
HAL Id: hal-00576689
https://hal.science/hal-00576689

Submitted on 15 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ellipsoidal anisotropy in elasticity for rocks and rock
masses

Ahmad Pouya, Michel Chalhoub

To cite this version:
Ahmad Pouya, Michel Chalhoub. Ellipsoidal anisotropy in elasticity for rocks and rock masses.
ISRM2007, 11th Congress of the International Society for Rock Mechanics, Jul 2007, Lisbon, Por-
tugal. pp.251-254. �hal-00576689�

https://hal.science/hal-00576689
https://hal.archives-ouvertes.fr


ISRM2007, 11th Congress of the International Society for Rock Mechanics, Lisbon, Portugal,9-13 July 2007, pages 251-254  

Ellipsoidal anisotropy in elasticity for rocks and rock masses 

Elasticité à anisotropie ellipsoïdale pour les roches et les massifs rocheux 

A. Pouya 
Laboratoire Central des Ponts et Chaussées, 58 Bd Lefebvre, 75732, Paris Cedex 15, France 

M. Chalhoub 
Université Saint Esprit de Kaslik, Jounieh, Lebanon 

RESUME: Les modèles d’anisotropie ellipsoïdale en élasticité linéaire présentent plusieurs intérêts. D’abord, les solutions 
analytiques de beaucoup de problèmes classiques d’élasticité linéaire connues pour le cas de comportement isotrope peuvent 
s’étendre à certains types d’anisotropie ellipsoïdale à l’aide d’une transformation linéaire simple (Pouya 2000, Pouya & 
Zaoui 2006). Ces modèles permettent aussi une analyse simple des données expérimentales. Dans ce travail, nous montrons 
que ces modèles peuvent ajuster avec une bonne approximation le comportement de certaines variétés de roches et de 
massifs rocheux anisotropes. 

ABSTRACT: One of the interesting features with the ellipsoidal models of anisotropy presented in this paper is their 
acceptance of analytical solutions for some of the basic elasticity problems. It was shown by Pouya (2000) and Pouya and 
Zaoui (2006) that many closed-form solutions for basic problems involving linear isotropic materials could be extended by 
linear transformation to cover a variety of “ellipsoidal” materials. This paper will describe two main varieties of ellipsoidal 
elastic models and show how well they fit the in situ data for sedimentary rocks; numerical homogenization results for 
several varieties of fractured rock masses will also be provided. 

 

1. INTRODUCTION 

In some anisotropic elasticity problems, information is 
available on the values of an elastic parameter in the various 
directions, to be used in identifying the elastic tensor. A 
typical case in Rock Mechanics involves deducing Young's 
modulus from simple compression tests in different 
directions or measuring the acoustic velocity in different 
directions on a sample (Homand et al. 1993; Francois et 
al. 1998). Based on the notion that material isotropy 
corresponds geometrically to the image of a sphere, an 
expression for anisotropy can naturally be sought through 
an ellipsoidal variation of a number of parameters in 
different directions. The uncertainty then lies in how to 
deduce the anisotropic tensor from this assumption. Saint 
Venant (1863) studied this specific question intensively by 
introducing the approximation of ellipsoidal indicator 
surfaces. The indicator surface of an elastic parameter c is 
the polar diagram c(n), where n is a unit vector and c(n) the 
value of parameter c in the material direction n. In recent 
years, the concept of ellipsoidal anisotropy has been 
adopted as a guideline for the phenomenological modelling 
of geomaterials such as soils, rocks and concrete (Peres 
Rodrigues, 1970; Daley and Hron, 1979). Yet, the concept 
of anisotropic elasticity has at times been employed 
erroneously. For instance, Peres Rodrigues (1970) 
attempted using ellipsoids to fit, for several types of rocks, 
Young's modulus values measured along different 
directions. It has been shown (Pouya, 2007a) however that 
the Young's modulus indicator surface, i.e. the polar 
diagram of E(n), can never be an ellipsoid (different from a 
sphere), hence the parameters fitted by this author do not 
define any possible elasticity tensor. The correct approach 

calls for fitting the diagram of 4 ( )E n  by an ellipsoid; this 
was performed by Saint Venant in 1863. 

2. ELLIPSOIDAL MODELS 

Let's define the elastic coefficient and Young's modulus in 
the n direction, where n is a unit vector defining direction in 
the material, respectively by: 

 c(n) = (n⊗n): :(n⊗n) 

 E(n)= [(n⊗n): :(n⊗n)]-1 (1) 

with  being the fourth-order elasticity tensor and =  -1. 
The main family of ellipsoidal materials considered herein 
has been defined by the condition that the indicator surface 
of 4− c( )n , i.e. the surface given by polar equation 
r(n)= 4− c( )n , is ellipsoidal. This condition specifies a family 
of materials that depends on 12 independent parameters 
(Pouya, 2007a). The intersection of this family and the 
family of orthotropic materials in turn defines another 
family, denoted here by Φ4, that depends on 6 intrinsic 
parameters (c11, c22, c33, c12, c13 and c23) in the orthotropic 
coordinate axes, as described by the following relations 
between elastic coefficients: 
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22 33 23 11 33 13

44 55

11 22 12
66

, ,
2 2

2

c c c c c c
c c

c c c
c

− −
= =

−
=

 (2) 



The second family to be taken into consideration in this 
study is the subfamily of Φ4, for which the indicator surface 
of 4 ( )E n  is also ellipsoidal. This family, denoted Ψ, is 
dependent upon four independent parameters c11, c22, c33 and 
η; it is described by the following conditions: 
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with other coefficients obtained by means of index 
permutation {1,2,3} and, correspondingly, {4,5,6}. This 
family can be equivalently defined by the four parameters 
E1, E2, E3 and ν, as follows, with Ψ: 
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Pouya and Reiffsteck (2003) remarked that some of Bohler's 
(1975) data on the Young's modulus of various soils could 
be fitted by (4); moreover, they demonstrated that this 
assumption allows simplifying foundation modelling. The 
theoretical features of Ψ-type materials have been 
thoroughly explained in Pouya and Zaoui (2006) and Pouya 
(2007a). For Φ4-type materials, Pouya (2007b) 
demonstrated that a closed-form expression for Green's 
function (displacement solution for a point force within an 
infinite medium) can be derived, which enables generating 
an explicit solution for many classical elasticity problems, 
as well as developing numerical Boundary Element 
methods for Φ-type materials. 

3. APPLICATION TO SEDIMENTARY ROCKS 

For the study of seismic wave propagation in geological 
layers, Daley and Hron (1979) developed the concept of an 
“elliptically anisotropic” medium, as distinct from the 
ellipsoidal anisotropy considered in the present paper. This 
concept has been widely used in geophysical studies and 
Thomsen (1986) undertook an examination within the 
context of “weak anisotropy” for a large variety of 
sedimentary rocks. Thomsen (1986) defined four 
dimensionless parameters ε, δ, δ* and γ, in order to 
characterise transverse isotropic materials, and provided 
their values for a wide array of sedimentary rocks. Based on 
these parameters, the dimensionless elastic coefficients  c*  ij, 
defined as c*  ij = cij/c33, can be deduced. These coefficients 
are given in Table 1 for some of the samples studied by 
Thomsen. 

Rock type and sample depth are presented in the first and 
second columns of the table, respectively; these two data 
elements allow identifying the precise corresponding 
material in the table established by Thomsen. The effort will 
now be made to compare these materials with the ellipsoidal 
anisotropy model (2). Since the context here is one of 
transverse symmetry (Fig. 1), the third condition expressed 
in (2) is automatically satisfied and the first two conditions 
become equivalent. The discrepancy between the anisotropy 
model of these materials and the ellipsoidal model (2) can 
therefore be measured by the difference between the two 
sides of the first equality in (2). 

 

Table 1: Dimensionless parameters for several transverse 
isotropic sedimentary rocks, as deduced from the Thomsen 
(1986) data (indirect measurements), along with the 
distance d from the ellipsoidal model. The 4 c( )− n  
indicator surface applies to a transverse isotropic material 
with ellipsoidal anisotropy 

Rock Depth 
(m) 

c*
   11 c*

   44 c*
   13 c*

   12 d 

Sandstone 4912.0 1.19 0.40 0.28 0.31 -0.004 
 5481.3 1.18 0.35 0.44 0.34 0.022 
 6542.6 1.16 0.34 0.32 0.36 -0.037 
 1582.0 1.16 0.70 -0.34 -0.23 -0.012 

Limestone 5469.5 1.11 0.34 0.32 0.34 -0.027 
Mud shale 7939.5 1.16 0.33 0.45 0.43 0.019 
Clay shale 5501.0 1.67 0.27 0.99 0.49 0.094 

 5858.6 1.38 0.30 0.59 0.58 0.003 
 3511.0 1.34 0.49 0.02 0.06 -0.069 
 450.0 1.22 0.17 0.74 0.76 -0.009 
 650.0 1.39 0.17 0.81 0.83 -0.009 

 
 

Figure 1 : Ellipsoidal anisotropy with transverse symmetry 

 
Then, by applying c11=c22 and c13=c23, we are able to define 
the dimensionless distance d between the transverse 
isotropic model and the ellipsoidal model as follows: 
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The value of d calculated for the materials listed in Table 1 
is presented in the last column of the table. The parameter 
c*   11 serves to describe the anisotropy. As an example, it may 

be noticed that for the clay shale sample at a depth of 
5,858.6 m, with distinguishable anisotropy, i.e. c*   11 = 1.38, 
the assumption of an ellipsoidal model induces an error of 
just 0.3% (d = 0.003). The other rows of the table indicate 
that despite the pronounced anisotropy, distance to the 
ellipsoidal model remains relatively small. The mean value 
of d calculated for all sandstone, limestone, mud shale, clay 
shale and shale samples (about 25 in all) presented in the 
Thomsen table (1986) equals approximately 0.03. The 
ellipsoidal model therefore seems to provide a good fit for 
the anisotropic parameters of a variety of sedimentary 
rocks. 

4. APPLICATION TO FRACTURED ROCK MASSES 

Numerical homogenization represents a current method for 
determining fractured rock mass properties (Pouya and 
Ghoreychi, 2001; Min and Jing, 2003; Chalhoub, 2006). 
According to this method, it proves easier to prescribe 
simple loads, such as simple compression or shear, along 
different directions and then calculate the corresponding 
modulus value. Fitting numerical results to an ellipsoidal 
model simplifies both data analysis and interpretation, in 
addition to reducing the number of parameters to be 
determined and providing effective approximate models for 
certain varieties of rock masses. Moreover, it yields an 
estimation of elastic parameter values in those directions not 
accessible through numerical simulation methods. 

Chalhoub (2006) offers a study example of a limestone rock 
mass slope at the border of a main road in Lebanon (see 
Fig. 2).  

 

Figure 2: Studied sedimentary rock mass (Chalhoub, 2006) 

The rock mass geometry illustrated in this figure reveals the 
presence of two main sets of fractures, whose geometrical 
and mechanical properties are listed in Table 2. The 
geometry indicates that the rock mass exhibits orthotropic 
behaviour in directions 1, 2 and 3. The parameters obtained 
for the rock mass by homogenisation are listed in Table 3. 

Using the calculated 2D elastic parameters in association 
with matrix transformation principles, the value of Young's 
modulus can be calculated in different directions. Figure 3 
shows the indicator diagram of both E and 4  and allows 
stating that 

E
4 E  can be well described by an ellipse.  

Table 2: Geometrical and mechanical properties of the 
rock mass 

Joint filling material (limestone) 
l1: infinite L2=45 
d1=19 d2=39 

Kn=2870, Kt=768 
Rock (clay)  
E=20000 ν=0.25 
l(cm): average fracture length; d(cm): average fracture 
spacing; Kn(MPa/m): normal fracture stiffness; 
Kt(MPa/m): fracture shear stiffness; E(MPa): Young's 
modulus of the rock; ν: Poisson's ratio of the rock 

 

Table 3: Calculated elastic compliance parameters 
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Figure 3: Indicator diagrams of E and 4 ( )E n  obtained for a 
rock mass studied using the numerical homogenization 

technique (Chalhoub, 2006) 

2 3
4

5
6

7

8

9

11

12

13

14
15

16
1718

19
2021

22
23

24

25

26

27

28

29

30

31

32
33

34
35

10

36
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This result is promising and suggests application of the 
ellipsoidal model to fit numerical data. The 3D model Ψ 
with four parameters was chosen for this purpose. 
Parameters E1, E2 and E3, which correspond to the three 
orthotropic directions, can be deduced directly from Table 3 
results. The Poisson's ratio ν of the model in (4) can then be 
deduced as an approximation, by means of the following 
formulae, taken from the values in Table 3: 

 3
12 21 13 31 23 32ν ν ν ν ν ν ν=  (6) 

We obtained as a result: ν =0.072. 2D numerical 
calculations provide all the elastic compliance parameters, 
with the exception of elastic compliances s44 and s55 (Min 
and Jing, 2003). By using the 3D ellipsoidal model in (4), 
these parameters can be expressed by a combination of three 
Young's moduli and one Poisson's ratio ν. This result may 
be considered a helpful approximation of these parameters, 
which are inaccessible by means of 2D numerical 
homogenization methods. 

5. CONCLUSION 

The concept of ellipsoidal anisotropy seems to offer an 
attractive guideline for the phenomenological modelling of 
anisotropic elasticity of geomaterials, soils, rocks and rock 
masses; it simplifies data analysis and serves to create 
models with a reduced number of parameters and interesting 
theoretical properties. As discussed in Pouya (2007a), this 
concept also corresponds well to models of anisotropic 
elastic tensors obtained for micro-cracked materials using 
the micro-macro approach. The advantages offered in terms 
of handling geotechnical problems have already been 
discussed from a theoretical perspective in Pouya and 
Reiffsteck (2003) and in Pouya and Zaoui (2006). This 
paper has shown that such models could also provide a good 
fit for the experimental or numerical homogenization data 
on certain varieties of sedimentary rocks. The potential 
application of these models to wave propagation in rocks, 
for use in seismic analysis, is one of the promising avenues 
opened by the present work. 
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