, andw., is equivalent to checking; — vo € ker(~;).
This can be done by first computing a basisxgf and then checking for linear (in)dependenceyof— v, from
this basis. Alternatively, and more efficiently, one canathehetherv; — v, is in R, or, more explicitly, whether
[v1 — v2,] = 0 for eachyy € R;. This reduces to showing whethler — v2,] = 0 for eachy) € B;, whereB; is
a basis forR;. Thus, our task reduces to computing such a basis. To do sanyibasisB of V' and letO andT,
(a € A) be the row-vector and matrices representing the weightramdition functions of thewa in this basis. The
concrete computations are carried out representing \&eatat functionals in this basis.

1. Compute a basiB, of Ry. As already discussedjm(ker(o)) > dim(V) — 1, hencedim(ker(0)?) < 1. It
is readily checked that € ker(0)?, thusker(0)° is spanned by. We thus sef3, = {o}. With respect to the
chosen basi®, By is represented byO}.

2. For eachi > 0, compute a basi®;; of R,11. This can be obtained by incrementally joining B the
functionals't, (v)), fora € A andvy € B;, that are linearly independent from previously joined fimmals.
With respect to the basi, ', (v)) is represented by x T,,, whereV is the row-vector representing checking
linear independence 6t, (1)) means hence checking linear independence of T,, from previously joined
row-vectors.

18

After j < n iterations, one finds a sét; such thatB;; = B;: thisis the basis oR;. We illustrate this algorithm in
the example below.

Consider thewa (V, (o,t)) on the left of Figure 5. At the beginning we can &t = {O}. Next, we apply the
algorithm to build theB;’s. Manually, the computation of the vectobs’, = *(*7,*¥) can be carried out by looking
at the transitions of theva with arrows reversed (in the right of Figure 5). Doing so, wstfgetOT,, = (2 % 2) and
OT, = (2 % 3). Note thatOT;, is not linearly independent from the other vectapdh, = —(2 1 1) +2(2 2 2). Thus
By ={(211), (2 22)}. Inthe second iteration, we compute 2 2)T,, = (2 % 2) and(2 2 2)T, = (2 £ 2) and
thusB, = {(211), (2 2 2)} thatis equal taB;.

The functionals represented by vectorsBp are a basis of~;)°. As an example, let us check that ~.
322 + S3. To this purpose, note that the difference veatpr- 3z — 13 annihilatesB,, that is

2
3
2

for eachu € By, which is equivalentt@zy ~; 3z2 + 3.

It is quite easy to give an upper bound on the cost of the baakalgorithm, in terms of the number of sum and
product operations in the underlying field. kebe the dimension of. Each time we join a new vector= ¥ x T,
to the basisB, we have a cost of)(n?) for vector-matrix multiplication, plus a cost @#(n?) for checking linear
independence of from B, for a predominant cost aP(n?). Since the operation of joining a vector to the basis
cannot be done more tharntimes, we have a global cost 6f(n?). In the caséA| = 1, one can adapt the Arnoldi’s
iteration algorithm [31] to comput&, which takesO(n?) operations. It is not clear whether this algorithm can be
adapted also to the cal4|)1. In practical cases, the transition matrices tend to besspand the number of iterations
after which the algorithms stops may be much less thaBy adopting suitable representations for sparse majrices
these circumstances can be used to lower considerablyadb&qal complexity of the algorithm.

4.3. The final sequence and the forward algorithm

The theory of coalgebras also provides a way of construditirad coalgebras by means fifial sequenceften
referred in literature as terminal sequences) [4]. Manydrtgnt algorithms for computing behavioural equivalences
(such as [18]) can be abstractly described in terms of firjpleeces.

In this section, we describe the relationship between thedal algorithm (in Proposition 6) and the final se-
guence of the functof. The latter is the cochain

1o o1 &g &

where£"11is £ o (£L"1), £%1 = 1 is the final vector spacf)}, and! is the unique morphism frorfi1 to 1.

Let A* be the set of all words) € A* with lengthsmaller tham. For eachn, £™1 is isomorphic toK“», i.e.,
the space of functions from? to K. Indeed, form = 1, £1 is by definitionK x 14 = K that is isomorphic to the
space of functions from} = {¢} to K; and forn + 1, each(k, o) € K x £™(1)* = £"*'1 can be seen as function
Ay — K mappinge into k andaw (for a € A andw € A},) into o(a)(w).

Foro: A}, — Kandn < m, then-restrictionof o iso | n: A} — K defined agr, but in a restricted domain.
The morphismc™!: £7+11 — £™1 maps eaclr intoo | n.

The limit of this cochain iK™ together with the maps, : K4~ — £"1 that assign to each weighted language
o its n-restrictiono 1 n.

/— KA*
Co C1 Cz/
Vo o e

1<— 01 <215

Every L-coalgebrgV, (o,t)) determines a coné&: V' — £"1 as follows:

¢ 12 V — 1is the unique morphism to the final vector space
19

o "LV Ll = L(1™) o (o,).

The latter can be more concretely defined forall V andw € K4»+: as

!n+1(v)(w) _ { 0(1)), if w=r¢

"(t(v)(a)(w"), If w=aw'.

Note that the final morphisf-]&: vV — K4" (mapping eaclv € V in the language that it recognizes) is the
unique function such that for afl, ¢, o [-]& =!".

/KA*
Co C1 Cz/ A
/! /L! 4 £ -1
1<—L1< g2 %
\!0 \!1 T\!2
&V

Recall that theC-behavioural equivalence div, (o, t)) is the kernel of—]&. The forward algorithm computes
it, by iteratively computing the kernel of the morphisifis

Proposition 7 Let (V, (o, t)) be aLwA. Let R,, be the relation computed by the forward algorithm (Proposit5).
Let!™: V — £"1 be the morphisms described above. Then for all natural nusnbe?,, = ker(!"*1).

PrOOF. First of all, note that the kernel #f: V' — 1 is the wholeV'. The kernel of"*! is the space of € V' such
that!"*! (v)(w) = 0 for all the wordsw € A% ., i.e.,

ker(I"™) = {v € V | o(v) = 0 andVa € A, t(v)(a) € ker(!")}.

By induction onn, we prove thaker(!"*!) = R,,.

Forn = 0, note thatker(!') = {v € V | o(v) = 0andVa € A, t(v)(a) € ker(ly)}. Sinceker(!°) = V,
ker(I') = {v € V | o(v) = 0} = Ry.

As induction hypothesis suppose that(!") = R,_;. Thenker(!"™!) = {v € V | o(v) = 0OandVa €
A, t(v)(a) € Rp—1} = Ry.

This result can be seen as an alternative proof of the sogsdrfi¢he forward algorithm. Indeed,/; is the result
of the algorithm, for allk > j, Ry, = R;, i.e.,ker(!*) = ker(¥). ThusR; = (0, ker(I") and, by definition of",
N, ker("") = ker([—]7).

5. Weighted languages and rationality

We recall from Section 3 that a linear weighted automaten(is a coalgebra for the functdr = K x —4, i.e., it
consists of a vector spa&eand a linear mago, t):V — K x V4. We saw in Theorem 2 that the final homomorphism

[-15:V —» KA

maps every vectar € V to the weighted languade] that is accepted by. Moreover, the kernel of this morphism
is weighted language equivalence/) that, whenV is finite dimension, can be computed via the linear partition
refinement algorithm (shown in Section 4).

The languages ifx“" that are accepted hywa with finite dimension states spaces are catteibnal weighted
languages (which are also known as rational formal poweeseand they can be syntactically represented by a
language of expressions [28].

In this section, we shall directly characterfse];: by showing the expression §#]{ for eachv € V (Theorem
5). Then we shall employ this characterization for compy#in, .

We will first treat the special case oivA’s over a one letter alphabpt| = 1. Next we will show how to treat the
general case of an arbitrary (finite) alphabet.

20

We note that for the case pfl| = 1, the functor£ is isomorphic to
LV)=RKxVA2KxV
Moreover, the finall-coalgebra is isomorphic to the set of streams over the Keld
KA* o~ KW

Therefore we shall proceed by recalling from [30] the basfcstream calculus and linear stream differential equa-
tions, in Subsections 5.1 and 5.2. Next we shall charaetéhis final homomorphism, for the cagé| = 1, in
Subsection 5.3. Building on [28], we shall finally genemlisese results for finite alphabets, in Subsection 5.4.

5.1. Recalling the basics of stream calculus
We define the set aftreamsover the fieldK by

K¥={o|0o:N— K}

(whereN is the set of natural numbers).

We often denote elementsc K by o = (¢(0),0(1),0(2),...). We define thestream derivativef a streanv
byo' = (¢(1),0(2),0(3),...), and thenitial value of o by ¢ (0).

Fork € K, we define the constant stream

[k] = (k,0,0,0,...)
which we often denote again iy Another constant stream is
X = (0,1,0,0,0,...)
Foro, 7 € K¥ andn € w, the operations cdumand (convolutionproductare given by
(0 +7)(n) =0(n)+7(n) , (o x7)(n) = o) -7(n—i)
1=0
(where, as usual denotes product df).
We call a streamr € K* polynomialif there aren > 0 anda; € K such that
W:a0+a1X+a2x2+...+anDC” = (agp, a1, az, ..., an, 0,0,0, ...)

where we writez; X for [a;] x X with X¢ thei-fold product ofX with itself.
A streamo with o(0) # 0 has a (unique) multiplicative inverse ! in K«, satisfying

ol xo=1[1]

As usual, we shall often writeé/o for 0= ando /7 for o x 7=1. Note that the initial value of the sum, product and
inverse of streams is given by the sum, product and inverteeafinitial values.
We call a streamp € K¢ rationalif it is the quotientp = o /7 of two polynomial streams andr with 7(0) # 0.
One can compute a stream from its initial value and deriedty the so-calleflundamental theorerof stream
calculus [29]: for allo € K,

o= c(0)+ (X x o) (4)

(writing o(0) for [o(0)]).
The fundamental theorem of stream calculus allows us testtgam differential equatiorsuch as

o' =3x0, o0)=1
by computingr = ¢(0) + (X x /) = 1+ (X x 3 x o), which leads to the solution
o=1/(1-3X)=(1,3,3% 3% ..)
21

5.2. Solving linear systems of stream differential equrtio

Using some elementary linear algebra notation (matricds/antors), we next show how to solireear systems
of stream differential equations. For notational conveog we shall deal with linear systems of dimension 2, which
can be straightforwardly generalised to systems of higheedsions. They are given by the following data:

(=@ Ho-n

whereM is a2 x 2-matrix andNV is al x 2-matrix overK:

M = (mu le) N = (nl)
ma1 M22 n2
for m;;, n; € K. The above notation is really just a short hand for the foifmnsystem of two stream differential

equations:
o' =(my1 x o)+ (mi2 x 7) a(0) =mnq

7' = (ma1 X o) + (maz X 7) 7(0) = ng

We can solve such a system of equations by using twice theafuadtal theorem of stream calculus (equation (4)
above), once fos and once forr:
o= oc(0)+ (X x o)

7= 7(0)+ (X x7)

In matrix notation, the fundamental theorem looks like

()= (o2 (2)

Next we can solve our linear system (5) above by happily ¢atit as follows:

() = Qo)

N+DC><M><<:>

This leads to
(I — (X x M)) <‘;) =N

wherel andX x M are given by

_ 10 o m11><x muxx
I'= (0 1) X x M= (mglxx ’I’I’LQQXX)

Finally, we can express the unique solution of our lineatespsof stream differential equations as follows:

(") = I-(XxM)'xN

-
The advantage of the matrix notations above now becomess @leacan compute the inverse of the matrix

1= (mu xX) —(mig x X)
1= @oxan) = (P 3 T

whose values are simple polynomial streams, by standagdrimlgebra.
22

Let us look at an example. For

v () v ()

our linear system of stream differential equations (5) hadollowing solution:

C)(—(Xx M) x N
A e
o X 1—23C 2
12f)C2 .

_ ((1_§> <1]x>) y (2)
X7 {32

_ ((1 x>z)

e
%

We note that the solutions of linear systems of stream difféal equations always consist of rational streams.

5.3. Characterising the final morphisrd| = 1

It is easy to see that whepd| = 1, the final coalgebra for the functe is (K, ((—)(0),(—)")) where
(—=)(0):K¥ — Kand(—):K¥ — K“ map each stream in its initial valuec(0) and in its stream derivative’.
Let (K2, (0,t)) be aLwA, with linear maps: K? — K andt: K? — K? that are represented byla< 2-matrix O and
by a2 x 2-matrixT". We will now show how the final homomorphism

1%

K2 —>Kw

<07t>t L<()(0)7(),>

KxK2—>KxK¥
ZdKX[[]]

can be characterised in terms of rational streams. To thisvea define

=1 =1(7)

It follows from the commutativity of the diagram above that

me<é)W& d®0<é)

HﬂT(?)m2 ﬂ®0<?>

and this can be concisely expressed by the following system:

() =m() (o=

(where the superscriptindicates matrix transpose). These identities presemdr as the solution of a linear system
of stream differential equations. By the results from Sahiea 5.2, it follows that

(f): (I—(Xx*T)™" x *O

T

23

which leads to the following general formula fpr]2

[[(Zi)]]é = (b ko) x (I—(Xx'T)"L x ‘O

T = <(1) 21) 0= (1 2

we find, using the example with/ and N from Subsection 5.2, that

(2 -

For instance, if

ki ko) x (I—(XxT") ™' x O

(
(k1 ko) x (I—(XxM))™"' x N
(

1
ki k) x | G
a-xr
(k/’l + Qk/’g) — kX
(1-X)2

Note that the above expression fully characterizels:. , in the sense that it maps eacke K? in the corresponding
rational stream.

Computing=~;. We can employ the above characterization in order to computen (K2, (o,t)). We use the fact
that the final homomorphism identifies precisely all equenaktates:

(5r) =< () 1(5)18 = 1%)iz

T1—Yi\qe

— 2 =0
[[($2 - y2)]]K

where the) on the right is the streafd] = (0, 0,0, . ..). The kernel of the final homomorphism can now be computed

using our characterisation above: foril ks € K,

k1\q.c . (k1+2k2)— ko X .

[[(kQ)]]Kz =0 <= e =0
< (kl +2k2) — kX =0
<~ k=0andky;=0

As a consequence, we find, for the present example:

()= ()

5.4. Rational weighted languages

All the results presented above allow to characterize tha fiomomorphism for weighted automata over an
alphabet with a single letter. These results can be gemedil order to deal with alphabets of size greater than one.
Let A be an arbitrary finite alphabet. Recall from Section 3.3 thafinal £-coalgebra iK*", (¢, d)) where for

allo € KA anda € A,
e(o) =o(e) d(o)(a) =0,

ando, denotes the-derivatives of the language
The calculus presented in the previous section for onexbbripower series (streams) can be generalized for
multiple variable series [28], which we will recall next.

24

There are unique operators on series satisfying the fatigwguations. For alt € K, a,b € A ando, 7 € K™,

Derivative Initial Value Name

ko =0 k(e) = Constant
(Xg)a=1,(Xg)p =0 (b#a) Xo(e) =0 Variable

(C+T)e =04+ T4 (c+7)(e) =0o(e) + 7(e) Sum

(06X T)g = (0 XT)+ (0(€) X 74) (0 x7)(e) =0(€) x7(e) Convolution product
(e =—(c(e) "t xou)xo™t (671 (e) =0a(e)L,if a(e) #0 Inverse

A weighted language igtional if it can be constructed from finitely many constakt& K and variables(,, by
means of the operators of sum, product, and inverse. Rafmmguages constitute the class of languages that are
recognized by finite dimensional weighted automata.

As for streams, one can compute a series from its initialevalod derivatives by the so-called fundamental
theorem [28]. That is, for all weighted languages K4 :

J:J(e)+2xaxaa (6)
a€A
The fundamental theorem allows us to solve equations, airtol what happened above for streams. As an exam-
ple, takeA = {a,b} (weighted languages over two symbols coincide with infibiteary trees), and the following
equations
0a=3X0, op=3x%x0, oe)=1
Applying the fundamental theorem we reason as follows:
o =o(e) + (Xy X 04) + (Xp X 0p)
& o =14 (3X, x0)+ (3Xp x o)
& (1-3X,-3Xy)0 =1

which leads to the solutiom = (1 — 3X, — 3X,) "}, the tree depicted in the following picture.

Note that the above language is exactly the one recognizéidebgutomata in Figure 1. It is also interesting to
remark the strong similarity with streams: the formula fog strean(1, 3,6,9,...) is (1 — 3X) 1.

Now that we know how to compute the solution of a single equrtinoving to systems of equations is precisely
as for streams. Again, for notational convenience, we gxainplify with linear systems of dimensi@nThe goal is

to solve . . .
0. ()o-»

where, for eacla € A, M, is a2 x 2-matrix andN is al x 2-matrix overK.
We now solve this system by calculating as follows (simitarthie stream case), now using the fundamental
theorem for weighted languages, given in equation (6):

() = Qo zu- (),

- N + ZxaxMax<‘7’_>

acA
25

This leads to

(1 3 (X % Ma)> (‘7’_) =N

a€A

wherel andX, x M, are as before.
Finally, we can express the unique solution of our lineatesysas follows:

<j> = (IZ(xaxMa)>_l x N

acA

Hence, the only difference with the stream case is thatawstdé computing the inverse of the matdix- (X x M)

one needs to compute the inversdof " (X, x M).
acA
Some remarks on computing the inversgof " (X, x M) are now in order. Convolution product on power
acA
series in not commutative as soon Asas more than one element (e, x X, # X x X). Thus, the matrix

above is a matrix with entries stemming from a non-commugtaing. Traditional methods (Gaussian elimination,
Cramer’s rule, ...) to compute the inverse of matrices ateapplicable and thus one needs to resort to other (more
complicated) techniques such as quasi-determinants figérmeralized LDU decomposition [8].

A function to compute the inverse of a matrix with non-comative entries is provided in thdathematicg22]
packageNCAlgebra [25]. The algorithm implemented in the package is direcigédin LDU decomposition [8].
The matrices we show below were all obtained using the afentioned package.

For instance, fod = {a, b, ¢}, if

2 0 0 05
Ma =M. = (0 0) M, = (0 0.5> N=()

1-2X, —2X, —0.5X,
0 1—0.5%

then
IDCaxMaDCbebDCCxMC<

and

1 1 1
(I =Xy x My — X x My — X x M)~ = (T2 001w, 2w Yorosm,
o X Ma e X Me 0 1 0.5%,

The final homomorphisri-]£. is represented in the following diagram

1L
2 [-1% o

(o,t}t L(g,d)

K x K2* ———> K x K4
’LdKXﬂfﬂKzA

where, as usuah andt = {t,:K?> — K?},c are linear mappings represented by the 2-row vectorO and the

2 x 2-matrixesT,, respectively.
We will show how the final homomorphisfir-]%. can be characterized in terms of rational weighted langsiage

To this end, we again define
1 0
o= o 1 r=1(])&

It follows from the commutativity of the diagram above that

Ta[[(ﬂ(?))]]uiz T(E)O<(1)>

and this can be concisely expressed by the following system:

- me() (o

<j> = (I- <Z X, x tTa>)1 x 0

acA

It then follows that

which leads to the following general formula fpr] %

[[(Z;)]]HL@ = (kl k/’g) X (I* <Z X, X tTa>)1 x O

a€A

For instance, fold = {a, b, ¢} and

2 0 0 0
Ta=T.= (o o> To= <o.5 0.5) o=@ 1

we find, using the example above, that

ﬂ@)]}é = (k1 k) x (Z Xa ><T,f>_1 x O

acA
—1
— (k‘1 k‘2) X (ZanTa> x N
acA
= (k’1 k‘2) X <1_2xi_2xc T 0'51—12%11—2%@ xb1—0%536b>
(1=0.5X3)
k1 1 1 ko
= —————— +05k X
T2, 2%, M T o, 2k, P T =05, | (1= 05X,)

By generalizing the above arguments fr&fh to any finite dimesion vector space, we obtain the followimgp:
rem.

Theorem 5 Let(V, (o,t)) be a linear weighted automata with finite dimension. Then, for all € V
]y = v x (I - <Z X, x tTa>)1 x 'O
a€A

For an example with a three dimensional state space, wedamgieLwa corresponding to the automaton
(V,{o,t)) in Fig. 5.

27

Xo + Xp 0 0 9
= (kx ky kg) x (I—]| 2 0 ng))l x |1
Yo 3%, O 1
1-X,—X, 0 0\)
= (1{31 kQ k/’3) X 7% 1 7% X 1
%, 3%, 1 1
The inverse of the matrix in the middle is
1
T-X.—X, 0 0
M=|G+F @+)X 10Tl Fiio
1 1 1 1
(7=) (Xa + X Xa) 7=, =7 3=z Xo =%
and
2
2 1-Xo—Xp p1
Mx 1] = (%+%1_1xg (berl))xaﬁ+1+xbﬁxb+%1fx§ = | p2
! (—17196%)(%,1 + XpXa) 1—3(3—361, + 3171x§ Xy + 171x§ ps
Summarizing
k1 P1
[l k2 |Iv = (ki ke ks)x |p2 (7)
kg 3

Note that the above expression fully characterfzels>, in the sense that it maps eacke V' in the rational weighted
lanuage that it accepts.

Computing= ;. Now, we have a rational expression= ki p; + k2p2 + k3 ps characterizing the final homomorphism
and we would like to calculate for which valuesiaf, k; andks this expression equals As we have shown before,
when|A| = 1, this can be done by syntactically manipulating the ratierpression in a standard way. In the general
case, because of the non commutativity of the convolutiodpet, this is not trivial at all.

Here, we choose to adopt the following approach: first we agmfsome” derivatives,, oy, 04q, Tap -.. and
then we check for wictk,, k2 andks the initial valueso(¢), o, (€), op(€), 0aal€), gan(e) ... are equal t@. The
following lemma (proved in [5, 28]) ensures that we have tmpate only finitely many derivatives.

Lemma 5 Rational weighted languages have finitely many linearlyepehdent derivatives.

In our example, we start by taking the initial value of the regsiono itself obtainingo (e) = 2k1 + k2 + ks.
Then we take the andb derivatives which give, respectively, the expressions

00 = k1(p1)a + k2(p2)a + k3(p3)a (8)
2
P1 1—Xq—Xp
N
P2 | = | 31=x,—x,
9
P3 /g T—X,—X,

28

and

op = ki(p1)p + k2(p2)p + k3(p3)e

2
P1 1-X.—Xp

1 2 1 1 1
=z (X + 1)) Xa =, =%, + =X + 3125

Wl

P2 = (

1
P3 xb(ﬁ)(xa + XpXa) 1—x3—xb + Xa 1—xi—xb + 3361)@361) +3+ xbﬁ

which have initial values, (€) = 2k + 2ko + 2ks andoy(€) = 2k; + +ka + 3ks.

Now, note that the: derivative, that is the rational expression (8), will noways generate the same derivatives
for a andb (since the derivatives o{ﬁ are the expression itself again; intuitively, this expi@ssepresents
an infinite binary tree with 2's in every node and hence hasaled right subtrees equal to the whole tree). Forthe
derivative, we take another level of derivatives and obtagpectively,

Oba = ki1(p1)va + k2(p2)ba + k3(03)ba
2

P1 T.{xb P1

N N e v ol Bl

P3 Joa =X, =X, P3 /g,
and
Obb = ki(p1)ob + k2(p2)ob + k3(03)6p

2
P1 T—Xo—Xs p1
= | G Ea (0 + 1) + D) Xa e + XX + 1+ 10,1 | =
P2 = 3Tz M 3/ MaToX, =X, bT—xz*b 3MbTTxZ | = | P2
1 2 1 1
P3 Job (W)(x“ + XXa) Tox, o, + Slfxg X + 1—x2 P3

The a-derivative coincides with (8) and thiederivative coincides with the original expressienTherefore, we have
found the the system of equations we need to solve:

O’(E):O 2k1 + ko + k3 = 0
oa(6)=0 =< 2k +2ky+2k3 = 0
O'b(ﬁ) =0 2k + §k2 +3ks = 0

Solving it yieldsk; = —2k3 andky, = 3k3. Hence, the kernel of the final homomorphism is the spacersahioy the
vector

-2

3

1

which coincides with what was computed by the forward alfponiin Section 4.1.

This example also shows that this procedure is in generahoot efficient then the forward algorithm. Indeed,
the three equations of the above system coincide with theespeomputed by the forward algorithm: the space (of
solutions) ofo(¢) = 0 is the space spanned By (in Section 4.1), the space af (¢) = 0 is the one spanned by¢,
and the space,(e) = 0 is the one spanned hy5.

6. Discussion

In this paper we proposed a novel coalgebraic perspectivgeighted automata and their behavioural equiva-
lences. Weighted automata af&coalgebras, for a functd# on Set, but they can be regarded also as linear weighted

29

automata, that aré-coalgebras for a functog on Vect. The behavioural equivalence inducedWycoincides with
weighted bisimilarity, while the equivalence induced®y~: ;) with weighted language equivalence.

Weighted languages (i.e. formal power series) form theorsapace& " that carries the final-coalgebra: for
each linear weighted automat¥, (o, t)), the uniquel-morphism[—]¢ into the final coalgebra maps each vector
v € V into the weighted language 1" thatv accepts. The unique morphigm]{ is a linear map and its kernel
coincides withr ;. that, whenV is finite dimension, can be computed in three different wityis.important to remark
here that the linearity df—]{ is key ingredient (in all the three approaches) to finitelnpatte the equivalence on an
infinite state space.

Theorem 5 provides an explicit characterizatiof ef & by assigning a syntactic expression denoting a rational
weighted language to each vectoe V. This characterization can be employed for computingbut, in general
terms, it seems to be inconvenient to be implemented in amattc prover. The backward algorithm, instead, is very
efficient but its presentation is a bit complex since it reggidual spaces and transpose maps. The forward algorithm
is easier to explain and we have shown it is closely relatedeg@onstruction of the final coalgebra.

As a future work, we would like to extend these results to matta with weights on a semirir(instead of field
K). The coalgebraic characterization of weighted bisintifazan be easily obtained by employingamiring evalu-
ation functorinstead of the field evaluation functor (Definition 2). Foriglged language equivalence on semirings,
we should define the functdi on the category ofemimodulesinstead ofV’ect. The forward algorithm could be
extended (by exploiting its relationship with the constimt of final coalgebras) in a rather straightforward way, bu
the convergence in a finite numbers of iterations might begnaranteed. The other two approaches strongly rely
on the properties of fields and vector spaces (such as thersésof the inverse multiplicative or the dual space).
Therefore, it seems challenging to extend them to the casgemheric semirin§. If S is a semifield however, then all
elements have a multiplicative inverse. An important exigropsemifield in this context is the tropical semiring [15].
Further, wher§ is a commutative ring, annihilators and transpose maps eajeberalized as operations carried out
within the dual module (i.e. linear maps from&module toS, seen as a module) [26]. We leave these extensions as
future work.

References

[1] Jiri Adamek, Horst Herrlich, and George E. Streckihstract and Concrete Categories - The Joy of Cédey, 1990.
[2] Jurgen Albert and Jarkko KariHandbook of Weighted Automatehapter Digital Image Compression, pages 213-250. Mapbgrin
Theoretical Computer Science. Springer, 2009.
[3] Christel Baier, Marcus Grof3er, and Frank Ciesindkandbook of Weighted Automatehapter Model Checking Linear-Time Properties of
Probabilistic Systems, pages 213-250. Monographs in Etieat Computer Science. Springer, 2009.
[4] Michael Barr. Terminal coalgebras in well-founded $etdry. Theor. Comput. S¢il14(2):299-315, 1993.
[5] Jean Berstel and Christophe Reutenatational Series and Their LanguageSpringer-Verlag, 1988.
[6] Michele Boreale. Weighted bisimulation in linear algaic form. Inln Proc. of International Conference on the Theory of Comnency
(CONCUR), 2009volume 5710 of_ecture Notes in Computer Scienpages 163-177, 2009.
[7] Peter Buchholz. Bisimulation relations for weightedamuata. Theor. Comput. S¢i393(1-3):109-123, 2008.
[8] Juan Francisco Camino, J. William Helton, and Robert Eelt®n. A symbolic algorithm for determining convexity ofnaatrix function:
How to get schur complements out of your life. Bmoceedings of the 39th IEEE Conference on Decision andrGigi2000.
[9] Manfred Droste and Paul Gastin. Weighted automata arighted logics. In Luis Caires, Giuseppe F. ltaliano, LMisnteiro, Catuscia
Palamidessi, and Moti Yung, editol§ALP, volume 3580 of.ecture Notes in Computer Sciengages 513-525. Springer, 2005.
[10] Peter FreydAbelian categoriesHarper and Row, 1964.
[11] Israel Gelfand, Sergei Gelfand, Vladimir Retakh, arab&t Lee Wilson. Quasideterminantddvances in Mathematic493(1):56 — 141,
2005.
[12] H. Peter Gumm. Copower functor§heor. Comput. S¢i410(12-13):1129-1142, 2009.
[13] H. Peter Gumm and Tobias Schroder. Monoid-labeledsitin systemsElectr. Notes Theor. Comput. S&4(1), 2001.
[14] Paul Halmos Finite dimensional vector spaceSpringer, 1974.
[15] Udo Hebisch and Hans Joachim Weinert. Semirings andfiséas. In M. Hazewinkel, editotHandbook of Algebravolume 1, pages 425 —
462. North-Holland, 1996.
[16] Alberto Isidori. Nonlinear Control SystemsSpringer-Verlag New York, Inc., Secaucus, NJ, USA, 3rdiedj 1995.
[17] Chi-Chang Jou and Scott A. Smolka. Equivalences, agrgres, and complete axiomatizations for probabilistazesses. In Jos C. M.
Baeten and Jan Willem Klop, editoSONCUR volume 458 of_ecture Notes in Computer Sciengages 367-383. Springer, 1990.
[18] Paris C. Kanellakis and Scott A. Smolka. Ccs expressifinite state processes, and three problems of equivalémfc€omput, 86(1):43—
68, 1990.
[19] Daniel Kirsten and Ina Maurer. On the determinizatioihweighted automata.Journal of Automata, Languages and Combinatqrics
10(2/3):287-312, 2005.

30

[20]

[21]
[22]
[23]
[24]

[25]
[26]
[27]
(28]

[29]
[30]
(31]
[32]

(33]
[34]
[35]

Werner Kuich.Handbook of Formal Languages, Vol. 1, Word, Language, Gramahapter Semirings and formal power series, page 609677.
Springer-Verlag, 1997.

Kim Guldstrand Larsen and Arne Skou. Bisimulation tigh probabilistic testinglnf. Comput, 94(1):1-28, 1991.

Mathematica http://www.wolfram.com/mathematica/ .

Mehryar Mohri. Finite-state transducers in language speech processinGomputational Linguistics23(2):269-311, 1997.

Mehryar Mohri. Handbook of Weighted Automatehapter Weighted Automata Algorithms, pages 213-250. ddmaphs in Theoretical
Computer Science. Springer, 2009.

TheNCAlgebra package http://math.ucsd.eduficalg/

Joseph RotmarAdvanced Modern Algebr&Prentice-Hall, 2002.

Jan J.M.M. Rutten. Universal coalgebra: a theory ofesys. Theor. Comput. S¢i249(1):3-80, 2000.

Jan J.M.M. Rutten. Behavioural differential equatiom coinductive calculus of streams, automata, and powiess&heor. Comput. Sgi.
308(1-3):1-53, 2003.

Jan J.M.M. Rutten. A coinductive calculus of streafathematical Structures in Computer Scignt®(1):93-147, 2005.

Jan J.M.M. Rutten. Rational streams coalgebraic@@igRR abs/0807.4073, 2008.

Yousef Saadlterative Methods for Sparse Linear Systems, Second BABAM, 2003.

Aarto Salomaa and Matti SoittolaAutomata-Theoretic Aspects of Formal Power Serigexts and Monographs on Computer Science.
Springer-Verlag, 1978.

Marcel Paul Schitzenberger. On the definition of a famif automata.Information and Contrgl4(2-3):245-270, 1961.

Alexandra SilvaKleene CoalgebraPhD thesis, Radboud Universiteit Nijmegen, 2010.

Eugene W. Stark. On behaviour equivalence for probsluili/o automata and its relationship to probabilistisifriulation. Journal of
Automata, Languages and Combinatori8§2):361-395, 2003.

31

