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Abstract

Weighted automata are a generalization of non-deterministic automata where each transition, in addition to an input
letter, has also a quantity expressing the weight (e.g. costor probability) of its execution. As for non-deterministic
automata, their behaviours can be expressed in terms of either (weighted) bisimilarity or (weighted) language equiva-
lence.

Coalgebras provide a categorical framework for the uniformstudy of state-based systems and their behaviours.
In this work, we show that coalgebras can suitably model weighted automata in two different ways: coalgebras on
Set (the category of sets and functions) characterize weightedbisimilarity, while coalgebras onV ect (the category of
vector spaces and linear maps) characterize weighted language equivalence.

Relying on the second characterization, we show three different procedures for computing weighted language
equivalence. The first one consists in a generalizion of the usual partition refinement algorithm for ordinary automata.
The second one is the backward version of the first one. The third procedure relies on a syntactic representation of
rational weighted languages.

1. Introduction

Weighted automata were introduced in Schützenberger’s classical paper [33]. They are of great importance in
computer science [9], arising in different areas of application, such as speech recognition [23], image compression [2],
control theory [16] and quantitative modelling [21, 3]. They can be seen as a generalization of non-deterministic
automata, where each transition has a weight associated to it. This weight is an element of a semiring, representing,
for example, the cost or probability of taking the transition.

The behaviour of weighted automata is usually given in termsof weighted languages (also called formal power
series [32, 5]), that are functions assigning a weight to each finite stringw ∈ A∗ over an input alphabetA. For
computing the weight given to a certain word, the semiring structure plays a key role: the multiplication of the
semiring is used to accumulate the weight of a path by multiplying the weights of each transition in the path, while the
addition of the semiring computes the weight of a stringw by summing up the weights of the paths labeled withw [20].
Alternatively, the behaviour of weighted automata can be expressed in terms of weighted bisimilarity [7], that is an
extension of bisimilarity (for non-deterministic automata) subsuming several kinds of quantitative equivalences such
as, for example, probabilistic bisimilarity [17]. As in thecase of non-deterministic automata, (weighted) bisimilarity
implies strictly (weighted) language equivalence.

Weighted automata still retain non-deterministic behavior, as two different transitions outgoing from the same
state may be labelled by the same input action, possibly withdifferent weights. Deterministic weighted automata
are of interest because their construction is tightly connected with the existence of minimal automata recognizing
the same weighted language. The classical powerset construction for obtaining a language-equivalent deterministic
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automaton from a non-deterministic one can be generalized to weighted automata, as long as the semiring respects
certain restrictions [24, 19]. The states of the determinized automaton are finite “subsets of weighted states” of
the original non-deterministic automaton, or, more formally, functions from the set of states to the semiring that are
almost everywhere zero. Differently from the classical case, though, the weighted automaton obtained by the powerset
construction might be infinite. Usually, one restricts the attention to semirings for which determinization is guaranteed
to terminate and produce a finite result, such as locally finite and tropical semirings, and extensions thereof [24, 19].

In this paper, we studylinear weighted automata, which are deterministic weighted automata where the set of
states forms a vector space. A linear weighted automaton canbe viewed as the result of determinizing an ordinary
weighted automaton with weights in a genericfield, using a weighted powerset construction. As such, linear weighted
automata are typically infinite-state. The key point is thatthe linear structure of the state-space allows for finite
representations of these automata and effective algorithms operating on them.

To be more specific, the goal of the present paper is to undertake asystematic study of the behavioural equivalences
and minimization algorithms for (linear) weighted automata. To achieve this goal, we will benefit from a coalgebraic
perspective on linear weighted automata. The theory of coalgebras offers a unifying mathematical framework for
the study of many different types of state-based systems andinfinite data structures. Given a functorG : C → C
on a categoryC, aG-coalgebra is a pair consisting of an objectX in C (representing the state space of the system)
and a morphismf :X → GX (determining the dynamics of the system). Under mild conditions, functorsG have
a final coalgebra (unique up to isomorphism) into which everyG-coalgebra can be mapped via a unique so-called
G-homomorphism. The final coalgebra can be viewed as the universe of all possibleG-behaviours: the unique homo-
morphism into the final coalgebra maps every state of a coalgebra to a canonical representative of its behaviour. This
provides a general notion of behavioural equivalence (≈G): two states are equivalent if and only if they are mapped to
the same element of the final coalgebra.

Our first contribution in this paper is to recast both weighted bisimilarity and weighted language equivalence
in the theory of coalgebras. We see weighted automata for a field K and alphabetA, as coalgebras of the functor
W = K × K−A

onSet (the category of sets and functions). Concretely, aW-coalgebra consists of a set of statesX

and a function〈o, t〉 : X → K × KXA

where, for each statex ∈ X , o : X → K assigns an output weight inK and
t : X → K

XA

assigns a function inKXA

. For each symbola ∈ A and statex′ ∈ X , t(x)(a)(x′) is a weightk ∈ K

representing the weight of a transition fromx to x′ with labela, in symbolsx
a,k
→ x′. If t(x)(a)(x′) = 0, then there

is noa-labeled transition fromx to x′. Note that there could exist several weighted transitions with the same label

outgoing from the same state:x
a,k1
→ x1, x

a,k2
→ x2, . . . , x

a,kn
→ xn.

Adapting the above reasoning, we model linear weighted automata as coalgebras of the functorL = K × (−)A

onV ect (the category of vector spaces and linear maps). A linear weighted automaton consists of a vector spaceV
and a linear map〈o, t〉 : V → K× V A where, as before,o : V → K defines the output andt : V → V A the transition
structure. More precisely, for eachv ∈ V anda ∈ A, t(v)(a) = v′ means that there is a transition fromv to v′ with
labela, in symbolsv

a
→ v′. Note that the transition structure is now “deterministic”, since for eachv anda there is

only onev′ ∈ V . WhenV = KX , each vectorv ∈ V can be seen as a linear combination of statesx1, . . . , xn ∈ X ,

i.e., v = k1x1 + · · · + knxn for somek1, . . . , kn ∈ K. Therefore, the transitionsx
a,k1
→ x1, . . . , x

a,kn
→ xn of a

weighted automaton correspond to a single transitionx
a
→ (k1x1 + · · ·+ knxn) of a linear weighted automaton.

We show that≈W (i.e., the behavioural equivalence induced byW) coincides with weighted bisimulation while
≈L coincides with weighted language equivalence. Determinization is the construction for moving from ordinary
weighted automata and weighted bisimilarity to linear weighted automata and weighted language equivalence.

Once we have fixed the mathematical framework, we investigate three different types of algorithms for computing
≈L. These algorithms work under the assumption that the underlying vector space has finite dimension. The first
is a forward algorithm that generalizes the usual partition-refinement algorithm for ordinary automata: one starts by
decreeing as equivalent states with the same output values,then refines the obtained relation by separating states for
which outgoing transitions go to states that are not alreadyequivalent. Linearity of the automata plays a crucial role
to ensure termination of the algorithm. Indeed, the equivalences computed at each iteration can be represented as
finite-dimensional sub-spaces in the given vector space. The resulting descending chain of sub-spaces must therefore
converge in a finite number of steps, despite the fact that thestate-space itself is infinite. We also show that each
iteration of the algorithm coincides with the equivalence generated by each step of the (standard) construction of the
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final coalgebra via the final sequence. The minimal linear representations of weighted automata over a field was first
considered by Schutzenberger [33]. This algorithm was reformulated in a more algebraic and somewhat simplified
fashion in Berstel and Reutenauer book [5]. Their algorithmis different from our method, as it is related to the
construction of a basis for a subgroup of a free group. Further, no evident connections can be traced between their
treatment and the notions of bisimulation and coalgebras.

The second algorithm proceeds in a similar way, but uses a backward procedure. It has been introduced by the
third authors together with linear weighted automata [6]. In this case, the algorithm starts from thecomplement– in a
precise geometrical sense – of the relation identifying vectors with equal weights. Then it incrementally computes the
space of all states that arebackwardreachable from this relation. The largest bisimulation is obtained by taking the
complement of this space. The advantage of this algorithm over the previous one is that the size of the intermediate
relations is typically much smaller. The presentation of this algorithm in [6] is somewhat more concrete, as there is no
attempt at a coalgebraic treatment and the underlying field is fixed toR (for example, this leads to using orthogonal
complements rather than dual spaces and annihilators, which we consider in Section 4). No connection is made with
rational series.

Finally, the third algorithm is new and uses the fact that equivalent states are mapped by the unique homomorphism
into the same element of the final coalgebra. We characterizethe final morphism in terms of so-called rational
weighted languages (which are also known as rational formalpower series). This characterization is useful for the
computation of the kernel of the final homomorphism, which consists of weighted language equivalence. Taking again
advantage of the linear structure of our automata, calculating the kernel of the above homomorphism will correspond
to solving a linear system of equations.

Structure of the paper.In Section 2 we introduce weighted automata and coalgebras.We also show thatW-coalgebras
characterize weighted automata and weighted bisimilarity. In Section 3.2, after recalling some preliminary notions
of linear algebras, we show that each weighted automaton canbe seen as a linear weighted automaton, i.e., anL-
coalgebra. This change of perspective allows us to coalgebraically capture weighted language equivalence. In Section
4, we show the forward and the backward algorithm while, in Section 5, we first introduce a syntactic characterization
of rational weighted languages and then we shows how to employ it in order to compute≈L. In Section 6, after
summarizing the main results of the paper, we discuss how to extend them to the case of automata with weights in a
semiring.

Section 2.2 and Section 4.3 show some interesting minor results that could be safely skipped by the not interested
reader. The presentation is self-contained and does not require any prior knowledge on the theory of coalgebras.

2. Weighted Automata as Coalgebras

We introduce weighted automata, weighted bisimilarity andtheir characterization as coalgebras overSet, the
category of sets and functions.

First we fix some notation. We will denote sets by capital letterX,Y, Z . . . and functions by lower casef, g, h . . . .
Given a setX , idX is the identity function and, given two functionsf : X → Y andg : Y → Z, g ◦ f is their
composition. The product of two setsX,Y isX×Y with the projection functionsπ1:X×Y → X andπ2:X×Y → Y .
The product of two functionsf1 : X1 → Y1 andf2 : X2 → Y2 is f1 × f2 defined for all〈x1, x2〉 ∈ X1 × X2

by (f1 × f2)〈x1, x2〉 = 〈f(x1), f(x2)〉. The disjoint union ofX,Y is X + Y with injectionsκ1:X → X + Y
andκ2:Y → X + Y . The union off1 : X1 → Y1 andf2 : X2 → Y2 is f1 + f2 defined for allz ∈ X + Y
by (f1 + f2)(κi(z)) = ki((fi(z))) (for i ∈ {1, 2}). The set of functionsϕ : Y → X is denoted byXY . For
f : X1 → X2, the functionfY : XY

1 → XY
2 is defined for allϕ ∈ XY

1 by fY (ϕ) = λy ∈ Y.f(ϕ(y)). The collection
of finite subsets ofX is denoted byPω(X) and the emptyset by∅. For a set of lettersA, A∗ denotes the set of all
words overA; ǫ the empty word; andw1w2 the concatenation of wordsw1, w2 ∈ A∗.

We fix a fieldK. We usek1, k2, . . . to range over elements ofK. The sum ofK is denoted by+, the product by·,
the additive identity by0 and the multiplicative identity by1. Thesupportof a functionϕ from a setX to a fieldK is
the set{x ∈ X | ϕ(x) 6= 0}.

Weighted automata [33, 9] are a generalization of ordinary automata where transitions in addition to an input letter
have also a weight in a fieldK and each state is not just accepting or rejecting but has an associated output weight in
K.

3



x1

x2

x3

y1

1

1

1
1

b, 3
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Figure 1: The weighted automata(X, 〈oX , tX〉) and (Y, 〈oY , tY 〉) (from left to right). The dashed arrow denotes the
W-homomorphismh : X → Y . This induces the equivalence relationRh = X ×X that equates all the states inX.

Formally, aweighted automaton(WA, for short) with input alphabetA is a triple(X, 〈o, t〉), whereX is a set
of states,o : X → K is an output function associating to each state its output weight andt : X → (KX)A is the

transition relation that associates a weight to each transition. We shall use the following notation:x
a,k
→ y means that

t(x)(a)(y) = k. Weight0 means no transition.
If the set of states is finite, aWA can be conveniently represented in form of matrices. First of all, we have to fix an

ordering(x1, . . . , xn) of the set of statesX . Then the transition relationt can be represented by a family of matrices
{Ta}a∈A where eachTa ∈ K

n×n is anK-valued square matrix, withTa(i, j) specifying the value of thea-transition
fromxj to xi, i.e.,t(xj)(a)(xi). The output weight functiono can be represented as anK-valued row vector inK1×n

that we will denote by the capital letterO.
For a concrete example, letK = R (the field of real numbers) andA = {a, b} and consider the weighted automata

(X, 〈oX , tX〉) and(Y, 〈oY , tY 〉) in Fig. 1. Their representation as matrix is the following.

OX =
(

1 1 1
)

TXa =





1 0 0
1 3 0
1 0 3



 TXb
=





3 3 3
0 0 0
0 0 0



 OY =
(

1
)

TYa =
(

3
)

TYb
=
(

3
)

Weighted bisimilaritygeneralizes the abstract semantics of several kind of probabilistic and stochastic systems.
This has been introduced by Buchholz in [7] for weighted automata with a finite state space. Here we extend that
definition to (possibly infinite-states) automata withfinite branching, i.e., those(X, 〈o, t〉) such that for allx ∈
X, a ∈ A, t(x)(a)(x′) 6= 0 for finitely manyx′. This is needed in the following to ensure that

∑

x′∈X t(x)(a)(x′) is
always defined.

Hereafter we will always implicitly refer to weighted automata with finite branching. Moreover, given anx ∈ X
and an equivalence relationR ⊆ X ×X we will write [x]R to denote the equivalence class ofx with respect toR.

Definition 1. Let (X, 〈o, t〉) be a weighted automaton. An equivalence relationR ⊆ X×X is aweighted bisimulation
if for all (x1, x2) ∈ R, it holds that:

1. o(x1) = o(x2),
2. ∀a ∈ A, x′ ∈ X ,

∑

x′′∈[x′]R
t(x1)(a)(x

′′) =
∑

x′′∈[x′]R
t(x2)(a)(x

′′).

Weighted bisimilarity(in symbols∼w) is defined as the largest weighted bisimulation.

For instance, the relationRh in Fig.1 is a weighted bisimulation.

Now, we will show that weighted automata and weighted bisimilarity can be suitably characterized throughcoal-
gebras[27].

We first recall some basic definitions about coalgebras. Given a functorG : C → C on a categoryC, a G-
coalgebrais an objectX in C together with an arrowf : X → GX . For many categories and functors, such pair
(X, f) represents a transition system, thetypeof which is determined by the functorG. Viceversa, many types of
transition systems (e.g., deterministic automata, labeled transition systems and probabilistic transition systems) can
be captured by a functor.
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A G-homomorphismfrom aG-coalgebra(X, f) to aG-coalgebra(Y, g) is an arrowh : X → Y preserving the
transition structure,i.e., such that the following diagram commutes.

X

f

��

h // Y

g

��
GX

Gh
// GY

A G-coalgebra(Ω, ω) is said to befinal if for any G-coalgebra(X, f) there exists a uniqueG-homomorphism
[[−]]GX : X → Ω. Final coalgebra can be viewed as the universe of all possibleG-behaviours: the unique homomor-
phism[[−]]GX : X → Ω maps every state of a coalgebraX to a canonical representative of its behaviour. This provides
a general notion of behavioural equivalence: two statesx1, x2 ∈ X areG-behaviourally equivalent(x1 ≈G x2) iff
[[x1]]

G
X = [[x2]]

G
X

1.
The functors corresponding to many well known types of systems are shown in [27]. In this section we will show

a functorW : Set→ Set such that≈W coincides with weighted bisimilarity. In order to do that, we need to introduce
thefield valuation functor.

Definition 2 (Field valuation Functor). Let K be a field. The field valuation functorK−
ω : Set → Set is defined as

follows. For each setX , KX
ω is the set of functions fromX to K with finite support. For each functionh : X → Y ,

K
h
ω : K

X
ω → K

Y
ω is the function mapping eachϕ ∈ K

X
ω intoϕh ∈ K

Y
ω defined, for ally ∈ Y , by

ϕ
h(y) =

∑

x′∈h−1(y)

ϕ(x′)

Note that the above definition employs only the additive monoid of K, i.e., the element0 and the+ operator. For this
reason, such functor is often defined in literature (e.g., in[13]) for commutative monoids instead of fields.

We need two further ingredients. Given a setB, the functorB × − : Set → Set maps every setX intoB ×X
and every functionf : X → Y into idB × f : B ×X → B × Y . Given a finite setA, the functor−A : Set → Set
mapsX intoXA andf : X → Y into fA : XA → Y A.

Now, the functor corresponding to weighted automata with input alphabetA over the fieldK is W = K ×
(K−

ω )
A : Set → Set. Note that every functionf : X → W(X) consists of a pair of functions〈o, t〉 with o : X → K

andt : X → (KX
ω )A. Therefore anyW-coalgebra(X, f) is a weighted automata(X, 〈o, t〉) (and viceversa).

Proposition 1 ([34]) The functorW has a final coalgebra.

In order to show that the equivalence induced by the finalW-coalgebra (≈W) coincides with weighted bisimilarity
(∼w), it is instructive to spell out the notion ofW-homomorphism. A functionh : X → Y is aW-homomorphism
between weighted automata(X, 〈oX , tX〉) and(Y, 〈oY , tY 〉) if the following diagram commutes.

X

〈oX ,tX〉

��

h // Y

〈oY ,tY 〉

��
K× (KX

ω )A
id×(Kh

ω)A
// K× (KY

ω )
A

This means that for allx ∈ X, y ∈ Y, a ∈ A,

oX(x) = oY (h(x)) and
∑

x′∈h−1(y) tX(x)(a)(x′) = tY (h(x))(a)(y).

1Here we are implicitly assuming thatC is a concrete category [1], i.e., there exists a faithfull functorU : C → Set. By writing x1, x2 ∈ X,
we formally mean thatx1, x2 ∈ UX and by[[xi]]

G
X , we meanU([[−]]GX)xi.
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For every W-homomorphismh : (X, 〈oX , tX〉) → (Y, 〈oY , tY 〉), the equivalence relationRh =
{(x1, x2) | h(x1) = h(x2)} is a weighted bisimulation. Indeed, by the properties ofW-homomorphisms and by
definition ofRh, for all (x1, x2) ∈ Rh

oX(x1) = oY (h(x1)) = oY (h(x2)) = oX(x2)

and for alla ∈ A, for all y ∈ Y
∑

x′′∈h−1(y)

tX(x1)(a)(x
′′) = tY (h(x1))(a)(y) = tY (h(x2))(a)(y) =

∑

x′′∈h−1(y)

tX(x2)(a)(x
′′).

Trivially, the latter implies that for allx′ ∈ X
∑

x′′∈[x′]Rh

tX(x1)(a)(x
′′) =

∑

x′′∈[x′]Rh

tX(x2)(a)(x
′′).

For an example look at the functionh depicted by the dotted arrows in Fig. 1:h is aW-homomorphism andRh

is a weighted bisimulation.
Conversely, every bisimulationR on (X, 〈oX , tX〉) induces the coalgebra(X/R, 〈oX/R, tX/R〉) whereX/R is

the set of all equivalence classes ofX w.r.t. R andoX/R : X/R → K andtX/R : X/R → (K
X/R
ω )A are defined for

all x1, x2 ∈ X , a ∈ A by

oX/R([x1]R) = oX(x1) tX/R([x1]R)(a)([x2]R) =
∑

x′∈[x2]R

tX(x1)(a)(x
′).

Note that bothoX/R andtX/R are well defined (i.e., independent from the choice of the representative) sinceR is a
weighted bisimulation. Most importantly, the functionεR : X → X/R mappingx into [x]R is aW-homomorphism.

X

〈oX ,tX〉

��

[[−]]WX

&&εR // X/R

〈oX/R,tX/R〉

��

[[−]]WX/R // Ω

ω

��
W(X)

W([[−]]WX )

@@W(εR)
// W(X/R)

W([[−]]WX/R)

// W(Ω)

Theorem 1 Let(X, 〈o, t〉) be a weighted automaton and letx1, x2 be two states inX . Then,x1 ∼w x2 iff x1 ≈W x2,
i.e., [[x1]]WX = [[x2]]

W
X .

PROOF. The proof follows almost trivially from the above observations.
If x1 ≈W x2, i.e.,[[x1]]WX = [[x2]]

W
X , then(x1, x2) ∈ R[[−]]W

X
andR[[−]]W

X
is a weighted bisimulation because[[−]]WX

is aW-homomorphism. Thusx1 ∼w x2
If x1 ∼w x2, then there exists a weighted bisimulationR such that(x1, x2) ∈ R. Let (X/R, 〈oX/R, tX/R〉)

andεR : X → X/R be theW-coalgebra and theW-homomorphism described above. Since there exists a unique
W-homomorphism from(X, 〈oX , tX〉) to the final coalgebra, then[[−]]WX = [[−]]WX/R ◦ εR. SinceεR(x1) = εR(x2),

then[[x1]]WX = [[x2]]
W
X , i.e.,x1 ≈W x2.

2.1. Weighted language equivalence
The semantics of weighted automata can also be defined in terms of weighted languages. A weighted language

overA andK is a functionσ : A∗ → K assigning to each word inA∗ a weight inK. For eachWA (X, 〈o, t〉), the
functionlX : X → K

A∗

assigns to each statex ∈ X its recognized weighted language. For all wordsa1 . . . an ∈ A
∗,

it is defined by

lX(x)(a1 . . . an) =
∑

{k1· . . . · kn · k | x = x1
a1,k1
→ . . .

an,kn
→ xn ando(xn) = k}.
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Figure 2: The statesx1 in the above automata recognize the language mappingaa into 2 and the other words into0.
Although they are all language equivalent, they are not bisimilar.

We will often use the following characterization: for allw ∈ A⋆,

lX(x)(w) =

{

o(x), if w = ǫ;
∑

x′∈X(t(x)(a)(x′) · lX(x′)(w′)), if w = aw′.

Two statesx1, x2 ∈ X are said to beweighted language equivalent(denoted byx1 ∼l x2) if lX(x1) = lX(x2).
In [7], it is shown that if two states are weighted bisimilar then they are also weighted language equivalent. For
completeness, we recall here the proof.

Proposition 2 ∼w⊆∼l

PROOF. We prove that ifR is a weighted bisimulation, then for all(x1, x2) ∈ R, lX(x1) = lX(x2). We use induction
on wordsw ∈ A∗.

If w = ǫ, thenlX(x1)(w) = o(x1) andlX(x2)(w) = o(x2) ando(x1) = o(x2) sinceR is a weighted bisimulation.
If w = aw′, then

lX(x1)(w) =
∑

x′∈X

(t(x1)(a)(x
′) · lX(x′)(w′)).

By induction hypothesis for allx′′ ∈ [x′]R, lX(x′′)(w′) = lX(x′)(w′). Thus in the above summation we can group
all the statesx′′ ∈ [x′]R as follows.

lX(x1)(w) =
∑

[x′]R∈X/R



lX(x′)(w′) ·





∑

x′′∈[x′]R

t(x1)(a)(x
′′)









Since(x1, x2) ∈ R andR is a weighted bisimulation, the above summation is equivalent to

∑

[x′]R∈X/R



lX(x′)(w′) ·





∑

x′′∈[x′]R

t(x2)(a)(x
′′)









that, by the previous arguments, is equal tolX(x2)(w).

The inverse inclusion does not hold: all the statesx1 in Fig.2 are language equivalent but they are not equivalent
according to weighted bisimilarity.

2.2. On the difference betweenW-bisimilarity andW-behavioural equivalence

We conclude this section with an example showing the difference betweenW-behavioral equivalence (and
hence weighted bisimulation) and another canonical equivalence notion from the theory of coalgebra, namelyW-
bisimulation. This result is not needed for understanding the next sections, and therefore this sub-section can be
safely skipped.

The theory of coalgebras provides an alternative definitionof equivalence, namelyG-bisimilarity (≃G), that coin-
cides withG-behavioural equivalence whenever the functorG preservesweak pullbacks[27]. In the case of weighted
automata, the functorW does not preserve weak pullbacks and≃W is strictly included into≈W. Since weighted
automata are one of the few interesting cases where this phenomenon arises, we now show an example of two states
that are in≈W, but not in≃W (the paper [12] was of great inspiration in the constructionof this example).
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x1

x2

x3

z1 z2 y1

0

1

1

0 1 0

a, 1

a,−1

Figure 3: From left to right, three weighted automata overR: (X, 〈oX , tX〉), (Z, 〈oZ , tZ〉) and(Y, 〈oY , tY 〉). The dashed
arrows denotes theW-homomorphismsh1 : X → Z andh2 : Y → Z. The statesx1 andy1 are behaviourally equivalent,
but they are notW-bisimilar.

First, let us instantiate the general coalgebraic definition of bisimulation and bisimilarity to the functorW. A
W-bisimulationbetween twoW-coalgebras(X, 〈oX , tX〉) and (Y, 〈oY , tY 〉) is a relationR ⊆ X × Y such that
there exists〈oR, tR〉 : R → W(R) making the following diagram commute. The biggestW-bisimulation is called
W-bisimilarity (≃W).

X

〈oX ,tX〉

��

R
π1oo

〈oR,tR〉

��

π2 // Y

〈oY ,tY 〉

��
W(X) W(R)

W(π1)
oo

W(π2)
// W(Y )

Note that the actual definition of≈W relates the states of a single automaton. We can extend it in order to relate states
of possibly distinct automata: given(X, 〈oX , tX〉) and(Y, 〈oY , tY 〉), the statesx ∈ X andy ∈ Y are equivalent w.r.t.
≈W iff [[x]]WX = [[y]]WY .

Consider now the coalgebras in Fig.3:x1 ≈W y1, butx1 6≃W y1. For the former, it is enough to observe that
the functionh1 andh2 (represented by the dashed arrows) areW-homomorphisms, and by uniqueness of[[−]]W:
[[x1]]

W
X = [[h1(x1)]]

W
Z = [[z1]]

W
Z = [[h2(y1)]]

W
Z = [[y1]]

W
Y . For x1 6≃W y1, note that there exists noR ⊆ X × Y

that is aW-bisimulation and such that(x1, y1) ∈ R. Sincex2 andx3 are both different fromy1 (their output values
are different), then neither(x2, y1) nor (x3, y1) can belong to a bisimulation. Thus the only remaining relation on
X × Y is the one equating justx1 andy1, i.e.,R = {(x1, y1)}. But this is not aW-bisimulation since there exists
no 〈oR, tR〉 making the leftmost square of the above diagram commute. In order to understand this fact, note that
π−1
1 (x2) = ∅ andπ−1

1 (x3) = ∅. Thus for all possible choices of〈oR, tR〉, the functionW(π1) ◦ 〈oR, tR〉 maps
(x1, y1) into a pair〈k, ϕ〉 whereϕ(a)(x2) = 0 andϕ(a)(x3) = 0. On the other side of the square, we have that
〈oX , tX〉 ◦ π1(x1, y1) = 〈oX(x1), tX(x1)〉 andtX(x1)(a)(x2) = 1 andtX(x1)(a)(x3) = −1.

3. Linear Weighted Automata as Linear Coalgebras

In this section we will introduce linear weighted automata as coalgebras for an endofunctorL : V ect → V ect,
whereV ect is the category of vector spaces and linear maps over a fieldK. The goal of this change is to characterize
weighted language equivalence as the behavioural equivalence induced by the finalL-coalgebra.

3.1. Preliminaries

First we fix some notations and recall some basic facts on vector spaces and linear maps. We usev1, v2, . . . to
range over vectors andV,W . . . to range over vector spaces on a fieldK. Given a vector spaceV , a vectorv ∈ V and
ak ∈ K, the scalar product is denoted byk · v (or kv for short). Thespace spannedby anI-indexed family of vectors
B = {vi}i∈I is the spacespan(B) of all v such that

v = k1vi1 + k2vi2 + · · ·+ knvin

where for allj, vij ∈ B. In this case, we say thatv is a linear combinationof the vectors inB. A set of vectors
is linearly independentif none of its elements can be expressed as the linear combination of the remaining ones. A
basisfor the spaceV is a linearly independent set of vectors that spans the wholeV . All the basis ofV have the same
cardinality which is called thedimensionof V (denoted bydim(V )). If (v1, . . . vn) is a basis forV , then each vector
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v ∈ V is equal tok1v1 + · · ·+ knvn for somek1, . . . , kn ∈ K. For this reason, each vectorv can be represented as a
n× 1-column vector

v =







k1
...
kn







We usef, g, . . . to range over linear maps. Identity and composition of maps are denoted as usual. IfBV =
(v1, . . . vn) andBW = (w1 . . . wm) are, respectively, the basis for the vector spacesV andW , then every linear
mapf : V → W can be represented asm × n-matrix. Indeed, for eachv ∈ V , v = k1v1 + · · · + knvn and
f(v) = k1f(v1) + · · · + knf(vn), by linearity off . For eachvi, f(vi) can be represented asm × 1 column vector
by taking as basisBW . Thus the matrix corresponding tof (w.r.t. BV andBW ) is the one having asi-th column the
vector corresponding tof(vi). In this paper we will use capital lettersF,G . . . to denote the matrices corresponding
to linear mapsf, g . . . in lower case. By multiplying the matrixF for the vectorv (in symbols,F×v) we can compute
f(v). More generally, matrix multiplication corresponds to composition of linear maps, in symbols:

g ◦ f = G× F

The product of two vector spacesV,W is written asV ×W , and the product of two linear mapsf1, f2 is f1 × f2,
defined as for functions. It will be clear from the context whether× refer to multipliaction of matrix or product of
spaces (or maps). Given a setX , and a vector spaceV , the setV X (i.e., the set of functionsϕ : X → V ) carries a
vector space structure where sum and scalar product are defined point-wise. Hereafter we will useV X to denote both
the vector space and the underlying carrier set. Given a linear mapf : V1 → V2, the linear mapfX : V X

1 → V X
2 is

defined as for functions. IfA is a finite set we can conveniently thinkV A as the product ofV with itself for |A|-times
(|A| is the cardinality ofA). A linear mapf : U → V A can be decomposed in a family of maps indexed byA,
f = {fa : U → V }a∈A, such that for allu ∈ U , fa(u) = f(u)(a).

For a setX , the setKX
ω (i.e., the set of all finite support functionsϕ : X → K) carries a vector space where sum

and scalar product are defined in the obvious way. This is called thefree vector spacegenerated byX and can be
thought of as the space spanned by the elements ofX : each vectork1xi1 + k2xi2 + · · · + knxin corresponds to a
functionϕ : X → K such thatϕ(xij ) = kj and for allx /∈ {xij}, ϕ(x) = 0; conversely, each finite support function
ϕ corresponds to a vectorϕ(xi1 )xi + ϕ(xi2 )xi2 + · · ·+ ϕ(xin )xin .

A fundamental property holds in the free vector space generated byX : for all functionsf fromX to the carrier-set
of a vector spaceV , there exists a linear mapf ♯ : KX

ω → V that is called thelinearizationof f . For all v ∈ KX
ω ,

v = k1xi1 + k2xi2 + · · ·+ knxin andf ♯(v) = k1f(xi1) + k2f(xi2 ) + · · ·+ knf(xin).

KX
ω

f♯

&&N

N

N

N

N

N

N

N

N

N

N

N

N

X
f

//

ηX

OO

V

Note thatf ♯ is the only linear map such thatf = f ♯ ◦ ηX , whereηX(x) is the function assigning1 to x and0 to all
the other elements ofX .

Thekernelker(f) of a linear mapf : V → W is the subspace ofV containing all the vectorsv ∈ V such that
f(v) = 0. Theimageim(f) of f is the subspace ofW containing all thew ∈ W such thatw = f(v) for somev ∈ V .
If V has finite dimension, the kernel and the image off are related by the following equation:

dim(V ) = dim(ker(f)) + dim(im(f)) . (1)

Given two vector spacesV1 andV2, their intersectionV1 ∩ V2 is still a vector space, while their unionV1 ∪ V2 is not.
Instead of union we consider the coproduct of vector spaces:we writeV1 + V2 to denote the spacespan(V1 ∪ V2)
(note that in the category of vector spaces, product and coproduct coincide).
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3.2. From Weighted Automata to Linear Weighted Automata

We have now all the ingredients to introduce linear weightedautomata and a coalgebraic characterization of
weighted language equivalence.

Definition 3 (LWA ). A linear weighted automaton(LWA , for short) with input alphabetA over the fieldK is a coal-
gebra for the functorL = K×−A : V ect→ V ect.

More concretely [6], aLWA is a triple(V, 〈o, t〉), whereV is a vector space (representing the states space),o : V →
K is a linear map associating to each state its output weight and t : V → V A is a linear map that for each inputa ∈ A
associates a next state (i.e., a vector) inV . We will write v1

a
→ v2 for t(v1)(a) = v2.

The behaviour of linear weighted automata is expressed in terms of weighted languages. Thelanguage recognized
by a vectorv ∈ V of a LWA (V, 〈o, t〉) is defined for all wordsa1 . . . an ∈ A∗ as[[v]]LV (a1 . . . an) = o(vn) wherevn
is the vector reached fromv througha1 . . . an, i.e.,v

a1→ . . .
an→ vn. We will often use the following (more compact)

definition: for allw ∈ A⋆,

[[v]]LV (w) =

{

o(v), if w = ǫ;
[[t(v)(a)]]LV (w

′), if w = aw′.

Here we use the notation[[−]]LV because this is the uniqueL-homomorphism into the finalL-coalgebra. In Section 3.3,
we will provide a proof for this fact and we will also discuss the exact correspondence with the functionlX introduced
in Section 2.

Given a weighted automaton(X, 〈o, t〉), we can build a linear weighted automaton(KX
ω , 〈o

♯, t♯〉), whereKX
ω is

the free vector space generated byX ando♯ andt♯ are the linearizations ofo andt. If X is finite, we can represent
t♯ ando♯ by the same matrices that we have introduced in the previous section fort ando. By fixing an ordering
x1, . . . , xn of the states inX , we have a basis forKX

ω , i.e., every vectorv ∈ KX
ω is equal tok1x1 + · · · + knxn

and it can be represented as ann × 1-column vector. The valuest♯(v)(a) ando♯(v) can be computed via matrix
multiplication asTa × v andO × v.

For a concrete example, look at the weighted automaton(X, 〈oX , tX〉) in Fig. 1. The corresponding linear
weighted automaton(RX

ω , 〈o
♯
X , t

♯
X〉) has as state space the space of all the linear combinations ofthe states inX (i.e.,

{k1x1 + k2x2 + k3x3 | ki ∈ R}). The functiono♯X mapsv = k1x1 + k2x2 + k3x3 into k1oX(x1) + k2oX(x2) +
k3oX(x3), i.e., k1 + k2 + k3. By exploiting the correspondence between functions and vectors inKX

ω (discussed
in Section 3.1), we can writet♯X(v)(a) = k1tX(x1)(a) + k2tX(x2)(a) + k3tX(x3)(a) that isk1(x1 + x2 + x3) +

k23x2 + k33x3 andt♯X(v)(b) = k13x1 + k23x1 + k33x1. This can be conveniently expressed in terms of matrix
multiplication.

o♯X(v) =
(

1 1 1
)





k1
k2
k3



 t♯X(v)(a) =





1 0 0
1 3 0
1 0 3









k1
k2
k3



 t♯X(v)(b) =





3 3 3
0 0 0
0 0 0









k1
k2
k3





A linear maph : V →W is anL-homomorphism betweenLWA (V, 〈oV , tV 〉) and(W, 〈oW , tW 〉) if the following
diagram commutes.

V

〈oV ,tV 〉

��

h // W

〈oW ,tW 〉

��
K× V A

id×hA

//
K×WA

This means that for allv ∈ V, a ∈ A, oV (v) = oW (h(v)) andh(tV (v)(a)) = tW (h(v))(a). If V andW have finite
dimension, then we can represent all the morphisms of the above diagram as matrices. In this case, the above diagram
commutes if and only if for alla ∈ A,

OV = OW ×H H × TVa = TWa ×H

whereTVa andTWa are the matrix representation oftV andtW for anya ∈ A.
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x2 x3
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a, 1 a,−1
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Figure 4: The weighted automata(X, 〈oX , tX〉) (left) and(Y, 〈oY , tY 〉) (right). The corresponding linear weighted au-
tomata(RX

ω , 〈o♯X , t
♯
X〉) and(RY

ω , 〈o♯Y , t
♯
Y 〉) are isomorphic.

For a functionh : X → Y , the functionKh : KX → K
Y (formally introduced in Definition 2) is a linear

map. Note that ifh is a W-homomorphism between theWA (X, 〈oX , tX〉) and (Y, 〈oY , tY 〉), thenKh is anL-
homomorphismbetween theLWA (KX , 〈o♯X , t

♯
X〉) and(KY , 〈o♯Y , t

♯
Y 〉). For an example, look at theW-homomorphism

h : (X, 〈oX , tX〉) → (Y, 〈oY , tY 〉) represented by the dotted arrows in Fig. 1. The linear mapRh : RX → RY is
represented by the matrixH = (1 1 1) and it is anL-homomorphism between(RX , 〈o♯X , t

♯
X〉) and(RY , 〈o♯Y , t

♯
Y 〉).

This can be easily checked by showing thatOX = OY ×H ,H × TXa = TYa ×H andH × TXb
= TYb

×H .

Note that two different weighted automata canrepresentthe same (up to isomorphism) linear weighted automaton.
As an example, look at the weighted automata(X, 〈oX , tX〉) and(Y, 〈oY , tY 〉) in Fig. 4. They represent, respectively,
the linear weighted automata(RX

ω , 〈o
♯
X , t

♯
X〉) and(RY

ω , 〈o
♯
Y , t

♯
Y 〉) that are isomorphic. The transitions and the output

functions for the two automata are described by the following matrices.

TXa =





0 0 0
1 1 0
−1 0 1



 OX =
(

1 1 1
)

TYa =





3
2 0 1

2
1
2 1 1

2
− 3

2 0 − 1
2



 OY =
(

2 2 2
)

Note thatTXa andTYa aresimilar, i.e., they represent the same linear map. This can be immediately checked by
showing thatTYa = j−1 ◦ tXa ◦ j, wherej : RY → RX is the isomorphic map representing the change of bases form
Y = (x1 + x2, x2 + x3, x3 + x1) toX = (x1, x2, x3) andj−1 : RX → R

Y is its inverse. The matrix representation
of j andj−1 is the following.

J =





1 0 1
1 1 0
0 1 1



 J−1 =





1
2

1
2 − 1

2
− 1

2
1
2

1
2

1
2 − 1

2
1
2





AlsoOX andOY represents the same map in different bases. Indeed,OY = OX × J .
At this point, it is easy to see that the linear isomorphismj−1 : RX → RY is anL-homomorphism, because

OX = OX × J × J−1 = OY × J−1 andJ−1 × TXa = J−1 × TXa × J × J
−1 = TYa × J

−1. Analogously for
j : RY → RX .

3.3. Language equivalence and finalL-coalgebra

We introduce the finalL-coalgebra and we show that the behavioural equivalence≈L, induced by the functorL,
coincides with weighted language equivalence.

The set of all weighted languagesKA∗

carries a vector space structure: the sum of two languagesσ1, σ2 ∈ KA∗

is the languageσ1 + σ2 defined for each wordw ∈ A∗ asσ1 + σ2(w) = σ1(w) + σ2(w); the product of a languageσ
for a scalark ∈ K is kσ defined askσ(w) = k · σ(w); the element0 of KA∗

is the language mapping each word into
the0 of K.

Theempty functionǫ : KA∗

→ K and thederivative functiond : KA∗

→ (KA∗

)A are defined for allσ ∈ K
A∗

,
a ∈ A as

ǫ(σ) = σ(ǫ) d(σ)(a) = σa

11



whereσa:A∗ → K denotes thea-derivativeof σ that is defined for allw ∈ A∗ as

σa(w) = σ(aw).

Proposition 3 The mapsǫ : KA∗

→ K andd : KA∗

→ (KA∗

)A are linear.

PROOF. We show the proof ford. The one forǫ is analogous.
Let σ1, σ2 be two weighted languages inKA∗

. Now for all a ∈ A,w ∈ A∗, d(σ1 + σ2)(a)(w) = σ1 + σ2(aw) =
σ1(aw) + σ2(aw) = d(σ1)(a)(w) + d(σ2)(a)(w).

Let k be a scalar inK andσ be a weighted language inKA∗

. Now for all a ∈ A,w ∈ A∗, k · d(σ)(a)(w) =
k · σ(aw) = d(kσ)(a)(w).

SinceKA∗

is a vector space and sinceǫ andd are linear maps,(KA∗

, 〈ǫ, d〉) is anL-coalgebra. The following
theorem shows that it is final.

Theorem 2 (finality) From everyL-coalgebra(V, 〈o, t〉) there exists a uniqueL-homomorphism into(KA∗

, 〈ǫ, d〉).

V

〈o,t〉

��

[[−]]LV //
KA∗

〈ǫ,d〉

��
L(V )

L([[−]]LV )

// L(KA)

PROOF. The only function making the above diagram commutes is[[−]]LV , i.e., the function mapping each vector
v ∈ V into the weighted language that itrecognizes. Hereafter we show that[[−]]LV is a linear map.

By induction onw, we prove that for allv1, v2 ∈ V , for all w ∈ A∗, [[v1 + v2]]
L
V (w) = [[v1]]

L
V (w) + [[v2]]

L
V (w).

Suppose thatw = ǫ. Then[[v1 + v2]]
L
V (ǫ) = o(v1 + v2). Sinceo is a linear map, this is equal too(v1) + o(v2) =

[[v1]]
L
V (ǫ) + [[v2]]

L
V (ǫ).

Now suppose thatw = aw′. Then[[v1 + v2]]
L
V (aw

′) = [[t(v1 + v2)(a)]]
L
V (w

′). Sincet is a linear map, this is
equal to[[t(v1)(a) + t(v2)(a)]]

L
V (w

′) that (by induction hypothesis) is equal to[[t(v1)(a)]]LV (w
′) + [[t(v2)(a)]]

L
V (w

′) =
[[v1]]

L
V (aw

′) + [[v2]]
L
V (aw

′).
We can proceed analogously for the scalar product.

Thus, two vectorsv1, v2 ∈ V areL-behaviourally equivalent (v1 ≈L v2) iff they recognize the same weighted
language (as defined in Section 3.2). Proposition 4 below shows that[[−]]L

KX
ω
: KX

ω → KA∗

is the linearization of the

functionlX : X → KA∗

(defined in Section 2) or, in other words, is the only linear map making the following diagram
commute.

KX
ω

[[−]]L
KX

''N

N

N

N

N

N

N

N

N

N

N

N

N

X
lX

//

ηX

OO

KA∗

Lemma 1 Let (X, 〈o, t〉) be aWA and(KX
ω , 〈o

♯, t♯〉) be the corresponding linear weighted automaton. Then for all
x ∈ X , lX(x) = [[x]]L

KX
ω

.

PROOF. We prove it by induction onw ∈ A∗.
If w = ǫ, thenlX(x)(w) = oX(x) = o♯X(x) = [[x]]L

KX
ω
(w).

If w = aw′, then[[x]]L
KX

ω
(w) = [[t♯(x)(a)]]L

KX
ω
(w′). Note that by definition,t♯(x)(a) =

∑

x′∈X t(x)(a)(x′)x′, thus
the latter is equal to

[[

∑

x′∈X

t(x)(a)(x′) · x′
]]L

KX
ω

(w′)
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which, by linearity of[[−]]L
KX

ω
, coincides with

∑

x′∈X

t(x)(a)(x′) · [[x′]]L
KX

ω
(w′).

By induction hypothesis[[x′]]L
KX

ω
(w′) = lX(x′)(w′) and thus the above coincides with

∑

x′∈X

t(x)(a)(x′) · lX(x′)(w′)

that islX(x)(w).

Proposition 4 Let (X, 〈o, t〉) be aWA and(KX
ω , 〈o

♯, t♯〉) be the corresponding linear weighted automaton. Then, for
all v = k1xi1 + · · ·+ knxin , [[v]]L

KX
ω
= k1lX(xi1 ) + · · ·+ knlX(xin).

PROOF. By induction onw ∈ A∗.
If w = ǫ, then[[v]]L

KX
ω
(w) = o♯(v). Sinceo♯ is a linear map andX is a base forKX

ω , o♯(v) = k1o(xi1 ) + · · · +

kno(xin). For allj, lX(xij )(ǫ) = o(xij ), thusk1o(xi1 ) + · · ·+ kno(xin ) = k1lX(xi1 )(w) + · · ·+ knlX(xin)(w).
If w = aw′, then[[v]]L

KX
ω
(w) = [[t♯(v)(a)]]L

KX
ω
(w′). Sincet♯ is linear andX is a base forKX

ω , thent♯(v)(a) =

k1t(xi1 )(a) + · · ·+ knt(xin)(a). For allj,

t(xij )(a) =
∑

x′∈X

(

t(xij )(a)(x
′) · x′

)

,

thus[[t♯(v)(a)]]L
KX

ω
(w′) is equal to

[[

k1
∑

x′∈X

(

t(xij )(a)(x
′) · x′

)

+ · · ·+ kn
∑

x′∈X

(

t(xij )(a)(x
′) · x′

)

]]L

KX
ω

(w′)

which, by linearity of[[−]]L
KX

ω
, is equal to

k1
∑

x′∈X

(

t(xij )(a)(x
′) · [[x′]]L

KX
ω
(w′)

)

+ · · ·+ kn
∑

x′∈X

(

t(xij )(a)(x
′) · [[x′]]L

KX
ω
(w′)

)

.

By induction hypothesis[[x′]]L
KX

ω
(w′) = lX(x′)(w′) and thus the latter coincides with

k1
∑

x′∈X

(

t(xij )(a)(x
′) · lX(x′)(w′)

)

+ · · ·+ kn
∑

x′∈X

(

tX(xij )(a)(x
′) · lX(x′)(w′)

)

.

By definition, lX(xij )(w) =
∑

x′∈X

(

t(xij )(a)(x
′) · lX(x′)(w′)

)

and thus we can concisely express the above
formula as

k1lX(x1)(w) + · · ·+ knlX(xn)(w).

3.4. Linear Bisimulations and Subspaces

We now introduce a convenient characterization of languageequivalence by means oflinear weighted bisimula-
tions. Differently form ordinary (weighted) bisimulations, these can be seen both as relations and as subspaces. The
latter characterization will be exploited in the next section for defining an algorithm for checking language equiva-
lence.

First, we show how to represent relations over a vector spaceV as sub-spaces ofV , following [35, 6].

Definition 4 (linear relations). LetU be a sub-space ofV . The binary relationRU overV is defined by

v1 RU v2 if and only if v1 − v2 ∈ U .

A relationR is linear if there is a subspaceU such thatR = RU .

13



Note that a linear relation is a total equivalence relation on V . Let nowR be any binary relation overV .
There is a canonical way of turningR into a linear relation, which we describe in the following. The kernel
of R (in symbolsker(R)) is the set{v1 − v2 | v1Rv2}. The linear extensionof R, denotedRℓ, is defined by:
v1R

ℓ v2 if and only if (v1 − v2) ∈ span(ker(R)).

Lemma 2 LetU be a sub-space ofV , thenker(RU ) = U .

According to the above lemma, a linear relationR is completely described by its kernel, which is a sub-space,that
is

v1Rv2 if and only if (v1 − v2) ∈ ker(R) . (2)

Conversely, for any sub-spaceU ⊆ V there is a corresponding linear relationRU whose kernel isU . Hence, without
loss of generality,we can identify linear relations onV with sub-spaces ofV . For example, by slight abuse of notation,
we can writev1 U v2 instead ofv1RU v2; and conversely, we will sometimes denote byR the sub-spaceker(R). The
context will be sufficient to tell whether we are actually referring to a linear relation or to the corresponding sub-space
(kernel). Note that the sub-space{0} corresponds to the identity relation onV , that isR{0} = IdV . In fact: v1 IdV v2
iff v1 = v2 iff v1 − v2 = 0. Similarly, the spaceV itself corresponds toRV = V × V .

We are now ready to define linear weighted bisimulation. Thisdefinition relies on the familiar step-by-step game
played on transitions, plus an initial condition requiringthat two related states have the same output weight. We call
this form of bisimulationlinear to stress the difference with the one introduced in Definition 1.

Definition 5 (linear weighted bisimulation). Let (V, 〈o, t〉) be a linear weighted automaton. A linear relationR ⊆
V × V is a linear weighted bisimulationif for all (v1, v2) ∈ R, it holds that:

(1) o(v1) = o(v2),
(2) ∀a ∈ A, t(v1)(a) R t(v2)(a).

For a concrete example, consider the automaton(RX
ω , 〈o

♯
X , t

♯
X〉) in Fig 4. The relationR = {(x2, x3)} is not

linear, becauseU = {x2 − x3} is not a subspace ofRX
ω . However, we can turnR into a linear relation by employing

its kernelker(R) = {x2−x3}. The linear extension ofR isRℓ = {(k1x1+k2x2+k3x3, k′1x1+k
′
2x2+k

′
3x3) | k1 =

k′1 andk2 + k3 = k′2 + k′3}. It is easy to see thatRℓ is a linear weighted bisimulation.
The following lemma provides a characterization of linear weighted bisimulation as a subspace. Let us say that a

sub-spaceU is f -invariant if f(U) ⊆ U . Bisimulations are transition-invariant relations that refine the kernel of the
output mapo.

Lemma 3 Let (V, 〈o, t〉) be aLWA andR be linear relation overV . R is a linear weighted bisimulation if and only if

(1) R ⊆ ker(o),
(2) R is ta-invariant for eacha ∈ A.

This lemma will be fundamental in the next section for defining an algorithm computing the greatest linear
weighted bisimulation. In the remainder of this section, weshow that the greatest linear weighted bisimulation
coincides with the kernel of the final map[[−]]LV . More generally, the kernel of eachL-homomorphism is a linear
weighted bisimulationR and, viceversa, for each linear weighted bisimulationR there exists anL-homomorphism
whose kernel isR.

Proposition 5 Let (V, 〈oV , tV 〉) be aLWA . If f : V → W is anL-homomorphism (for someLWA (W, 〈oW , tW 〉))
thenker(f) is a linear weighted bisimulation. Conversely, ifR is a linear weighted bisimulation for(V, 〈o, t〉), then
there exists aLWA (W, 〈oW , tW 〉) and anL-homomorphismf : V →W such thatker(f) = R.

PROOF. First, we suppose thatf : V → W is anL-homomorphism and we prove thatker(f) satisfies (1) and (2)
of Lemma 3. Take a vectorv ∈ ker(f). Thus,f(v) = 0 and, sinceoW andtW are linear maps,oW (f(v)) = 0
andtW (f(v))(a) = 0 for all a ∈ A. Sincef is anL-homomorphism, we have that (1)oV (v) = oW (f(v)) = 0,
i.e., ker(f) ⊆ ker(oV ) and (2)f(tV (v)(a)) = tW (f(v))(a) = 0 meaning thattV (v)(a) ∈ ker(f), i.e., ker(f) is
tVa-invariant.
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In order to prove the second part, we need to recallquotient spacesandquotient mapsfrom [14]. Given a subspace
U of V , the equivalence class ofv w.r.t. U is [v]U = {v + u | u ∈ U}. Note thatv1 ∈ [v2]U if and only if v1RUv2.
The quotient spaceV/U is the space of all equivalence classes[v]U where scalar productk[v]U is defined as[kv]U
and the sum[v1]U + [v2]U as[v1 + v2]U . It is easy to check that these operations are well-defined (i.e., independent
from the choice of the representative) and turnV/U into a vector space where the element0 is U . Most importantly,
the quotient functionεU : V → V/U mapping each vectorv into [v]U is a linear map such thatker(εU ) = U .

Now, letU be the subspace corresponding to the linear weighted bisimulationR. We can takeW = V/U and we
defineoW asoW ([v]U ) = oV (v) andtW astW ([v]U )(a) = [t(v)(a)]U . Note that bothoW andtW are well defined:
for all v′ ∈ [v]U = {v+u | u ∈ U}, oW (v′) = oW (v) (sinceoV (u) = 0 for all u ∈ U ) andtW (v′)(a) ∈ [tW (v)(a)]U
(sincetV (u)(a) ∈ U for all u ∈ U ). It is also easy to check that they are linear.

Finally, we takef : V → W asεU and with the previous definition ofoW andtW is trivial to check thatεU is an
L-homomorphism. As said above, its kernel isU .

Theorem 3 Let (V, 〈o, t〉) be aLWA and let[[−]]LV : V → KA∗

be the uniqueL-morphism into the final coalgebra.
Thenker([[−]]LV ) is the largest linear weighted bisimulation onV .

PROOF. First of all, note that by the first part of Proposition 5,ker([[−]]LV ) is a linear weighted bisimulation.
Then suppose thatR is a linear weighted bisimulation. By the second part of Proposition 5, there exists aLWA

(W, 〈oW , tW 〉) and anL-homomorphismf : V → W such thatR = ker(f). Now note that, since(W, 〈oW , tW 〉) is
anL-coalgebra there exists anL-homomorphism[[−]]LW : W → K

A∗

to the final coalgebra. Since the composition of
twoL-homomorphisms is still anL-homomorphism, also[[−]]LW ◦f : V → KA∗

is anL-homomorphism. Since[[−]]LV
is the uniqueL-homomorphism fromV to KA∗

, then[[−]]LW ◦ f = [[−]]LV . Finally,R = ker(f) ⊆ ker([[−]]LW ◦ f) =
ker([[−]]LV ).

The characterization of bisimulations as subspaces seems to be possible inV ect and not inSet because the former
category isabelian[10]: every map has a kernel that is a subspace and every subspace is the kernel of some map. We
leave as future work to study (at a more general level) the categorical machinery allowing to characterize bisimulations
as subspaces.

4. Linear Partition Refinement

In the previous section, we have shown that weighted language equivalence (∼l) can be seen as the largest linear
weighted bisimulation. In this section, we exploit this characterization in order to provide a “partition refinement”
algorithm that allows to compute∼l. We will examine below two versions of the algorithm, a forward version (Section
4.1) and a backward one (Section 4.2). The former is straightforward but computationally not very convenient; the
latter is more convenient, although it requires the introduction of some extra machinery. In both cases, we must restrict
to LWA ’s where the state space is finite dimension.

4.1. A forward algorithm

Lemma 3 suggests that, in order to compute the largest linearweighed bisimulation for aLWA (V, 〈o, t〉), one
might start fromker(o) and refine it until the condition (2) given in the lemma is satisfied. This is indeed the case.

Proposition 6 (partition refinement, forward version) Let (V, 〈o, t〉) be aLWA . Consider the sequence(Ri)i≥0 of
sub-spaces ofV defined inductively by

R0 = ker(o) Ri+1 = Ri ∩
⋂

a∈A

t(Ri)(a)
−1

wheret(Ri)(a)
−1 is the space{v ∈ V | t(v)(a) ∈ Ri}. Then there isj ≤ dim(V ) such thatRj+1 = Rj . The largest

linear weighted bisimulation is≈L= Rj .
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x1

x2 x3

2

1 1

a, 13 a, 1

b, 13

b, 3

a, 1/b, 1

x1

x2 x3

2

1 1

a, 13 a, 1

b, 13

b, 3

a, 1/b, 1

O =
(

2 1 1
)

Ta =





1 1
3 1

0 0 0
0 0 0



 Tb =





1 0 0
0 0 3
0 1

3 0





tTa =





1 0 0
1
3 0 0
1 0 0





tTb =





1 0 0
0 0 1

3
0 3 0





Figure 5: A weighted automata(V, 〈o, t〉) (left) and its reversed(V, 〈o, tt〉) (right).

PROOF. The Ri’s form a descending chain of sub-spaces ofV . The corresponding dimensions form a non-
increasing sequence, hence the existence ofj as required is obvious. ThatRj is a bisimulation follows by apply-
ing Lemma 3: indeed, it is obvious that (1)ker(o) ⊇ Rj , while as to (2) we have that, sinceRj+1 = Rj , then
Rj ∩

⋂

a∈A t(Rj)(a)
−1 = Rj , i.e., for alla ∈ A, t(Rj)(a) ⊆ Rj .

We finally show that any linear weighted bisimulationR is included inRj . We do so by proving that for each
i, R ⊆ Ri, thus, in particularR ⊆ Rj . We proceed by induction oni. Again by Lemma 3, we know thatR0 =
ker(o) ⊇ R. Assume nowR ⊆ Ri. For each actiona, by Lemma 3 we have thatt(R)(a) ⊆ R, which implies
R ⊆ {v ∈ Ri | ∀a ∈ A, t(v)(a) ∈ Ri} = Ri+1.

Concretely, the algorithm iteratively computes a basisBi for each spaceRi. This can be done by solving systems
of linear equations expressing the constraints in the definition ofRi. Since the backward algorithm presented in the
next section is computationally more efficient, we avoid to give further details about its implementation and we show,
as an example, the algorithm at work with the linear automata(V, 〈o, t〉) in Fig.5.

At the beginning, we compute a basis forR0 = ker(o). This is

B0 =











− 1
2
1
0



 ,





− 1
2
0
1











.

In the first iteration, we compute one basis for the spacet(R0)(a)
−1 and one for the spacet(R0)(b)

−1. These are
respectively

Ba
1 =











− 1
3
1
0



 ,





−1
0
1











andBb
1 =











− 1
6
1
0



 ,





− 3
2
0
1











.

Then,R1 is given by the intersectionR0 ∩ t(R0)(a)
−1 ∩ t(R0)(b)

−1. A basis forR1 is

B1 =











−2
3
1











.

In the second iteration, we compute one basis for the spacet(R1)(a)
−1 and one for the spacet(R1)(b)

−1. These are
respectively

Ba
2 =











− 1
3
1
0



 ,





−1
0
1











andBb
2 =











−2
3
1











.
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Then,R2 is the intersectionR1 ∩ t(R1)(a)
−1 ∩ t(R0)(b)

−1. A basis forR2 is

B2 =











−2
3
1











that is equal toB1. SinceR1 = R2 the algorithm terminates and returnsR1. Now, in order to check if two vectors
v1, v2 ∈ V accept the same weighted language (i.e.,v1 ≈L v2), we have to look ifv1 − v2 belongs toR1. For
instance,x1 ≈L

3
2x2 +

1
2x3 becausex1 − 3

2x2 −
1
2x3 ∈ R1.

We note thatker(o) is in general a large sub-space: sinceo : V → K with dim(K) = 1, by virtue of equation (1)
we have thatdim(ker(o)) ≥ dim(V ) − 1. This might be problematic in the actual computation of the basis of≈L.
We present an alternative version in the next subsection which will avoid this problem.

4.2. A backward algorithm

Two well-known concepts from linear algebra will be relied upon to describe the basic operations of the backward
algorithm. More precisely, annihilators will be used to describe the complement of a relation, while transpose maps
will be used to describe the operation of “reversing arrows”in an automaton. These operations are carried out within
thedual spaceof V . So we start by reviewing the concept of dual space; an in-depth treatment can be found in e.g.
[14].

Let K be any field andV a vector space overK. Thedual spaceof V , denotedV ⋆, is the set of all linear maps
V → K, with K seen as a 1-dimensional vector space. The elements ofV ⋆ are often calledfunctionalsand we use
ψ1, ψ2, . . . to range over them. The sum of two functionalsψ1 + ψ2 and the scalar multiplicationk · ψ (for k ∈ K)
are defined point-wise as expected, and turnV ⋆ into a vector space overK. We will denote functional application
ψ(v) as[v, ψ], the bracket notation intending to emphasize certain analogies with inner products. Fix an ordered basis
B = (v1, ..., vn) of V and considerB⋆ = (v⋆1 , ..., v

⋆
n), where the functionalsv⋆i are specified by[vj , v⋆i ] = δij for

eachi andj. Here,δij denotes the Kronecker symbol, which equals1 if i = j and 0 otherwise. It is easy to check that
B⋆ forms a basis ofV ⋆, referred to as thedual basisof B. Hencedim(V ⋆) = dim(V ). In particular, the morphism
(−)⋆ : V → V ⋆ that sends eachvi into v⋆i is an isomorphism betweenV andV ⋆. A crucial definition is that of
transpose morphism.

Definition 6 (transpose linear map). Let f : V → V be a linear map. We let thetranspose off be the endomor-
phismtf : V ⋆ → V ⋆ defined for allψ ∈ V ⋆ astf(ψ) = ψ ◦ f .

It is easy to check that that ifF is the matrix representingf in V w.r.t. toB, then the transpose matrixtF represents
tf in V ⋆ w.r.t. B⋆, whence the terminology and the notation. It is quite expected that, by taking the transpose twice
one gets back the original morphism. This is in fact the case,although one has to take care of identifying things up
to isomorphism. Denote byV ⋆⋆ the space(V ⋆)

⋆, called double dual ofV . There is a natural isomorphismi between
V andV ⋆⋆, given byi : v 7→ [v, − ] (note that this isomorphism does not depend on the choice of abasis). In the
sequel, we shall freely identifyV andV ⋆⋆ up to this isomorphism, i.e. identifyv and[v,−] for eachv ∈ V . With this
identification, one has thatt(tf) = f .

We need another concept from duality theory. Given a subspaceU of V , we denote byUo theannihilator of U ,
the subset of functionals that vanish onU .

Definition 7 (annihilator). For anyU ⊆ V , we letUo = {ψ ∈ V ⋆ | [u, ψ] = 0 for eachu ∈ U}.

Once again, the notation makes the analogy with inner products explicit. We use the following properties of
annihilators, whereU,W are a sub-spaces ofV : (i) Uo is a sub-space ofV ⋆; (ii) (−)o reverses inclusions, i.e. if
U ⊆ W thenW o ⊆ Uo; (iii) (−)o is an involution, that is(Uo)o = U up to the natural isomorphism betweenV and
its double dual. These three properties suggest thatUo can be regarded as acomplement, or negation, ofU seen as a
relation. Another useful property is: (iv)dim(Uo) + dim(U) = dim(V ). Transpose morphisms and annihilators are
connected via the following property, which is crucial to the development of the algorithm. It basically asserts that
f -invariance ofR corresponds totf -invariance of the complementary relation represented byRo.
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Lemma 4 LetU be a sub-space ofV andf be an endomorphism onV . If U is f -invariant thenUo is tf -invariant.

We are now ready to give the backward version of the partitionrefinement algorithm. An informal preview of
the algorithm is as follows. Rather than computing directlythe sub-space representing≈L, the algorithm computes
the sub-space representing the complementary relation. Tothis end, the algorithm starts from a relationR0 that is
the complement of the relation identifying vectors with equal weights, then incrementally computes the space of all
states that arebackwardreachable fromR0. The largest bisimulation is obtained by taking the complement of this
space. Geometrically, “going backward” means working withthe transpose transition functionstta rather than with
ta. Taking the complement of a relation actually means taking its annihilator. This essentially leads one to work
within V ⋆ rather thanV . Recall thatU +W denotesspan(U ∪W ).

Theorem 4 (partition refinement, backward version) Let (V, 〈o, t〉) be aLWA . Consider the sequence(Ri)i≥0 of
sub-spaces ofV ⋆ inductively defined by:

R0 = ker(o)o Ri+1 = Ri +
∑

a∈A
tta(Ri) . (3)

Then there isj ≤ dim(L) such thatRj+1 = Rj . The largestL-bisimulation≈L is Ro
j , modulo the natural isomor-

phism betweenV andV ⋆⋆.

PROOF. SinceR0 ⊆ R1 ⊆ R2 ⊆ · · · ⊆ V ⋆, the sequence of the dimensions of these spaces is non-decreasing. As
a consequence, for somej ≤ dim(V ⋆) = dim(L), we getdim(Rj) = dim(Rj+1). SinceRj ⊆ Rj+1, this implies
Rj = Rj+1.

We next show thatRo
j is an L-bisimulation. Indeed, by the properties of annihilators and up to the natu-

ral isomorphism: (1)ker(o)o ⊆ Rj implies (ker(o)o)o = ker(o) ⊇ Ro
j . Moreover: (2) for anya ∈ A,

tta(Rj) ⊆ tta(Rj) + Rj ⊆ Rj+1 = Rj implies, by Lemma 4, thatt(tta(Ro
j )) = ta(R

o
j ) ⊆ Ro

j ; by (a), (b) and
Lemma 3, we conclude thatRo

j is anL-bisimulation.
We finally show that anyL-bisimulationR is included inRo

j . We do so by proving that for eachi, S ⊆ Ro
i ,

thus, in particularS ⊆ Ro
j . We proceed by induction oni. Again by Lemma 3, we know thatRo

0 = ker(o) ⊇ R.
Assume nowR ⊆ Ro

i , that is,Ro ⊇ Ri. For each actiona, by Lemma 3 we have thatta(R) ⊆ R, which implies
tta(R

o) ⊆ Ro by Lemma 4. HenceRo ⊇ tta(R
o) ⊇ tta(Ri), where the last inclusion stems fromRo ⊇ Ri. Since

this holds for eacha, we have thatRo ⊇
∑

a
tta(Ri) +Ri = Ri+1. Taking the annihilator of both sides reverses the

inclusion and yields the wanted result.

We note that what is being “refined” in the algorithm above arenot, of course, the sub-spacesRi, but their
complements:Ro

0 ⊇ Ro
1 ⊇ · · · ⊇ Ro

j =≈L. In particular, we start with a “small” spaceRo
0 of dimension≤ 1: this

may represent an advantage in a practical implementation ofthe algorithm.
To conclude the section, we briefly discuss some practical aspects involved in the implementation of the algorithm.

By virtue of (2), checkingu ≈L v, for any pair of vectorsv1 andv2, is equivalent to checkingv1 − v2 ∈ ker(≈L).
This can be done by first computing a basis of≈L and then checking for linear (in)dependence ofv1 − v2 from
this basis. Alternatively, and more efficiently, one can check whetherv1 − v2 is in Ro

j , or, more explicitly, whether
[v1 − v2, ψ] = 0 for eachψ ∈ Rj . This reduces to showing whether[v1 − v2, ψ] = 0 for eachψ ∈ Bj , whereBj is
a basis forRj . Thus, our task reduces to computing such a basis. To do so, fixany basisB of V and letO andTa
(a ∈ A) be the row-vector and matrices representing the weight andtransition functions of theLWA in this basis. The
concrete computations are carried out representing vectors and functionals in this basis.

1. Compute a basisB0 of R0. As already discussed,dim(ker(o)) ≥ dim(V ) − 1, hencedim(ker(o)o) ≤ 1. It
is readily checked thato ∈ ker(o)o, thusker(o)o is spanned byo. We thus setB0 = {o}. With respect to the
chosen basisB, B0 is represented by{O}.

2. For eachi ≥ 0, compute a basisBi+1 of Ri+1. This can be obtained by incrementally joining toBi the
functionalstta(ψ), for a ∈ A andψ ∈ Bi, that are linearly independent from previously joined functionals.
With respect to the basisB, tta(ψ) is represented byΨ×Ta, whereΨ is the row-vector representingψ; checking
linear independence oftta(ψ) means hence checking linear independence ofΨ × Ta from previously joined
row-vectors.
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After j ≤ n iterations, one finds a setBj such thatBj+1 = Bj : this is the basis ofRj . We illustrate this algorithm in
the example below.

Consider theLWA (V, 〈o, t〉) on the left of Figure 5. At the beginning we can setB0 = {O}. Next, we apply the
algorithm to build theBi’s. Manually, the computation of the vectorsΨTa = t(tTa

tΨ) can be carried out by looking
at the transitions of theWA with arrows reversed (in the right of Figure 5). Doing so, we first getOTa = (2 2

3 2) and
OTb = (2 1

3 3). Note thatOTb is not linearly independent from the other vectors:OTb = −(2 1 1) + 2(2 2
3 2). Thus

B1 = {(2 1 1), (2 2
3 2)}. In the second iteration, we compute(2 2

3 2)Ta = (2 2
3 2) and(2 2

3 2)Tb = (2 2
3 2) and

thusB2 = {(2 1 1), (2 2
3 2)} that is equal toB1.

The functionals represented by vectors inB1 are a basis of(≈L)
o. As an example, let us check thatx1 ≈L

3
2x2 +

1
2x3. To this purpose, note that the difference vectorx1 −

3
2x2 −

1
2x3 annihilatesB1, that is

[





1
− 3

2
− 1

2



 , u] = 0

for eachu ∈ B1, which is equivalent to2x1 ≈L
3
2x2 +

1
2x3.

It is quite easy to give an upper bound on the cost of the backward algorithm, in terms of the number of sum and
product operations in the underlying field. Letn be the dimension ofV . Each time we join a new vectorv = Ψ× Ta
to the basisB, we have a cost ofO(n2) for vector-matrix multiplication, plus a cost ofO(n3) for checking linear
independence ofv from B, for a predominant cost ofO(n3). Since the operation of joining a vector to the basis
cannot be done more thann times, we have a global cost ofO(n4). In the case|A| = 1, one can adapt the Arnoldi’s
iteration algorithm [31] to computeB, which takesO(n3) operations. It is not clear whether this algorithm can be
adapted also to the case|A|〉1. In practical cases, the transition matrices tend to be sparse, and the number of iterations
after which the algorithms stops may be much less thann. By adopting suitable representations for sparse matrices,
these circumstances can be used to lower considerably the practical complexity of the algorithm.

4.3. The final sequence and the forward algorithm

The theory of coalgebras also provides a way of constructingfinal coalgebras by means offinal sequences(often
referred in literature as terminal sequences) [4]. Many important algorithms for computing behavioural equivalences
(such as [18]) can be abstractly described in terms of final sequences.

In this section, we describe the relationship between the forward algorithm (in Proposition 6) and the final se-
quence of the functorL. The latter is the cochain

1
!
←− L1

L!
←− L21

L
2!
←− . . .

whereLn+11 isL ◦ (Ln1), L01 = 1 is the final vector space{0}, and! is the unique morphism fromL1 to 1.
Let A∗

n be the set of all wordsw ∈ A∗ with lengthsmaller thann. For eachn, Ln1 is isomorphic toKA∗

n , i.e.,
the space of functions fromA∗

n to K. Indeed, forn = 1, L1 is by definitionK × 1A = K that is isomorphic to the
space of functions fromA∗

1 = {ǫ} toK; and forn+ 1, each〈k, σ〉 ∈ K× Ln(1)A = Ln+11 can be seen as function
A∗

n+1 → K mappingǫ into k andaw (for a ∈ A andw ∈ A∗
n) into σ(a)(w).

Forσ : A∗
m → K andn ≤ m, then-restrictionof σ is σ ↿ n : A∗

n → K defined asσ, but in a restricted domain.
The morphismLn! : Ln+11→ Ln1 maps eachσ into σ ↿ n.

The limit of this cochain isKA∗

together with the mapsζn : KA∗

→ Ln1 that assign to each weighted language
σ its n-restrictionσ ↿ n.

KA∗

ζ2




ζ1
��

ζ0
��
1 L1

!oo L21
L!oo . . .L

2!oo

EveryL-coalgebra(V, 〈o, t〉) determines a cone!n : V → Ln1 as follows:

• !0 : V → 1 is the unique morphism to the final vector space1,
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• !n+1 : V → Ln+11 = L(!n) ◦ 〈o, t〉.

The latter can be more concretely defined for allv ∈ V andw ∈ K
A∗

n+1 as

!n+1(v)(w) =

{

o(v), if w = ǫ;
!n(t(v)(a))(w′), if w = aw′.

Note that the final morphism[[−]]LV : V → KA∗

(mapping eachv ∈ V in the language that it recognizes) is the
unique function such that for alln, ζn ◦ [[−]]LV =!n.

KA∗

ζ2




ζ1
��

ζ0
��
1 L1

!oo L21
L!oo . . .L

2!oo

V

[[−]]LV

OO

!2

TT
!1

VV
!0

WW

Recall that theL-behavioural equivalence on(V, 〈o, t〉) is the kernel of[[−]]LV . The forward algorithm computes
it, by iteratively computing the kernel of the morphisms!n.

Proposition 7 Let (V, 〈o, t〉) be aLWA . LetRn be the relation computed by the forward algorithm (Proposition 6).
Let !n : V → Ln1 be the morphisms described above. Then for all natural numbers n,Rn = ker(!n+1).

PROOF. First of all, note that the kernel of!0 : V → 1 is the wholeV . The kernel of!n+1 is the space ofv ∈ V such
that!n+1(v)(w) = 0 for all the wordsw ∈ A∗

n+1, i.e.,

ker(!n+1) = {v ∈ V | o(v) = 0 and∀a ∈ A, t(v)(a) ∈ ker(!n)}.

By induction onn, we prove thatker(!n+1) = Rn.
For n = 0, note thatker(!1) = {v ∈ V | o(v) = 0 and∀a ∈ A, t(v)(a) ∈ ker(!0)}. Sinceker(!0) = V ,

ker(!1) = {v ∈ V | o(v) = 0} = R0.
As induction hypothesis suppose thatker(!n) = Rn−1. Thenker(!n+1) = {v ∈ V | o(v) = 0 and∀a ∈

A, t(v)(a) ∈ Rn−1} = Rn.

This result can be seen as an alternative proof of the soundness of the forward algorithm. Indeed, ifRj is the result
of the algorithm, for allk ≥ j, Rk = Rj , i.e.,ker(!k) = ker(!j). ThusRj =

⋂

n ker(!
n) and, by definition of!n,

⋂

n ker(!
n) = ker([[−]]LV ).

5. Weighted languages and rationality

We recall from Section 3 that a linear weighted automaton (LWA ) is a coalgebra for the functorL = K×−A, i.e., it
consists of a vector spaceV and a linear map〈o, t〉:V → K×V A. We saw in Theorem 2 that the final homomorphism

[[−]]LV :V → K
A∗

maps every vectorv ∈ V to the weighted language[[v]]LV that is accepted byv. Moreover, the kernel of this morphism
is weighted language equivalence (≈L) that, whenV is finite dimension, can be computed via the linear partition
refinement algorithm (shown in Section 4).

The languages inKA∗

that are accepted byLWA with finite dimension states spaces are calledrational weighted
languages (which are also known as rational formal power series) and they can be syntactically represented by a
language of expressions [28].

In this section, we shall directly characterise[[−]]LV by showing the expression of[[v]]LV for eachv ∈ V (Theorem
5). Then we shall employ this characterization for computing≈L.

We will first treat the special case ofLWA ’s over a one letter alphabet|A| = 1. Next we will show how to treat the
general case of an arbitrary (finite) alphabet.
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We note that for the case of|A| = 1, the functorL is isomorphic to

L(V ) = K× V A ∼= K× V

Moreover, the finalL-coalgebra is isomorphic to the set of streams over the fieldK:

K
A∗ ∼= K

ω

Therefore we shall proceed by recalling from [30] the basicsof stream calculus and linear stream differential equa-
tions, in Subsections 5.1 and 5.2. Next we shall characterise the final homomorphism, for the case|A| = 1, in
Subsection 5.3. Building on [28], we shall finally generalise these results for finite alphabets, in Subsection 5.4.

5.1. Recalling the basics of stream calculus
We define the set ofstreamsover the fieldK by

K
ω = {σ | σ:N→ K}

(whereN is the set of natural numbers).
We often denote elementsσ ∈ Kω by σ = (σ(0), σ(1), σ(2), . . .). We define thestream derivativeof a streamσ

by σ′ = (σ(1), σ(2), σ(3), . . .), and theinitial valueof σ by σ(0).
Fork ∈ K, we define the constant stream

[k] = (k, 0, 0, 0, . . .)

which we often denote again byk. Another constant stream is

X = (0, 1, 0, 0, 0, . . .)

Forσ, τ ∈ Kω andn ∈ ω, the operations ofsumand (convolution)productare given by

(σ + τ)(n) = σ(n) + τ(n) , (σ × τ)(n) =
n
∑

i=0

σ(i) · τ(n− i)

(where, as usual· denotes product ofK).
We call a streamπ ∈ Kω polynomialif there aren ≥ 0 andai ∈ K such that

π = a0 + a1X+ a2X
2 + · · ·+ anX

n = (a0, a1, a2, . . . , an, 0, 0, 0, . . .)

where we writeaiXi for [ai]× Xi with Xi thei-fold product ofX with itself.
A streamσ with σ(0) 6= 0 has a (unique) multiplicative inverseσ−1 in Kω, satisfying

σ−1 × σ = [1]

As usual, we shall often write1/σ for σ−1 andσ/τ for σ × τ−1. Note that the initial value of the sum, product and
inverse of streams is given by the sum, product and inverse oftheir initial values.

We call a streamρ ∈ Kω rational if it is the quotientρ = σ/τ of two polynomial streamsσ andτ with τ(0) 6= 0.
One can compute a stream from its initial value and derivative by the so-calledfundamental theoremof stream

calculus [29]: for allσ ∈ Kω,

σ = σ(0) + (X× σ′) (4)

(writing σ(0) for [σ(0)]).
The fundamental theorem of stream calculus allows us to solvestream differential equationssuch as

σ′ = 3× σ , σ(0) = 1

by computingσ = σ(0) + (X × σ′) = 1 + (X × 3× σ), which leads to the solution

σ = 1/(1− 3X) = (1, 3, 32, 33, . . .)
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5.2. Solving linear systems of stream differential equations

Using some elementary linear algebra notation (matrices and vectors), we next show how to solvelinear systems
of stream differential equations. For notational convenience, we shall deal with linear systems of dimension 2, which
can be straightforwardly generalised to systems of higher dimensions. They are given by the following data:

(

σ
τ

)′

= M ×

(

σ
τ

) (

σ
τ

)

(0) = N (5)

whereM is a2× 2-matrix andN is a1× 2-matrix overK:

M =

(

m11 m12

m21 m22

)

N =

(

n1

n2

)

for mij , ni ∈ K. The above notation is really just a short hand for the following system of two stream differential
equations:

σ′ = (m11 × σ) + (m12 × τ) σ(0) = n1

τ ′ = (m21 × σ) + (m22 × τ) τ(0) = n2

We can solve such a system of equations by using twice the fundamental theorem of stream calculus (equation (4)
above), once forσ and once forτ :

σ = σ(0) + (X× σ′)

τ = τ(0) + (X × τ ′)

In matrix notation, the fundamental theorem looks like

(

σ
τ

)

=

(

σ
τ

)

(0) + X×

(

σ
τ

)′

Next we can solve our linear system (5) above by happily calculating as follows:

(

σ
τ

)

=

(

σ
τ

)

(0) + X×

(

σ
τ

)′

= N + X×M ×

(

σ
τ

)

This leads to

(I − (X×M))

(

σ
τ

)

= N

whereI andX×M are given by

I =

(

1 0
0 1

)

X×M =

(

m11 × X m12 × X

m21 × X m22 × X

)

Finally, we can express the unique solution of our linear system of stream differential equations as follows:
(

σ
τ

)

= (I − (X×M))−1 × N

The advantage of the matrix notations above now becomes clear: we can compute the inverse of the matrix

(I − (X ×M)) =

(

1− (m11 × X) −(m12 × X)
−(m21 × X) 1− (m22 × X)

)

whose values are simple polynomial streams, by standard linear algebra.
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Let us look at an example. For

M =

(

0 1
−1 2

)

N =

(

1
2

)

our linear system of stream differential equations (5) has the following solution:
(

σ
τ

)

= (I − (X×M))−1 × N

=

(

1 −X
X 1− 2X

)−1

×

(

1
2

)

=

(

1−2X
(1−X)2

X

(1−X)2
−X

(1−X)2
1

(1−X)2

)

×

(

1
2

)

=

(

1
(1−X)2
2−X

(1−X)2

)

We note that the solutions of linear systems of stream differential equations always consist of rational streams.

5.3. Characterising the final morphism:|A| = 1

It is easy to see that when|A| = 1, the final coalgebra for the functorL is (Kω, 〈(−)(0), (−)′〉) where
(−)(0):Kω → K and(−)′:Kω → Kω map each streamσ in its initial valueσ(0) and in its stream derivativeσ′.
Let (K2, 〈o, t〉) be aLWA , with linear mapso:K2 → K andt:K2 → K2 that are represented by a1× 2-matrixO and
by a2× 2-matrixT . We will now show how the final homomorphism

K2

〈o,t〉

��

[[−]]L
K2 // Kω

〈(−)(0),(−)′〉

��
K×K2

idK×[[−]]L
K2

// K ×Kω

can be characterised in terms of rational streams. To this end, we define

σ = [[

(

1
0

)

]]L
K2 τ = [[

(

0
1

)

]]L
K2

It follows from the commutativity of the diagram above that

σ′ = [[(T

(

1
0

)

)]]L
K2 σ(0) = O

(

1
0

)

τ ′ = [[(T

(

0
1

)

)]]L
K2 τ(0) = O

(

0
1

)

and this can be concisely expressed by the following system:
(

σ
τ

)′

= tT ×

(

σ
τ

) (

σ
τ

)

(0) = tO

(where the superscriptt indicates matrix transpose). These identities presentσ andτ as the solution of a linear system
of stream differential equations. By the results from Subsection 5.2, it follows that

(

σ
τ

)

= (I − (X× tT ))−1 × tO
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which leads to the following general formula for[[−]]L
K2 :

[[

(

k1
k2

)

]]L
K2 =

(

k1 k2
)

× (I − (X× tT ))−1 × tO

For instance, if

T =

(

0 −1
1 2

)

O =
(

1 2
)

we find, using the example withM andN from Subsection 5.2, that

[[

(

k1
k2

)

]]L
K2 =

(

k1 k2
)

× (I − (X× T t))−1 × Ot

=
(

k1 k2
)

× (I − (X×M))−1 × N

=
(

k1 k2
)

×

(

1
(1−X)2
2−X

(1−X)2

)

=
(k1 + 2k2)− k2X

(1− X)2

Note that the above expression fully characterizes[[−]]L
K2 , in the sense that it maps eachv ∈ K2 in the corresponding

rational stream.

Computing≈L. We can employ the above characterization in order to compute≈L on (K2, 〈o, t〉). We use the fact
that the final homomorphism identifies precisely all equivalent states:

(

x1
x2

)

≈L

(

y1
y2

)

⇐⇒ [[

(

x1
x2

)

]]L
K2 = [[

(

y1
y2

)

]]L
K2

⇐⇒ [[

(

x1 − y1
x2 − y2

)

]]L
K2 = 0

where the0 on the right is the stream[0] = (0, 0, 0, . . .). The kernel of the final homomorphism can now be computed
using our characterisation above: for allk1, k2 ∈ K,

[[

(

k1
k2

)

]]L
K2 = 0 ⇐⇒

(k1 + 2k2)− k2X

(1− X)2
= 0

⇐⇒ (k1 + 2k2)− k2X = 0

⇐⇒ k1 = 0 and k2 = 0

As a consequence, we find, for the present example:
(

x1
x2

)

≈L

(

y1
y2

)

⇐⇒

(

x1
x2

)

=

(

y1
y2

)

5.4. Rational weighted languages

All the results presented above allow to characterize the final homomorphism for weighted automata over an
alphabet with a single letter. These results can be generalized in order to deal with alphabets of size greater than one.

LetA be an arbitrary finite alphabet. Recall from Section 3.3 thatthe finalL-coalgebra is(KA∗

, 〈ǫ, d〉) where for
all σ ∈ KA∗

anda ∈ A,
ǫ(σ) = σ(ǫ) d(σ)(a) = σa

andσa denotes thea-derivatives of the languageσ.
The calculus presented in the previous section for one-variable power series (streams) can be generalized for

multiple variable series [28], which we will recall next.
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There are unique operators on series satisfying the following equations. For allk ∈ K, a, b ∈ A andσ, τ ∈ KA∗

,

Derivative Initial Value Name
ka = 0 k(ǫ) = k Constant
(Xa)a = 1, (Xa)b = 0 (b 6= a) Xa(ǫ) = 0 Variable
(σ + τ)a = σa + τa (σ + τ)(ǫ) = σ(ǫ) + τ(ǫ) Sum
(σ × τ)a = (σa × τ) + (σ(ǫ) × τa) (σ × τ)(ǫ) = σ(ǫ) × τ(ǫ) Convolution product
(σ−1)a = −(σ(ǫ)−1 × σa)× σ−1 (σ−1)(ǫ) = σ(ǫ)−1, if σ(ǫ) 6= 0 Inverse

A weighted language isrational if it can be constructed from finitely many constantsk ∈ K and variablesXa, by
means of the operators of sum, product, and inverse. Rational languages constitute the class of languages that are
recognized by finite dimensional weighted automata.

As for streams, one can compute a series from its initial value and derivatives by the so-called fundamental
theorem [28]. That is, for all weighted languagesσ ∈ KA∗

:

σ = σ(ǫ) +
∑

a∈A

Xa × σa (6)

The fundamental theorem allows us to solve equations, similar to what happened above for streams. As an exam-
ple, takeA = {a, b} (weighted languages over two symbols coincide with infinitebinary trees), and the following
equations

σa = 3× σ, σb = 3× σ, σ(ǫ) = 1

Applying the fundamental theorem we reason as follows:

σ = σ(ǫ) + (Xa × σa) + (Xb × σb)

⇔ σ = 1 + (3Xa × σ) + (3Xb × σ)

⇔ (1− 3Xa − 3Xb)σ = 1

which leads to the solutionσ = (1− 3Xa − 3Xb)
−1, the tree depicted in the following picture.

Note that the above language is exactly the one recognized bythe automata in Figure 1. It is also interesting to
remark the strong similarity with streams: the formula for the stream(1, 3, 6, 9, . . .) is (1 − 3X)−1.

Now that we know how to compute the solution of a single equation, moving to systems of equations is precisely
as for streams. Again, for notational convenience, we shallexemplify with linear systems of dimension2. The goal is
to solve

(

σ
τ

)

a

=Ma ×

(

σ
τ

) (

σ
τ

)

(ǫ) = N

where, for eacha ∈ A,Ma is a2× 2-matrix andN is a1× 2-matrix overK.
We now solve this system by calculating as follows (similar to the stream case), now using the fundamental

theorem for weighted languages, given in equation (6):
(

σ
τ

)

=

(

σ
τ

)

(ǫ) +
∑

a∈A

Xa ×

(

σ
τ

)

a

= N +
∑

a∈A

Xa ×Ma ×

(

σ
τ

)
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This leads to
(

I −
∑

a∈A

(Xa ×Ma)

)

(

σ
τ

)

= N

whereI andXa ×Ma are as before.
Finally, we can express the unique solution of our linear system as follows:

(

σ
τ

)

=

(

I −
∑

a∈A

(Xa ×Ma)

)−1

× N

Hence, the only difference with the stream case is that instead of computing the inverse of the matrixI − (X ×M)
one needs to compute the inverse ofI −

∑

a∈A

(Xa ×M).

Some remarks on computing the inverse ofI −
∑

a∈A

(Xa ×M) are now in order. Convolution product on power

series in not commutative as soon asA has more than one element (e.g.,Xa × Xb 6= Xb × Xa). Thus, the matrix
above is a matrix with entries stemming from a non-commutative ring. Traditional methods (Gaussian elimination,
Cramer’s rule, . . . ) to compute the inverse of matrices are not applicable and thus one needs to resort to other (more
complicated) techniques such as quasi-determinants [11] or generalized LDU decomposition [8].

A function to compute the inverse of a matrix with non-commutative entries is provided in theMathematica[22]
packageNCAlgebra [25]. The algorithm implemented in the package is directly base in LDU decomposition [8].
The matrices we show below were all obtained using the aforementioned package.

For instance, forA = {a, b, c}, if

Ma =Mc =

(

2 0
0 0

)

Mb =

(

0 0.5
0 0.5

)

N =
(

1 1
)

then

I − Xa ×Ma − Xb ×Mb − Xc ×Mc =

(

1− 2Xa − 2Xc −0.5Xb

0 1− 0.5Xb

)

and

(I − Xa ×Ma − Xb ×Mb − Xc ×Mc)
−1 =

(

1
1−2Xa−2Xc

0.5 1
1−2Xa−2Xc

Xb
1

1−0.5Xb

0 1− 0.5Xb

)

The final homomorphism[[−]]L
K2 is represented in the following diagram

K2

〈o,t〉

��

[[−]]L
K2 //

KA∗

〈ǫ,d〉

��
K×K2A

idK×[[−]]L
K2A

//
K×K

A∗

where, as usual,o andt = {ta:K2 → K2}a∈A are linear mappings represented by the1 × 2-row vectorO and the
2× 2-matrixesTa, respectively.

We will show how the final homomorphism[[−]]L
K2 can be characterized in terms of rational weighted languages.

To this end, we again define

σ = [[

(

1
0

)

]]L
K2 τ = [[

(

0
1

)

]]L
K2

It follows from the commutativity of the diagram above that

σa = [[(Ta

(

1
0

)

)]]L
K2 σ(ǫ) = O

(

1
0

)
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τa = [[(Ta

(

0
1

)

)]]L
K2 τ(ǫ) = O

(

0
1

)

and this can be concisely expressed by the following system:
(

σ
τ

)

a

= tTa ×

(

σ
τ

) (

σ
τ

)

(ǫ) = tO

It then follows that
(

σ
τ

)

= (I −

(

∑

a∈A

Xa ×
tTa

)

)−1 × tO

which leads to the following general formula for[[−]]L
K2 :

[[

(

k1
k2

)

]]L
K2 =

(

k1 k2
)

× (I −

(

∑

a∈A

Xa ×
tTa

)

)−1 × tO

For instance, forA = {a, b, c} and

Ta = Tc =

(

2 0
0 0

)

Tb =

(

0 0
0.5 0.5

)

O =
(

1 1
)

we find, using the example above, that

[[

(

k1
k2

)

]]L
K2 =

(

k1 k2
)

×

(

∑

a∈A

Xa × Ta
t

)−1

× Ot

=
(

k1 k2
)

×

(

∑

a∈A

Xa × Ta

)−1

× N

=
(

k1 k2
)

×

( 1
1−2Xa−2Xc

+ 0.5 1
1−2Xa−2Xc

Xb
1

1−0.5Xb
1

(1−0.5Xb)

)

=
k1

1− 2Xa − 2Xc
+ 0.5k1

1

1− 2Xa − 2Xc
Xb

1

1− 0.5Xb
+

k2
(1 − 0.5Xb)

By generalizing the above arguments fromK2 to any finite dimesion vector space, we obtain the following theo-
rem.

Theorem 5 Let (V, 〈o, t〉) be a linear weighted automata withV finite dimension. Then, for allv ∈ V

[[v]]LV = tv × (I −

(

∑

a∈A

Xa ×
tTa

)

)−1 × tO

For an example with a three dimensional state space, we consider theLWA corresponding to the automaton
(V, 〈o, t〉) in Fig. 5.
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[[





k1
k2
k3



]]LV =
(

k1 k2 k3
)

× (I −

(

∑

a∈A

Xa ×
tTa

)

)−1 × tO

=
(

k1 k2 k3
)

× (I −







Xa + Xb 0 0

Xa

3 0 Xb

3

Xa 3Xb 0






)−1 ×





2
1
1





=
(

k1 k2 k3
)

×







1− Xa − Xb 0 0

−Xa

3 1 −Xb

3

−Xa −3Xb 1







−1

×





2
1
1





The inverse of the matrix in the middle is

M =









1
1−Xa−Xb

0 0

(13 + Xb

3
1

1−X2
b

(Xb + 1))Xa
1

1−Xa−Xb
1 + Xb

1
1−X2

b

Xb
Xb

3
1

1−X2
b

( 1
1−X2

b

)(Xa + XbXa)
1

1−Xa−Xb
3 1
1−X2

b

Xb
1

1−X2
b









and

M ×





2
1
1



 =









2
1−Xa−Xb

(13 + Xb

3
1

1−X2
b

(Xb + 1))Xa
2

1−Xa−Xb
+ 1 + Xb

1
1−X2

b

Xb +
Xb

3
1

1−X2
b

( 1
1−X2

b

)(Xa + XbXa)
2

1−Xa−Xb
+ 3 1

1−X2
b

Xb +
1

1−X2
b









=





ρ1
ρ2
ρ3





Summarizing

[[





k1
k2
k3



]]LV =
(

k1 k2 k3
)

×





ρ1
ρ2
ρ3



 (7)

Note that the above expression fully characterizes[[−]]LV , in the sense that it maps eachv ∈ V in the rational weighted
lanuage that it accepts.

Computing≈L. Now, we have a rational expressionσ = k1ρ1+k2ρ2+k3ρ3 characterizing the final homomorphism
and we would like to calculate for which values ofk1, k2 andk3 this expression equals0. As we have shown before,
when|A| = 1, this can be done by syntactically manipulating the rational expression in a standard way. In the general
case, because of the non commutativity of the convolution product, this is not trivial at all.

Here, we choose to adopt the following approach: first we compute “some” derivativesσa, σb, σaa, σab . . . and
then we check for wichk1, k2 andk3 the initial valuesσ(ǫ), σa(ǫ), σb(ǫ), σaa(ǫ), σab(ǫ) . . . are equal to0. The
following lemma (proved in [5, 28]) ensures that we have to compute only finitely many derivatives.

Lemma 5 Rational weighted languages have finitely many linearly independent derivatives.

In our example, we start by taking the initial value of the expressionσ itself obtainingσ(ǫ) = 2k1 + k2 + k3.
Then we take thea andb derivatives which give, respectively, the expressions

σa = k1(ρ1)a + k2(ρ2)a + k3(ρ3)a (8)




ρ1
ρ2
ρ3





a

=





2
1−Xa−Xb
1
3

2
1−Xa−Xb

2
1−Xa−Xb




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and

σb = k1(ρ1)b + k2(ρ2)b + k3(ρ3)b











ρ1

ρ2

ρ3











b

=











2
1−Xa−Xb

(13
1

1−X2
b

(Xb + 1))Xa
2

1−Xa−Xb
+ 1

1−X2
b

Xb +
1
3

1
1−X2

b

Xb(
1

1−X2
b

)(Xa + XbXa)
2

1−Xa−Xb
+ Xa

1
1−Xa−Xb

+ 3Xb
1

1−X2
b

Xb + 3 + Xb
1

1−X2
b











which have initial valuesσa(ǫ) = 2k1 +
2
3k2 + 2k3 andσb(ǫ) = 2k1 +

1
3k2 + 3k3.

Now, note that thea derivative, that is the rational expression (8), will now always generate the same derivatives
for a andb (since the derivatives of 2

1−Xa−Xb
are the expression itself again; intuitively, this expression represents

an infinite binary tree with 2’s in every node and hence has left and right subtrees equal to the whole tree). For theb
derivative, we take another level of derivatives and obtain, respectively,

σba = k1(ρ1)ba + k2(ρ2)ba + k3(ρ3)ba





ρ1
ρ2
ρ3





ba

=





2
1−Xa−Xb
1
3

2
1−Xa−Xb

2
1−Xa−Xb



 =





ρ1
ρ2
ρ3





a

and

σbb = k1(ρ1)bb + k2(ρ2)bb + k3(ρ3)bb











ρ1

ρ2

ρ3











bb

=











2
1−Xa−Xb

(13Xb
1

1−X2
b

(Xb + 1) + 1
3 )Xa

2
1−Xa−Xb

+ Xb
1

1−X2
b

Xb + 1 + 1
3Xb

1
1−X2

b

( 1
1−X2

b

)(Xa + XbXa)
2

1−Xa−Xb
+ 3 1

1−X2
b

Xb +
1

1−X2
b











=











ρ1

ρ2

ρ3











Thea-derivative coincides with (8) and theb derivative coincides with the original expressionσ. Therefore, we have
found the the system of equations we need to solve:







σ(ǫ) = 0
σa(ǫ) = 0
σb(ǫ) = 0

⇔







2k1 + k2 + k3 = 0
2k1 +

2
3k2 + 2k3 = 0

2k1 +
1
3k2 + 3k3 = 0

Solving it yieldsk1 = −2k3 andk2 = 3k3. Hence, the kernel of the final homomorphism is the space spanned by the
vector





−2
3
1





which coincides with what was computed by the forward algorithm in Section 4.1.
This example also shows that this procedure is in general notmore efficient then the forward algorithm. Indeed,

the three equations of the above system coincide with the spaces computed by the forward algorithm: the space (of
solutions) ofσ(ǫ) = 0 is the space spanned byB0 (in Section 4.1), the space ofσa(ǫ) = 0 is the one spanned byBa

1 ,
and the spaceσa(ǫ) = 0 is the one spanned byBa

2 .

6. Discussion

In this paper we proposed a novel coalgebraic perspective onweighted automata and their behavioural equiva-
lences. Weighted automata areW-coalgebras, for a functorW onSet, but they can be regarded also as linear weighted
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automata, that areL-coalgebras for a functorL onV ect. The behavioural equivalence induced byW coincides with
weighted bisimilarity, while the equivalence induced byL (≈L) with weighted language equivalence.

Weighted languages (i.e. formal power series) form the vectors spacesKA∗

that carries the finalL-coalgebra: for
each linear weighted automata(V, 〈o, t〉), the uniqueL-morphism[[−]]LV into the final coalgebra maps each vector
v ∈ V into the weighted language inKA∗

thatv accepts. The unique morphism[[−]]LV is a linear map and its kernel
coincides with≈L that, whenV is finite dimension, can be computed in three different ways.It is important to remark
here that the linearity of[[−]]LV is key ingredient (in all the three approaches) to finitely compute the equivalence on an
infinite state space.

Theorem 5 provides an explicit characterization of[[−]]LV by assigning a syntactic expression denoting a rational
weighted language to each vectorv ∈ V . This characterization can be employed for computing≈L but, in general
terms, it seems to be inconvenient to be implemented in an automatic prover. The backward algorithm, instead, is very
efficient but its presentation is a bit complex since it requires dual spaces and transpose maps. The forward algorithm
is easier to explain and we have shown it is closely related tothe construction of the final coalgebra.

As a future work, we would like to extend these results to automata with weights on a semiringS (instead of field
K). The coalgebraic characterization of weighted bisimilarity can be easily obtained by employing asemiring evalu-
ation functorinstead of the field evaluation functor (Definition 2). For weighted language equivalence on semirings,
we should define the functorL on the category ofsemimodules, instead ofV ect. The forward algorithm could be
extended (by exploiting its relationship with the construction of final coalgebras) in a rather straightforward way, but
the convergence in a finite numbers of iterations might be notguaranteed. The other two approaches strongly rely
on the properties of fields and vector spaces (such as the existence of the inverse multiplicative or the dual space).
Therefore, it seems challenging to extend them to the case ofa generic semiringS. If S is a semifield however, then all
elements have a multiplicative inverse. An important example of semifield in this context is the tropical semiring [15].
Further, whenS is a commutative ring, annihilators and transpose maps can be generalized as operations carried out
within the dual module (i.e. linear maps from anS-module toS, seen as a module) [26]. We leave these extensions as
future work.
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[3] Christel Baier, Marcus Größer, and Frank Ciesinski.Handbook of Weighted Automata, chapter Model Checking Linear-Time Properties of

Probabilistic Systems, pages 213–250. Monographs in Theoretical Computer Science. Springer, 2009.
[4] Michael Barr. Terminal coalgebras in well-founded set theory.Theor. Comput. Sci., 114(2):299–315, 1993.
[5] Jean Berstel and Christophe Reutenauer.Rational Series and Their Languages. Springer-Verlag, 1988.
[6] Michele Boreale. Weighted bisimulation in linear algebraic form. In In Proc. of International Conference on the Theory of Concurrency

(CONCUR), 2009, volume 5710 ofLecture Notes in Computer Science, pages 163–177, 2009.
[7] Peter Buchholz. Bisimulation relations for weighted automata.Theor. Comput. Sci., 393(1-3):109–123, 2008.
[8] Juan Francisco Camino, J. William Helton, and Robert E. Skelton. A symbolic algorithm for determining convexity of amatrix function:

How to get schur complements out of your life. InProceedings of the 39th IEEE Conference on Decision and Control, 2000.
[9] Manfred Droste and Paul Gastin. Weighted automata and weighted logics. In Luı́s Caires, Giuseppe F. Italiano, Luı́sMonteiro, Catuscia

Palamidessi, and Moti Yung, editors,ICALP, volume 3580 ofLecture Notes in Computer Science, pages 513–525. Springer, 2005.
[10] Peter Freyd.Abelian categories. Harper and Row, 1964.
[11] Israel Gelfand, Sergei Gelfand, Vladimir Retakh, and Robert Lee Wilson. Quasideterminants.Advances in Mathematics, 193(1):56 – 141,

2005.
[12] H. Peter Gumm. Copower functors.Theor. Comput. Sci., 410(12-13):1129–1142, 2009.
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