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HIGH FREQUENCY WAVES AND
THE MAXIMAL SMOOTHING EFFECT

FOR NONLINEAR SCALAR CONSERVATION LAWS

STÉPHANE JUNCA

Abstract. The article first studies the propagation of well prepared high
frequency waves with small amplitude ε near constant solutions for en-
tropy solutions of multidimensional nonlinear scalar conservation laws. Sec-
ond, such oscillating solutions are used to highlight a conjecture of Lions,
Perthame, Tadmor, (1994), [34], about the maximal regularizing effect for
nonlinear conservation laws. For this purpose, a new definition of nonlinear
flux is stated and compared to classical definitions. Then it is proved that
the smoothness expected by [34] in Sobolev spaces cannot be exceeded.
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1. Introduction

This paper deals with the maximal regularizing effects for nonlinear mul-
tidimensional scalar conservation laws. The important point to note here
is the definition of nonlinear flux. Indeed there are various definitions see
[18, 34, 4, 11]. In [34] they give the well known definition 1.1 below and a
conjecture about the maximal smoothing effect in Sobolev spaces related to
the parameter “α“ from their definition. The study of periodic solutions leads
to another definitions [18, 4]. We obtain new definition 3.1 for smooth flux. It
generalizes the definition of [4]. For smooth flux, our definition is equivalent
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2 STÉPHANE JUNCA

to the classical definition 1.1 and implies the strict non-linearity of [18]. Fur-
thermore, it gives an easy way to compute the parameter “α”. Our definition
shows that smoothing effects for scalar conservation laws strongly depend on
the space dimension. Our new characterization of nonlinear flux comes from
the study of the highest oscillations which can be propagated by the semi-
group St associated to the conservation law. Indeed properties of St are linked
to the derivatives of the flux as in [4, 11, 19].

To be more precise, we look for Sobolev bounds for entropy solutions u(., .)
of

∂tu+ divxF(u) = 0,(1.1)

where t ∈ [0,+∞[, x ∈ Rd, u : [0,+∞[t×Rd
x → R, F : R → Rd is a smooth flux

function, F ∈ C∞(R,Rd), and the initial data is only bounded in L∞(Rd
x,R):

u(0,x) = u0(x).(1.2)

Let a(u) be F′(u). Obviously, if F is linear, a(u) = a a constant vector,
u(t,x) = u0(x − t a), there is no smoothing effect. In [34] was first proved a
regularizing effect if the flux F is non linear. The sharp measurement of the
non-linearity plays a key role in our study. Let us recall the classical definition
for nonlinear flux from [34].

Definition 1.1. [ Nonlinear Flux [34]]
Let M be a positive constant, F : R → Rd is said to be nonlinear on [−M,M ]
if there exist α > 0 and C = Cα > 0 such that for all δ > 0

supτ2+|ξ|2=1|Wδ(τ, ξ)| ≤ C δα,(1.3)

where (τ, ξ) ∈ Sd ⊂ Rd+1, i.e. τ 2 + |ξ|2 = 1, and |Wδ(τ, ξ)| is the one dimen-
sional measure of the singular set:
Wδ(τ, ξ) := {|v| ≤M, |τ + a(v) � ξ| ≤ δ} ⊂ [−M,M ] and a = F′.

IndeedWδ(τ, ξ) is a neighborhood of the cricital value v for the symbol of the
linear operator L[v] in the Fourier direction (τ, ξ) where L[v] = ∂t + a(v) �∇x.
The symbol in this direction is: i (τ + a(v) � ξ). This operator is simply related
with any smooth solution u of equation (1.1) by the chain rule formula:

∂tu+ divxF(u) = ∂tu+ a(u) �∇xu = L[u]u.

α is a degeneracy measurement of the operator L parametrized by v. α
depends only on the flux F and the compact set [−M,M ]: α = α[F,M ]. In
the sequel we denote by

αsup = αsup[F,M ], the supremum of all α satisfying (1.3).(1.4)

α, or more precisely αsup, is the key parameter to describe the sharp smoothing
effect for entropy solutions of nonlinear scalar conservation laws. For smooth
flux the parameter α always belongs to [0, 1], for instance: αsup = 0 for a
linear flux, α = 1 for strictly convex flux in dimension one. For the first time
αsup is characterized below in section 3. Indeed, for smooth nonlinear flux,
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1

αsup
is always an integer greater or equal to the space dimension.

In all the sequel we assume that M ≥ ‖u0‖∞ and the flux F is nonlinear on
[−M,M ], so

αsup > 0.(1.5)

If (1.5) is true then the entropy solution operator associated with the nonlinear
conservation law (1.1), (1.2),

St : L∞(Rd
x,R) → L∞(Rd

x,R)
u0(.) 7→ u(t, .),

has a regularizing effect for all t > 0, mapping L∞(Rd
x,R) into W

s,1
loc (R

d
x,R).

In [34], they proved this regularizing effect for all s <
α

2 + α
.

In [39] the result is improved for all s <
α

1 + 2α
under a generic assumption

on a′ = F′′.
P.L. Lions, B. Perthame and E. Tadmor conjectured in 1994 a better regu-

larizing effect, see [34], (remark 3, p .180, line 14-17). In [34] they proposed
an optimal bound ssup for Sobolev exponents of entropy solutions:

ssup = αsup.(1.6)

That is to say that u belongs in all W s,1
loc (R

d,R) for all s < αsup.
The shocks formation implies s < 1 and ssup ≤ 1 since W 1,1 functions do not
have shock.

In one dimension (d=1) and for strictly convex flux it is well known from
Lax and Oleinik that the entropy solution becomes BV , see [33]. (1.6) is true
in this case since u belongs in W s,1

loc for all s < 1: ssup = 1 = αsup.

A main result of the paper is to give an insight of the conjecture (1.6) by
proving the inequality

ssup ≤ αsup.(1.7)

Examples of family of solutions exactly bounded in W s,1
loc with the conjectured

maximal s = αsup and with no improvement of the Sobolev exponent in a

strip [0, T0]× Rd, T0 > 0, are given in this paper.
A first proof of (1.7), for some interesting examples, can be found in [16] for
d = 1, and also in [11] for d ≥ 1.

It will be proved that for a well chosen u ∈ [−M,M ], there exists T0 > 0,
such that for all ρ > 0 and for all 0 < t < T0, St(B

∞(u, ρ)) is not a sub-
set of W s,1

loc (R
d
x) for all s > αsup, where B∞(u, ρ)) = {u ∈ L∞(Rd,R), ‖u −

u‖L∞(Rd,R) < ρ}.
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High oscillating solutions of (1.1) are used for this purpose Near a constant
state and for L∞ data, a complete study of critical geometric optics for weak
entropy solutions is done in [4]. Near a smooth (non constant) solution, an-
other features are given in [29]. Here, results of [4] are simplified and proved for
particular super-critical highly oscillating classical solutions (without shocks
on a strip). This allows to give proof of (1.7).

Consider the problem (1.1) with oscillating initial data:

(1.8) uε(0,x) = uε0(x) := u+ εU0

(v · x

εγ

)
,

where U0(θ) is a one periodic function w.r.t. θ, γ > 0, u is a constant ground
state, u ∈ [−M,M ], v ∈ Rd. The case γ = 1 is the classical geometric optics
for quasilinear equations, see [35, 17, 25, 27]. In this paper we focus on critical
oscillations when γ > 1.

One of the two following asymptotic expansions (1.9) or (1.10), is expected
in L1

loc(]0,+∞[×Rd,R) for the entropy-solution uε of conservation law (1.1)
with highly oscillating data (1.8) when ε goes to 0,

uε(t,x) = u+ εU

(
t,
φ(t,x)

εγ

)
+ o(ε)(1.9)

or uε(t,x) = u+ εU0 + o(ε),(1.10)

where the profile U(t, θ) satisfies a conservation law with initial data U0(θ),

U 0 =

∫ 1

0

U0(θ)dθ and the phase φ satisfies the eikonal equation:

∂tφ+ a(u) �∇xφ = 0, φ(0,x) = v · x,(1.11)

i.e. φ(t,x) = v · (x− t a(u)).

The behavior described by (1.9) is a lack of compactness for the semi-group
St of equation (1.1) since this semi-group propagates data uniformly bounded

in W
1/γ,1
loc without improving the Sobolev exponent (as we will see at the end

of this paper in the section 5).
Otherwise, if γ is too big (γ αsup > 1 as we will see below) and the initial
oscillating data are not constant, then the high oscillations are canceled for
positive time. Behavior (1.10) means that a nonlinear smoothing effect is
associated for the semi-group of equation (1.1).

Combining these two possible behaviors of highly oscillating solutions the
article highlights the conjecture. Indeed this allow to prove that the maximal
smoothing effect conjectured by Lions, Perthame and Tadmor in [34] cannot
be exceeded: (1.7). Furthermore, Theorem 5.1 below shows that there exists a
family of well chosen initial data in W s,1

loc with s = αsup such that the associ-
ated solutions keep the same uniform bound without any improvement of the
Sobolev exponent s = αsup. Nevertheless the complete conjecture: equality
(1.6), is still an open problem.
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On other hand this maximal Sobolev exponent is not sufficient to get some
traces for entropic solutions on sets with co-dimension-one. This seems to
contradict the structure of a BV function of entropy solutions obtained by De
Lellis, Otto and Westdickenberg in [14]. Indeed, this BV structure for one
solution and Sobolev bounds for a set of solutions are different approach of
the smoothing effects. See for instance [6, 11, 14, 15, 16, 31, 41] where the
traces properties or the Sobolev exponent of entropy solutions are studied. In
fact, this means that the maximal Sobolev exponent for entropy solutions does
not give enough information about the fine structure for entropy solutions of
conservation laws.

The paper is organized as follows. In section 2 examples of super-critical
highly oscillating solutions are expounded. In section 3, the concept of flux
non-linearity is clarified and characterized. Section 4 is devoted to get optimal
Sobolev estimates on oscillating solutions built in section 2. Finally, the section
5 highlights conjecture (1.6).

2. High frequency waves with small amplitude

The section 2 deals with highly oscillating initial data near a constant state
(1.8) only uniformly bounded inW 1/γ,1 (see section 4 below). The propagation
of such oscillating data is obtained under the crucial compatibility condition
(2.1) below. Otherwise, if the the compatibility condition (2.1) is nowhere
satisfied, the nonlinear semi-group associated to equation (1.1) cancels this
too high oscillations, see Theorem 2.2. The validity or invalidity of assumption
(2.1) is a key point to characterize nonlinear flux in section 3.

Theorem 2.1. [Propagation of smooth high oscillations]
Let γ belongs to ]1,+∞[ and let q be the integer such that q − 1 < γ ≤ q.
Assume F belongs to Cq+3(R,Rd), U0 ∈ C1(R/Z,R), v 6= (0, · · · , 0) and

a(k)(u) � v = 0, k = 1, · · · , q − 1(2.1)

then there exists T0 > 0 such that, for all ε ∈]0, 1], the solutions of conservation
law (1.1) with initial oscillating data (1.8) are smooth on [0, T0]× R and

uε(t,x) = u+ εU

(
t,
φ(t,x)

εγ

)
+O(ε1+r) in L∞([0, T0]× Rd),

where 0 < r =

{
1 if γ = q,

q − γ else,
and the smooth profile U is uniquely

determined by the Cauchy problem (2.2), (2.3), φ is given by the eikonal equa-
tion (1.11):

∂tU + b
∂U q+1

∂θ
= 0, b =

{
1

(q+1)!

(
a(q)(u) � v

)
if γ = q,

0 else.
(2.2)

U(0, θ) = U0(θ).(2.3)
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We deal with smooth solutions to compute later Sobolev bounds. Indeed
the asymptotic stays valid after shocks formation and for all positive time but
in L1

loc instead of L∞, see [4].
When γ = 1, we do not need assumption (2.1). It is the classic case for

geometric optics, see [35, 17, 25, 26, 27, 28].
In dimension d ≥ 2, it is always possible to find a non trivial vector v

satisfying (2.1). At least for γ = 2, (2.1) reduces to find v 6= 0 such that
a′(u) � v = 0. Thus, such singular solutions always exists in dimension greater
than one. But, for genuine nonlinear one dimensional conservation law, there
is never such solution. Of course, we assume U0 non constant and F not a
linear function near u, else the Theorem is obvious. If U0 is constant uε too.
If F is linear on [u − δ, u + δ] for some δ > 0, high oscillations propagate for
all time when ε.

In fact Theorem 2.1 expresses a kind of degeneracy of multidimensional
scalar conservation laws. This degeneracy (period smaller than the amplitude)
appears for quasilinear systems with a linearly degenerate eigenvalue [7, 8, 9, 3],
and for linear [32] and semi-linear systems [25, 26, 28].

Notice that for γ > 1, smooth solutions exist for larger time than it is cur-
rently known [13, 33]: Tε ∼ 1/|∇xu

ε
0| ∼ εγ−1. Furthermore equation (2.2) is

nonlinear only if γ ∈ N and aq(u) � v 6= 0.

Proof : First one performs a WKB computations with following ansatz:

uε(t,x) = u + ε Uε

(
t,
φ(t,x)

εγ

)
,(2.4)

F(uε) =

q+1∑

k=0

εk
Uk
ε

k!
F(k)(u) + εq+2Gε

q(Uε),

Gε
q(U) = U q+2

∫ 1

0

(1− s)q+1

(q + 1)!
F(q+2)(u+ sεU)ds,

gεq(U) = v.Gε
q(U),

∂tUε

(
t,
φ(t,x)

εγ

)
= ∂tUε − ε−γ(a(u) · v)∂θUε

divxF(uε) =

q∑

k=0

εk+1−γ ∂θU
k+1
ε

(k + 1)!
a(k)(u) · v + εq+2divxG

ε
q(Uε)

= ε1−γ(a(u) · v)∂θUε + εq+1−γcq∂θU
q+1
ε + εq+2−γ∂θg

ε
q(Uε),

where cq =
a(q)(u)·v
(q+1)!

. Then simplification yields

∂tuε + divxF(uε) = ε
(
∂tUε + εq−γcq∂θU

q+1
ε + ε1+q−γ∂θg

ε
q(Uε)

)
.(2.5)

It suffices to take Uε solution of the one dimensional scalar conservation laws
with ψε(U) = εq−γcqU

q+1 + ε1+q−γ∂θg
ε
q(Uε)

∂tUε + ∂θψε(Uε) = 0, Uε(0, θ) = U0(θ).(2.6)
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Notice that ψε = O(1) ∈ C1
loc. If γ 6= q, ψε is even smaller: ψε = O(εr) ∈ C1

loc.
By the method of characteristics, for each ε, the existence of a smooth solution
is obvious for time or order 1/|U ′

0|, more precisely a smooth solutions exists
on a maximal interval Tε, where a first shock locates at the time t = Tε
(which always occurs if the initial periodic data is non constant and cq 6= 0).
Furthermore, ψε depends smoothly of ε so we can take an uniform time for
all ε ∈ [0, 1]. Which prove the existence of 0 < T0 < T ∗ = min{Tε, ε ∈]0, 1]}
for uε. Indeed, Tε = −1/min{ψ′′

ε (U0(θ))U
′
0(θ), θ ∈ [0, 1]}. Let 0 < T0 < T ∗,

the one periodic function w.r.t. θ, Uε belongs to C1([0, T0] × R/Z) and uε
is well defined by (2.4). By construction uε satisfies (1.1), (1.8) and uε ∈
C1([0, T0]× Rd) for all 0 < ε ≤ 1.

There are two cases: γ is an integer or not.
q = γ: From (2.5) and (1.1) we get

∂tUε + ∂θ
(
cqU

q+1
ε + εgεq(Uε)

)
= 0, ∂tU + cq∂θU

q+1 = 0,

Uε(0, θ) = U0(θ), U(0, θ) = U0(θ).

The classical method of characteristics, gives C1 characteristics, C1 solutions
and

‖Uε − U‖C1([0,T0]×Rd) = O(ε),

where

‖U‖C1([0,T0]×Rd) = ‖U‖L∞([0,T0]×Rd) + ‖∂tU‖L∞([0,T0]×Rd) + ‖∂θU‖L∞([0,T0]×Rd).

integer q > γ: The proof is similar except the term εrcq∂θ (cqU
q+1) becomes

a remainder, with r = q − γ and U(t, θ) = U0(θ), thus

‖Uε(., .)− U0(.)‖C1([0,T0]×Rd) = O(εr).

If condition (2.1) is violated, oscillations are immediately canceled.

Theorem 2.2. [Cancellation of high oscillations, [4]]
Let F belongs to Cq+1 and U0 ∈ L∞(R/Z,R), where q − 1 < γ ≤ q is defined
in Theorem 2.1. If for some 0 < j < q

a(j)(u) � v 6= 0(2.7)

then the solutions uε of conservation law (1.1) with initial oscillating data (1.8)
for ε ∈]0, 1] satisfy when ε→ 0

uε(t,x) = u+ εU0 + o(ε) in L1
loc(]0,+∞[×Rd).

Obviously the interesting case is when U0 is non constant. In this context,
when U0 is smooth and non constant the first time when a shock occurs Tε → 0
when ε→ 0. Thus solutions are weak entropy solutions.
The proof is in the spirit of [4] and uses averaging lemmas. Another proof is
possible with another argument: the decay of periodic solutions for large time,
see [5, 10, 12, 13, 18, 22] about this decay.
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Proof : For non constant initial data it is impossible to avoid shock waves
on any fixed strip [0, T0]×Rd with T0 > 0 as in the previous proof of Theorem
2.1 since the time span of smooth solutions is εβ where β = γ − j > 0.

First, with a change of space variable x ↔ x− t.a(u), assume that a(u) = 0.
Let Wε(t, θ) = Uε(t, ε

jθ) where Uε is defined in (2.4). Then Wε satisfies the
one dimensional conservation laws:

∂tWε + ∂θ
(
cjW

j+1
ε + εgεj (Wε)

)
= 0, Wε(0, θ) = U0(ε

−βθ),(2.8)

Since Wε(0, .) converges weakly towards U 0, and Wε is relatively compact in
L1
loc thanks to averaging lemmas, Wε converges towards the unique entropy

solution W of

∂tW + cj∂θW
j+1 = 0, W (0, θ) = U 0.

That is to say that W (t, θ) ≡ U 0. Then vε(t,x) = Wε(t, ε
−βv · x) converges

towards U 0 in L1
loc which concludes the proof.

3. Characterization of nonlinear flux

The regularizing effect given in [34] is related with the sharp exponent
α = αsup quantifying precisely the non-linearity of the flux. There are some
examples where α is computed in dimension two in [34, 39] and some remarks
in [2, 23, 24]. For the first time, we obtain “the sharp α” for all smooth flux
in Theorem 3.1.

Another genuine nonlinear definition for the flux depending on the space
dimension d, related to weakly nonlinear geometric optics, is given in [4]. We
generalize the definition from [4]. Thanks to Theorem 3.1 below, this new
definition is equivalent to the classical definition 1.1.

Furthermore the definition 3.1 implies the strict nonlinearity defined in [18].
This will be proved at the end of this section with other related results.

Definition 3.1. [Nonlinear flux]
Let the flux F belongs to C∞(R,Rd) and I = [c, d], c < d. The flux is said to
be nonlinear on I if, for all u ∈ I, there exists m ∈ N∗ such that

rank{a′(u), · · · , a(m)(u)} = d.(3.1)

Furthermore, the flux is said to be genuine nonlinear if m = d is enough in
(3.1) for all u ∈ I.

As usual, the non-linearity is a matter of the second derivatives of F: F′′ = a′.
Notice that m ≥ d, thus the genuine nonlinear case is the strongest nonlinear
case. The genuine nonlinear case was first stated in [4], see condition (2.8) and
Lemma 2.5 p. 447 therein. The genuine nonlinear condition det(a′, · · · , a(d)) 6=
0 for multidimensional conservations laws was also in [11], see condition (16)
p. 84 therein.
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The simplest example of velocity a associated with a genuine nonlinear flux
F is given in [4, 11, 2]:

a(u) = (u, u2, · · · , ud) with F(u) =

(
u2

2
, · · · ,

ud+1

d+ 1

)
.

The definition 3.1 is more explicit with following integers with I = [−M,M ].

dF[u] = inf{k ≥ 1, rank{F′′(u), · · · ,F(k+1)(u)} = d} ≥ d,(3.2)

dF = sup|u|≤MdF[u] ∈ {d, d+ 1, · · · } ∪ {+∞}.(3.3)

Indeed the definition 3.1 states that the flux is genuine nonlinear when dF
reaches is minimal value, dF = d.
Conversely, if the flux F is linear, then a is a constant vector in Rd and dF
reaches is maximal value, dF = +∞.
Between dF = d and dF = +∞, there is a large variety of nonlinear flux.

The following theorem gives the optimal α, (1.3), for smooth flux.

Theorem 3.1. [Sharp measurement of the flux non-linearity ]
Let F be a smooth flux, F ∈ C∞([−M,M ],Rd), the measurement of the flux
non-linearity αsup is given by

αsup =
1

dF
≤

1

d
.

Furthermore, if αsup > 0 there exists u ∈ [−M,M ] such that dF = dF[u].

A similar result for the genuine nonlinear case: dF = d, can be found in [2].
This Theorem is a powerful tool to compute the parameter αsup, for in-

stance:

• if F (u) = (cos(u), sin(u)) then F is genuine nonlinear and αsup = 1/2
since det(F ′′(u), F ′′′(u)) = 1.

• if F is polynomial with degree less or equal to the space dimension d
then αsup = 0 and F does not satisfy definition 3.1.
It is well known that the “Burgers multi-D” flux F (u) = (u2, · · · , u2) is
not nonlinear when d ≥ 2. The sequence of oscillations with large am-
plitude (uε)0<ε≤1 given by uε(t,x) = sin

(
x1−x2

ε

)
gives us global smooth

solutions while the sequence (uε)0<ε≤1 blows up in any W s,1
loc for all

s > 0.
• If F is polynomial such that deg(Fi) ≥ 2 for all i and all degrees are

distinct, then F is nonlinear and αsup =
1

max
i
deg(F ′

i )
.

For smooth Flux the optimal α is the inverse of an integer. Not all value
of α are possible for F ∈ C∞. With less smooth flux, other values of α are
possible, see [34, 39, 24].

A geometric approach, like Morse theory is possible to prove Theorem 3.1,
see a suggestion in [20]. We choose another approach similar to some proofs
of phase stationnary lemmas, see [38, 2, 24].
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The proof of Theorem 3.1 needs some lemmas. First we recall a Lemma
from [2, 30] giving the optimal α for functions on R.

Let ϕ ∈ C∞([c, d],R) and v ∈ [c, d], the multiplicity of ϕ on v is defined by

mϕ[v] = inf{k ∈ N, ϕ(k)(v) 6= 0} ∈ N = N ∪ {+∞}.

It means that if k = mϕ then ϕ(k)(v) 6= 0 and ϕ(j)(v) = 0 for j = 0, 1, · · · , k−1.
For instance mϕ[v] = 0 means ϕ(v) 6= 0; mϕ[v] = 1 means ϕ(v) = 0, ϕ′(v) 6= 0
and mϕ[v] = +∞ means ϕ(j)(v) = 0 for all j ∈ N.
Set the multiplicity of ϕ on [c, d] by

mϕ = supv∈[c,d]mϕ[v] ∈ N.

Lemma 3.1 ([2, 30]). Let ϕ ∈ C∞([c, d],R) with c < d, and

Z(ϕ, ε) = {v ∈ [c, d], |ϕ(v)| ≤ ε}.

If 0 < mϕ < +∞ then there exists C > 1 such that, for all ε ∈]0, 1],

C−1εα ≤ meas(Z(ϕ, ε)) ≤ Cεα with α =
1

mϕ

.(3.4)

The case mϕ = 0 is not interesting since there is no zero in this situation.
Quantity mϕ is positive simply means that the set Z(ϕ, 0) of roots of ϕ is not
empty.

Proof. Since any root of ϕ has a finite multiplicity, the compact set Z(ϕ, 0)
is discrete and then finite: Z(ϕ, 0) = {z1, · · · , zν}. For each zi and h > 0, let
Vi(h) be ]zi − h, zi + h[∩[c, d]. For any 0 < h < |b− a|, we have

h ≤ meas(Vi(h)) ≤ 2h.

For any root zi, there exists hi ∈]0, |b− a|[, Ai > 0 and δi > 0 such that

δi|h|
ki ≤ |ϕ(zi + h)| ≤ Ai|h|

ki for all h ∈ Vi(hi),(3.5)

with ki = mϕ[zi]. This is a direct consequence of Taylor-Lagrange formula.

Let V be
⋃

i

Vi(hi) and ε0 = min
(
1,minv∈[c,d]\V |ϕ(v)|

)
. By the continuity of

ϕ on the compact set [c, d] \ V , ε0 is positive. Then for all 0 < ε < ε0, we
have Z(ϕ, ε) ⊂ V . If ε ≥ |ϕ(zi + h)| for |h| < hi, then from (3.5), we have
(ε/δi)

1/ki ≥ |h|. This last inequality implies for 0 < ε < ε0 ≤ 1 that Z(ϕ, ε) is

a subset of
⋃

i

Vi((ε/δi)
1/ki) and then

meas(Z(ϕ, ε)) ≤ 2
ν∑

i=1

(ε/δi)
1/ki ≤

(
2

ν∑

i=1

δ
−1/ki
i

)
ε1/mϕ .

It gives inequality (3.4). To obtain the optimality of α, let zj be a root of ϕ with
maximal multiplicity i.e. mϕ[zj ] = mϕ = k. Again from (3.5), Vj((ε/Aj)

1/k) is
a subset of Z(ϕ, ε) for all ε ∈]0, ε0[. Then we have (ε/Aj)

1/k ≤ meas(Z(ϕ, ε)),
which is enough to get the optimality of α = 1/k and concludes the proof.



OSCILLATIONS AND SMOOTHING EFFECT FOR CONSERVATION LAWS 11

We recall two useful lemmas from [2] with their proofs to be self-contained.

These proofs follow a proof of E. Stein about oscillatory integrals [38].

Lemma 3.2. [2] Let k ≥ 1, I an interval of R, φ ∈ Ck(I,R).

If 1 ≤ |φ(k)(v)|, for all x ∈ I,
then measure{v ∈ I, |φ(v)| ≤ ε} ≤ ck ε

1/k,

where ck is a constant independent of φ, I.

Notice that the result is independent of I. In particular, let Z(φ, ε) be
{v ∈ I, |φ(v)| ≤ ε}. Z(φ, ε) is always bounded. Furthermore the number or
roots of φ is finite. The proof gives at most 2k − 1 roots.

Proof : Since the result is independent of interval I and of φ(k−1)(0) sign,
let us suppose that I = R with |φ(k)(v)| ≥ 1 > 0 on R, and φ(k−1)(0) ≤ 0.

We first treat the case k = 1. If φ′(v) stays positive, we have φ(0) + v ≤ φ(v)
for 0 ≤ v and since φ(0) ≤ 0, there exists a unique c ≥ 0 such that φ(c) = 0.
In the other case, φ′(v) stays negative, and we find a unique c ≤ 0 such that
φ(c) = 0. Then |φ(v)| ≥ |v − c| for all v, and |φ(v)| ≤ ε implies |v − c| ≤ ε/
i.e. Z(φ, ε) ⊂ [c− ε/, c+ ε/]. So the lemma is proved for k = 1 with c1 = 2.

We now prove the Lemma by induction on k. Let us suppose that the case
k is known. As for k = 1, there exists a unique c such that φ(k)(c) =
0. Thus for all v we have |φ(k)(v)| ≥ |v − c|. Let η > 0 and set W =
Z(φ, ε) ∩ [c − η, c + η], U = Z(φ, ε) ∩ (] − ∞, c − η[∪]c + η,+∞[). We have
meas(W ) ≤ 2η and by our inductive hypothesis, since |φ(k)(v)| ≥ |v − c| ≥ η
on U , meas(U) ≤ ck(ε/(η))

1/k. Now the relation Z(φ, ε) = W ∪ U gives
meas(Z(φ, ε)) ≤ infη>0

(
2η + ck(ε/(η))

1/k
)
which implies by a simple compu-

tation of the minimum that meas(Z(φ, ε)) ≤ ck+1(ε/)
1/(k+1), where ck+1 =

21/(k+1)(k + 1)k1/(k+1)−1c
1−1/(k+1)
k which concludes the proof.

The previous lemma is generalized with parameters in a compact set.

Lemma 3.3 ([2]). Let P be a compact set of parameters, k a positive integer,
A > 0, V = [−A,A], K = V ×P , φ(v; p) ∈ C0(P,Ck(V,R)), such that, for all
(v, p) in the compact K, we have

k∑

j=1

∣∣∣∣
∂jφ

∂vj

∣∣∣∣ (v; p) > 0.

Let Z(φ(.; p), ε) = {v ∈ V, |φ(v; p)| ≤ ε}, then there exists a constant C such
that

supp∈Pmeas(Z(φ(.; p), ε)) ≤ Cε1/k.

Proof. Since K is a compact set, we can choose 0 < δ ≤ 1 such that,

everywhere on K, we have 0 < 2δ <
1

k

k∑

i=1

∣∣∣∣
∂iφ

∂vi

∣∣∣∣ (v; p).
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For each (v; p) ∈ K, there exists an integer i ∈ {1, · · · , k}, a number r > 0
and an open set Op with p ∈ Op ⊂ P such that |∂ivφ| > δ on U(v, p) =
]v − r, v + r[×Op. Therefore, we have

meas(Z(φ(.; p), ε)∩]v − r, v + r[) ≤ ci(ε/δ)
1/i ≤ c ε1/k/δ

using Lemma 3.2, where c = max
i=1,··· ,k

ci.

By compactness of K, there exists a finite number of such sets Uj = U(vj , pj)

such that K ⊂
ν⋃

j=1

Uj . Thus, for each p, Z(φ(.; p), ε) intersects at most ν in-

tervals ]vj − rj, vj + rj[ where Lemma 3.2 is applied. This allows to write
meas(Z(φ(.; p), ε)) ≤ νc ε1/k/δ for all p and to conclude the proof.

Now we are able to use the key integer dF.

Lemma 3.4. If F is a nonlinear flux on I in the sense of definition 3.1 then
dF is finite and there exists u ∈ I such that dF = dF[u].

Proof Let u be fixed in I. Then there exits, 1 ≤ j1 < j2 < · · · < jd = dF[u]
such that rank{a(j1)(u), · · · , a(jd)(u)} = d by definition of dF[u]. So the con-
tinuous function g(v) = det(a(j1)(v), · · · , a(jd)(v)) does not vanish at v = u.
By continuity, this is still true on an open set J with u ∈ J . Since jd = dF[u],
we have dF [v] ≤ dF [u] for all v ∈ J . Thus v 7→ dF [v] is upper semi-continuous
and the result follows immediately on the compact set I.

Proof of Theorem 3.1. There are two steps.

step 1: αsup ≥
1

dF
.

Set φ(v; τ, ξ) = τ + a(v) · ξ with τ 2 + |ξ|2 = 1. τ and ξ are fixed. Since
φ(.; τ, 0) = τ has no roots, we can assume that ξ 6= 0Rd. For j ≥ 1 we have
∂jvφ(v; τ, ξ) = a(j)(v) ·ξ. By definition of dF[v] there exists j ≤ dF[v] ≤ dF such
that ∂jvφ(v; τ, ξ) 6= 0. Thus, we have when ξ 6= 0

dF∑

j=1

|∂jvφ(v; τ, ξ)| > 0.(3.6)

When ξ = 0, we have τ = ±1 since τ 2 + |ξ|2 = 1. The function φ(v;±1, 0) =
±1 6= 0. By continuity of this function there exists an open neighborhood V of
(1, 0Rd) such the function does not vanish on V . Set P be the complementary
set of V in the unit sphere of Rd+1. P is compact and (3.6) is true on P . Now
we can use lemma 3.3 to conclude the first step.

step 2: αsup ≤
1

dF
.

Take u from lemma 3.4. Then there exists ξ 6= 0 such that ∂jvφ(v; τ, ξ) = 0
for 1 ≤ j < dF and ∂jvφ(v; τ, ξ) 6= 0 for j = dF. For such ξ 6= 0, we choose τ
such that ϕ(v) = φ(v; τ, ξ) vanishes at v = u. Now, by lemma 3.1, the second
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step is proved.

Finally
1

dF
≤ αsup ≤

1

dF
and the proof is complete with lemma 3.4.

There are more general definitions of nonlinear flux [18, 34]. But the precise
smoothing effect seems to be related with definition 1.1 or 3.1 and the pa-
rameter αsup or equivalently dF. Nevertheless, let us compare theses general
definitions with new definition 3.1. It can be useful for other applications.

In [34] there is a more general definition of nonlinear flux.

Definition 3.2. [General Nonlinear Flux [34]] A flux F, differentiable on
[−M,M ] is said to be nonlinear if the degeneracy set

W (τ, ξ) = {|v| ≤M, τ + F′(v) · ξ = 0}

has null Lebesgue measure for all (τ, ξ) on the sphere.

This definition is of a great importance since this condition implies the
compactness of the semi-group St associated to the conservation law (1.1).

Proposition 3.1. Let F be a smooth flux in C∞. If F satisfies definition 3.1
then F is nonlinear for definition 3.2 but the converse is wrong.

Proof : Lemma 3.4 and Theorem 5.1 show that nonlinearity of definition
3.1 implies nonlinearity of definition 1.1 and then of definition 1.1. But we can
give a direct proof from Lemma 2.5 and remark (2.3) p. 447 in [4], see also
[11] p. 84.

Notice that W (τ, 0) = ∅ since τ = ±1. So we assume that ξ 6= 0. Set
φ(v) = τ + F′(v) · ξ. Since φk(v) = Fk+1(v) · ξ, for any v, there exists k > 0
such that φk(v) 6= 0 by the definition 3.1. So the roots of φ are isolated and
the set W (τ, ξ) is finite.

Conversely the counter-example F′(u) = exp(−1/u2)(u, u2, · · · , ud) does not
satisfies definition 3.1 since dF[0] = +∞.
But F satisfies definition 3.2. Indeed, with h(v) = τ exp(1/v2)+ξ·(v, v2, · · · , vd),
the set W (τ, ξ) − {0} is the set of roots of h(.). If τ = 0, we deal with the
genuine nonlinear flux of definition 4.1 and the degeneracy set W (τ, ξ) is a null
set. Indeed it is finite. If τ 6= 0, h(.) is analytic and non trivial on R∗. Con-
sequently W (τ, ξ) is countable and also a null set which concludes the proof.

Engquist and E in [18] gave another definition of strictly nonlinear flux
generalizing Tartar [40].

Definition 3.3. [ Strictly Nonlinear Flux [18]]
Let M be a positive constant, and F : [−M,M ] → Rd be a function twice
differentiable on [−M,M ].
F is said to be strictly nonlinear on [−M,M ] if for any sub-interval I of
[−M,M ], the functions F ′′

1 , · · · , F
(d) are linearly independent on I,

i.e., for any constant vector ξ, if ξ · F′′(u) = 0 for all u ∈ I then ξ = 0.
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Proposition 3.2. Let F be a C∞([−M,M ],Rd) flux. If F satisfies definition
3.1 then F satisfies definition 3.3 but the converse is wrong.

Proof. If ξ · F′′ = 0 on a open sub-interval I. Let u belongs in I. Hence
ξ ·Fk(u) = 0 for all k ≥ 2. But F satisfies definition 3.1. It follows that ξ = 0.

Conversely take a flux F such that F′′(u) = exp(−1/u2)(1, u, · · · , ud−1) .
Obviously F satisfies definition 3.3. But F does not satisfies definition 3.1
since dF[0] = +∞. �

If the flux is an analytic function, the situation is simpler.

Proposition 3.3 (Analytic nonlinear flux). If the flux is an analytic function
all previous definitions: 1.1, 3.1, 3.2, 3.3 are equivalent.

Proof. Again we use definition 3.1. There are two cases.

(1) If F is nonlinear for definition 3.1. By Theorem 5.1, Propositions 3.1
and 3.2, F is nonlinear for other definitions.

(2) If F is not nonlinear for definition 3.1. By Theorem 5.1, F does not
satisfies definition 1.1.
Let u be fixed. There exists an hyperplane H such that all derivatives

F(k)(u) ∈ H for all k ≥ 2, i.e. there exists ξ 6= 0 such that ξ ·F(k)(u) = 0
for all k ≥ 2. Using the power series expansion of F′′ near u we see
that F′′ stays in H near u. And by the unique analytic extension of
F′′, F′′ stays always in H , i.e. ξ ·F′′ = 0 everywhere. Thus F does not
satisfies definition 3.3.
Integrating the relation ξ · F ′′ = 0 we have τ + ξ · F′ = 0 for some

contant τ . Dividing the relation by
√
τ 2 + |ξ|2 we can assume that

τ 2 + |ξ|2 = 1. Hence F does not satisfies definition 3.2.
We incidentally check that definition 3.2 implies definition 3.3.

�

4. Sobolev estimates

In this section, uniform and optimal Sobolev exponents of the family of
highly oscillating solutions from Theorem 2.1 are investigated.

Theorem 4.1. [Sobolev exponent for highly oscillating solutions]
Let uε be the C1([0, T0]× Rd) oscillating solutions given in Theorem 2.1. For
all 1 ≤ p < +∞, the family (uε)0<ε≤1 is bounded in

C0([0, T0],W
s,p
loc (R

d,R)) ∩ W s,p
loc ([0, T0]× Rd,R) with s =

1

γ
.

The Sobolev exponent s =
1

γ
is optimal if U0 is a non constant function.

That is to say that for all s > 1/γ the sequence (uε)0<ε<1 is unbounded in
C0([0, T0],W

s,p
loc (R

d,R)) and in W s,p
loc ([0, T0]× Rd,R).
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It is proved below that uε has order of ε
1−sγ in W s,p

loc for any s ∈ [0, 1[.
The case p = 1 is the most important, since L1 norm plays an important role
for conservation laws. These estimates are indeed the estimate of the initial
data propagated by the semi-group St, see [34] for p = 1 and also [37] for
TV (|uε−u|

s). A key point is there is no improvement of the Sobolev exponent
of the family of initial data.
The basic idea of the proof is that the sequence of exact solutions (uε)0<ε≤1 and

the sequence of approximate oscillating solution given by u + εU

(
t,
φ(t,x)

εγ

)

have similar bounds in Sobolev spaces.

Following semi-norms parametrized by Q = Qd(x0, A) = x0+] − A,A[d,
where A > 0, x0 ∈ Rd, are used to estimate fractional derivatives inW s,p

loc (R
d,R),

see [1].

|V |p
Ẇ s,p(Qd(x0,A))

=

∫

Qd(x0,A))

∫

Qd(x0,A))

|V (x)− V (y)|p

|x− y|d+sp
dxdy.

Following classical definitions are used in this section.

Definition 4.1. [ Estimates in W s,p
loc (R

d)]
(i) u is said to be bounded in W s,p

loc (R
d) if

∀x0 ∈ Rd, ∃A > 0, ∃C ≥ 0,

‖u‖W s,p(Qd(x0,A)) = ‖u‖Lp(Qd(x0,A)) + |u|Ẇ s,p(Qd(x0,A)) ≤ C.

(ii) (uε)0<ε≤1 is said to be bounded in W s,p
loc (R

d) if

∀x0 ∈ Rd, ∃A > 0, ∃C ≥ 0, ∀ε ∈]0, 1], ‖uε‖W s,p(Qd(x0,A)) ≤ C.

(iii) Let β ≥ 0, (uε)0<ε≤1 has order of ε−β in W s,p
loc (R

d), denoted by

uε ≃ ε−β,

if ∀x0 ∈ Rd, ∃A > 0, ∃C ≥ 1, ∃ε0 ∈]0, 1], ∀ε ∈]0, ε0],

C−1 ε−β ≤ ‖uε‖W s,p(Qd(x0,A)) ≤ C ε−β.

As usual if u is bounded in W s,p
loc (R

d) then for any cube Q, u belongs to
W s,p(Q). In the same way if uε ≃ ε−β in W s,p

loc (R
d) then for any cube Q

there exists a constant C ≥ 1 and ε0 ∈]0, 1] such that for all 0 < ε ≤ ε0,
C−1 ε−β ≤ ‖uε‖W s,p(Q ≤ C ε−β.

Since solutions of (1.1) are bounded in L∞, the key point is to focus on
fractional derivatives. For convenience |x| = |x1|+ · · ·+ |xd| and semi-norms

|V |p˙̃
W

s,p

(Qd(x0,A))
=

∫

Qd(0,A)

∫

Qd(x0,A)

|V (x + h)− V (x)|p

|h|d+sp
dxdh,

are also used. Notice that

|V |Ẇ s,p(Qd(x0,A/2)) ≤ |V | ˙̃
W

s,p

(Qd(x0,A))
≤ |V |Ẇ s,p(Qd(x0,2A)).
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Furthermore |V | ˙̃
W

s,p

(Q1(x0,A))
= |V |Ẇ s,p(Q1(x0,A)) when V is periodic with period

A (or A/2). Thus, these semi-norms can be useful to estimate bounds in W s,1
loc .

The proof of Theorem 4.1 needs some lemmas, so this proof is postponed at
the end of section 4.

Lemma 4.1. [Highly oscillating periodic function on R]
Let v belongs to W s,p

loc (R,R), γ > 0, and for all 0 < ε ≤ 1,

Vε(θ) = v(ε−γθ).

If v(.) is a non constant periodic function then

Vε ≃ ε−sγ in W s,p
loc (R).

The same remains true if Vε(θ) = vε(ε
−γθ), vε is one periodic, vε → v in C1.

Notice that the magnitude of Vε in W
s,p
loc is independent of p.

Notice also that if vε → v in W s,p
loc then vε(ε

−γθ) ≃ ε−sγ in W s,p
loc (R).

Proof : In all the sequel one sets x0 = 0 in definition 4.1 since computations
are invariant under translation.
First the L1

loc norm is easily bounded, see [4]. Let A > 1/2, X = ε−γx,
Bε = ε−γA, Nε the integer such that Nε ≤ 2Bε < Nε + 1 so 2A − 1 ≤
2A− εγ ≤ εγNε ≤ 2A.

‖Vε‖
p
Lp([−A,A]) =

∫ A

−A

|Vε(x)|
pdx = ε−γ

∫ Bε

−Bε

|v(X)|pdX

= ε−γ

(
Nε∑

k=1

∫ −Bε+k

−Bε+k−1

|v(X)|pdX +

∫ Bε

−Bε+Nε

|v(X)|pdX

)

= ε−γNε

∫ 1

0

|v(X)|pdX + ε−γ

∫ Bε

−Bε+Nε

|v(X)|pdX.

Finally one has

‖Vε‖Lp([−A,A]) ≤ (2A+ 1)1/p‖v‖Lp([0,1]),(4.1)

‖Vε‖Lp([−A,A]) ≥ (2A− 1)1/p‖v‖Lp([0,1])(4.2)

‖Vε‖Lp([−A,A]) ∼ (2A)1/p‖v‖Lp([0,1]) when ε→ 0.

|Vε| ˙̃
W

s,p

([−A,A])
is computed with the same notations and H = ε−γh,

|Vε|
p
˙̃
W

s,p

([−A,A])
= ε(1−sp)γ

∫ Bε

−Bε

∫ Bε

−Bε

|v(X +H)− v(X)|p

|H|1+sp
dXdH.

Let V ar(.) be the one periodic function bounded in L∞ by 2p−1‖v‖pLp([0,1]),

V ar(H) =

∫ 1

0

|v(X +H)− v(X)|pdX.

Notice that V ar ≡ 0 if and only if v is constant a.e.
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Using one periodicity of v with respect to X yields as in (4.1)

|Vε|
p
˙̃
W

s,p

([−A,A])
= ε−spγ

∫ Bε

−Bε

(
εγ
∫ Bε

−Bε

|v(X +H)− v(X)|pdX

)
dH

|H|1+sp
,

≤ ε−spγ

∫ Bε

−Bε

((2A+ 1)V ar(H))
dH

|H|1+sp
≤ ε−spγ(2A+ 1)Dp

∞,

Dp
B = (DB)

p =

∫ +B

−B

V ar(H)
dH

|H|1+sp
.

Notice that DB is a true constant related to the fractional derivative of v since
for B = 1/2, D1/2 = |v| ˙̃

W
s,p

([−1/2,1/2])
and for B = ∞ the integral converges.

The lower bound is obtained in the same way and finally one has

|Vε| ˙̃
W

s,p

([−A,A])
≤ ε−sγ(2A+ 1)1/pD∞,

|Vε| ˙̃
W

s,p

([−A,A])
≥ ε−sγ(2A− 1)1/pD1,

|Vε| ˙̃
W

s,p

([−A,A])
∼ ε−sγ(2A)1/pD∞.

Notice also that DB > 0 for B > 1/2. Otherwise DB = 0 implies V ar ≡ 0
a.e. which implies v is a constant function on [x0 − 2B, x0 + 2B] and on R by
periodicity.
A key point in this paper is the lower bound to get sharp estimates. Since DB

is non decreasing with respect to B, the previous lower bound of Vε in W s,p

implies the following lower bound

|Vε| ˙̃
W

s,p

([−A,A])
≥ ε−sγ(2A− 1)1/p|v| ˙̃

W
s,p

([−1/2,1/2])
.

With more work, similar estimates are still valid for |Vε|Ẇ s,1([−A,A]), see lemmas

in [4] about triangular changes of variables for oscillatory integrals. But it is
enough for our purpose.
Same computations when v is replaced by vε are still valid which conclude the
proof.

The following Lemma is useful to check that W s,1 semi-norms of V : R 7→ R

and W : Rd 7→ R where W (x1, · · · , xd) = V (x1) have the same order.

Lemma 4.2. Let d ≥ 2, s > 0, A > 0, h1 > 0,

µd,s(h1) =

∫ A

0

· · ·

∫ A

0

h1+s
1

(h1 + h2 + · · ·+ hd)d+s
dh2 · · · dhd,(4.3)

then there exists two positive numbers cd,s, Cd,s such that

0 < cd,s ≤ µd,s(h1) ≤ Cd,s < +∞, ∀A > 0, ∀h1 ∈]0, A].(4.4)

Inequalities (4.4) are still valid for h1 ∈]0, 2A] with other constants:

0 < c̃d,s ≤ µd,s(h1) ≤ C̃d,s < +∞.
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The constants cd,s and Cd,s are independent of A > 0. Notice that there is
a singularity for µd,s at h1 = 0 since µd,s(0) = 0 and µd,s > 0 on ]0, A].

Proof : It seems that µd,s(h1) is depending on A, µd,s(h1) = µA
d,s(h1). But

by homogeneity the problem is reduced to the case A = 1 with the change of
variable hi = tiA, 0 < ti < A.
Now µd,s(t1) = µ1

d,s(t1) = µA
d,s(h1) is computed explicitly .

Let µd,s(h1, B) be

∫ 1

0

· · ·

∫ 1

0

t1+s
1

(t1 + t2 + · · ·+ td +B)d+s
dt2 · · · dtd for d > 1,

B ≥ 0. Notice that µd,s(t1) = µd,s(t1, 0).

For d = 1, set µ1(t1, B) =
t1+s
1

(t1 +B)1+s
, µ1(t1) = µ1(t1, 0) = 1. The identity

∫ 1

0

dt

(t+B)(1+j+s)
= (j + s)−1

(
B−(j+s) − (B + 1)−(j+s)

)
,

yields (j+s)µ1+j(t1, B) = µj(t1, B)−µj(t1, B+1), and proceeding by induction

with the notations γd,s =
1

(d− 1 + s) · · · (1 + s)
, Ck

n =
n!

k!(n− k)!
,

µd,s(t1, B) = γd,s

d−1∑

k=0

Ck
d−1(−1)kµ1(t1, B + k).

Hence, for B = 0,

µd,s(t1) = γd,s

d−1∑

k=0

Ck
d−1(−1)k

t1+s
1

(t1 + k)1+s
,

which gives µd,s(0+) = γd,s > 0. Now, µd,s(.) belongs in C
0(]0, 1],R+), µd,s(.)

is positive on ]0, 1] with a positive right limit at t1 = 0, thus positive constants
stated in the lemma exist.
For instance when d = 2, C2,s is γ2,s = 1/(1+s) and c2,s = (1−2−(1+s))/(1+s),
since µ2 is decreasing.
Notice that Cd,s ≤ γd,s for all d ≥ 2. It suffices to proceed by induction with

this inequality

∫ 1

0

dt

(t +B)(1+j+s)
≤ (j+ s)−1B−(j+s). But γd,s is the right limit

of µd,s at t1 = 0. Then Cd,s = γd,s which concludes the proof for h1 ∈]0, A]. On

]0, 2A] it suffices to take 0 < c̃d,s = inf]0,2]µd,s and +∞ > C̃d,s = sup]0,2]µd,s.

Our examples of oscillating solutions reduce to the following key example.

Lemma 4.3. [Example of highly periodic oscillations on [0, T ]× R]
Let T , γ be positive. If U belongs to C1([0, T ]×R/Z,R) and non constant then
Vε(t, x) = U(t, ε−γx) ≃ ε−sγ in C0([0, T ],W s,p

loc (R)) ∩W
s,p
loc (]0, T [×R).

Proof : First the fractional derivative w.r.t; x is estimate. Second the
whole fractional derivative in (t,x) is obtained.

Bounds in L∞([0, T ],W s,p
loc (R)): There exists t0 ∈]0, T [ such that θ 7→ U(t0, θ)
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is non constant since U is non constant and continuous on [0, T ]× R/Z. For
t0 fixed the sharp estimate is a consequence of lemma 4.1. For another t, we
get the same order ε−sγ or ε0 = 1. Finally, constants involving in this estimate
depend continuously of t so the bound in L∞([0, T ],W s,p

loc (R)) is obtained. Since
U ∈ C1 this bound is automatically in C0([0, T ],W s,p

loc (R)).

Bounds in W s,p
loc (]0, T [×R)): The only problem is to estimate for x0 ∈ R, t0 ∈

]0, T [ and min(t0, T − t0) > A > 0, the quadruple integral

IA = |Vε|
p

˙̃
W s,p([t0−A,t0+A]×[x0−A,x0+A])

=

∫ t0+A

t0−A

∫ x0+A

x0−A

∫ A

−A

∫ A

−A

|U(t + τ, ε−γ(x+ ξ))− U(t, ε−γx)|p

(|τ |+ |ξ|)2+sp
dξdτdxdt.

Upper bound of IA:
Let Num be the numerator of the previous fraction, Q be U(t, ε−γ(x + ξ))−
U(t, ε−γx), R be U(t+τ, ε−γ(x+ξ))−U(t, ε−γ(x+ξ)) then Num = |Q+R|p ≤
2p−1(|Q|p + |R|p).
Previous inequality implies IA ≤ 2p−1(IQ+ IR) with obvious notations.

IQ =

∫ ∫ ∫ ∫
|U(t, ε−γ(x+ ξ))− U(t, ε−γx)|p

(|τ |+ |ξ|)2+sp
dξdτdxdt,

=

∫ ∫ ∫
|U(t, ε−γ(x+ ξ))− U(t, ε−γx)|p

|ξ|1+sp
µ2,sp(ξ)dξdxdt,

with µ2,sp(.) is defined in lemma 4.2. Using lemmas 4.1, 4.2 yields IQ ≃ ε−sγ.
IR is easily bounded since

IR =

∫ ∫ ∫ ∫
|U(t + τ, ε−γ(x+ ξ))− U(t, ε−γ(x+ ξ))|p

(|τ |+ |ξ|)2+sp
dξdτdxdt,

≤

∫ ∫ ∫ ∫
‖∂tU‖

p
L∞ |τ |p

(|τ |+ |ξ|)2+sp
dτdξdxdt

≤ 8A2‖∂tU‖
p
L∞

∫ A

0

|τ |p(1−s)−1µ2,sp(τ)dτ,

which is finite, so IA ≤ IQ + IR = O(ε−spγ).

Lower bound of IA:
We again use notations Q, R, Num. By a convex inequality, the numerator
satisfies: Num = |Q + R|p ≥ |Q|p − p|Q|p−1|R| = |Q|p − O(|τ ||Q|p−1) since
R = O(τ). Then IA ≥ IQ − O(IS), where IQ has order of ε−spγ. The term
IS has a lower order as we can find after the following similar computations
as in the proof of lemma 4.1. Notice first that for all positive numbers A, b,∫ A

0

τ

(τ + b)2+β
dτ ≤

C

2bβ
where β > 0 and C = 2

∫ +∞

0
τ

(τ+1)2+β dτ < +∞. Now

integrating on τ yields

IS =

∫ ∫ ∫ ∫
|τ ||Q|p−1

(|τ |+ |ξ|)2+sp
dξdτdxdt ≤ C

∫ ∫ ∫
|Q|p−1

|ξ|sp
dξdxdt.
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We set η = εγ, X = x/η, Ξ = ξ/η, the previous inequality becomes

IS ≤ Cη2−sp

∫ T

0

∫ A/η

A/η

∫ A/η

A/η

|Q|p−1

|Ξ|sp
dΞdXdt.

We now focus on the integral with respect to Ξ and remark that Q = O(1)
and also Q = O(Ξ) since U is C1.
∫ A/η

A/η

|Q|p−1

|Ξ|sp
dΞ =

∫

|Ξ|<1

|Q|p−1

|Ξ|sp
dΞ +

∫

1<|Ξ|<A/η

|Q|p−1

|Ξ|sp
dΞ

≤

∫

|Ξ|<1

O(|Ξ|p−1)

|Ξ|sp
dΞ +

∫

1<|Ξ|<A/η

O(1)

|Ξ|sp
dΞ

≤

∫

|Ξ|<1

O(|Ξ|p(1−s)−1)dΞ +O(g(η)) = O(1) +O(g(η)),

where g(η) = ηsp−1 if sp 6= 1,else g(η) = ln(η).

To bound IS, we notice that the integral η
∫ A/η

A/η
dX is bounded by periodicity

and we can take the supremum with respect t on [0, T ]. So IS = O(1) if sp 6= 1
else IS = O(ln(η)) which is enough to have a lower order than IQ.

In conclusion, the bounds of IA yield Vε ≃ ε−sγ in W s,p
loc ([0, T ]× R).

Lemma 4.4. [Example of highly periodic oscillations on Rd]
Let v belongs to W s,p

loc (R,R), γ > 0, ψ(x) = v · x+ b where v ∈ Rd, b ∈ R and
0 < ε < 1,

Wε(x) = v(ε−γψ(x)).

If v is a non constant periodic function and ∇ψ 6= 0, then

Wε ≃ ε−sγ in W s,p
loc (R

d,R).

Furthermore if functions vε are one periodic function for all ε ∈]0, 1], which
converge towards v in C1 and Wε(x) = vε(ε

−γψ(x)) the conclusion holds true.

Proof : The expounded proof has three steps. Let M be a d × d non-
degenerate matrix andB ∈ Rd such thatX1 = ψ(x) whereX = (X1, · · · , Xd) =
Mx +B. M exists since v 6= 0.

Step 1: IfW (x) = U(Mx+b) since detM 6= 0, W and U are the same order
in W s,p

loc . More precisely, fix following positive constants m0 = | detM | > 0,
m1 = ‖|M‖| = sup{|Mx|, |x| = 1} > 0, m−1 = ‖|M−1‖| > 0, 0 < r < R such
that Qd(X0, r) ⊂ MQd(x0, 1) ⊂ Qd(X0, R) where X0 =Mx0 +B. Performing
the change of variables X = Mx + B, Y = My + B yields for any x0 ∈ Rd

and any A > 0

m−1
0 ‖U‖Lp(Qd(X0,rA)) ≤ ‖W‖Lp(Qd(x0,A)) ≤ m−1

0 ‖U‖Lp(Qd(X0,RA)),

m−2
0

m
(d+sp)
−1

|U |Ẇ s,p(Qd(X0,rA)) ≤ |W |Ẇ s,p(Qd(x0,A)) ≤
m−2

0

m
−(d+sp)
1

|U |Ẇ s,p(Qd(X0,RA)).
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Step 2: assume ψ(x) = x1, i.e. W (x) = W (x1, · · · , xd) = w(x1), x0 = ψ(x0),

then W in W s,p
loc (R

d) and w in W s,p
loc (R) have the same order. More precisely,

elementary computations yield

‖W‖L1(Qd(x0,A)) = (2A)d−1‖w‖L1(Q1(x0,A)),

|W | ˙̃
W

s,p

(Qd(x0,A))
≤ (2A)d−1Cd,sp|U | ˙̃

W
s,p

(Q1(x0,A))

≥ (2A)d−1cd,sp|U | ˙̃
W

s,p

(Q1(x0,A))
.

The two last inequalities and constants come from lemma 4.2 since

|W | ˙̃
W

s,p

(Qd(x0,A))
=

∫

Qd(0,A)

∫

Qd(x0,A)

|w(x1 + h1)− w(x1)|

|h|d+sp
dxdh

= (2A)d−1

∫ A

−A

∫ x0+A

x0−A

|w(x1 + h1)− w(x1)|

|h1|1+sp
µd,sp(h1)dx1dh1.

Step 3: with step 1, Wε(x) = Vε(ε
−γψ(x)) ≃ Vε(ε

−γx1) in W s,p
loc (R

d), with

step 2, x 7→ Vε(ε
−γx1) and x1 7→ Vε(ε

−γx1) have the same order in W s,p
loc (R

d)
and W s,p

loc (R). Finally we have with lemma 4.1 Wε ≃ ε−sγ in W s,p
loc (R

d).

Lemma 4.5. [Example of highly periodic oscillations on [0, T ]× Rd]
Let U belongs to W s,p

loc (R,R), γ > 0, ϕ(t,x) = v · x + b t where v ∈ Rd, b ∈ R

and 0 < ε < 1,

Wε(x) = U(t, ε−γϕ(t,x)).

If U is a non constant function in C1([0, T ]× R/Z,R) and v 6= 0Rd, then

Wε ≃ ε−sγ in W s,p
loc ([0, T ]]× Rd,R).

Furthermore if Uε belongs to C1([0, T ] × R/Z,R) for all ε ∈]0, 1] converging
towards U in C1 and Wε(x) = Uε(t, ε

−γϕ(t,x)) the conclusion holds true.

Proof : We proceed as in the previous proofs. First with a linear change
of variable (t,x) 7→ (t,y) with y1 = ϕ(t,x). Wε has the same estimates than
Vε = U(t, ε−γy1) in W s,p

loc (]0, T [×Rd,R). Notice that the change of variable
depends on t varying in the compact set [0, T ]. So we have uniform estimates
of positive constants m0, m1, m−1 used in the proof of lemma 4.4.
Now, the estimates of Vε in W

s,p
loc (]0, T [×Rd,R) and in W s,p

loc (]0, T [×R,R) have
the same order since

∫ A

−A

· · ·

∫ A

−A

dh0dh1 · · · dhd
(|h0|+ |h1|+ · · · |hd|)1+d+sp

=

∫ A

−A

· · ·

∫ A

−A

dh0dh1
(|h0|+ |h1|)2+sp

(|h0|+ |h1|)
1+(sp+1)dh2 · · · dhd

(|h0|+ |h1|+ · · · |hd|)d+(sp+1)

=

∫ A

−A

∫ A

−A

dh0dh1
(|h0|+ |h1|)2+sp

µ2,(sp+1)(|h0|+ |h1|)
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where h0 plays the role of time. From the bounds to µ2,(sp+1)(|h0| + |h1|) on
]0, 2A] see lemma 4.2, we can conclude with lemma 4.3
With a smooth extension of U on [−δ, T + δ]×R/Z, for a small positive δ, we
obtain estimates in W s,p

loc ([0, T ]× Rd,R).

Proof of Theorem 4.1: Bounds L∞([0, T0],W
s,p
loc (R

d): Such bounds give

bounds in C0([0, T0],W
s,p
loc ) since uε is in C

1.
For t = 0, it is only an application of lemma 4.4. The profile U(t, .) is non

constant for each t, else U0 must be constant by the method of characteristics.
And the estimates are uniform.

Bounds in W s,p
loc ([0, T0]× Rd) The semi-norms |.| ˙̃

W
s,p

(Qd+1(y0,A))
, where y0 =

(t0,x0), needs some precautions to use on [0, T0] × Rd. y0 must be such that
0 < t0 < T0 and A < min(t0, T0 − t0). Furthermore, only W s,p

loc (]0, T0[×Rd)
smoothness can be estimate. Indeed (uε)0<ε≤1 is bounded inW s,p

loc ([0, T0]×Rd).
To prove this, let us use the following trick. By the methods of characteristics
the family of solutions (uε)0<ε≤1 exists on a maximal time interval ] − δ, T1[,
with 0 < δ < T0 < T1. Notice that solutions exist for negative time since the
initial data is smooth. Now estimates in W s,p

loc (]− δ, T1[×Rd) will be obtained
which is sufficient to get smoothness in W s,p

loc ([0, T0]× Rd). Now using lemma
4.4 completes the proof.

5. Highlights about a Lions,Perthame,Tadmor conjecture

In [34], the authors use a kinetic formulation of conservation law (1.1) to
use averaging lemmas. With only initial data uniformly bounded in L∞, they

obtain a smoothing effect in W s,1
loc and prove that ssup ≥

αsup

2 + αsup
.

They also conjectured the best Sobolev exponent ssup = αsup.
Recently, this result is improved in [39] with a generic assumption on a′:

ssup ≥
αsup

2αsup + 1
.

The following result gives us the conjectured upper bound of ssup.

Theorem 5.1. [Bound of the maximal smoothing effect]
Let F be a nonlinear flux which belongs to C∞([−M,M ],Rd). Let αsup be
the sharp measurement of flux non-linearity. Then there exist a constant u ∈
[−M,M ], a time T0 > 0, and a sequence of initial data (uε0)0<ε<1 such that
‖uε0 − u‖L∞(Rd) < ε, and the sequence of entropy solutions (uε)0<ε<1 associated
to conservation law (1.1) satisfying:

• for all s ≤ αsup, the sequence (uε)0<ε<1 is uniformly bounded

in W s,1
loc ([0, T0]× Rd) ∩ C0([0, T0],W

s,1
loc (R

d)),
• for all s > αsup, the sequence (uε)0<ε<1 is unbounded

in W s,1
loc ([0, T0]× Rd) and in C0([0, T0],W

s,1
loc (R

d)).
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The theorem states a bound for theW s,1−regularizing effect, precisely (1.7):
ssup ≤ αsup, which is a part of Lions-Perthame-Tadmor’s conjecture (1.6).

For large dimension, αsup converges towards 0 since αsup ≤ 1/d by The-
orem 3.1. So combining (1.7) with the lower bound in [39] we have when

d → +∞, αsup ∼
αsup

2αsup + 1
≤ ssup ≤ αsup and then ssup ∼ αsup . In

this case, in an asymptotic sense, the conjecture (1.6) becomes true for large
dimension.

We also obtain ssup ≤ αsup in W s,p for all p ∈ [1,+∞[ thanks to Theorem
4.1. But Lions, Perthame and Tadmor had conjectured a smaller Sobolev ex-

ponent in [34], precisely: ssup =
αsup

p
.

Proof : The proof is a direct consequence of previous theorems. By The-
orem 3.1, there exists u ∈ [−M,M ] such that α = 1

dF [u]
. Let U0 be a non

constant smooth periodic function such that: −M ≤ u+ U0(θ) ≤M for all θ.
Let v ∈ Rd such that ak(u) � v = 0 and v 6= 0 for k = 1, · · · , dF[u]− 1. Such

v exists by definition of dF[u].
Now, let (uε) be the family of smooth solutions given by Theorem 2.1. The-

orem 4.1 is the desired conclusion.
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