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We report on local, in situ measurements of atom number fluctuations in slices of a one-
dimensional Bose gas on an atom chip setup. By using current modulation techniques to prevent
cloud fragmentation, we are able to probe the crossover from weak to strong interactions. For weak
interactions, fluctuations go continuously from super- to sub-Poissonian as the density is increased,
which is a signature of the transition between the sub-regimes where the two-body correlation func-
tion is dominated respectively by thermal and quantum contributions. At stronger interactions,
the super-Poissonian region disappears, and the fluctuations go directly from Poissonian to sub-
Poissonian, as expected for a ‘fermionized’ gas.

PACS numbers: 03.75.Hh, 67.10.Ba

Fluctuations witness the interplay between quantum
statistics and interactions and therefore their measure-
ment constitutes an important probe of quantum many-
body systems. In particular, measurement of atom num-
ber fluctuations in ultracold quantum gases has been a
key tool in the study of the Mott insulating phase in op-
tical lattices [1], isothermal compressibility of Bose and
Fermi gases [2–5], magnetic susceptibility of a strongly
interacting Fermi gas [6], scale invariance of a two-
dimensional Bose gas [7], generation of atomic entangle-
ment in double-wells [8], and relative number squeezing
in pair-production via binary collisions [9, 10].

While a simple account of quantum statistics can
change the atom number distribution, in a small volume
of an ideal gas, from a classical-gas Poissonian to super-
Poissonian (for bosons) or sub-Poissonian (for fermions)
distributions, many-body processes can further modify
the correlations and fluctuations. For example, three-
body losses may lead to sub-Poissonian fluctuations in a
Bose gas [11, 12]. Even without dissipation, the intrinsic
interatomic interactions can also lead to sub-Poissonian
fluctuations, such as in a repulsive Bose gas in a peri-
odic lattice potential, where the energetically costly atom
number fluctuations are suppressed. This effect has been
observed for large ratios of the on-site interaction energy
to the inter-site tunnelling energy [13, 14], with the ex-
treme limit corresponding to the Mott insulator phase
[15, 16]. The same physics, accounts for sub-Poissonian
fluctuations observed in double-well experiments [8, 17].
Sub-Poissonian fluctuations of the total atom number
have been also realised via controlled loading of the atoms
into very shallow traps [18].

In this work, we observe for the first time sub-
Poissonian atom number fluctuations in small slices of a
single one-dimensional (1D) Bose gas with repulsive in-
teractions, where each slice approximates a uniform sys-
tem. Taking advantage of the long scale density varia-
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FIG. 1. Phase diagram in the interaction-temperature pa-
rameter space of a repulsive uniform 1D Bose gas [19]. The

values of the local two-body correlation g(2)(0) are indicated
for the three main regimes (white and grey areas). The two
horizontal lines show the parameters explored in this paper.

tion due to a weak longitudinal confinement, we monitor
– at a given temperature – the atom number fluctua-
tions in each slice as a function of the local density. For
a weakly interacting gas, the measured fluctuations are
super-Poissonian at low densities, and they become sub-
Poissonian as the density is increased and the gas enters
the quantum quasi-condensate sub-regime that is domi-
nated by quantum rather than thermal fluctuations (see
Fig. 1, with the interaction and temperature parameters,
γ and t, defined below). When the strength of interac-
tions is increased, the fluctuations are no longer super-
Poissonian at low densities and remain sub-Poissonian at
high densities. The absence of super-Poissonian behav-
ior implies that the gas enters the strongly interacting
regime where the repulsive interactions between bosonic
atoms mimic fermionic Pauli blocking, and the quanti-
ties involving only densities are those of an ideal Fermi
gas. Our results in all regimes are in good agreement
with the exact Yang-Yang thermodynamic solution for
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the uniform 1D Bose gas with contact interactions [20].
We recall that the thermodynamics of a uniform 1D

Bose gas can be characterized by the dimensionless in-
teraction and temperature parameters, γ=mg/h̄2n and
t=2h̄2kBT/mg2 [19], where T is the temperature, n the
1D density, g ≃ 2h̄ω⊥a is the coupling constant, a is the
s-wave scattering length, and ω⊥ is the frequency of the
transverse harmonic confining potential. Figure 1 shows
the different regimes of the gas, characterized by the be-
havior of the two-body correlation function g(2) and sepa-
rated by smooth crossovers [19]. Of particular relevance
to the present work are the quantum quasi-condensate
sub-regime where g(2)(0) <∼ 1 [19], and the strongly in-
teracting regime where g(2)(0) ≪ 1 [19, 21]. The two dif-
ferent situations studied in this work are shown in Fig. 1
by two horizontal lines at different values of t.

The experiments are performed using 87Rb atoms (a=
5.3 nm) confined in a magnetic trap realised by current-
carrying microwires on an atom chip. For the data at
t = 65, as in Ref. [3], we use an H-shaped structure
to realise a very elongated harmonic trap at ∼100 µm
away from the wires, with the longitudinal frequency
ω‖/2π = 5.5 Hz and ω⊥/2π = 3.3 kHz. Using rf evap-
oration we produce clouds of ∼3000 atoms in thermal
equilibrium at T =16.5 nK, corresponding to t=65. We
extract the longitudinal density profile from in situ ab-
sorption images as detailed in [22]. The local atom num-
ber fluctuations in the image pixels, whose length in the
object plane is ∆ = 4.5 µm, are measured by repeating
the same experiment hundreds of times and performing
statistical analysis of the density profiles [3]. For each
profile and pixel, we record the atom number fluctuation
δN = N −〈N〉, where 〈N〉 = n∆ is the mean atom num-
ber. The results are binned according to 〈N〉 and for each
bin we compute the variance 〈δN2〉. The contribution of
optical shot noise to 〈δN2〉 is subtracted.

Figure 2 shows the measured variance 〈δN2〉 versus
〈N〉. Since lc ≪max{∆, d}≪L in our experiment, where
L≃50 µm is the cloud rms length, d is the imaging reso-
lution, and lc is the correlation length of density fluctua-
tions [19, 23], the local density approximation is expected
to correctly describe both the average density profile and
the fluctuations [3, 19]. Accordingly, 〈δN2〉 is expected
to follow the thermodynamic prediction [3, 22]

〈δN2〉 = κkBT∆(∂n/∂µ)T , (1)

where n(µ, T ) is the linear density of a homogeneous gas,
and µ is the chemical potential. The reduction factor κ
accounts for the finite resolution of the imaging system;
it is determined from the measured correlation between
adjacent pixels [22], from which we deduce the rms width
of the imaging impulse response function A (assumed to
be Gaussian), and find that d = 3.5 µm and κ = 0.34.

The thermodynamic predictions for an ideal Bose gas
and a quasi-condensate are shown in Fig. 2. In the
quasi-condensate regime we use the equation of state
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FIG. 2. Variance of the atom number fluctuations in a weakly
interacting gas, for t = 65. The measured data are shown
as circles together with statistical uncertainties. Predictions
from Eq. (1) and different thermodynamic models are shown
as solid (Yang-Yang), short-dashed (ideal Bose gas) and dash-
dotted (quasi-condensate) lines. The long-dashed line is the
Poissonian limit and the low lying dotted line is the contri-
bution from quantum fluctuations. Here ω⊥/2π = 3.3 kHz,
ω‖/2π=5.5 Hz, T =16 nK (kBT =0.1h̄ω⊥), and κ = 0.34.

µ = h̄ω⊥(
√
1 + 4na − 1) [24]. The temperature is ob-

tained by fitting the quasi-condensate prediction to the
measured fluctuations at high densities. Usual features
of the quasi-condensation transition are seen [3]: at low
density, the gas lies within the ideal gas regime where,
for degenerate gases, bosonic bunching raises the fluc-
tuations well above the Poissonian limit; at high den-
sity the gas lies in the quasi-condensate regime where
interactions level off the density fluctuations. Within the
quasi-condensate regime, the fluctuations go from super-
Poissonian to sub-Poissonian, with 〈δN2〉/κ〈N〉 going
from 2 to 0.44. Using the approximate 1D expression
µ = gn, Eq. (1) shows that the transition from super-
to sub-Poissonian behavior occurs at kBT ≃gn, which is
the boundary between the thermal and quantum quasi-
condensate regimes [19, 23]. The fluctuations in the
whole explored density domain are in good agreement
with the exact 1D Yang-Yang predictions. The small
discrepancy at high densities between the Yang-Yang
and the quasi-condensate models is due to the transverse
swelling of the cloud [3, 22]. In the following, we neglect
this 3D effect and perform a purely 1D analysis.

Going beyond the thermodynamic relation (1), the
variance 〈δN2〉 in a pixel is given by

〈δN2〉 =
∫

d4Z 〈δn(z)δn(z′)〉 A(z − Z)A(z′ − Z ′), (2)

where
∫

d4Z ≡
∫∆

0
dZ

∫ ∆

0
dZ ′

∫∞

−∞
dz
∫∞

−∞
dz′, δn(z) = n(z) −

〈n(z)〉 is the density fluctuation, and
∫ +∞

−∞
dZA(Z) = 1.

Isolating the one- and two-body terms, one has

〈δn(z)δn(z′)〉 = nδ(z − z′) + n2[g(2)(z − z′)− 1]. (3)

The first term, when substituted into Eq. (2), accounts
for Poissonian level of fluctuations, κ〈N〉. Therefore, the
measured sub-Poissonian fluctuations in Fig. 2 imply that
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FIG. 3. (a) Variance 〈δN2〉 close to the strongly interacting
regime, for t = 5.4. Different curves are as in Fig. 2, but for
ω⊥/2π=18.8 kHz, ω‖=7.5 Hz, T =40 nK (kBT =0.044h̄ω⊥),
and κ=0.47. (b) Average density profile (solid line) together
with the Yang-Yang prediction (dashes). (c) The value of t
obtained from fits to the density profile (dotted line) and atom
number fluctuations (solid line) for different α (see text).

g(2)(z−z′)−1 < 0. Such anti-bunching stems from quan-
tum fluctuations. Indeed, within the Bogoliubov approx-
imation, valid for quasi-condensates, one has [23]

g(2)(z−z′)− 1=

∫

dk

2πn
[2nkfk − (1 − fk)] e

ik(z−z′), (4)

where fk = 1/
√

1 + 4/(lξk)2 and nk = 1/
(

eǫk/kBT − 1
)

is the thermal occupation of the Bogoliubov col-
lective mode of wavenumber k and energy ǫk =
h̄2k2/(2m

√

1 + 4/(lξk)2), with lξ = h̄/
√
mgn being the

healing length. The first term in the rhs of Eq. (4) which
accounts for thermal fluctuations is positive, whereas the
second term which is the contribution of quantum (i.e.,
zero temperature) fluctuations is negative [23]. There-
fore, the negativity of g(2)(z − z′) − 1 implies that
the quantum fluctuations give a larger contribution to
g(2)(z − z′)− 1 than the thermal ones.

It should be emphasised, however, that the quantity we
measure is 〈δN2〉, and as we show below, for our large
values of ∆ and d it is still dominated by thermal (rather
than quantum) fluctuations. This is because the con-
tribution to 〈δN2〉 of the one-body term almost cancels
out the contribution of the zero-temperature two-body
term. Indeed, the contribution of quantum fluctuations
to 〈δN2〉, calculated using Eqs. (2), (3), and (4), is

〈δN2〉T=0 =
〈N〉
∆π

∫ ∞

−∞

dkfk
1− cos(k∆)

k2
e−k2d2

. (5)

Since fk ∝ klξ when klξ ≪ 1, we find that for ∆ ≫ lξ, d,
〈δN2〉T=0 scales as nlξ ln(∆/lξ). On the other hand, the
thermal contribution given by Eq. (1), scales as ∆T/g.
Therefore, the quantum contribution becomes negligible
as ∆ → ∞, and the thermodynamic prediction of Eq. (1)
is recovered [25]. For our parameters, the contribution of
Eq. (5) to 〈δN2〉 is shown as a dotted line in Fig. 2.

In weakly interacting gases, the atom number fluctua-
tions take super-Poissonian values in the degenerate ideal

gas and thermal quasi-condensate regimes, 〈δN2〉/〈N〉
reaching its maximum at the quasi-condensate transi-
tion where it scales as t1/3 [3]. When t is decreased, the
super-Poissonian zone is expected to merge towards the
Poissonian limit and it vanishes when the gas enters the
strongly interacting regime. This trend is exactly what
we observe in Fig. 3(a), for t=5.4: at large densities, we
see suppression of 〈δN2〉 below the Poissonian level but,
most importantly, we no longer observe super-Poissonian
fluctuations at lower densities (〈δN2〉/κ〈N〉<1.3 within
the experimental resolution) [26]. Interestingly, no sim-
ple analytic theory is applicable to this crossover region,
and the only reliable prediction here is the exact Yang-
Yang thermodynamic solution [solid line in Fig. 3(a)].

We now describe the experimental techniques that al-
lowed us to increase significantly ω⊥ in order to reach
t = 5.4. Keeping a reasonable heat dissipation in the
wires, increasing ω⊥ requires bringing the atomic cloud
closer to the chip. However, using dc micro-wire currents,
one would observe fragmentation of the cloud due to wire
imperfections and hence longitudinal roughness of the po-
tential [27]. To circumvent this problem, we use the mod-
ulation techniques developed in [28, 29]. The atom chip
schematic is shown in Fig. 4. The transverse confinement
is realized by three wires, carrying the same ac current
modulated at 200 kHz, and a longitudinal homogeneous
dc magnetic field of ∼ 1.8 G realized by external coils.
The modulation is fast enough so that the atoms experi-
ence the time-averaged potential, transversely harmonic.
Monitoring dipole oscillations we measure ω⊥/2π varying
from 2 to 25 kHz, for ac current amplitude varying from
40 to 200 mA. The longitudinal confinement, with ωz/2π
varying from 5 to 12 Hz, is realised by wires perpendicu-
lar to the z-direction, carrying dc currents of a few tens
of mA. After a first rf evaporation stage in a dc trap we
load 6× 104 atoms at a few µK in the ac trap where we
perform further rf evaporation at ω⊥/2π ≃ 2 kHz and
ω‖/2π ≃ 12 Hz. Next we lower the longitudinal trapping
frequency to about 7 Hz and then ramp up the transverse
frequency to 18.8 kHz in 600 ms keeping the rf evapora-
tion on during this compression. After ramping the rf
power down in 100 ms and letting the cloud to thermal-
ize for 150 ms, we switch off the wire currents and image
the atomic cloud after 50 µs with a 60 µs long resonant
probe pulse. The probe is circularly polarised and its
intensity, chosen to optimise the signal to noise ratio, is
about 0.2 Isat, where Isat = 1.67 mW is the saturation
intensity of the D2 line. Finally, we get the longitudinal
profile of the cloud by summing over the transverse pix-
els. We typically obtain clouds at t ≃ 1 − 6. Taking a
few hundreds of images under the same conditions, we
measure 〈δN2〉 the same way as for the results of Fig. 2.

One crucial point to correctly determine the longitu-
dinal profile is the knowledge of the absorption cross
section σ. In our setup, atoms sit in an interference
pattern during the imaging pulse [see Fig. 4(b)] and
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FIG. 4. (color online) (a) Wire schematic of the atom chip:
three gold wires along Z carry an ac current and produce a
tight transverse confining potential. The longitudinal confine-
ment is realized with dc currents I1 and I2. (b) The wires are
buried under a layer of resist, which ensures electrical insu-
lation and surface planarization. The resist is covered with
200 nm thick gold mirror that reflects the probe beam. The
atoms are 15µm away from the wires and see the interference
pattern produced by the probe and the reflected beam. (c)
Typical optical-density image of a gas of 103 atoms.

are subjected to a magnetic field so that the determi-
nation of σ is not simple. Following [30], we assume
σ = ασo/ (1 + αI/Isat), where I is the intensity of the
probe beam, σo = 3λ2/2π is the resonant cross section of
the transition |F = 2,mF = 2〉 → |F ′ = 3,m′

F = 3〉, and
α is a numerical factor. Solving the optical Bloch equa-
tions (OBE) for our probe intensity and duration, we find
that such a law is valid, and we obtain α = 0.75. In this
calculation, we averaged α over the distance to the chip,
which is expected to be valid as atoms diffuse over a rms
width of about 1 µm during the imaging pulse, which is
larger than the interference lattice period. The factor α
can be also deduced from the mean density profile and/or
the atom number fluctuations using the thermodynamic
Yang-Yang predictions. Fitting both α and t to either the
mean profile or the fluctuations leads to strongly corre-
lated values of α and t but with large uncertainty in α.
Combining both pieces of information, however, enables
a precise determination of α. More specifically, using the
Yang-Yang theory, we extract tp and tf from fits to the
mean profile and the fluctuations, respectively, for vari-
ous values of α [see Fig. 3(b) and (c)]. The intersection
tp = tf gives the correct value of α. We find α = 0.77,
in good agreement with the OBE calculation. The cor-
responding value of t is 5.4 and hence T = 40 nK.

In summary, we have realised for the first time a single

1D Bose gas close to the strongly interacting regime. In
contrast to realisations of arrays of multiple 1D gases in
2D optical lattices [21, 31], our experiments have allowed
us to perform atom number fluctuation measurements
in small slices of the gas, not possible with multiple 1D
gases. In the weakly interacting regime, we reached the
quantum quasi-condensate regime (where kBT <µ= gn)
in a strictly 1D situation with kBT ≪ h̄ω⊥. Although
the two-body correlation function g(2) is dominated by
quantum fluctuations in this regime, we have shown that

the variance 〈δN2〉 is still dominated by thermal excita-
tions. To resolve quantum fluctuations one would need
to access wavelengths smaller than the phonon thermal
wavelength h̄2/mkBT lξ [25], which is in the submicron
range for our parameters. Our work opens up further op-
portunities in the study of 1D Bose gases, such as better
understanding of the mechanisms of thermalisation and
the role of three-body correlations.
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