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MULTIFRACTAL ANALYSIS OF THE DIVERGENCE OF FOURIER SERIES

A famous theorem of Carleson says that, given any function f ∈ L p (T), p ∈ (1, +∞), its Fourier series (Snf (x)) converges for almost every x ∈ T. Beside this property, the series may diverge at some point, without exceeding O(n 1/p ). We define the divergence index at x as the infimum of the positive real numbers β such that Snf (x) = O(n β ) and we are interested in the size of the exceptional sets E β , namely the sets of x ∈ T with divergence index equal to β. We show that quasi-all functions in L p (T) have a multifractal behavior with respect to this definition. Precisely, for quasi-all functions in L p (T), for all β ∈ [0, 1/p], E β has Hausdorff dimension equal to 1 -βp. We also investigate the same problem in C(T), replacing polynomial divergence by logarithmic divergence. In this context, the results that we get on the size of the exceptional sets are rather surprizing.

1. Introduction 1.1. Description of the results. The famous theorem of Carleson and Hunt asserts that, when f belongs to L p (T), 1 < p < +∞, where T = R/Z, the sequence of the partial sums of its Fourier series (S n f (x)) n≥0 converges for almost every x ∈ T. On the other hand, it can diverge at some point. This divergence cannot be too fast since, for any f ∈ L p (T) and any x ∈ T, |S n f (x)| ≤ C p n 1/p f p (see [START_REF] Zygmund | Trigonometric series[END_REF] for instance). In view of these results, a natural question arises. How big can be the sets F such that |S n f (x)| grows as fast as possible for every x ∈ F ? More generally, can we say something on the size of the sets such that |S n f (x)| behaves like (or as bad as) n β for some β ∈ (0, 1/p]?

To measure the size of subsets of T, we shall use the Hausdorff dimension. Let us recall the relevant definitions (we refer to [START_REF] Falconer | Fractal geometry: Mathematical foundations and applications[END_REF] and to [START_REF] Mattila | Geometry of Sets and Measures in Euclidian Spaces[END_REF] for more on this subject). If φ : R + → R + is a nondecreasing continuous function satisfying φ(0) = 0 (φ is called a dimension function or a jauge function), the φ-Hausdorff outer measure of a set E ⊂ R d is

H φ (E) = lim ε→0 inf r∈Rε(E) B∈r φ(|B|),
R ε (E) being the set of countable coverings of E with balls B of diameter |B| ≤ ε. When φ s (x) = x s , we write for short H s instead of H φs . The Hausdorff dimension of a set E is dim H (E) := sup{s > 0; H s (E) > 0} = inf{s > 0; H s (E) = 0}.

The first result studying the Hausdorff dimension of the divergence sets of Fourier series is due to J-M. Aubry [START_REF] Aubry | On the rate of pointwise divergence of Fourier and wavelet series in L p[END_REF].

Date: March 15, 2011.

Theorem 1.1. Let f ∈ L p (T), 1 < p < +∞. For β ≥ 0, define

E(β, f ) = x ∈ T; lim sup n→+∞ n -β |S n f (x)| > 0 .
Then dim H E(β, f ) ≤ 1βp. Conversely, given a set E such that dim H (E) < 1βp, there exists a function f ∈ L p (T) such that, for any x ∈ E, lim sup

n→+∞ n -β |S n f (x)| = +∞.
This result motivated us to introduce the notion of divergence index. For a given function f ∈ L p (T) and a given point x 0 ∈ T, we can define the real number β(x 0 ) as the infimum of the non negative real numbers β such that |S n f (x 0 )| = O(n β ). The real number β(x 0 ) will be called the divergence index of the Fourier series of f at point x 0 . Of course, for any function f ∈ L p (T) (1 < p < +∞) and any point x 0 ∈ T, 0 ≤ β(x 0 ) ≤ 1/p. Moreover, Carleson's theorem implies that β(x 0 ) = 0 almost surely and we would like to have precise estimates on the size of the level sets of the function β. These are defined as

E(β, f ) = {x ∈ T; β(x) = β} = x ∈ T; lim sup n→+∞ log |S n f (x)| log n = β .
We can ask for which values of β the sets E(β, f ) are non-empty. This set of values will be called the domain of definition of the spectrum of singularities of f . If β belongs to the domain of definition of the spectrum of singularities, it is also interesting to estimate the Hausdorff dimension of the sets E(β, f ). The function β → dim H (E(β, f )) will be called the spectrum of singularities of the function f (in terms of its Fourier series). By Aubry's result, dim H (E(β, f )) ≤ 1βp and, for any fixed β 0 ∈ [0, 1/p), for any ε > 0, one can find f ∈ L p (T) such that dim H

β 0 ≤β≤1/p E(β, f ) ≥ 1 -β 0 p -ε. Our first main result is that a typical function f ∈ L p (T) satisfies dim H (E(β, f )) = 1 -βp for any β ∈ [0, 1/p].
In particular, f has a multifractal behavior with respect to the summation of its Fourier series, meaning that the domain of definition of its spectrum of singularities contains an interval with non-empty interior.

Theorem 1.2. Let 1 < p < +∞. For quasi-all functions f ∈ L p (T), for any β ∈ [0, 1/p], dim H E(β, f ) = 1 -βp.
The terminology "quasi-all" used here is relative to the Baire category theorem. It means that this property is true for a residual set of functions in L p (T).

In a second part of the paper, we turn to the case of C(T), the set of continuous functions on T. In that space, the divergence of Fourier series is controlled by a logarithmic factor. More precisely, if (D n ) is the sequence of the Dirichlet kernels, we know that S n f ∞ ≤ D n 1 f ∞ , so that there exists some absolute constant C > 0 such that S n f ∞ ≤ C f ∞ log n for any f ∈ C(T) and any n > 1. As before, one can discuss the size of the sets such that |S n f (x)| behaves badly, namely like (log n) β , β ∈ [0, 1]. More precisely, mimicking the case of the L p spaces, we introduce, for any β ∈ [0, 1] and any f ∈ C(T), the following sets:

F(β, f ) = x ∈ T; lim sup n→+∞ (log n) -β |S n f (x)| > 0 F (β, f ) = x ∈ T; lim sup n→+∞ log |S n f (x)| log log n = β .
Theorem 1.1 indicates that, on L p (T), |S n f (x)| can grow as fast as possible (namely like n 1/p ) only on small sets: for every function f ∈ L p (T), dim H (E(1/p, f )) = 0. This property dramatically breaks down on C(T), as the following result indicates.

Theorem 1.3. For quasi-all functions f ∈ C(T), dim H F (1, f ) = 1.
Thus, for quasi-all functions f ∈ C(T), the partial sums (S n f (x)) n≥0 grow as fast as possible on big sets. We can also study the domain of the spectrum of singularities of f , namely the values of β such that F (β, f ) is non-empty. Like in the case of the space L p (T), this domain is for quasi-all functions of C(T) an interval with non-empty interior, so that a typical function f in C(T) has a multifractral behavior with respect to the summation of its Fourier series. However, the spectrum of singularities is constant! Theorem 1.4. For quasi-all functions f ∈ C(T), for any β ∈ [0, 1], F (β, f ) is non-empty and has Hausdorff dimension 1.

Theorem 1.4 indicates that the Hausdorff dimension is not precise enough to measure the size of the level sets F (β, f ). This leads us to introduce a notion of precised Hausdorff dimension, in order to distinguish more finely sets which have the same Hausdorff dimension. For s > 0 and t ∈ (0, 1], we consider

φ s,t (x) = x s exp (log 1/x) 1-t . Definition 1.5. Let E ⊂ R d . We say that E has precised Hausdorff dimension (α, β) if α is the Hausdorff dimension of E and • β = 0 if H φα,t (E) = 0 for every t ∈ (0, 1); • β = sup t ∈ (0, 1); H φα,t (E) > 0 otherwise. It is not difficult to check that φ s,t (x) ≤ φ s ′ ,t ′ (x) for small values of x iff s > s ′ or (s = s ′ and t ≥ t ′ ).
Thus the precised Hausdorff dimension is a refinement of the Hausdorff dimension. In particular it is a tool to classify sets that have the same Hausdorff dimension. The natural order for the precised dimension (s, t) is the lexicographical order which will be denoted by ≺. With respect to this order, we can say that the greater is the set, the greater is the precised dimension. Moreover, if (s, t) ≺ (s ′ , t ′ ) and (s, t) = (s ′ , t ′ ), then φ s ′ ,t ′ ≪ φ s,t . It follows that H φ s ′ ,t ′ (E) = 0 as soon as H φs,t (E) < ∞.

Our main theorem on C(T), which contains both Theorems 1.3 and 1.4, is the following:

Theorem 1.6. For quasi-all functions f ∈ C(T), for any β ∈ [0, 1], the precised Hausdorff dimension of

F (β, f ) is (1, 1 -β).
The paper is organized as follows. In the remaining part of this section, we introduce tools which will be needed during the rest of the paper. In Section 2, we prove Theorem 1.2 whereas in Section 3, we prove Theorem 1.6.

1.2.

A precised version of Fejér's theorem. Working on Fourier series, we will need results on approximation by trigonometric polynomials. Let k ∈ Z and e k : t → e 2πikt , so that, for any g ∈ L 1 (T) and any n ∈ N,

S n g : t → n k=-n
g, e k e k (t).

Let σ n g be the n-th Fejér sum of g,

σ n g : t → 1 n n-1 k=0 S k g(t).
σ n g is obtained by taking the convolution of g with the Fejér kernel

F n : t → 1 n sin(nπt) sin(πt) 2 .
If g belongs to C(T), (σ n g) n≥1 converges uniformly to g. For our purpose, we need to estimate how quick is the convergence. This is the content of the next lemma (part (1) rectifies a mistake in the proof of Lemma 12 in [START_REF] Aubry | On the rate of pointwise divergence of Fourier and wavelet series in L p[END_REF] and requires to replace θ ∞ /4 in Aubry's version by θ ∞ /2).

Lemma 1.7. Let θ be a Lipschitz function on T, let n ∈ N and let x ∈ T. Suppose that θ ′ ∞ ≤ n and that θ(x) = 0. Then the two following inequalities hold:

|σ n θ(x)| ≤ 1 4 + 1 2 θ ∞ for any n ≥ 8 (1)
|σ n θ(x)| ≤ 4 + 1 4 θ ∞ for any n ≥ 4. (2)
Proof. We may assume that x = 0. Hence, σ n θ(0) = 1/2 -1/2 θ(y)F n (y) dy. Let us consider δ ∈ (0, 2] and n ≥ 4. On the one hand, for any y ∈ [0, 1/2),

0 ≤ F n (y) = sin 2 (nπy) n sin 2 (πy) ≤ 1 n(2y) 2 so that δ/n<|y|≤1/2 θ(y)F n (y) dy ≤ 1 2n θ ∞ +∞ δ/n dy y 2 = θ ∞ 2δ .
On the other hand, Using the convexity inequality sin n n+1 πy ≥ n n+1 sin(πy) and a change of variables, we see that (u n ) is non-increasing. To prove (1), we choose δ = 1 and we observe that u 8 = 0.2496... ≤ 1 4 . To prove (2), we choose δ = 2 and we observe that, since the maximum of

F n is F n (0) = n, |u n | ≤ 2n 2 2/n 0 ydy = 4.
1.3. The mass transference principle. The second main tool that we need in this paper is a method to produce sets with large Hausdorff dimension (Theorem 1.2) or with large precised Hausdorff dimension (Theorem 1.6). An efficient way to do this is to consider ubiquitous systems like this was done in [START_REF] Dodson | Patterson measure and Ubiquity[END_REF][START_REF] Jaffard | On lacunary wavelet series[END_REF]. This was later refined in [START_REF] Beresnevich | A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures[END_REF] to obtain a general mass transference principle, which we recall in the form that we need.

Theorem 1.8 (The mass transference principle). Let (x n ) n≥0 be a sequence of points in [0, 1] d and let (r n ) n≥0 be a sequence of positive real numbers decreasing to 0. Let also φ : R + → R + be a dimension function satisfying φ(s) ≫ s d when s goes to 0 and s -d φ is monotonic. Define

E = lim sup n B(x n , r n ) E φ = lim sup n B x n , φ -1 (r d n )
and suppose that almost every point of [0, 1] d (in the sense of the Lebesgue's measure) lies in E. Then, H φ (E φ ) = +∞.

We shall use it in the following situation.

Corollary 1.9. Let (q n ) be a sequence of integers and, for each n ∈ N, each k ≤ q n , let B k,n = B(x k,n , r n ) be a ball with center x k,n ∈ [0, 1] d and with radius r k,n such that lim n→+∞ max k (r k,n ) = 0. Let also φ : R + → R + be a dimension function satisfying φ(s) ≫ s d when s goes to 0 and s -d φ is monotonic. Define

B n = qn k=1 B k,n E = lim sup n B n B φ n = qn k=1 B(x k,n , φ -1 (r d k,n )) E φ = lim sup n B φ n .
Suppose that almost every point of [0, 1] d (in the sense of the Lebesgue's measure) lies in

E. Then, H φ (E φ ) = +∞.
Proof. Reordering the sequences (B k,n ) and (B φ k,n ) as (C j ) and (C φ j ), we can observe that lim sup

n B n = lim sup j C j = E lim sup n B φ n = lim sup j C φ j = E φ .
Thus the corollary follows from a direct application of Theorem 1.8.

Multifractal analysis of the divergence of the Fourier series of functions of L p (T)

In this section, we shall prove Theorem 1.2. Our method, which is inspired by [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF], is divided into two parts. During the first one, we will construct a single function, which we call the saturating function, satisfying the conclusions of Theorem 1.2. During the second one, we will show how to derive a residual set from this single function.

2.1. The saturating function. Our intention is to construct a function g such that |S n g(x)| is big when x is close to a dyadic number. The following definition gives a precise meaning.

Definition 2.1. A real number x is α-approximable by dyadics, α ≥ 1, if there exist two sequence of integers (k n ), (j n ) such that x - k n 2 jn ≤ 1 2 αjn
and (j n ) goes to infinity. The dyadic exponent of x is the supremum of the set of real numbers α such that x is α-approximable by dyadics.

We denote by

D α = {x ∈ [0, 1]; x is α-approximable by dyadics} . It is easy to check that H β (D α ) = 0 for β > 1/α so that dim H (D α ) ≤ 1/α. On the other hand, it is well-known that dim H (D α ) ≥ 1 α .
Let us nevertheless show how this follows from Corollary 1.9. Indeed, D α can be described as a limsup set:

D α = lim sup j→+∞ 2 j -1 k=0 I α k,j
where the I k,j are the dyadic intervals

I k,j = k 2 j - 1 2 j , k 2 j + 1 2 j and I α k,j = k 2 j - 1 2 αj , k 2 j + 1 2 αj . Since 2 j -1 k=0 I k,j ⊃ [0, 1]
, Corollary 1.9 implies that H 1/α (D α ) = +∞. We are going to define g ∈ L p (T) such that the divergence index of g at x depends on the dyadic exponent of x. The greater the dyadic exponent will be, the greater the divergence index of g at x will be. To do this, we will classify the dyadic intervals following their center. Namely, each k/2 j can be uniquely written K/2 J with K / ∈ 2Z and 1 ≤ J ≤ j (such a center comes into play from the J-th generation). Let

I J = {K/2 J ; K / ∈ 2Z, 0 ≤ K ≤ 2 J -1} and I J,j = k 2 j ∈I J I k,j I ′ J,j = k 2 j ∈I J 2I k,j .
Here and elsewhere, when I is an interval and c is a positive real number, cI means the interval with the same center as I and with length c|I|. Observe that, when 1 ≤ J < j, the intervals 2I k,j , k 2 j ∈ I J don't overlap and the set I ′ J,j has measure 2 J-1 2 2-j . Observe also that when J is small with respect to j, the real numbers x in I J,j are well-approximated by dyadics K/2 J , since |x -K/2 J | ≤ 1/2 j . We first define a trigonometric polynomial with L p -norm 1 which is almost constant on each I J,j and which is big on I J,j when J is small. Lemma 2.2. Let j ≥ 1. There exists a trigonometric polynomial g j ∈ L p (T) with spectrum contained in [0, j2 j+1 ) such that • g j p ≤ 1;

• For any 1 ≤ J ≤ j and any x ∈ I J,j , we can find two integers n 1 and n 2 satisfying 0 ≤ n 1 < n 2 < j2 j+1 and such that

|S n 2 g j (x) -S n 1 g j (x)| ≥ 1 4j 2 -(J-j+1)/p .
Proof. We set for any 1 ≤ J ≤ j:

• χ J,j a continuous piecewise linear function equal to 1 on I J,j , equal to 0 outside I ′ J,j , and satisfying 0 ≤ χ J,j ≤ 1 and

χ ′ J,j ∞ ≤ 2 j ; • c J,j = 1 j 2 -(J-j+1)/p (c J,j is big when J is small); • g J,j = e (2J-1)2 j σ 2 j χ J,j .
It is straighforward to observe that the spectrum of g J,j is contained in [n J,j , m J,j ] with

n J,j = (2J -1)2 j -(2 j -1) m J,j = (2J -1)2 j + (2 j -1).
Thus, the spectra of the g J,j , 1 ≤ J ≤ j are disjoint. Moreover, g j,j p = 1 and for 1 ≤ J < j, g J,j p ≤ χ J,j p ≤ 2 (J-j+1)/p . We finally set

g j = j J=1 c J,j g J,j
and we claim that g j is the trigonometric polynomial we are looking for. First of all, the spectrum of g j is included in [n 1,j , m j,j ] which is contained in [0, j2 j+1 ). Moreover, the L p norm of g j is

g j p ≤ j J=1 1 j 2 -(J-j+1)/p g J,j p ≤ 1.
Pick now any x ∈ I J,j , 1 ≤ J ≤ j so that

|S m J,j g j (x) -S n J,j -1 g j (x)| = |c J,j g J,j (x)| = 1 j 2 -(J-j+1)/p |σ 2 j χ J,j (x)|.
Observing that χ J,j (x) = 1 and applying the first point of Lemma 1.7 to 1χ J,j , we find

|σ 2 j χ J,j (x)| ≥ 1 -|σ 2 j (1 -χ J,j (x))| ≥ 1 4 .
Thus,

|S m J,j g j (x) -S n J,j -1 g j (x)| ≥ 1 4j 2 -(J-j+1)/p
and the conclusion follows with n 2 = m J,j and n 1 = n J,j -1.

We are now ready to construct the saturating function. It is defined by

g = j≥1 1 j 2 e j2 j+1 g j .
Observe in particular that the functions e j2 j+1 g j have disjoint spectra (the spectrum of e j2 j+1 g j is contained in [j2 j+1 ; j2 j+2 ) ) and that g belongs to L p (T).

We then show that for any

x ∈ D α , α > 1, lim sup n→+∞ log |S n g(x)| log n ≥ 1 p 1 - 1 α .
Indeed, let x ∈ D α and let ε > 0 with αε > 1. We can find integers K and J with J as large as we want and K / ∈ 2Z such that

x - K 2 J ≤ 1 2 (α-ε/2)J . We set j = [(α -ε/2)J] the integer part of (α -ε/2)J and k such that k/2 j = K/2 J . Hence, x - k 2 j ≤ 1 2 (α-ε/2)J ≤ 1 2 j .
Using Lemma 2.2, we can find two integers n 1 and n 2 satisfying j2 j+1 ≤ n 1 < n 2 < j2 j+2 and such that

|S n 2 g(x) -S n 1 g(x)| = 1 j 2 |S n 2 (e j2 j+1 g j )(x) -S n 1 (e j2 j+1 g j )(x)| ≥ 1 4j 3 2 -(J-j+1)/p ≥ 1 4j 3 2 1 p j-j+1 α-ε/2 -1 ≥ C2 1 p (1-1 α-ε )j . It follows that we can find n ∈ {n 1 , n 2 } such that |S n g(x)| ≥ C 2 2 1 p (1-1 α-ε )j .
Combining the estimates on n and on |S n g(x)|, and since J (hence j, hence n) can be taken as large as we want, we get that lim sup

n→+∞ log |S n g(x)| log n ≥ 1 p 1 - 1 α -ε .
Since ε > 0 is arbitrary, we obtain in fact that for any x ∈ D α , lim sup

n→+∞ log |S n g(x)| log n ≥ 1 p 1 - 1 α .
At this point, it would be nice to get a lower bound for lim sup n→+∞ log |S n g(x)| log n for any x with dyadic exponent equal to α. Unfortunately, this does not seem easy and we will rather conclude by using an argument lying on Hausdorff measures. Indeed, define

D 1 α = x ∈ D α ; lim sup n→+∞ log |S n g(x)| log n = 1 p 1 - 1 α D 2 α = x ∈ D α ; lim sup n→+∞ log |S n g(x)| log n > 1 p 1 - 1 α .
We have already observed that

H 1/α (D 1 α ∪ D 2 α ) = H 1/α (D α ) = +∞. It suffices to prove that H 1/α (D 2 α ) = 0. Let (β n ) be a sequence of real numbers such that β n > 1 p 1 - 1 α
and lim

n→+∞ β n = 1 p 1 - 1 α .
Let us observe that

D 2 α ⊂ n≥0 E(β n , g).
Moreover, Theorem 1.1 implies that H 1/α (E(β n , g)) = 0 for all n. Hence,

H 1/α (D 2 α ) = 0 and H 1/α (D 1 α ) = +∞, which proves that dim H E 1 p 1 - 1 α , g ≥ 1 α .
By Theorem 1.1 again, this inequality is necessarily an equality. Finally, g satisfies the conclusions of Theorem 1.2, setting 1βp = 1/α.

Remark 2.3. If α = 1, then β = 0 and the conclusion is a consequence of Carleson's Theorem.

The residual set.

To build the dense G δ -set, the idea is that any function whose Fourier coefficients are sufficiently close to those of the saturating function g on infinitely many intervals [j2 j+1 ; j2 j+2 ) will satisfy the conclusions of Theorem 1.2. Precisely, let (f j ) j≥1 be a dense sequence of polynomials in L p (T) with spectrum contained in [-j, j].

We define a sequence (h j ) j≥1 as follows:

h j = f j + 1 j
e j2 j+1 g j so that h jf j p goes to 0 and (h j ) j≥1 remains dense in L p (T). Observe also that the spectra of f j and h jf j don't overlap. Finally, let (r j ) j≥1 be a sequence of positive integers so small that, for any

f ∈ L p (T) with f L p ≤ r j , S n f ∞ ≤ 1 for any n ≤ j2 j+2 .
The dense G δ set we will consider is

A = l∈N j≥l B(h j , r j ).
Let f belong to A and let (j l ) l≥1 be an increasing sequence of integers such that f belongs to B(h j l , r j l ) for any l. Then, for any α > 1, we define J l = [j l /α] + 1 (which is smaller than j l if l is large enough) and

E = lim sup l→+∞ I J l ,j l .
For any x ∈ E one can find j = j l as large as we want, the corresponding J = J l and 1 ≤ k ≤ 2 j -1 such that x belongs to I k,j with k/2 j ∈ I J .

Observe that f = f j + 1 j e j2 j+1 g j + (fh j ). By Lemma 2.2, we can find two integer n 1 and n 2 satisfying j2 j+1 ≤ n 1 < n 2 < j2 j+2 and such that

|S n 2 (e j2 j+1 g j )(x) -S n 1 (e j2 j+1 g j )(x)| ≥ 1 4j 2 -(J-j+1)/p .
Using the definition of the r j , we obtain

|S n 2 f (x) -S n 1 f (x)| ≥ 1 4j 2 2 -(J-j+1)/p -|S n 2 (f -h j )(x)| -|S n 1 (f -h j )(x)| ≥ 1 4j 2 2 -(J-j+1)/p -2 so that |S n 2 f (x)| ≥ C j 2 2 -(J-j+1)/p or |S n 1 f (x)| ≥ C j 2 2 -(J-j+1)/p . Observing that      max(log n 2 , log n 1 ) = j log 2 + O(log j) log j -2 2 -(J-j+1)/p = 1 p 1 -1 α j log 2 + O(log j)
we find in particular that, for any x ∈ E,

lim sup n→+∞ log |S n f (x)| log n ≥ 1 p 1 - 1 α .
On the other hand, let us write

I J l ,j l = 1≤K<2 J l , K / ∈2Z K 2 J l - 1 2 j l , K 2 J l + 1 2 j l
and remark that for any l, since J l ≥ j l /α,

1≤K<2 J l , K / ∈2Z K 2 J l - 1 2 j l /α , K 2 J l + 1 2 j l /α ⊃ [0, 1].
Hence, we can apply Corollary 1.9 to get H 1/α (E) = +∞. We now conclude exactly as in Section 2.1 to get H 1/α (E 1 ) = +∞, with

E 1 = x ∈ E; lim sup n→+∞ log |S n f (x)| log n = 1 p 1 - 1 α . Finally, dim H E 1 p 1 - 1 α , f ≥ 1 α
and f satisfies the conclusions of Theorem 1.2, setting 1βp = 1/α.

Remark 2.4. During the construction , we didn't use that the spectra of the functions e j2 j+1 g j are disjoint, because we considered each one separately. We could also define h j by h j = f j + 1 j e j+1 g j .

Remark 2.5. The above construction can be carried on L 1 (T). Namely, for quasi-all f ∈ L 1 (T), we obtain for any β ∈

[0, 1], dim H (E (β, f )) ≥ 1 -β.
However, we cannot go further because Carleson's Theorem dramatically breaks down in L 1 (T) and we do not have Theorem 1.1 at our disposal in this context. The study of what happens exactly on L 1 (T) is a very exciting open question.

Multifractal analysis of the divergence of the Fourier series of functions of C(T)

We turn to the proof of Theorem 1.6. We follow a strategy close to that of Section 2. First of all, we will un upper bound for the precised Hausdorff dimension of the sets F(β, f ) (hence, of the sets F (β, f )) for any f ∈ C(T) and any β ∈ (0, 1). Second, we will build polynomials with small L ∞ -norms and such that their Fourier series have big partial sums on big intervals. These polynomials will be the blocks of our final construction. Working on C(T) adds several difficulties which will be explained when we will encounter them.

3.1. The sets F(β, f ) cannot be too big. We shall prove the following lemma (recall that φ s,t (x) = x s exp (log 1/x) 1-t ).

Lemma 3.1. Let β ∈ (0, 1) and f ∈ C(T). Then, for any γ > 1β,

H φ 1,γ F(β, f ) = 0.
In particular, the precised Hausdorff dimension of F(β, f ) cannot exceed (1, 1β).

Proof. A key point in Aubry's proof of Theorem 1.1 is the Carleson-Hunt theorem which asserts that, for any g ∈ L p (T), 1 < p < +∞,

S * g p ≤ C p g p where S * g(x) = sup n≥0 |S n g(x)|.
On C(T), a weak inequality (also due to Hunt) remains valid (see [START_REF] Arias De Reyna | Pointwise convergence of Fourier series[END_REF]Theorem 12.5]): there are two absolute constants A, B > 0 such that, for every f ∈ C(T) and every y > 0,

λ {x ∈ T ; S * f (x) > y} ≤ Ae -By/ f ∞ .
Here, λ denotes the Lebesgue measure on T. So, let β ∈ (0, 1) and f ∈ C(T). We may assume f ∞ ≤ 1. For any M > 0, we introduce

F(β, f, M ) = x ∈ T; lim sup n→+∞ (log n) -β |S n f (x)| > M .
Since F(β, f ) = M >0 F(β, f, M ), we just need to prove that H φ 1,γ F(β, f, M ) = 0 for every M > 0. From now on, we fix some M > 0. We pick any x ∈ F(β, f, M ) and n x large enough such that

|S nx f (x)| ≥ M (log n x ) β .
Such an inequality remains true in an interval around x whose size is not so small. Precisely, because n x can be assumed to be large and since the L 1 -norm of the Dirichlet kernel D n behaves like 4 π 2 log n, we may assume that

S nx f ∞ ≤ (log n x ) f ∞ ≤ log n x . By Bernstein's inequality, (S nx f ) ′ ∞ ≤ n x log n x . Let I x = x - M 2n x (log n x ) 1-β , x + M 2n x (log n x ) 1-β .
For any y ∈ I x , we get

|S nx f (y)| ≥ M 2 (log n x ) β . ( 3 
) (I x ) x∈F (β,f,M ) is a covering of F(β, f, M ).
We can extract a Vitali's covering, namely a countable family of disjoint intervals

I i , i ∈ N, of length M n i (log n i ) 1-β such that F(β, f, M ) ⊂ i 5I i . Let us finally set, for any q ≥ 1, U q = i; 2 q+1 ≥ M (log n i ) β 2 > 2 q
. Without loss of generality, we may assume the n i so large that q U q = N. By applying Hunt's theorem,

λ ({x; S * f (x) > 2 q }) ≤ Ae -B2 q .
Now, by (3), the set {x; S * f (x) > 2 q } contains the disjoint intervals I i , for i ∈ U q . Thus,

i∈Uq |I i | ≤ Ae -B2 q .
Moreover, for any i ∈ U q , it is not hard to check that

|I i | ≥ Ce -D2 q/β
for some positive constants C, D which do not depend on q. Picking any α such that 1β < α < γ, we get

i∈Uq φ 1,α (5|I i |) = i∈Uq 5|I i | exp (log(1/5|I i |)) 1-α ≤ 5   i∈Uq |I i |   exp D2 q/β -log 5C 1-α ≤ 5Ae -B2 q +D ′ 2 q(1-α)/β .
Since 1α < β, this shows that there exists

C 0 < +∞ such that i∈N φ 1,α (5|I i |) = q∈N i∈Uq φ 1,α (5|I i |) ≤ C 0 .
Remember that i 5I i is a covering of F(β, f, M ) and that the I i can be chosen as small as we want. We can then conclude that

H φ 1,α (F(β, f, M )) ≤ C 0 . In particular, H φ 1,γ F(β, f, M ) = 0, since φ 1,α ≫ φ 1,γ .
Remark 3.2. The functions φ 1,γ , for γ > 1β, are not optimal in the statement of the previous lemma. We can replace them by any function φ(x) = x exp (log 1/x) β ε(x) with ε(x) goes to 0 as x goes to 0.

3.2.

The basic construction. When we try to build explicitely a continuous function whose Fourier series diverges at some point, say 0, a natural way is to consider polynomials P with small L ∞ norm, and satisfying nevertheless that |S n P (0)| is big for some large value of n. The easiest examples are

P N (x) = e N (x) N j=1 sin(2πjx) j ,
since the sequence (

P N ∞ ) N ≥1 is bounded whereas |S N (P )(0)| ∼ 1 2 log N . Moreover, this example is in some sense optimal since S N f ∞ ≤ C(log N ) f ∞ for any f ∈ C(T).
In our context, we need to find a polynomial P which satisfies a similar property not only at one point, but on a set which is rather big since at the end we want to construct sets of divergence with Hausdorff dimension 1. This does not seem to be the case for P N , the reason being that |(S N P ) ′ (0)| behaves like N , which is much bigger than S N P (0).

To tackle this problem, we start from a construction of Kahane and Katznelson in [START_REF] Kahane | Sur les ensembles de divergence des séries trigonométriques[END_REF] (see also [START_REF] Katznelson | An Introduction to Harmonic Analysis[END_REF]) which they use to prove that every subset of T of Lebesgue measure 0 is a set of divergence for C(T). Since we want to control both the size of the sets E and the index n such that S n P (x) becomes larger than some given real number for any x ∈ E, the forthcoming lemma needs very careful estimations. Lemma 3.3. Let β ∈ (0, 1), δ ∈ (0, 1) and K ≥ 2. Then there exist an integer k ≥ K, an integer n as large as we want and a trigonometric polynomial P with spectrum contained in [0, 2n -1] such that

• |P (x)| ≤ 1 for any x ∈ T; • log |S n P (x)| ≥ (1 -δ)β log log n for any x ∈ I β k ,
where

I β k = k-1 j=0 j k - 1 2k exp (log k) β ; j k + 1 2k exp (log k) β .
Proof. Let us first describe the idea of the proof. We shall construct a trigonometric polynomial Q with spectrum in [1, n -1] and with the following properties: |ℑm Q| is small and |Q| is large on a set E. We then set P = e n × ℑm Q, so that P ∞ is small. On the other hand, writing

Q = n-1 k=1 a k e k , 2iℑm Q = -n-1 k=1 a k e -k + n-1 k=1 a k e k , so that |S n (P )| = 1 2 n-1 k=1 a k e n-k = 1 2 n-1 k=1 a k e k = 1 2 |Q|
is large on E. The construction of Q will be done by taking log f , the logarithm of an holomorphic function defined on a neighbourhood of the closed unit disk D (which allows to control the imaginary part of log f while the modulus of it can be large), and by taking a Fejér sum of log f . We now proceed with the details. The proof uses holomorphic functions and it is better to see T as the boundary of the unit disk D. To avoid cumbersome notations, the letter C will denote throughout the proof a positive and absolute constant, whose value may change from line to line. Let k ≥ K whose value will be fixed later. We set:

ε = 1 k exp (log k) β z j = e 2πij k , j = 0, . . . , k -1 f (z) = 1 k k-1 j=0 1 + ε 1 + ε -z j z .
f is holomorphic in a neighbourhood of D. We claim that f satisfies the following four properties.

(P1): ∀z ∈ D, ℜef (z) ≥ Cε; (P2): ∀z ∈ I β k , |f (z)| ≥ ℜef (z) ≥ C exp (log k) β ; (P3): ∀z ∈ T, |f (z)| ≤ C exp (log k) β ; (P4): ∀z ∈ T, f ′ (z) f (z) ≤ C ε 3
. Indeed, for any z ∈ D and any j ∈ {0, . . . , k -1},

ℜe 1 + ε 1 + ε -z j z = 1 + ε |1 + ε -z j z| 2 ℜe 1 + ε -z j z ≥ 1 + ε (2 + ε) 2 × ε ≥ Cε, (4) 
which proves (P1). To prove (P2), we may assume that z = e 2πiθ with θ ∈ -ε 2 ; ε 2 . Then

ℜe 1 + ε 1 + ε -z 0 z = 1 + ε |1 + ε -z| 2 ℜe 1 + ε -z ≥ C ε .
If we combine this with (4), we get

ℜef (z) ≥ C kε + k -1 k Cε ≥ C kε = C exp (log k) β .
which gives (P2).

Conversely, we want to control sup z∈T |f (z)|. Pick any z = e 2πiθ ∈ T. By symmetry, we may and shall assume that |θ| ≤ 1 2k . Then we get

1 + ε 1 + ε -z 0 z ≤ C ε .
Now, for any j ∈ {1, . . . , k/4}, we can write

|1 + ε -z j z| ≥ |ℑm(z j z)| ≥ sin 2πj k -2πθ ≥ 2 π × 2π j k -θ ≥ 4 k j - 1 2 .
Taking the sum,

k/4 j=1 1 + ε 1 + ε -z j z ≤ k(1 + ε) 4 k/4 j=1 1 j -1/2 ≤ Ck log k.
In the same way, we obtain

k-1 j=3k/4 1 + ε 1 + ε -z j z ≤ Ck log k whereas |1 + ε -z j z| ≥ C for any j ∈ [k/4, 3k/4], so that 3k/4 j=k/4 1 + ε 1 + ε -z j z ≤ Ck.
Putting this together, we get

|f (z)| = 1 k k-1 j=0 1 + ε 1 + ε -z j z ≤ C 1 kε + log k + 1 ≤ C exp (log k) β .
Finally, it remains to prove (P4). We observe that

f ′ (z) = 1 k k-1 j=0 (1 + ε)z j (1 + ε -z j z) 2 .
We do not try to get a very precise estimate for |f ′ (z)| (this is not useful for us). We just observe that |1 + εz j z| 2 ≥ ε 2 for any j ∈ {0, . . . , k -1} and any z ∈ T, so that

|f ′ (z)| ≤ C ε 2 .
If we combine this with (P1), we get (P4).

We are almost ready to construct P . The next step is to take h(z) = log(f (z)), which defines a holomorphic function in a neighbourhood of D by (P1). Moreover, |ℑm(h(z))| ≤ π/2 for any z ∈ D and h(0) = 0. Now, we look at the function h on the boundary of the unit disk D, that is we introduce the function g(x) = h(e 2iπx ) defined on the circle T = R/Z. Properties (P2), (P3) and (P4) can be rewritten as

∀x ∈ I β k , |g(x)| ≥ (log k) β -C ∀x ∈ T, |g(x)| ≤ (log k) β + C ∀x ∈ T, |g ′ (x)| ≤ Ck 3 exp 3(log k) β .
Let now n be the smallest integer such that Ck 3 exp 3(log k) β ≤ n. We also have g ′ ∞ ≤ n and we can apply the second part of Lemma 1.7 to the function θ(t) = g(t)-g(x)

when x ∈ I β k . Recall that θ ∞ ≤ 2(log k) β + C. We get |σ n θ(x)| ≤ (log k) β 2 + C
and we can conclude that

|σ n g(x)| ≥ |g(x)| -|σ n θ(x)| ≥ (log k) β 2 -C.
We finally set

P = 2 π e n σ n (ℑmg) = 2 π e n ℑm(σ n g).
It is straightforward to check that P ∞ ≤ 1 (recall that σ n is a contraction on C(T)), and that the spectrum of σ n g is contained in [1, n -1] (ĝ(0) = 0 since h(0) = 0). Now, the simple algebraic trick exposed at the beginning of the proof shows that

|S n P (x)| = 1 π σ n g(x) ,
so that, for any x ∈ I β k ,

|S n P (x)| ≥ 1 2π (log k) β -C.
This leads to log

|S n P (x)| ≥ β log log k -C.
On the other hand,

log log n ≤ log 3 log k + 3(log k) β + log C ≤ log log k + C. Finally, log log |S n P (x)| log log n ≥ β log log k -C log log k + C ≥ (1 -δ)β,
provided k has been chosen large enough. Moreover, n can be chosen as large as we want since n → +∞ when k → +∞.

Remark 3.4. The fact that we have to compare log log n and log |S n | helps us for the previous proof. Even if n and k do not have the same order of growth, this is not apparent when we apply the iterated logarithm.

Remark 3.5. During the construction, the integers k and n can't be chosen independently : they satisfy n -1 ≤ Ck 3 exp 3(log k) β ≤ n where C is an absolute constant. If we want to construct a polynomial P satisfying the conclusion of Lemma 3.3 with a large value of n, we need also to choose a large value of k.

The conclusion.

We are now going to prove the full statement of Theorem 1.6. At this point, the situation is less favourable than in the L p -case. There, the basic construction done at each step j did not depend on the index of divergence that we would like to get. We had the same function g j which worked for all indices of divergence, and it was the dyadic exponent of x which decided how large was |g j (x)|. The construction done in Lemma 3.3 is less efficient, because the polynomial P does depend on the expected divergence index β (the index β is a parameter of the definition of f above). We have to overcome this new difficulty and the solution will be to introduce redundancy in the construction of the G δ -set.

As usual, we start from a sequence (f j ) j≥1 of polynomials which is dense in C(T). For convenience, we assume that f j ∞ ≤ j for any j and that the spectrum of f j is contained in [-j, j]. Furthermore, we fix four sequences (α l ), (β l ), (δ l ) and (ε l ) with values in (0, 1) and such that:

• (β l ) is dense in (0, 1) and l → β l is one to one; • l ε l ≤ 1; • (δ l ) and (α l ) go to zero.

• δ l < 1/3. Let now j ≥ 1. By induction on l = 1, . . . , j, we build sequences (P j,l ), (n j,l ) and (k j,l ) satisfying the conclusions of Lemma 3.3 with β = β l , δ = δ l and K = j (to ensure that lim j→+∞ k j,l = +∞) and we will decide how large should be n j,l during the construction. According to Remark 3.5, these constraints on n j,l will determine the values of the k j,l . We then set

g j := f j + α j j l=1
ε l e n j,l P j,l so that g jf j ∞ ≤ α j j l=1 ε l P j,l ∞ ≤ α j . In particular, the sequence (g j ) remains dense in C(T). Recall that the spectrum of f j is included in [-j, j] and observe that the spectrum of e n j,l P j,l lies in [n j,l , 3n j,l -1]. If we suppose that n j,1 = j + 1 and n j,l+1 ≥ 3n j,l , we can conclude that the spectra of f j , e n j,1 P j,1 , • • • , e n j,j P j,j are disjoint. Let now x belongs to I β l k j,l for some l ≤ j. Then

S 2n j,l g j (x) ≥ α j ε l S n j,l P j,l (x) -α j l-1 m=1 ε m P j,m ∞ -j ≥ α j ε l S n j,l P j,l (x) -α j -j.
Because we can choose n j,l as large as we want in the process, we may always assume that the choice that we have done ensures that S 2n j,l g j (x) ≥ α j ε l 2 S n j,l P j,l (x) .

Taking the logarithm, we find log S 2n j,l g j (x) ≥ log S n j,l P j,l (x) + log ε l + log α jlog 2

≥ (1δ l )β l log log(n j,l ) + log ε l + log α jlog 2

≥ (1 -2δ l )β l log log(2n j,l )

provided again that we have chosen n j,l very large. We then fix r j > 0 so small that, for any f ∈ B(g j , r j ) (the balls are related to the norm • ∞ ), for any l ≤ j, S 2n j,l f -S 2n j,l g j ∞ ≤ 1/2.

Observe that for every real number t ≥ 1, we have log(t -1/2) ≥ log(t)log 2. For any x ∈ I β l k j,l with l ≤ j, we get log S 2n j,l f (x) ≥ log S 2n j,l g j (x)log 2 ≥ (1 -2δ l )β l log log(2n j,l )log 2 ≥ (1 -3δ l )β l log log(2n j,l ) if n j,l are chosen sufficiently large such that δ l β l log log(2n j,l ) ≥ log 2. We finally set A = p∈N j≥p B(g j , r j ), and we claim that A is the dense G δ set we are looking for. Indeed, let f belong to A and let (j p ) be an increasing sequence of integers such that for every p ≥ 0, f ∈ B(g jp , r jp ). We consider β ∈ (0, 1) and choose p 0 such that

β 1 , • • • , β jp 0 ∩ (0, β) = ∅.
Such a p 0 exists since the sequence (β l ) l≥1 is dense in (0, 1). For every p ≥ p 0 , let l p be chosen in {1, • • • , j p } such that ββ lp = inf{ββ l ; l ≤ j p and β > β l }.

Since the sequence (β l ) is dense in (0, 1), β lp < β for p ≥ p 0 and β lp → β. Moreover, since l → β l is one to one, it is clear that l p is non decreasing and goes to +∞.

Observe that, for p ≥ p 0 , I β k jp ,lp ⊂ I It follows that φ(x) ≤ x exp (log(1/2x)) β ≤ φ 1,1-β (x) and H φ 1,1-β (F ) = +∞. We now conclude exactly as in the L p -case, using Lemma 3.1 to replace Aubry's result. Namely, we set and we observe that Lemma 3.1 guarantees that H φ 1,1-β (F 2 ) = 0. Thus, H φ 1,1-β (F 1 ) = +∞ and the precised Hausdorff dimension of F (β, f ), which contains F 1 , is at least (1, 1β). By Lemma 3.1, it is exactly (1, 1β).

Remark 3.6. It is amazing that, with our method, it is easier to prove Theorem 1.6 and to deduce Theorem 1.4 from it than to prove Theorem 1.4 directly. Indeed, to ensure that the sets F(β, f ) are big, we need to know that the sets F (β ′ , f ) are small for β ′ > β. This cannot be done if we stay within the notion of Hausdorff dimension.

Remark 3.7. The method developed above allows us to construct a "concrete function" that satisfies the conclusion of Theorem 1.6. More precisely, it suffices to consider

g = +∞ j=1 1 j 2 j l=1
ε l e n j,l P j,l

2 y

 2 dy := u n .

  β lp k jp ,lp , so that, for any x ∈ I β k jp ,lp , settingN p = 2n jp,lp , log |S Np f (x)| ≥ (1 -3δ lp )β lp log log(N p ).In particular, setting F = lim sup p I β k jp ,lp , we get that lim supn→+∞ log |S n f (x)| log log n ≥ βfor any x ∈ F . Now, we can apply Corollary 1.9 with a jauge function φ satisfyingφ -1 (y) = y exp -(log(1/2y)) β to obtain H φ (F ) = ∞.Observe that if y = φ(x), then y = x exp (log(1/2y)) β and log x ≤ log y.

F 1 =

 1 x ∈ F ; lim sup n→+∞ log |S n f (x)| log log n = β F 2 = x ∈ F ; lim sup n→+∞ log |S n f (x)| log log n > β

with the constraint 3n j,j < n j+1,1 to ensure that the blocks j l=1 ε l e n j,l P j,l have disjoint spectra. Such a function is some kind of saturating function in the continuous case.