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SUMMARY 
 

A method for determining fractured rock mass properties is presented here on the basis of 
homogenisation approach. The rock mass is considered to be a heterogeneous medium 
composed of intact rock and of fractures. Its constitutive model is studied numerically using 
Finite Element Method and assimilating the fractures to joint elements (Coste1). The method 
has been applied to a granite formation in France. Geological data on different families of 
fractures have been used for the statistical representation of the fractures. A mesh-generating 
tool for the medium with high density of fractures has been developed. The mechanical 
behaviour of the rock mass (elasticity, ultimate strength and hardening law) has been 
determined assuming linear elasticity and Mohr-Coulomb strength criterion both for the intact 
rock and the fractures. Evolution of the mechanical strength in different directions has been 
determined as a function of the mean stress, thanks to various numerical simulations. The 
mechanical strength appears to be anisotropic due to the preferential orientation of the 
fractures. The numerical results allowed us to determine an oriented strength criterion for the 
homogenized rock mass. A 2D constitutive law for the homogenized medium has been 
deduced from numerical data. A 3D extension of this model is also presented. 
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1. INTRODUCTION 
 

Mechanical behaviour a of fractured rock mass depends on the properties of the intact rock and 
the fractures. The properties of the intact rock are determined by laboratory experiments. These 
experiments overestimate the strength of the rock mass at large scale whereas its deformability 
is underestimated. Rock mass classification methods provide empirical estimations for 
mechanical properties of fractured rock masses (Barton et al.2, Bieniawski3 ). Semi analytical 
calculations may provide exact solutions in some special case, for instance when the fractures 
are parallel to one or two different directions (Bekaert and Maghous4, de Buhan and 
Maghous5 ). For the study of underground facilities in a rock mass with a great number of 
fractures, numerical models based on Discrete Elements Method (DEM) can be used. 
However, in presence of a very high density of fractures DEM becomes very heavy to handle 
and requires very long calculations. An example is given farther (§3) for a rock mass in a 



granite located in the West of France. According to geological data, this granite contains a high 
density of fractures (see Figure 5), mostly filled with recrystalized materials (Calcite), but 
corresponding to potential discontinuities. One can imagine that due to the very high density of 
fractures, an attempt to modelling of underground facilities taking account of each fracture 
may be very heavy, leading to very long calculations. On the other hand, if the dimensions of 
the underground facilities are great enough compared to the heterogeneity size, a homogenized 
macroscopic model of the rock becomes easier to handle and more interesting.  
Many attempts and investigations have been made in this area for materials and rocks 
(Kachanov6, Cai and Horii7,8, Le Ravalec and Guéguen9,  Oda10, Budianski and O’Connell 11, 
Hashin12, Huet13, …). Most of these attempts have been made for some idealized cases without 
considering crack interaction. However thus aspect has been taken under account for the study 
of flow in fractured rocks (Long et al.14, Long and Withespoon15, Billeux et al.16). More 
recently homogenization  of fractured rocks has been done using Finite Element numerical 
models. Coste1 has used such a technique for the study of the homogenized hydromechanical 
behaviour of rock masses using the non linear elastic model of Goodman17 for the fractures.  
In the present paper, the numerical Finite Element Method has been improved by using an 
averaging lemma allowing to deduce the homogenized volume quantities from boundary 
values of nodal forces and displacements. An automatic procedure for mesh generation is also 
presented for a fractured medium with high density of fractures. Then, the method is applied to 
the determination of the mechanical properties of a fractured rock mass.  The originality of this 
work is the extension of the previous approach beyond elastic domain, since not only 
homogenized elastic properties but also mechanical strength, its evolution under bulk stress 
and as a function of rock deformation (so-called hardening) are determined numerically.  
 
 

2. NUMERICAL METHOD 
2.1. General scheme  
 
The rock mass is considered as a heterogeneous medium constituted by intact rock and 
different families of fractures with a statistical distribution of size and orientation and with a 
given mechanical behaviour. The homogenized strain εhom and stress σhomof this medium are 
defined as the average values of the local strain and stress distributions ε and σ in the medium  
(Figure 1). The homogenized behaviour of this medium, i.e., the relationships between εhom and 
σhom, are determined by numerical calculations. For this purpose, displacements or tractions 
corresponding to homogeneous macroscopic strains or stresses are prescribed on the boundary 
of a sufficiently large domain (Representative Elementary Volume, REV). Strains and stresses 
in this domain are calculated using Finite Element Method and representing the fractures by 
joint elements (Coste1 ). The average values of strains and stresses in the domain are then 
calculated. The REV size is determined by a preliminary investigation. For this purpose, values 
of elastic parameters, especially those of the Young modulus, are calculated on domains of 
increasing sizes. The REV size corresponds to the minimum size beyond which the values 
obtained for elastic parameters are stable (not fluctuating). In such a condition, the average 
values of displacements and strains do not show any significant fluctuation under a constant 
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stress (or force) applied on the boundary. Also, the average stress does not change significantly 
when the boundaries are submitted to constant displacements.  

σhom      εhom
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Figure 1. The fractured rock mass considered as an heterogeneous medium constituted of the 
intact rock and fractures 

 
2.2. Mesh generation  
 

One major difficulty is the mesh generation for Finite Element computation in presence of a 
high density of fractures. The elements must not contain any fracture inside them ; the fractures 
have to be located only on the boundary of the elements in order to be assimilated to joint 
elements. A numerical tool was developed able to generate such a mesh automatically. The 
automatic procedure for mesh generation is the following : the domain containing fractures is 
first divided in a number of closed sub-domains by introducing additional lines in the domain 
which connect the end of the fractures but do not intersect with the existing fractures or lines 
(figure 2). These closed sub-domains are then discretized individually using classical methods. 
The meshes corresponding to the individual domains are finally assembled to form the mesh 
for the whole domain. The interface between different sub-domains is modelled by joint 
elements only if the interface corresponds to a fracture.  
 
Indeed, the division of the whole domain in a set of sub-domains can be made in different 
ways, therefore, the mesh generation solution is not unique. But, as it is the case of any other 
mechanical problem studied by FEM, it can be shown that when the mesh is sufficiently fine, 
the final result does not depend upon the mesh.  
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Figure 2 : Method of mesh making for the fractured domain by an automatic procedure : sub-
division of the domain in closed sub-domains not containing fractures, discretizing sub-
domains individually and assembling the individual meshes to form the whole mesh. 
 
 
2.3. Averaging method 
 

The transition between “microscopic” and “macroscopic” variables requires averaging 
strain and stress fields over the whole domain. For this purpose, the following basic lemma  
(Hill18,19, François et al.20) is used : 
   

Let the straightforward volume averages of Cartesian components of Cauchy stress σ and 
infinitesimal strain ε be denoted by σ  and ε . In relation to a given domain, the surface 
tractions or displacements that would be generated by uniform internal fields σ  or ε  will be 
spoken of as uniform loading or uniform constraint respectively.  
Then, let σ be any bounded and self equilibrated field of stress and ε any field of infinitesimal 
strain derivable from a continuous displacement. Then, when the boundary conditions for one 
or the other are uniform, the volume average of their scalar product can be precisely evaluated 
as the scalar product of their volume average (Hill18 ) : 

 σ ε:  = σ  : ε       
    (1) 

Uniform displacement boundary conditions on the boundary ∂V of a volume V are defined by :  
 

∀x∈∂V,    ui(x) = Bij  xj         (2) 
 
where B is a constant symmetric tensor. Consider now a displacement field u corresponding to 
the uniform boundary conditions (2) and the strain field ε deriving from u : εij = (∂iuj+∂jui)/2. 
Integration of  ∂iuj over V gives :  

V
∫ ∂iuj dv =  ujni  ds = Bik xk ni  ds = Bik  xk ni  ds = V Bij 

∂V
∫

∂V
∫

∂V
∫

where the following identity has been used : 
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∂V
∫ xk ni ds = ∂ixk dv = V δkj         (3) 

V
∫

This allows to show that : 
ε  = (B+BT)/2 

Uniform traction boundary conditions on ∂V are defined by a surface traction density T on ∂V 
given by : 

∀x∈∂V,    Ti(x) = Cij  nj(x)         (4) 
 
Consider a self-equilibrated stress field σ corresponding to the uniform boundary conditions 
(4). Writing :  
 

V
∫ σ ij dv = σ ikδkj dv = σ ik∂kxjdv = σ ik xjnk ds - (∂kσ ik) xjdv  

V
∫

V
∫

∂V
∫

V
∫

 
and taking account of the equilibrium equation in V , ∂kσ ik = 0, the boundary condition, σiknk  
= Ciknk  on ∂V, and of (3), one finds : 

σ  = C         (5) 
 

Consider now a domain V and a loading on ∂V consisting in a surface traction density T or  in 
displacement increments  δU. Furthermore, let σ and δε denote the stress and strain fields 
resulting from this loading in V. The virtual work principle allows to express : 
 

δWe =  δWi   ⇒  Τ.δ
∂V
∫ U ds = : δε dv  σ

V
∫

Assuming that the prescribed boundary conditions T or δU are uniform, the above lemma 
allows to write : 

      σ ε = V : d
V

δ∫ v σ ε: δ  = V σ  : δ ε  

and so the following equality is derived : 

     1
V ∂V

∫ Τ .δU ds=  σ  : δ ε          (6) 

If uniform displacement boundary conditions are prescribed then δU and δ ε  are known, 
and (6) allows to calculate σ  as a function of the boundary tractions T. In the same way, if 
traction conditions are prescribed, (6) allows to calculate δ ε  as a function of the boundary 
displacement δU. It can be showed that the above equality holds for combined force and 
displacement boundary conditions, i.e., when the boundary conditions correspond to  
ui(x) = Bij  xj on a part of ∂V and to Ti(x) = Cij  nj(x) on the complementary part.  
 
2.4. Numerical experiments 
 

Let us assume that the considered domain is a rectangle with side Lx in x direction and Ly in 
y direction, and let us number the sides from 1 to 4 as shown in Figure 3. 
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Figure 3. Sides numbers of the sides of the VER rectangle 

 
As well, let the following loading cases be considered : 

a) Compression in x direction with different values of lateral stress σyy : 
A constant displacement δUy is prescribed on the side (1) and (2) with δUy(1)=0, and a 
constant surface traction Tx is prescribed on the sides 3 and 4, with Tx(4)=-Tx(3).  
b) Compression in y direction with different values of lateral stress σxx : 
A constant displacement δUx is prescribed on the sides (3) and (4) with δUx(3)=0, and a 
constant surface traction Ty is prescribed on the sides 1 and 2, with Ty(2)=-Ty(1). 
c) Shear in xy direction with different values of the mean stress σm =σxx=σyy : 
A constant displacement δUx is prescribed on the sides (1) and (2), and a constant 
displacement δUy is prescribed on the sides (3) and (4) with δUx(1)= δUy(3) = 0, and δUx(2)= 
δUy(4), and a constant normal surface traction T is prescribed on all the sides (T = Ty(1)= -
Ty(2)=-Tx(4)=Tx(3)).  

x

y

Ux

x

y
Uy

x

y Ux

Uy

 
      (a)   (b)   (c) 

Figure 4. Numerical experiments : 
(a) Compression in x direction, (b) in y direction, (c) shear in xy direction  

 
These loadings are special cases of combined uniform loadings, the particularity of which is 

that the prescribed displacement or surface traction is constant on each side of the domain. In 
these cases, the calculation of the first member of (6) and so the determination of the 
homogenized quantities are very easy. In fact let δ u (n) designate the average displacement on 
the nodes of the side number n (n=1,...,4), and by F(n) the total force on the nodes of the side 
number n (n=1,...,4). Following different loading cases, these quantities are deduced either 
from the prescribed conditions or from the calculation results. The equation (6) and the fact 
that boundary conditions are constant along each side, allow to obtain different components of 
δ ε  and of σ  by means of the following formulas : 
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 δ ε xx = [δ u x(4)- δ u x(3)]/Lx,  ε yy = [δ u y(2)- δ u y(1)]/Ly , 

 δ ε xy = 
1
2

{[δ u x(2)- δ u x(1)] /Ly + [δ u y(4)- δ u y(3)]/Lx} 

 σ xx = 
1
2

[ F x(4)- F x(3)]/Ly ,   σ yy = 
1
2

[ F y(2)- F y(1)]/Lx 

 σ xy = 
1
2

{[ F x(2)- F x(1)]/Lx + [ F y(4)- F y(3)]/Ly} 

 One can also notice that equilibrium conditions imply the following equalities : 
 

n=1,4
∑ F x(n) = 

n=1,4
∑ F y(n) = 0 

 
The homogenized stress and strain are calculated for each load case using the method 

presented above. Strain-stress curves can be calculated in this way for different loading paths 
(see Figure 8). The constitutive model for the material (homogenized medium) can be 
determined through these curves.  

 
 

3. FRACTURED ROCK MASS 
3.1. Fracture distribution 
 

A 2D representation of a granitic fractured rock mass situated in the West of France is 
considered here. The x axis in this representation corresponds to the horizontal North-South 
direction, and the y axis, to the vertical direction. The fractures size, orientation, density and 
aperture or thickness (filled fractures) introduced in this model have been deduced from the 
geological data . The possible propagation of existing fractures that may locally occur is not 
considered. This question is of second order regarding the intensity of existing fractures and 
also the insufficient data available specially on the extension of fractures. The extension of the 
existing fractures varies from 20cm to 30m and their slope (angle with the x axis) varies from 0 
to 90°. The statistical distribution of the fractures extension is assumed to obey to an 
exponential law with an average value of 10m. The orientation obeys to a normal distribution 
law with an average value of 60° (sub-vertical fractures) and a 10° variance. The fractures 
density is uniform and equal to 0.4 m-2. The value of the fractures thickness, required for 
determination of the joint behaviour, is assumed to be about a few millimetres on the basis of 
some core samples observation. A statistical representation of these fractures is given in Figure 
5 for a square domain with 50m side.  
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Figure 5. Fracture distribution for a fractured rock mass deduced from geological data 
 
 
3.2. Constitutive models of intact rock and fractures 
 
According to the results of laboratory tests on the rock without any fracture and on single 
fractures, the intact rock has a linear and isotropic behaviour in the elastic stage, with values of 
Young modulus E = 72000 MPa and Poisson ratio  ν = 0.25. The strength properties of the 
intact rock are given by a Mohr-Coulomb criterion with cohesion C = 17 MPa and internal 
friction angle φ = 57°. The fractures behaviour in the elastic domain is assumed to be linear 
and characterized by normal and tangential stiffness kn and kt  respectively. Beyond the elastic 
domain, Mohr-Coulomb criterion is used with cohesion c = 1.51 MPa and internal friction 
angle ϕ = 27°. These simple models (linear elasticity and Mohr-Coulomb criterion) allows to 
compare easily the homogenized rock mass behaviour with the behaviour of its constituents 
(intact rock and fractures). More representative models of fracture behaviour (non linear 
elasticity) can easily be taken into account if needed. The values of fractures parameters 
considered here have been obtained by laboratory measurements on some natural fractures 
with a few millimetres of thickness and filled with recrystallized calcite. Because of the high 
value of the intact rock cohesion compared to the fractures cohesion (C=17MPa, c=1.51MPa), 
the fractures reach their elastic limit before the intact rock. Therefore, the damage behaviour of 
the rock mass is largely determined  by the fractures parameters, and in the loading paths 
presented in the following, The intact rock essentially remains elastic. In order to simplify the 
calculation, the elastic-brittle behaviours of the intact rock and the fractures are replaced by an 
elastic-perfectly plastic behaviour. For monotonous increasing loading paths studied here, 
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when the unloading does not take place, this simplification does not change significantly the 
macroscopic results.  
 
 

4. NUMERICAL STRESS-STRAIN CURVES 
 

A preliminary investigation of the REV size for the considered fractured rock mass, by the 
method described above (§2.1), led to a side value of about 8m. A square domain of 8m side 
of was submitted to compressive or shear loading paths described in §2.4. The REV and the 
mesh generated for this REV are presented in Figures 6 and 7 respectively. 
 
 

 
 

Figure 6 : REV corresponds to a square domain of 8m side 
 
Homogenized stresses and strains were calculated using the averaging method presented 
above. The calculations were made under plane stress assumption. This assumption makes the 
determination of the strength properties easier since this assumption leads to a stress tensor 
with only three independent components. 
 
To simplify the notations, the homogenized stresses and strains are denoted by σ and ε in what 
follows. Stress-strain plots obtained for different loading cases are given in Figure 8.  
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Figure 7 : Discretization of the REV  

 
 

5. CONSTITUTIVE MODELLING  
 
The stress-strain plots given in Figure 8 provide somehow the "experimental data" on the 

basis of which the constitutive model of the rock mass is to be determined. These data are to be 
completed, as it is the case of real experimental data, by further assumptions concerning the 
expression of the constitutive model.  

The analysis of the results shows up three different stages of deformation. The stress-strain 
plots begin with a linear elastic stage. During the following stage, the slopes of the curve 
decrease  but the stress is always increasing (positive hardening stage). The curves then tend to 
a horizontal asymptote corresponding to a maximum value of the stress which cannot be 
exceeded (asymptotic perfect plastic behaviour). In the following, first the results 
corresponding to the elastic stage, then those characterizing the ultimate plastic behaviour, and 
finally the results corresponding to the transient hardening stage will be analysed. 
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Figure 8. Stress-strain curves for a homogenized fractured rock mass corresponding to 
different loading paths: compression in x direction under different values of lateral stress σyy, 
compression in y direction under different values of lateral stress σxx, and shear in xy direction 
under different values of the mean stress σm= σxx= σyy  (see Figure 4 for the loading paths). 
 
5.1. Elastic stage 
 
During the elastic stage, stress-strain curves have a linear trend. This stage extends up to the 
strain values of about 10-5. The ratios obtained for different variables during this stage are 
given in  Table 1. This Table shows that when a compressive load is applied in x or y 
direction, very small values are obtained for εxy/εxx or εxy/εyy compared to εyy/εxx or εxx/εyy. 
The shear strain εxy is therefore negligible in these cases. Moreover, the elastic moduli in x 
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and y directions have very close values. For these reasons, the elastic behaviour can be 
assumed to be isotropic with a good approximation. The average values of Young modulus 
and Poisson are (Table 1) : 

 
Young modulus:    E = 62.6 GPa 
Poisson ratio :   ν = 0.267 

 
These values lead to the shear modulus value of G =E/2(1+ ν) = 24.7 GPa. This value 

corresponds very accurately to that obtained numerically through a shear loading path (see the 
last line of Table 1 : G = σxy /2εxy  = 24.7 GPa). This result confirms the validity of the 
hypothesis of linear and isotropic elastic behaviour. 

 
Table 1 : Ratios obtained during the elastic stage 

 
Load direction  xx   σxx / εxx   (GPa) εyy / εxx εxy / εxx 

 63.2 0.269 0.015 
Load direction  yy  σyy / εyy   (GPa) εxx / εyy εxy / εyy 

 62.0 0.264 0.005 
Load direction  xy  σxy / εxy   (GPa) εxx / εxy εyy / εxy 

 49.4 -0.014 -0.03 
 
 

5.2.  Elastic limit  
 
Determination of the initial elastic limit is important because it characterizes the initiation  of 
damage which has a big effect on the permeability of the rock mass (important parameter of 
the disposal safety). The initial elastic limit in different directions can be deduced from the 
numerical plots. It can also be determined by theoretical calculation based on some 
simplifying assumptions. 

 
The overall elastic limit corresponds to that of macroscopic (homogenized) stress for under 

which one of the constituents of the heterogeneous medium reaches its elastic limit. As 
mentioned above, since the cohesion value of the intact rock is greater than that of the 
fractures (C=17MPa, c=1.51MPa), the fractures reach their elastic limit prior to the intact 
rock. Let us consider a fracture with an angle θ with respect to the x direction. Normal and 
tangent unit vectors are designated respectively by n =(-sinθ, cosθ) and =(cosθ, sinθ). 
Assuming that the shear and normal stresses on this fracture are given by the projection of the 
homogenized stress tensor σ on the fracture’s plane is equivalent to neglect the interaction 
between fractures during the initial elastic stage and to assume that they have infinite size. 
Normal and shear stresses on the fracture, σn and τ, are then respectively given by σn = 

t

n .σ. n  
and  τ = .σ. . The elastic domain for the fracture is given by (compressive stress is 
supposed as negative) : 

t n
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 ⎢τ ⎢< c - σn tgϕ  
 

This inequality leads to the following condition for the homogenized stress σ : 
 

⎢ t .σ. n ⎢ < c - n .σ. n tgϕ      (7) 

Considering that under plane stress assumption, the components of the stress tensor are σxx , 
σyy and σxy, one can define the mean stress σm  and the deviatoric stress in the plane by the 
following expressions : 

σm  = 
1
2

(σxx+σyy)  s = 
1
2

(σxx-σyy)     (8) 

Let us consider the domain defined by the inequality (7) in the plane (s, σxy) for a given 
value of σm and let us define in this plane S  = (s, σxy), U =(cos2θ, sin2θ) and  = (-sin2θ, 
cos2θ). The inequality (7) can be written as : 

V

   ⎢ .  ⎢< c - σS V m tgϕ + S . U  tgϕ 
 
This condition defines a domain limited by two straight lines D1 and D2 making an angle ϕ 

with the direction (Figure 9). The elastic domain for the set of fractures is the intersection of 
the domains defined in this way for different values of θ. For the rock mass considered here θ 
varies between 0 et 90°, and so, the intersection of the considered domains is a circle centred at 
the origin O and with a radius R given by (see Figure 9) : R = |OM| sinϕ. For the point M, the 
equation of D

U

1 leads to : 
 

⎢ .  ⎢= 0  ⇒   S V S . U = - c cotg ϕ + σm ⇒   |OM|= c cotg ϕ - σm
and then : 

     R =  c cosϕ - σm sinϕ           (9) 
 
The elastic domain of the rock mass is the intersection of this domain with the elastic 

domain of the matrix (intact rock). The latter, defined by the Mohr-Coulomb criterion with 
cohesion C and an internal friction angle φ, corresponds, for a given value of σm, to a  circle in 
the plane (s, σxy) centred at O and with a radius R’ = C cosφ - σm sinφ.  For the values of the 
parameters c, ϕ, C and φ given above, the second circle contains always the first one (R’>R 
when R >0), and so their intersection is equal to the first one. 

 
In conclusion, the elastic domain of the rock mass in the stress space (σm, σxy,s) is the 

circular cone defined by : 
σ xy

2 s+ 2     <   c cosϕ - σm sinϕ        (10) 
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Figure 9 :  Elastic domain of the homogenized rock mass  

 
5.3. Asymptotic stage - strength criterion 
 
As shown in Figure 8, stress-strain curves tend to horizontal asymptotes. The stress value 
corresponding to this asymptote represents the ultimate strength of the rock mass in the 
corresponding direction. This ultimate strength depends on the lateral stresses for compressive 
loads or on the mean stress for shear loads. The results show up a significant anisotropy related 
to the plastic behaviour of the rock mass. The strength in x direction is in fact about 2 times 
greater than that of y direction. The ultimate stress versus lateral or mean stress has been 
plotted in Figure 10. This figure shows that the ultimate strength depends linearly on the mean 
stress. The equations corresponding to the straight lines are given in Figure 10. 
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Figure 10 : Effect of lateral or of mean stress on the strength in different directions 
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The equation of the line σxy versus σm in Figure 10 can be written as : σxy = -σm tgφ1�+ C1. 
The two other lines of this figure define linear dependency of s upon σm which can be written 
as s =-σm tgφi + Ci with i=2,3. The parameters φi and Ci  (i=1,2,3) define the values of the 
homogenized internal friction angle φhom and cohesion Chom in different directions. They are 
given in Table 2 : 

 

Table 2 : Homogenized cohesion and internal friction angle in different directions  

 
Load direction   Chom 

(MPa) 
φhom  

Xx 4.58 33.0° 
Yy 3.16 29.0° 
Xy 5.02 31.8° 

 

One can notice that the values obtained for homogenized cohesion and internal friction 
angle are intermediate between those of the intact rock (C =17 MPa, φ = 57°) and the fractures 
(c = 1.51 MPa, ϕ=27°). 

These results can be used to elaborate a model for the ultimate strength of the rock mass. 
The strength domain in the stress space (σm, σxy , s) can be described by a yield function f ; the 
strength domain corresponding to domain of stresses verifying f(σm, σxy , s) ≤ 0. The function f 
has to be determined using the numerical results given above in Figure 10. According to these 
results, the intersection of the boundary of the strength domain, corresponding to the surface 
f(σm, σxy , s) = 0, and the planes  σxy = 0 and s = 0 in the stress space, gives the straight lines 
represented in Figure 10. For a given value of σm, these results, represented also by the data 
given in Table 2, define 3 points in the plane (σxy, s). For σm = 0, these points are respectively  
(0, 4.58), (0, -3.16) and (5.02, 0). They can be completed by the point corresponding to the 
shear strength in -xy direction (shear loading with σxy< 0, not represented in Figure 8). A 
numerical simulation led to the value of 2.17 MPa for this strength. The four points obtained in 
this way have been presented in Figure 11. They can be supposed to form a circle. The position 
of the centre and the radius of this circle vary with σm. 

Furthermore, an expression for the yield criterion f has to be found verifying these 
properties : 

(a) : the intersections of the surface f = 0 with the planes  σxy= 0 and s = 0 define straight 
lines in these planes, 
(b) : the intersection of the surface f = 0 with the plane σm= 0 defines a circle. 

An expression for f (a simple one which is not a unique one) can be proposed as following : 
   f(σm, σxy , s) = (σxy -D)2 + (s -D)2 - (-Aσm+G)2 -D2  
As yield criteria are usually supposed to have the dimension of stress, this expression for f 

will be changed into the following :  
f(σm, σxy , s) = ( D) (s D) (-A G) Dxy

2 2
m

2σ σ− + − − + + 2     (11) 
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Indeed, these two expressions define the same domain in the stress space.  The parameters 

A, D and G must be determined using the numerical data. The comparison between the 
expressions of f in the cases σxy  = 0 or s = 0 allows to identify A = tgφhom. The expression 
given for f assumes that the internal friction angle have the same value in all the (loading) 
directions. This provides a satisfactory approximation since φhom has very similar values in 
different directions (Table 2).  So,  φhom  can be supposed to be constant and equal to the 
average value of 31.3°, and then A = tg 31.3° = 0.608. Now, considering the case σm  = 0, the 
equation f = 0 where f is given by (11), defines a circle in the plane (σxy, s) centred at the point 
(D,D) and having a radius R = (G2 + D2)1/2. The values of the two constants D and G are 
obtained by fitting the four points known in the plane (σxy, s) (Figure 11). These constants are 
calculated by least square minimisation of the distances of the points to the circle. This leads 
to : D = 1.07 MPa and G = 3.73 MPa. 

 

s

-σm

B

C

A

    

s

σxy

 
 
Figure 11. The strength domain in (σm, s) plane is bounded by two straight lines making an 

angle ±31.3° with -σm  axis, whereas the strength domain in (σxy, s) plane is 
approximately a circle. 

 
 
5.4. Hardening stage 
 

The hardening stage begins when the representative stress point reaches the boundary of the 
initial elastic domain. As seen above, the initial elastic domain is a cone with axis parallel to 
the σm axis. For a given value of σm, the elastic domain in the plane (σxy , s) is a circle centred 
at the origin and with a radius R = c cosϕ - σm sinϕ, where c and ϕ  are respectively the 
cohesion and the internal friction angle of the fractures. This circle is located within the circle 
corresponding to the ultimate strength (Figure 12). During the hardening stage, the 
representative stress point follows a path beginning at the boundary of the initial elastic 
domain and tending to the ultimate strength boundary. This path corresponds to the transient 
stage described above in the stress-strain plots. 
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Figure 12. During the hardening stage, the representative stress point follows a path going 
from the initial elastic boundary to the ultimate strength boundary. 

 
 
Since the initial elastic boundary given by (10) corresponds to the same expression (11) for 

adequate values of parameters A, D and G, one can assume that the elastic boundary at any 
stage of deformation can be given by the same expression in which the parameters A,D and G 
may change. The initial values of these parameters are : A0 = sin 27° = 0.454, D0 = 0 and G0= 
1.51 cos 27° = 1.35 MPa. The final (or asymptotic limit) values are those obtained above : A∞ 
= 0.61, D∞ = 1.07 MPa and G∞ = 3.73 MPa. Regarding the shape of the strain-stress plots, the 
evolution of these parameters with strain can be assumed to be given by an exponential 
expression : 

    A = A0 + (A∞-A0) (1-e-βξ)      (12) 
 

In this expression, the hardening parameter ξ is defined by ξ ε= p  with an initial value ξ = 0, 
and β is a constant parameter which has to be determined by fitting the stress-strain plots in the 
transient stage. The fitting of different stress-strain plots corresponding to different loading 
directions, leads to different values of β varying between 547 and 2447. This means that β 
depends on the stress orientation. However, this parameter describes the evolution during the 
transient hardening stage and has no effect on the ultimate strength properties (see Figure 13). 
Therefore, in case one is interested in the ultimate strength properties  of the rock masse, a 
constant value can be assumed for this parameter in order to simplify the model.   A  constant 
value of β = 1000 for all the directions has been considered in the following, and an example 
of curve fitting using this value of β is  shown in Figure 13.  
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Figure 13. Comparison between the numerical plot (corresponding to compression in y 
direction), the individual fitting of this plot, leading to β = 2447, and fitting of this plot with a 
fixed value of β = 1000. 
 

6. CONSTITUTIVE MODEL 
7.  

The homogenized behaviour of the fractured rock is finally defined by the following 
constitutive model in 2D : 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

7. EXTENSION TO A 3D CONSTITUTIVE MODEL 

 
Yield Criterion : 

f(σ, ξ) = ≤ 0 
with : 

f(σ, ξ) :  ( D) (s D) (-A G) Dxy
2 2

m
2 2σ σ− + − − + +  

and : 
s = (σxx -σyy)/2       ,   σm = (σxx +σyy)/2 

 
Hardening law :  

A =   (A A ) -
0 eβ βξ ξ∞ −  

D =   (D D ) -
0 eβ βξ ξ∞ −  

G =   (G G ) -
0 eβ βξ ξ∞ −  

ξ ε= p  
Initial state :   ξ  = 0,  A = A0 , D = D0 , G = G0
 
Numerical Values :  β = 1000 

 
A0 =0.454 , D0 = 0 ,  G0 =1.35 MPa 
A∞ =0.608 , D∞ =1.07 MPa, G∞ =3.73 MPa 
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Even for 2D modelling, under plane strain or plane stress assumptions, numerical codes 

usually use 3D constitutive laws. Elaboration of a real 3D constitutive law requires specific 
investigations and simulation of 3D loading paths. However, it would be possible, thanks to 
simplified assumptions, to give a 3D extension of the law elaborated above. This extension 
would not be unique, but it would be very useful for implementation in numerical codes and 
for modelling of underground structures. 

 
It is worthy of mention that in the model defined above, y axis corresponds to the vertical 

direction in the rock mass. This axis will be denoted by z in the 3D model. Then it will be 
assumed that the rock mass has isotropic properties in horizontal planes : all the horizontal 
directions are equivalent. Therefore an attempt is made to give a 3D expression in which x and 
y directions (horizontal directions) have equivalent properties. Moreover, the 3D law must give 
exactly the same 2D law for the plane stress case : substituting σy = 0 in this expression, the 
same expression (11)  for the yield function must be found with y replaced by z. To obtain this 
3D expression one can proceed as following : (σxx-σyy) in (8) is substituted first by (σxx-σzz) 
(substitution of y axis by z) and then by [(σxx+σyy)/2-σzz] (symetrisation of x and y directions). 
In the same way σxy in (11) is substituted first by σxz and then by (σxz+σyz)/2. The σm  is 
defined by σm = (σxx + σyy + σzz)/3 , and in order to obtain the same 2D expression for the case 
of plan stresses (σy = 0),  Aσm in (11) is replaced by 3Aσm /2. 

 
 
The final expression obtained for the 3D law is : 
 

f(σ, ξ) :  [ ( ) D] (s D) (- A G) D1
2 xz yz

2 2 3
2 m

2 2σ σ σ+ − − − − + +  
with : 

s = [(σxx+ σyy)/2 -σzz]/2  ,   σm = (σxx + σyy + σzz)/3 
 
The values of the parameters A, D, G and β are exactly defined by the same relationships as 

in the 2D case. 
 
The 3D constitutive model obtained in this way can be introduced in numerical codes in 

order to study stress and strain fields around underground structures in a rock mass under 
study. Indeed, such a modelling can be applied in case the characteristic dimension of the 
structure is greeter than that of the REV. In this case, stress and strain fields can be calculated 
using the homogenized behaviour model. Only, such a constitutive model is introduced in the 
numerical code and not the boundary conditions which are used for the computations which 
one made for the specific purpose of elaboration of such a model. 
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8. CONCLUSION AND PERSPECTIVES 
 
The method presented above allows to elaborate a homogenized constitutive model for a 

rock mass with a high density of fractures. This method is based on a few simplifying 
assumptions. Its very interesting feature is its capability to take account of the whole available 
data and information on the rock mass : distribution of fractures and constitutive behaviours of 
fractures and of intact rock. The authors believe that the suggested methodology provides a 
much more accurate model than more or less empirical models usually proposed in the 
framework of  « rock mass classification ». An interesting prospect and application of the 
present work would be to determine the strength properties of typical configurations of 
fractured rock masses in order to provide classification tables based on numerical calculations 
instead of empirical estimations. This may require a significant numerical work and a high 
number of long calculations. Nevertheless, such an effort may provide a very helpful tool for 
the estimation of fractured rock mass strength and for the prediction of damage risks and the 
related hydromechanical disturbances around underground facilities. 
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