
HAL Id: hal-00576662
https://hal.science/hal-00576662v3

Submitted on 21 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High frequency waves and the maximal smoothing effect
for nonlinear scalar conservation laws

Stéphane Junca

To cite this version:
Stéphane Junca. High frequency waves and the maximal smoothing effect for nonlinear scalar conserva-
tion laws. SIAM Journal on Mathematical Analysis, 2014, 46 (3), pp.2160-2184. �10.1137/120880367�.
�hal-00576662v3�

https://hal.science/hal-00576662v3
https://hal.archives-ouvertes.fr


HIGH FREQUENCY WAVES AND
THE MAXIMAL SMOOTHING EFFECT

FOR NONLINEAR SCALAR CONSERVATION LAWS

STÉPHANE JUNCA

Abstract. The article first studies the propagation of well prepared high
frequency waves with small amplitude ε near constant solutions for en-
tropy solutions of multidimensional nonlinear scalar conservation laws. Sec-
ond, such oscillating solutions are used to highlight a conjecture of Lions,
Perthame, Tadmor, ([23]), about the maximal regularizing effect for non-
linear conservation laws. For this purpose, a definition of smooth nonlinear
flux is stated and compared to classical definitions. Then it is proved that
the uniform smoothness expected by [23] in Sobolev spaces cannot be ex-
ceeded for all smooth nonlinear fluxes.
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1. Introduction

This paper deals with super critical geometric optics to highlight the maxi-
mal regularizing effect for nonlinear multidimensional scalar conservation laws.

Date: April 8, 2014.
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This effect is studied in Sobolev spaces by P.L. Lions, B. Perthame and E. Tad-
mor in [23]. They obtain a uniform fractional Sobolev bounds for any ball of
L∞ initial data under a non linearity condition on the flux quantified by a
parameter α ∈]0, 1]. They also conjectured the better Sobolev exponent s = α
for entropy solutions.

For the first time, the multidimensional case is investigated to bound this
maximal smoothing effect. Furthermore, all smooth nonlinear fluxes are con-
sidered in this paper. We build sequences of solutions uniformly bounded
in W s,1

loc with the conjectured maximal exponent s = α and with no possible
improvement of the Sobolev exponent.

High frequency periodic solutions are used for this purpose. Near a constant
state and for L∞ data, geometric optics expansions with various frequencies
and various phases are validated in the framework of weak entropy solutions
and of L1

loc convergence in [5]. Here, results of [5] are specified in C1 for a well
chosen phase and proved for a particular sequence of smooth solutions (without
shocks on a strip). This allows us to prove that, necessarily, the best uniform
Soblev exponent s, for entropy solutions and for positive time, satisfies s ≤ α
for a ball of L∞ initial data. Notice that we look for the best uniform Sobolev
exponent for a set of solutions. The smoothness of any individual solution is
not studied in this paper. This point is discussed later.

An important point to note here is the definition of nonlinear flux. In
[23] they give well known Definition 2.4 below and the conjecture about the
maximal smoothing effect in Sobolev spaces related to the parameter “α“ from
their definition. The study of periodic solutions leads to another definitions
[15, 5]. We obtain Definition 5.1 for smooth flux. It generalizes the definition
of [5] and it is typical in the context of stationary phase. For C∞ flux, our
definition is equivalent to classical Definition 2.4. Furthermore, Definition 5.1
gives a way to compute the parameter “α”. Our definition also shows that
smoothing effects for scalar conservation laws depend on the space dimension.

The paper is organized as follows. To be more precise, the smoothing effect
and the related conjecture in the Sobolev framework are recalled in Section
2. Section 3 contains the two main results, propagations of high frequency
waves and the consequence for the maximal smoothing effect. Some comments
and other approaches are also discussed. In Section 4 examples of highly
oscillating solutions are validated under new orthogonality conditions between
the flux derivatives and the phase gradient. In Section 5, these orthogonality
conditions lead to a new definition of nonlinear smooth flux. The concept of
flux non-linearity is clarified , characterized and compared with other classical
definitions. Section 6 is devoted to get optimal Sobolev estimates on oscillating
solutions built in Section 4. It is a quite technical part. Finally, Section 7 gives
the super critical geometric optics expansion with the highest frequency related
to the geometric structure of the nonlinear flux. The existence of this family
of high frequency waves implies s ≤ α. But the whole conjecture s = α is still
an open problem.
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2. The smoothing effect in Sobolev spaces

We look for Sobolev bounds for entropy solutions u(., .) of

∂tu+ divxF(u) = 0,(2.1)

where t ∈ [0,+∞[, x ∈ Rd, u : [0,+∞[t×Rd
x → R, F : R→ Rd is a smooth flux

function, F ∈ C∞(R,Rd), and the initial data are only bounded in L∞(Rd
x,R):

u(0,x) = u0(x).(2.2)

The smoothing effect depends on the class of solutions studied. It is well known
that shock occurs even with smooth initial data [10]. Let us recall definitions
of solutions for initial-value problem (2.1),(2.2).

Definition 2.1. [Weak solutions]
We say that a function u ∈ L∞([0,+∞[×Rd) is a weak solution of initial-value
problem (2.1),(2.2) provided∫ +∞

0

∫
Rd
u ∂tφ+ F(u) · ∇xφ dx dt+

∫
Rd
u0(x)φ(0,x)dx = 0

for all smooth functions φ with compact support.

This definition means that partial differential equation (2.1) is written in the
sense of distribution. This class of solutions is too large to provide uniqueness
and smoothing effect. We have to restrict our attention to a more physical
class of solutions.

Definition 2.2. [entropy solutions]
We say that a function u ∈ L∞([0,+∞[×Rd) is an entropy solution of initial-
value problem (2.1),(2.2) provided the following two conditions hold:

• ∂tϕ(u) + divxQ(u) ≤ 0
in the sense of distribution, for all convex functions ϕ where Q′ = ϕ′F′,
ϕ is called an entropy and Q its entropy-flux,
• u ∈ C0([0,+∞[, L1

loc(Rd,R) and lim
t→0

u(t,x) = u0(x) in L1
loc(Rd,R).

It is classical to check that an entropy solution is a weak solution. It suffices
to take ϕ(u) = ±u and to recover the weak trace u0 at t = 0 since the second
condition means that u has a strong trace at t = 0. For this class of solution,
Kruzkov proved in 70’ the uniqueness (see for instance [10] and the references
therein) and Lions, Perthame, Tadmor proved a smoothing effect in Sobolev
spaces [23]. Indeed, the smoothing effect and the proof given in [23] is valid in
the following larger class of solutions.

Definition 2.3. [Solutions with bounded entropy production]
We say that a weak solution of initial-value problem (2.1),(2.2) has a bounded
entropy production provided for each entropy ϕ and entropy-flux Q, there exists
a signed measure µ, locally bounded, such that

∂tϕ(u) + divxQ(u) = µ.
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The uniqueness is lost for this class, but, since the fundamental paper [23],
various results and interests can be found in [11, 13, 16]. Indeed, for en-
tropy solutions, the measure is non positive, µ ≤ 0 and for smooth solutions,
µ ≡ 0. The smoothing effect for the class of solutions with bounded entropy
production is clearly weaker than the smoothing effect for the class of entropy
solutions since the first class is larger than the second class.

Let us turn to the notion of nonlinear flux. Set a(u) = F′(u). Obviously,
when F is linear: a(u) = a where a is a constant vector, u(t,x) = u0(x− t a)
so that there is no smoothing effect. In [23], it was first proved a regularizing
effect for nonlinear multidimensional flux F. The sharp measurement of the
non-linearity plays a key role in our study. Let us recall the classical definition
for nonlinear flux from [23].

Definition 2.4. [ Nonlinear flux [23]]
Let M be a positive constant. F : R→ Rd is said to be nonlinear on [−M,M ]
if there exist α > 0 and C = Cα > 0 such that for all δ > 0

supτ2+|ξ|2=1|Wδ(τ, ξ)| ≤ C δα,(2.3)

where (τ, ξ) ∈ Sd ⊂ Rd+1, i.e. τ 2 + |ξ|2 = 1, and |Wδ(τ, ξ)| is the one dimen-
sional measure of the singular set:
Wδ(τ, ξ) := {|v| ≤M, |τ + a(v) � ξ| ≤ δ} ⊂ [−M,M ] and a = F′.

Indeed, Wδ(τ, ξ) is a neighborhood of the cricital value v for the symbol of the
linear operator L[v] in the Fourier direction (τ, ξ) where L[v] = ∂t + a(v) �∇x.
The symbol in this direction is: i (τ + a(v) � ξ). This operator is simply related
to any smooth solution u of equation (2.1) by the chain rule formula:

∂tu+ divxF(u) = ∂tu+ a(u) �∇xu = L[u]u.

α is a degeneracy measurement of the operator L parametrized by v. α
depends only on the flux F and the compact set [−M,M ]: α = α[F,M ]. In
the sequel we denote by

αsup = αsup[F,M ], the supremum of all α satisfying (2.3).(2.4)

α, or more precisely αsup, is a key parameter to describe the sharp smoothing
effect for entropy solutions of nonlinear scalar conservation laws. For smooth
flux the parameter α always belongs to [0, 1], for instance: αsup = 0 for a
linear flux, α = 1 for strictly convex flux in dimension one. For the first time
αsup is characterized below in Section 5. Indeed, for smooth nonlinear flux,

1

αsup
is always an integer greater or equal to the space dimension.

In the sequel we assume that M ≥ ‖u0‖∞ and the flux F is nonlinear on
[−M,M ] so that:

αsup > 0.(2.5)
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When nonlinear condition (2.5) is true, the entropy solution operator associ-
ated with the nonlinear conservation law (2.1), (2.2),

St : L∞(Rd
x, [−M,M ]) → L∞(Rd

x, [−M,M ])
u0(.) 7→ u(t, .),

has a regularizing effect: mapping L∞(Rd
x, [−M,M ]) into W s,1

loc (Rd
x,R) for all

t > 0.
In [23], they proved this regularizing effect for all s <

α

2 + α
.

In [31] the result is improved for all s <
α

1 + 2α
under a generic assumption

on a′ = F′′. These results are based on averaging lemmas and are still valid
for solutions with bounded entropy production (Definition 2.3).

For entropy solutions, Lions, Perthame and Tadmor conjectured in 1994 a
better regularizing effect, ([23], remark 3, p .180, line 14-17). In [23], they
proposed an optimal bound ssup for Sobolev exponents of entropy solutions:

ssup = αsup.(2.6)

That is to say, u(t, .) belongs in all W s,1
loc (Rd,R) for all s < ssup = αsup and

for all t > 0. The shock formation implies s < 1 and ssup ≤ 1 since W 1,1

functions do not have shock.
The main goal of the paper is to give an insight of the conjecture (2.6)

by bounding the uniform Sobolev smoothing effect ssup for the whole set of
entropy solutions with initial data bounded by M in L∞:

ssup ≤ αsup.(2.7)

Some previous results highlight the conjecture (2.6) or the inequality (2.7) in
the one dimensional case. This is discussed in Subsection 3.2.1 for entropy
solutions and for solutions with bounded entropy production. But for the
multidimensional case and for all smooth fluxes, our results are new.

3. Main Results

Our main results are about the propagation of high frequency waves with
frequencies higher than usual [14, 29] and the consequence on the uniform
maximal smoothing effect for scalar conservation laws.

Weakly nonlinear geometric optics study propagations of sequences of high
frequency waves. The classical case [14, 29] deals with uniformly bounded
derivatives. That is to say the sequence is bounded in W 1,1 or in BV when
shocks occur. We show that sequence of high frequencies waves, not uniformly
bounded in W 1,1, can propagate under a stationary phase assumption on the
flux, condition (3.5) below. Since the frequencies are higher than usual in
geometric optics, we call this case critical geometric optics. A natural question
is about the maximal frequencies arising in critical geometric optics. This last
case is called super critical geometric optics.

Critical geometric optics is expounded in Subsection 3.1. The explicit con-
struction of the super critical optics are expounded later and completed in the
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last section, Section 7. A main consequence of super critical geometric optics
on smoothing effect is stated and commented in Subsection 3.2.

3.1. Critical geometric optics.
This subsection deals with highly oscillating initial data near a constant state:

(3.1) uε(0,x) = uε0(x) := u+ εU0

(v · x
εγ

)
,

where U0(θ) is a one periodic function w.r.t. θ, γ > 0, u is a constant ground
state, u ∈ [−M,M ], v ∈ Rd. The case γ = 1 is the classical geometric optics for
scalar conservation laws, ([14]). In this paper we focus on critical oscillations,
that is to say γ > 1.

The aim of this section is to see when such high frequency are propagated
or not propagated. As we will see, it depends on new compatibility conditions
between the phase and the flux (3.5).

One of the two following asymptotic expansions (3.2) or (3.3), is expected in
L1
loc(]0,+∞[×Rd,R) for the entropy-solution uε of conservation law (2.1) with

highly oscillating data (3.1) when ε goes to 0,

uε(t,x) = u+ εU

(
t,
φ(t,x)

εγ

)
+ o(ε)(3.2)

or uε(t,x) = u+ εU0 + o(ε),(3.3)

where the profile U(t, θ) satisfies a conservation law with initial data U0(θ),

U0 =

∫ 1

0

U0(θ)dθ and the phase φ satisfies the eikonal equation:

∂tφ+ a(u) �∇xφ = 0, φ(0,x) = v · x.(3.4)

Thus the phase is simply a linear phase:

φ(t,x) = v · (x− t a(u)).

The propagation of such oscillating data is obtained under the crucial com-
patibility condition (3.5) below. On the other hand, when the the compatibility
condition (3.5) is nowhere satisfied, the nonlinear semi-group associated with
equation (2.1) cancels these high oscillations, see Theorem 4.1. The validity
or invalidity of assumption (3.5) is a key point related to the nonlinearity of
the flux (Section 5).

Theorem 3.1. [Propagation of smooth high oscillations]
Let γ belong to ]1,+∞[ and let q be the integer such that q − 1 < γ ≤ q.
Assume F belongs to Cq+3(R,Rd), U0 ∈ C1(R/Z,R), v 6= (0, · · · , 0) and

a(k)(u) � v = 0, k = 1, · · · , q − 1.(3.5)

Then there exists T0 > 0 such that, for all ε ∈]0, 1], the solutions of conser-
vation law (2.1) with initial oscillating data (3.1) are smooth on [0, T0] × R
and

uε(t,x) = u+ εU

(
t,
φ(t,x)

εγ

)
+O(ε1+r) in C1([0, T0]× Rd),
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where 0 < r =

{
1 if γ = q,

q − γ else,
φ is given by the eikonal equation (3.4) and the smooth profile U is uniquely
determined by the Cauchy problem (3.6):

∂U

∂t
+ b

∂U q+1

∂θ
= 0, U(0, θ) = U0(θ),(3.6)

with b =

{
1

(q+1)!

(
a(q)(u) � v

)
if γ = q,

0 else.
.

We deal with smooth solutions to compute Sobolev bounds later. Indeed,
the asymptotic stays valid after shocks formation and for all positive time but
in L1

loc instead of L∞ ([5]).
When γ = 1, we do not need assumption (3.5). It is the classic case for

geometric optics ([14, 29]).
In dimension d ≥ 2, it is always possible to find a non trivial vector v

satisfying (3.5). For example for γ = 2, (3.5) is reduced to find v 6= 0 such that
a′(u) � v = 0. Thus, such singular solutions always exist in dimension greater
than one. But, for genuine nonlinear one dimensional conservation law, there
is no such solution. Of course, we assume that U0 is a non constant function
and that F is a nonlinear function near u, else the theorem is obvious. Indeed,
when U0 is constant, uε is also constant. When F is linear on [u− δ, u+ δ] for
some δ > 0, high oscillations propagate for all time without any restriction of
the phase and of the frequency size.

In fact, Theorem 3.1 expresses a kind of degeneracy of multidimensional
scalar conservation laws. This degeneracy (period smaller than the ampli-
tude) appears for quasilinear systems whit some nonlinear degeneracy (see for
instance [7]).

Notice that for γ > 1, smooth solutions exist for larger time than it is cur-
rently known [10, 22]: Tε ∼ 1/|∇xu

ε
0| ∼ εγ−1. Furthermore, equation (3.6) is

nonlinear if and only if γ ∈ N and aq(u) � v 6= 0.

3.2. Consequence on the uniform maximal smoothing effect.

We construct a sequence of smooth solutions which are exactly uniformly
bounded in the Sobolev space conjectured in [23]. The uniform Sobolev esti-
mate of this sequence blows up in all more regular Sobolev spaces. This super
critical geometric optics expansion and its optimal Sobolev estimates are the
goal of this paper which is completed in Section 7. Let us state the main
consequence of this construction in the following theorem.

Theorem 3.2. [Bound of the maximal smoothing effect]
Let F be a nonlinear flux which belongs to C∞([−M,M ],Rd). Let αsup be
the sharp measurement of the flux non-linearity. Then there exist a constant
u ∈ [−M,M ], a time T0 > 0, and a sequence of initial data (uε0)0<ε<1 such that
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‖uε0− u‖L∞(Rd) < ε, and the sequence of entropy solutions (uε)0<ε<1 associated
with conservation law (2.1) satisfy the followings:

• for all s ≤ αsup, the sequence (uε)0<ε<1 is uniformly bounded

in W s,1
loc ([0, T0]× Rd) ∩ C0([0, T0],W s,1

loc (Rd)),
• for all s > αsup, the sequence (uε)0<ε<1 is unbounded

in W s,1
loc ([0, T0]× Rd) and in C0([0, T0],W s,1

loc (Rd)).

Theorem 3.2 gives the upper bound (2.7) for the W s,1−regularizing effect
: ssup ≤ αsup. Indeed, let us denote St the semi-group associated with con-

servation law (2.1) and B∞(u, ρ)) = {u ∈ L∞(Rd,R), ‖u − u‖L∞(Rd,R) < ρ}.
Theorem 3.2 proves that for a well chosen u ∈ [−M,M ], there exists T0 > 0,
such that for all ρ > 0 and for all 0 < t < T0, St(B∞(u, ρ)) is not a bounded
subset of W s,1

loc (Rd
x) for all s > αsup. This result yields several remarks.

Remark 3.1. Optimality for large dimension or small nonlinear degeneracy.

By Theorem 5.1, αsup ≤
1

d
, so, for larger dimension, αsup is smaller. Using

a better lower bound of ssup from [31] we have:

αsup

1 + 2 αsup
≤ ssup ≤ αsup ≤

1

d
.

Thus for large dimension (d >> 1) or small nonlinear degeneracy (αsup << 1)
we have asymptotically:

ssup ∼ αsup.

Remark 3.2. In W s,p, 1 < p < +∞, our geometric optics expansion shows
that spsup ≤ αsup by Theorem 6.1, where spsup denotes the maximal uniform
smoothing effect in W s,p. In other words our example is not related to the
parameter p. Indeed, our geometric optics expansion is bounded in W s,∞.
Other examples show the importance of the parameter p in Subsection 3.2.1.

Sobolev spaces are not sufficient to describe all the properties of the solu-
tions. Some comments are given in Subsection 3.2.1 for other approaches.

3.2.1. Other approaches for the smoothing effect.

The maximal Sobolev exponent is not sufficient to characterize the smooth-
ing effect. Other relevant ways are presented by one-sided Oleinik condition,
BV , generalized characteristics, other oscillating solutions, BV s, trace proper-
ties. First, we comment other approaches on the one dimensional case, where
the optimal smoothing effect is not yet completely understood . Second, we
briefly discuss the multidimensional case where there are only few results.

One dimensional case:

• α = 1, s = 1, entropy solutions.
In one dimension (d=1) and for uniformly convex flux, it is well

known from Lax and Oleinik that the entropy solution becomes BV ,
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([24, 22]). Conjecture (2.6) is true in this case since for all t > 0, u(t, .)
belongs to W s,1

loc for all s < 1.

• α = 1, s = 1/3: for solutions with bounded entropy production.
For Burgers flux, F (u) = u2, De Lellis and Westdickenberg built

piecewise constant solutions with bounded entropy production to show
that s ≤ 1/3 [13]. Recently, for uniform convex flux (α = 1), the opti-
mal Sobolev exponent s = 1/3 is reached in [16].

• 0 < α < 1, s = α: entropy solutions.
For power law flux, F (u) = |u|1+p,p ≥ 1, De Lellis and Westdick-

enberg also built piecewise smooth entropy solutions and proved that
s ≤ α ([13], Proposition 3.4 p. 1085). For all nonlinear smooth fluxes,
new continuous examples are also given in [4]. Both examples are only
justified for a bounded time interval before waves interact.

For nonlinear degenerate convex fluxes the regularity ssup = αsup
is reached in W s,1 ([19]) and also W s,1/s ([3]).

For this purpose, fractional BV spaces, which are called BV s, are
introduced in [3]. BV s functions have a structure similar to the one of
BV maps, for all s ∈]0, 1]. BV s spaces seem to be the natural spaces
to capture the optimal regularizing effect for one dimensional scalar
conservation laws.

• One-sided Oleinik condition and its generalizations:
In the 50’, Oleinik ([24]) obtained her one-sided Lipschitz condition

which ensures the uniqueness and the BV regularity of the entropy so-
lution. This is the first basis and the proof of s = α for one dimensional
uniformly convex flux (α = 1). Dafermos ([9, 10]), with his general-
ized characteristics, handled convex and some degenerate convex fluxes.
Hoff extended this one-sided condition in several space variables ([17])
but restricted to vectorial fluxes which are scalar convex fluxes after a
change of space variables. A generalized Oleinik condition, only vali-
dated in the one dimensional case, is the key assumption to prove the
best W s,1 smoothing effect in [19] (0 < s = α < 1). The maximal W s,p

smoothing effect is proved in [3] with a one-sided Hölder condition and
BV s spaces. For a recent generalization of Oleinik condition for a flux
with one inflection point, we refer the reader to [20]. To conclude, the
one-sided Oleinik condition is essentially specific to the one dimensional
case with some convexity on the flux.

Multidimensional case:
In the 90’, the kinetic formulation of conservation laws ([23]) gave another

approach for other authors. This approach is also valid for solutions with
bounded entropy production. In this framework, some suitable averaging of
nonlinear expressions of the solution are BV ([6]). Some trace properties were
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first obtained in [34, 11, 12, 8]. These structure of a BV function for solutions,
without being BV , cannot be given by Sobolev regularity. Neither BV nor
W s,p is the perfect space to explain properties of solutions with only L∞ initial
data.

4. High frequency waves with small amplitude

In this section we prove Theorem 3.1 about the propagation of oscillations
with not uniformly bounded derivatives, that is to say space or time derivatives
unbounded with respect to the parameter ε. We also show the optimality of
the assumption (3.5) in Theorem 4.1.
Proof of Theorem 3.1: First one performs a WKB computations with
following ansatz:

uε(t,x) = u + ε Uε

(
t,
φ(t,x)

εγ

)
.(4.1)

Notice that we use the exact profile Uε for the proof as in [21]. It is a method
to sharply control the difference between the exact solution and the geometric
optics expansion: Uε and U .
The Taylor expansion of the flux and the remainder are:

F(uε) =

q+1∑
k=0

εk
Uk
ε

k!
F(k)(u) + εq+2Gε

q(Uε),

Gε
q(U) = U q+2

∫ 1

0

(1− s)q+1

(q + 1)!
F(q+2)(u+ sεU)ds,

gεq(U) = v.Gε
q(U).

We now compute the partial derivatives with respect to time and space vari-
ables:

∂tUε

(
t,
φ(t,x)

εγ

)
= ∂tUε − ε−γ(a(u) · v)∂θUε

divxF(uε) =

q∑
k=0

εk+1−γ ∂θU
k+1
ε

(k + 1)!
a(k)(u) · v + εq+2divxG

ε
q(Uε)

= ε1−γ(a(u) · v)∂θUε + εq+1−γcq∂θU
q+1
ε + εq+2−γ∂θg

ε
q(Uε),

where cq =
a(q)(u) · v
(q + 1)!

. Then simplification yields

∂tuε + divxF(uε) = ε
(
∂tUε + εq−γcq∂θU

q+1
ε + ε1+q−γ∂θg

ε
q(Uε)

)
.(4.2)

It suffices to take Uε to be the solution of the one dimensional scalar conser-
vation laws with ψε(U) = εq−γcqU

q+1 + ε1+q−γgεq(U)

∂tUε + ∂θψε(Uε) = 0, Uε(0, θ) = U0(θ).(4.3)

Notice that ψε = O(1) ∈ C2
loc. For γ < q, ψε is even smaller: ψε = O(εr) ∈ C2

loc.
That is enough to prove the existence of a sequence of smooth oscillating
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solutions on the same strip.
Uniform life span for smooth solutions (Uε)0<ε≤1:

We use the method of characteristics with ψ′ε(U) = d
dU
ψε(U):

d

dt
Θ(t, θ) = ψ′ε(Uε(t,Θ(t, θ)), Θ(0, θ) = θ.

Since Uε is constant along the characteristics, Θ(t, θ) = θ + tψ′ε(U0(θ)). As
long as the map θ → Θ(t, θ) is not decreasing no shock occurs.

∂

∂θ
Θ(t, θ) = 1 + tψ′′ε (U0(θ))

d

dθ
U0(θ)

The first shock appears at the time Tε when the right hand side vanishes. Let

m0 = sup[0,1]|U0| > 0, d0 = sup[0,1]

∣∣∣∣ ddθU0

∣∣∣∣, m = sup0<ε≤1sup|U−u|≤m0
|ψ′′ε (U)|,

then,

1/Tε = sup[0,1]

(
−ψ′′ε (U0(θ))

d

dθ
U0(θ)

)
≤ m d0.

Of course, for constant initial data (d0 = 0), no shock occurs, the solution is
constant and Tε = +∞. In the case m d0 6= 0, Tε is finite but 0 < inf0<ε≤1Tε
since Tε ≥ 1/(m d0) for all 0 < ε ≤ 1.

This gives the existence of a positive time T0 < T ∗ = inf{Tε, ε ∈]0, 1]} such
that Uε ∈ C1([0, T0] × R/Z). Thus uε, which is well defined by (4.1), belongs
to C1([0, T0]× Rd) for all 0 < ε ≤ 1.

Now we prove the C1 convergence of the geometric optics expansion. There
are two cases: γ is an integer or not.
q = γ: From (4.2) and (2.1) we get

∂tUε + ∂θ
(
cqU

q+1
ε + εgεq(Uε)

)
= 0, ∂tU + cq∂θU

q+1 = 0,

Uε(0, θ) = U0(θ), U(0, θ) = U0(θ).

The method of characteristics gives C1 characteristics, C1 solutions and

‖Uε − U‖C1([0,T0]×Rd) = O(ε),

where

‖U‖C1([0,T0]×Rd) = ‖U‖L∞([0,T0]×Rd) + ‖∂tU‖L∞([0,T0]×Rd) + ‖∂θU‖L∞([0,T0]×Rd).

integer q > γ: The proof is similar except that the term εrcq∂θ (cqU
q+1) be-

comes a remainder, with r = q − γ and U(t, θ) = U0(θ), thus

‖Uε(., .)− U0(.)‖C1([0,T0]×Rd) = O(εr),

which concludes the proof.

When condition (3.5) is violated, oscillations are immediately canceled.
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Theorem 4.1. [Cancellation of high oscillations, [5]]
Let F belong to Cq+2 and U0 ∈ L∞(R/Z,R), where q − 1 < γ ≤ q where q is
defined in Theorem 3.1. If for some 0 < j < q

a(j)(u) � v 6= 0(4.4)

then the solutions uε of conservation law (2.1) with initial oscillating data (3.1)
for ε ∈]0, 1] satisfy when ε→ 0

uε(t,x) = u+ εU0 + o(ε) in L1
loc(]0,+∞[×Rd).

Obviously the interesting case is when U0 is non constant. When U0 is
smooth and non constant the first time when a shock occurs Tε converges to-
wards 0 when ε→ 0. Thus solutions are weak entropy solutions.
The proof is in the spirit of [5] and uses averaging lemmas (see [27] and the
references given there). The proof is briefly expounded to be self-contained.

Proof : For non constant initial data it is impossible to avoid shock waves
on any fixed strip [0, T0]×Rd with T0 > 0 as in the previous proof of Theorem
3.1 since the time span of smooth solutions is εβ where β = γ − j > 0.

First, with a change of space variable x ↔ x − t.a(u), we can assume that
a(u) = 0.

The WKB computations use the following anzatz: uε(t,x) = u + εvε(t,x)
where vε(t,x) = Wε(t, ε

−jφ(t,x)). Indeed, the condition (4.4) leads to such
anzatz as we can see in the WKB computations of the proof of Theorem 3.1.
Then Wε satisfies the one dimensional nonlinear conservation laws:

∂tWε + ∂θ
(
cjW

j+1
ε + εgεj (Wε)

)
= 0, Wε(0, θ) = U0(ε−βθ), cj 6= 0.(4.5)

Wε(0, .) converges weakly towards U0. As in [5], Wε is relatively compact
in L1

loc thanks to averaging lemmas. Then Wε converges towards the unique
entropy solution W of

∂tW + cj∂θW
j+1 = 0, W (0, θ) = U0.

That is to say that W (t, θ) ≡ U0. Then vε(t,x) converges towards U0 in L1
loc

which completes the proof.

5. Characterization of nonlinear flux

The flux nonlinearity is characterized by the parameter α in Definition 2.4,
the Lions-Perthame-Tadmor definition of nonlinear flux. The smoothing effect
depends only on the best α = αsup. The understanding of the parameter αsup
is a key step to the comprehension of the regularity of entropy solutions. Un-
fortunately, there are only few examples where αsup is computed in dimension
2 ([23, 31]) and there are some remarks in [18, 19, 2].

For the first time, for all nonlinear C∞ fluxes and for all dimensions we
characterize the fundamental parameter αsup. For this purpose we state Def-
inition 5.1 of smooth nonlinear flux. This definition is related to the critical
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geometric optics expansion given in Theorem 3.1. Notice that Definition 5.1
is typical for stationary phase methods. It is less common in the context of
conservation laws.

Let us emphasize on two important consequences of Definition 5.1.

• The parameter αsup is explicitly characterized with the flux derivatives
in Theorem 5.1.
• The super critical geometric optics expansion is built to highlight the

uniform maximal smoothing effect in Theorem 3.2.

We explain Definition 5.1 in Subsection 5.1. For C∞ flux, we prove that
Definition 5.1 is equivalent to Definition 2.4 by Theorem 5.1. We compare our
new definition with some other classical definitions in Subsection 5.2. We show
that all definitions of nonlinear flux are equivalent for analytical flux.

5.1. Nonlinear smooth flux.

We introduce a definition of nonlinear C∞ flux related to critical geometric
optics expansions. When the compatibility conditions (3.5) are satisfied in
Theorem 3.1, high frequency waves are smooth solutions of the conservation
law (2.1). Furthermore, these conditions are optimal thanks to Theorem 4.1.
What is the highest frequency waves solutions of the conservation law (2.1)
which can be propagated as in Theorem 3.1? That is to say, what is the critical
geometric optics for the conservation law (2.1)? Of course, the answer depends
on the flux.

Indeed, near the constant state u we can propagate waves with frequency
ε−m, m > 1, if the set {a′(u), a′′(u), · · · , a(m−1)(u)}⊥ is not reduced to {0}.
Thus the maximal m occurs when {0} = {a′(u), a′′(u), · · · , a(m)(u)}⊥ and
{0} 6= {a′(u), a′′(u), · · · , a(m−1)(u)}⊥ . We now can write the following defini-
tion.

Definition 5.1. [Nonlinear smooth flux]
Let the flux F belong to C∞(R,Rd) and I = [−M,M ]. The flux is said to be
nonlinear on I if, for all u ∈ I, there exists m ∈ N∗ such that

rank{a′(u), · · · , a(m)(u)} = d.(5.1)

Furthermore, the flux is said to be genuine nonlinear if m = d is enough in
(5.1) for all u ∈ I.

In fact, the non-linearity is a matter of the second derivatives of F, a′ = F′′.
Notice that m ≥ d. We need at least d vectors in (5.1) to span the space Rd.
Thus the genuine nonlinear case is the strongest nonlinear case.

The genuine nonlinear case was first stated in [5] (condition (2.8) and Lemma
2.5 p. 447 therein). The genuine nonlinear condition in the d dimensional case

det(a′(u), a′′(u), · · · , a(d)(u)) 6= 0, ∀u ∈ I,(5.2)
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was also in [8], see condition (16) p. 84 therein. The simplest example of
genuine nonlinear flux F with the velocity a was given in [5, 8, 2]:

a(u) = (u, u2, · · · , ud) with F(u) =

(
u2

2
, · · · , u

d+1

d+ 1

)
.

Definition 5.1 is a generalization of the genuine nonlinear condition (5.2). Def-
inition 5.1 is more explicit with following integers with I = [−M,M ].

dF[u] = inf{k ≥ 1, rank{F′′(u), · · · ,F(k+1)(u)} = d} ≥ d,(5.3)

dF = sup|u|≤MdF[u] ∈ {d, d+ 1, · · · } ∪ {+∞}.(5.4)

Indeed, Definition 5.1 states that the flux is genuine nonlinear when dF reaches
its minimal value, dF = d.
Conversely, when the flux F is linear, a is a constant vector in Rd and dF
reaches its maximal value, dF = +∞.
Between dF = d and dF = +∞, there is a large variety of nonlinear flux.

The following theorem gives the optimal parameter α (2.3) for smooth flux.
Notice that this theorem is essentially a corollary of the uniform estimates
given by Stein [30] for stationnary phase lemmas, see also [19].

Theorem 5.1. [Sharp measurement of the flux non-linearity ]
Let F be a smooth flux, F ∈ C∞([−M,M ],Rd). Then, the measurement of the
flux non-linearity αsup is given by

αsup =
1

dF
≤ 1

d
.

Furthermore, when αsup > 0 there exists u ∈ [−M,M ] such that dF = dF[u].

A similar result for the genuine nonlinear case, dF = d, can be found in [2].
This theorem is a powerful tool to compute the parameter αsup, for instance:

• F (u) = (cos(u), sin(u)) is genuine nonlinear flux , αsup = 1/2 since
det(F ′′(u), F ′′′(u)) = 1.
• When F is polynomial with degree less or equal to the space dimension
d, αsup = 0 and F does not satisfy Definition 5.1.
• It is well known that the “Burgers multi-D” flux F (u) = (u2, · · · , u2) is

not nonlinear when d ≥ 2. Let us explain this fact by two arguments:
the explicit computation of αsup and a sequence of high frequencies
waves solutions of (2.1).

– a′′(u) ≡ 0 so dF = +∞ and Theorem 5.1 yields αsup = 0.
– The sequence of oscillations with large amplitude (uε)0<ε≤1 given

by uε(t,x) = uε0(x) = sin
(
x1−x2
ε

)
blows up in any W s,1

loc , s > 0:
for all t, sup0<ε≤1‖uε(t, .)‖W s,1([0,1]d,R) = +∞. But the sequence of
initial data is uniformly bounded in L∞, ‖uε0‖L∞ = 1. Thus there
is no improvement of the uniform initial Sobolev bounds.
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• When F is polynomial such that deg(Fi) = 1+i, F is genuine nonlinear:

αsup =
1

d
.

Remark 5.1. For smooth Flux αsup is the inverse of an integer. Not all real
value of αsup in [0, 1] are possible for F ∈ C∞. With less smooth flux, all
other values of αsup are possible ([23, 13, 31, 19, 4, 3]).

For sake of completeness, we give a proof of Theorem 5.1 related to station-
nary phase lemmas ([30, 19, 2]). We mainly follow Stein [30]. Notice that,
when Definition 2.4 is simplified by fixing τ = 0, a nice proof can be found in
[19].

Our proof needs many lemmas. First we recall Lemma 1 p. 125 from [2]
giving the optimal α for real functions.

Lemma 5.1 ([2]). Let ϕ ∈ C∞([−M,M ],R),

mϕ[v] = inf{k ∈ N, ϕ(k)(v) 6= 0} ∈ N = N ∪ {+∞},
mϕ = sup|v|≤Mmϕ[v] ∈ N,

Z(ϕ, ε) = {v ∈ [−M,M ], |ϕ(v)| ≤ ε}.
If 0 < mϕ < +∞ then there exists C > 1 dependent of the function φ such
that, for all ε ∈]0, 1],

C−1εα ≤ meas(Z(ϕ, ε)) ≤ Cεα with α =
1

mϕ

.(5.5)

To compute the measure of Z(ϕ, ε) with a different assumption, we adapt
a proof of E. Stein about stationary phase method [30]. The main point in
the following lemma is that the constant does not depend on the function φ.
Indeed, the condition 1 ≤ |φ(k)(v)| is stronger than the condition mϕ = k. The
following lemma is fundamental to prove Theorem 5.1.

Lemma 5.2. [2] Let k ≥ 1, I an interval of R, φ ∈ Ck(I,R).

If 1 ≤ |φ(k)(v)|, for all v ∈ I,
then measure{v ∈ I, |φ(v)| ≤ ε} ≤ ck ε

1/k,

where ck are constant independent of φ.

Proof : Since the result is independent of the interval I and the constant sign
of the derivative φ(k) on the interval, let us suppose that I = R and φ(k)(v) ≥ 1
for all v ∈ R. Thus we have for all v ≥ u : φ(k−1)(v) − φ(k−1)(u) ≥ v − u .
This inequality shows that the function φ(k−1) admits an unique root. Assume
φ(k−1)(0) = 0 without loss of generality.

With these assumptions we prove the lemma when k = 1. Since |φ(v)| ≥ |v|
for all v, we have Z(φ, I, ε) = {v ∈ I, |φ(v)| ≤ ε} ⊂ [−ε, ε]. So the lemma is
proved for k = 1 with c1 = 2.

We now prove the Lemma by induction on k > 1. We have for all v,
|φ(k−1)(v)| ≥ |v|. Let η > 0 . Notice that meas(Z(φ, [−η, η], ε)) ≤ 2η. Let
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ψ be the function φ/η. Notice that ψ(k−1)(v) ≥ 1 on ]η,+∞[. By our in-
ductive hypothesis on ψ we have meas(Z(ψ, ]η,+∞[, ε) ≤ ck−1(ε)1/(k−1), so
meas(Z(φ, ]η,+∞[, ε) ≤ ck−1(ε/η)1/(k−1).
A similar argument yields meas(Z(φ, ] −∞,−η[, ε) ≤ ck−1(ε/η)1/(k−1). These
previous three bounds give meas(Z(φ,R, ε)) ≤ g(η) = 2

(
η + ck−1(ε/η)1/(k−1)

)
.

This last inequality is valid for all η > 0. It suffices to minimize the function g
on ]0,+∞[. A computation of the minimum yields meas(Z(φ,R, ε)) ≤ ckε

1/k,

where ck = 4 (ck−1/(k − 1))(k−1)/k which concludes the proof.

The previous lemma is generalized to parameters in a compact set, see
Lemma 4 p. 127 in [2].

Lemma 5.3 ([2]). Let P be a compact set of parameters, k a positive integer,
A > 0, V = [−A,A], K = V ×P , φ(v; p) ∈ C0(P,Ck(V,R)), such that, for all
(v, p) in the compact K, we have

k∑
j=1

∣∣∣∣∂jφ∂vj
∣∣∣∣ (v; p) > 0.

Let Z(φ(.; p), ε) = {v ∈ V, |φ(v; p)| ≤ ε}. Then, there exists a constant C
such that

supp∈Pmeas(Z(φ(.; p), ε)) ≤ Cε1/k.

We now turn to the key integer dF.

Lemma 5.4. If F is a nonlinear flux on I in the sense of Definition 5.1 then
dF is finite and there exists u ∈ I such that dF = dF[u].

Proof. Let u be fixed in I. Then there exist, 1 ≤ j1 < j2 < · · · < jd = dF[u]
such that rank{a(j1)(u), · · · , a(jd)(u)} = d by the definition of dF[u]. So the
continuous function g(v) = det(a(j1)(v), · · · , a(jd)(v)) does not vanish at v = u.
By continuity, this is still true on an open set J with u ∈ J . Since jd = dF[u],
we have dF [v] ≤ dF [u] for all v ∈ J . Thus v 7→ dF [v] is upper semi-continuous
and the result follows immediately on the compact set I.

Now we are able to prove Theorem 5.1.

Proof of Theorem 5.1. There are two steps.

step 1: αsup ≥
1

dF
.

Set φ(v; τ, ξ) = τ + a(v) · ξ with τ 2 + |ξ|2 = 1. Since φ(.; τ, 0) = τ has no
root, we can assume that ξ 6= 0Rd . For j ≥ 1 we have ∂jvφ(v; τ, ξ) = a(j)(v) · ξ.
By definition of dF[v] there exists j ≤ dF[v] ≤ dF such that ∂jvφ(v; τ, ξ) 6= 0.
Thus, we have when ξ 6= 0

dF∑
j=1

|∂jvφ(v; τ, ξ)| > 0.(5.6)
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When ξ = 0, we have τ = ±1 since τ 2 + |ξ|2 = 1. The function φ(v;±1, 0) =
±1 6= 0. By continuity of this function there exists an open neighborhood V of
(1, 0Rd) such the function does not vanish on V . Set P be the complementary
set of V in the unit sphere of Rd+1. P is compact and (5.6) is true on P . Now
we can use Lemma 5.3 to conclude the first step.

step 2: αsup ≤
1

dF
.

This inequality is already stated in [18, 19]. Let us give a proof to be self-
contained. u is defined in Lemma 5.4. Then, by the definition of u, there
exists ξ∗ 6= 0 such that ∂jvφ(u; τ, ξ∗) 6= 0 for 1 ≤ j < dF and ∂jvφ(u; τ, ξ∗) = 0
for j = dF. Notice that the previous derivatives are independent of τ . Let
τ ∗ be −a(u) · ξ∗, so φ(u; τ ∗, ξ∗) = 0. To be on the unit circle we set τ = r τ ∗

and ξ = r ξ∗ where r = ((τ ∗)2 + |ξ∗|2)−1/2. ϕ(v) = φ(v; τ , ξ) vanishes at v = u
and mϕ[u] = dF. Furthermore, since u is the point where the flux reaches its
maximal degeneracy we also have mϕ = mϕ[u] = dF. Now, by Lemma 5.1,
more precisely the first inequality of (5.5), and the definition of α (2.3), we
have 1/mϕ ≥ α. Thus the second step is proved.

Finally
1

dF
≤ αsup ≤

1

dF
and the proof is complete with Lemma 5.4.

5.2. Comparisons with other nonlinear flux definitions.

There are more general definitions of nonlinear flux [15, 23]. Definitions 5.2,
5.3 below are qualitative. We use quantitative definitions 2.4, 5.1. Indeed,
the precise smoothing is related to Definition 2.4 or Definition 5.1 and the
parameter αsup or equivalently dF. Let us compare theses definitions with
Definition 5.1. It can be useful for other applications.

Notice also that definitions depend on the flux regularity, but, for our pur-
pose, it is not an important point. For C1 flux, Lions, Perthame and Tadmor
introduced Definition 2.4 and a more general definition of nonlinear flux, Defi-
nition 5.2. For C∞ flux, we introduce Definition 5.1 related to stationary phase
assumption on the flux. Indeed, by Theorem 5.1, Definition 5.1 is equivalent
to Definition 2.4 for C∞ flux. For C2 flux, Definition 5.3 related to the second
derivative of the flux is more general than Definition 5.1, even in the context
of C∞ flux. Finally, for analytic flux, all these definitions are equivalent. For
less smooth flux we refer to the works of E. Yu. Panov ([25, 26]).

Let us state Definitions 5.2 and 5.3 and prove our previous comparisons with
Definition 5.1.

Definition 5.2. [General Nonlinear Flux [23]] A flux F, differentiable on
[−M,M ] is said to be nonlinear if the degeneracy set

W (τ, ξ) = {|v| ≤M, τ + F′(v) · ξ = 0}

has null Lebesgue measure for all (τ, ξ) on the sphere.
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This definition is of a great importance since this condition implies the
compactness of the semi-group St associated with the conservation law (2.1).

Proposition 5.1. Let F be a smooth flux in C∞. Assume F satisfies Definition
5.1. Then, F is nonlinear for Definition 5.2 but the converse can be wrong.

Proof : Lemma 5.4 and Theorem 5.1 show that nonlinearity of Definition
5.1 implies nonlinearity of Definition 2.4 and then of Definition 5.2. But we
can give a direct proof from Lemma 2.5 and remark (2.3) p. 447 in [5], (see
also [8] p. 84).

Notice that W (τ, 0) = ∅ since τ = ±1. So we assume that ξ 6= 0. Set
φ(v) = τ + F′(v) · ξ. Since φ(k)(v) = F(k+1)(v) · ξ, for any v, there exists k > 0
such that φ(k)(v) 6= 0 by Definition 5.1. So the roots of φ are isolated and the
set W (τ, ξ) is finite.

Conversely the counter-example F′(u) = exp(−1/u2)(u, u2, · · · , ud) does not
satisfies Definition 5.1 since dF[0] = +∞.
But F satisfies Definition 5.2. Indeed, with h(v) = τ exp(1/v2)+ξ·(v, v2, · · · , vd),
the set W (τ, ξ)−{0} is the set of roots of h(.). If τ = 0, we deal with the gen-
uine nonlinear flux from Definition 5.1 and the degeneracy set W (τ, ξ) is a null
set. Indeed, it is finite. If τ 6= 0, h(.) is analytic and non trivial on R∗. Con-
sequently W (τ, ξ) is countable and also a null set which concludes the proof.

Engquist and E in [15] gave another definition of strictly nonlinear flux
generalizing Tartar [32].

Definition 5.3. [ Strictly Nonlinear Flux [15]]
Let M be a positive constant, and F : [−M,M ] → Rd be a function twice
differentiable on [−M,M ].
F is said to be strictly nonlinear on [−M,M ] if for any sub-interval I of
[−M,M ], the functions F ′′1 , · · · , F

′′

d are linearly independent on I,
i.e., for any constant vector ξ, if ξ · F′′(u) = 0 for all u ∈ I then ξ = 0.

Proposition 5.2. Let F be a C∞([−M,M ],Rd) flux. Assume F satisfying
Definition 5.1, then F satisfies Definition 5.3 but the converse is wrong.

Proof. Assume ξ · F′′ = 0 on a open sub-interval I. Let u belong in I. Hence
ξ · F(k)(u) = 0 for all k ≥ 2. But F satisfies Definition 5.1. It follows that
ξ = 0.

Conversely take a flux F such that F′′(u) = exp(−1/u2)(1, u, · · · , ud−1) .
Obviously F satisfies Definition 5.3. But F does not satisfies Definition 5.1
since dF[0] = +∞. �

By the same way, if F satisfies Definition 5.2 then F satisfies Definition 5.3.
For analytic flux, the situation is simpler.

Proposition 5.3 (Analytic nonlinear flux). Assume that the flux is an analytic
function. Then, all previous Definitions 2.4, 5.1, 5.2, 5.3 are equivalent.

Proof. Again we use Definition 5.1. There are two cases.
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(1) If F is nonlinear for Definition 5.1. By Theorem 5.1, Propositions 5.1
and 5.2, F is nonlinear for other definitions.

(2) If F is not nonlinear for Definition 5.1. By Theorem 5.1, F does not
satisfy Definition 2.4.

Let u be fixed. There exists an hyperplane H such that all derivatives
F(k)(u) ∈ H for all k ≥ 2, i.e. there exists ξ 6= 0 such that ξ ·F(k)(u) = 0
for all k ≥ 2. Using the power series expansion of F′′ near u we see
that F′′ stays in H near u. And by the unique analytic extension of
F′′, F′′ stays always in H, i.e. ξ ·F′′ = 0 everywhere. Thus F does not
satisfies Definition 5.3.

Integrating the relation ξ · F ′′ = 0 we have τ + ξ · F′ = 0 for some
contant τ . Dividing the relation by

√
τ 2 + |ξ|2 we can assume that

τ 2 + |ξ|2 = 1. Hence F does not satisfies Definition 5.2.
We incidentally check that Definition 5.2 implies Definition 5.3.

�

6. Sobolev estimates

In this section, uniform and optimal Sobolev exponents of the family of
highly oscillating solutions from Theorem 3.1 are investigated.

Theorem 6.1. [Sobolev exponent for highly oscillating solutions]
Let uε be the C1([0, T0]× Rd) oscillating solutions given in Theorem 3.1.
For all 1 ≤ p < +∞, the family (uε)0<ε≤1 is uniformly bounded in

C0([0, T0],W s,p
loc (Rd,R)) ∩ W s,p

loc ([0, T0]× Rd,R) with s =
1

γ
.

Furthermore, if U0 is a non constant function, then for all s > 1/γ the sequence
(uε)0<ε<1 is unbounded in C0([0, T0],W s,p

loc (Rd,R)) and in W s,p
loc ([0, T0]×Rd,R).

Theorem 6.1 means that the Sobolev exponent s =
1

γ
is optimal. It is easily

seen that the sequence (uε)0<ε is uniformly bounded in W
1/γ,p
loc by interpolation

(see remark 6.1 below). The difficult part of the theorem is the optimality.
That is to say the sequence is unbounded for larger s. For this purpose we need
to get lower bound of Sobolev norms. Unfortunately, interpolation theory only
gives upper bounds. Thus we use the intrinsic norm. It is rather elementary
but quite long to achieve such lower bounds. This section is essentially devoted
to compute these lower bounds to highlight the conjecture about the maximal
smoothing effect in the next section.

Indeed, it is proved below that uε has order of ε1−sγ in W s,p
loc for any s ∈ [0, 1[.

The case p = 1 is the most important, since L1 norm plays an important role
for conservation laws. The Sobolev estimates of the initial data are propagated
by the semi-group St, (see [23] for p = 1 and also [28] for TV (|uε − u|s)). A
key point is there is no improvement of the Sobolev exponent of the family of
initial data.
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The basic idea of the proof is that the sequence of exact solutions (uε)0<ε≤1

and the sequence of approximate oscillating solution given by u+εU

(
t,
φ(t,x)

εγ

)
have similar bounds in Sobolev spaces.

We use the W s,p intrinsic semi-norm instead the interpolation theory as
we explained before. More precisely, following semi-norms parametrized by
Q = Qd(x0, A) = x0+] − A,A[d, where A > 0, x0 ∈ Rd, are used to estimate
fractional derivatives in W s,p

loc (Rd,R) ([1]).

|V |p
Ẇ s,p(Qd(x0,A))

=

∫
Qd(x0,A))

∫
Qd(x0,A))

|V (x)− V (y)|p

|x− y|d+sp
dxdy.

The following classical Definitions are used in this section.

Definition 6.1. [ Estimates in W s,p
loc (Rd)]

(i) u is said to be bounded in W s,p
loc (Rd) if

∀x0 ∈ Rd,∃A > 0, ∃C ≥ 0,

‖u‖W s,p(Qd(x0,A)) = ‖u‖Lp(Qd(x0,A)) + |u|Ẇ s,p(Qd(x0,A)) ≤ C.

(ii) (uε)0<ε≤1 is said to be bounded in W s,p
loc (Rd) if

∀x0 ∈ Rd, ∃A > 0,∃C ≥ 0,∀ε ∈]0, 1], ‖uε‖W s,p(Qd(x0,A)) ≤ C.

(iii) Let β ≥ 0, (uε)0<ε≤1 has order of ε−β in W s,p
loc (Rd), denoted by

uε ' ε−β,

if ∀x0 ∈ Rd,∃A > 0,∃C ≥ 1,∃ε0 ∈]0, 1], ∀ε ∈]0, ε0],

C−1 ε−β ≤ ‖uε‖W s,p(Qd(x0,A)) ≤ C ε−β.

As usual if u is bounded in W s,p
loc (Rd) then for any cube Q, u belongs

to W s,p(Q). By the same way uε ' ε−β in W s,p
loc (Rd) if for any cube Q

there exists a constant C ≥ 1 and ε0 ∈]0, 1] such that for all 0 < ε ≤ ε0,
C−1 ε−β ≤ ‖uε‖W s,p(Q ≤ C ε−β.

Since solutions of (2.1) are bounded in L∞, the key point is to focus on
fractional derivatives. With |x| = |x1|+ · · ·+ |xd| and semi-norms

|V |p˙̃
W
s,p

(Qd(x0,A))
=

∫
Qd(0,A)

∫
Qd(x0,A)

|V (x + h)− V (x)|p

|h|d+sp
dxdh,

are also used. Notice that

|V |Ẇ s,p(Qd(x0,A/2)) ≤ |V | ˙̃
W
s,p

(Qd(x0,A))
≤ |V |Ẇ s,p(Qd(x0,2A)).

Furthermore, |V | ˙̃
W
s,p

(Q1(x0,A))
= |V |Ẇ s,p(Q1(x0,A)) when V is periodic with pe-

riod A (or A/2). Thus, these semi-norms can be useful to estimate bounds in
W s,1
loc .
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The simplest example of high frequency oscillating functions with optimal
estimates in Sobolev spaces is investigated in the following lemma. The re-
mainder of the section is devoted to get the same estimates for the the family
of highly oscillating solutions from Theorem 3.1.

Lemma 6.1. [Highly oscillating periodic function on R]
Let v belong to W s,p

loc (R,R), γ > 0, and for all 0 < ε ≤ 1,

Vε(θ) = v(ε−γθ).

If v(.) is a non constant periodic function then

Vε ' ε−sγ in W s,p
loc (R).

Furthermore, if Vε(θ) = vε(ε
−γθ), vε is one periodic, and vε → v in C1 then

Vε ' ε−sγ in W s,p
loc (R).

Notice that the magnitude of Vε in W s,p
loc is independent of p.

Notice also that if vε → v in W s,p
loc then vε(ε

−γθ) ' ε−sγ in W s,p
loc (R).

Proof : In the sequel one sets x0 = 0 in Definition 6.1 since computations
are invariant under translation.
First the L1

loc norm is easily bounded in [5]. Let A > 1/2, X = ε−γx, Bε =
ε−γA, Nε the integer such that Nε ≤ 2Bε < Nε + 1 so 2A − 1 ≤ 2A − εγ ≤
εγNε ≤ 2A.

‖Vε‖pLp([−A,A]) =

∫ A

−A
|Vε(x)|pdx = ε−γ

∫ Bε

−Bε
|v(X)|pdX

= ε−γ

(
Nε∑
k=1

∫ −Bε+k
−Bε+k−1

|v(X)|pdX +

∫ Bε

−Bε+Nε
|v(X)|pdX

)

= ε−γNε

∫ 1

0

|v(X)|pdX + ε−γ
∫ Bε

−Bε+Nε
|v(X)|pdX.

Finally one has

‖Vε‖Lp([−A,A]) ≤ (2A+ 1)1/p‖v‖Lp([0,1]),(6.1)

‖Vε‖Lp([−A,A]) ≥ (2A− 1)1/p‖v‖Lp([0,1])(6.2)

‖Vε‖Lp([−A,A]) ∼ (2A)1/p‖v‖Lp([0,1]) when ε→ 0.

|Vε| ˙̃
W
s,p

([−A,A])
is computed with the same notations and H = ε−γh,

|Vε|p˙̃
W
s,p

([−A,A])
= ε(1−sp)γ

∫ Bε

−Bε

∫ Bε

−Bε

|v(X +H)− v(X)|p

|H|1+sp
dXdH.

Let V ar(.) be the one periodic function bounded in L∞ by 2p‖v‖pLp([0,1]),

V ar(H) =

∫ 1

0

|v(X +H)− v(X)|pdX.

Notice that V ar ≡ 0 if and only if v is constant a.e.
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Using one periodicity of v with respect to X yields as in (6.1)

|Vε|p˙̃
W
s,p

([−A,A])
= ε−spγ

∫ Bε

−Bε

(
εγ
∫ Bε

−Bε
|v(X +H)− v(X)|pdX

)
dH

|H|1+sp
,

≤ ε−spγ
∫ Bε

−Bε
((2A+ 1)V ar(H))

dH

|H|1+sp
≤ ε−spγ(2A+ 1)Dp

∞,

Dp
B = (DB)p =

∫ +B

−B
V ar(H)

dH

|H|1+sp
.

Notice that DB is a true constant related to the fractional derivative of v since
for B = 1/2, D1/2 = |v| ˙̃

W
s,p

([−1/2,1/2])
and for B =∞ the integral converges.

The lower bound is obtained by the same way and finally one has

|Vε| ˙̃
W
s,p

([−A,A])
≤ ε−sγ(2A+ 1)1/pD∞,

|Vε| ˙̃
W
s,p

([−A,A])
≥ ε−sγ(2A− 1)1/pD1,

|Vε| ˙̃
W
s,p

([−A,A])
∼ ε−sγ(2A)1/pD∞.

Notice also that DB > 0 for B > 1/2. Otherwise DB = 0 implies V ar ≡ 0
a.e. which implies v is a constant function on [x0 − 2B, x0 + 2B] and on R by
periodicity.
A key point in this paper is the lower bound to get sharp estimates. Since DB

is non decreasing with respect to B, the previous lower bound of Vε in W s,p

implies the following lower bound

|Vε| ˙̃
W
s,p

([−A,A])
≥ ε−sγ(2A− 1)1/p|v| ˙̃

W
s,p

([−1/2,1/2])
.

With more work, similar estimates are still valid for |Vε|Ẇ s,1([−A,A]), see lemmas

in [5] about triangular changes of variables for oscillatory integrals. But it is
enough for our purpose.
Same computations when v replaced by vε are still valid, which complete the
proof.

The following lemma is useful to check that W s,1 semi-norms of V : R 7→ R
and W : Rd 7→ R have the same order, where W (x1, · · · , xd) = V (x1).

Lemma 6.2. Let d ≥ 2, s > 0, A > 0, h1 > 0,

µd,s(h1) =

∫ A

0

· · ·
∫ A

0

h1+s
1

(h1 + h2 + · · ·+ hd)d+s
dh2 · · · dhd.(6.3)

Then, there exist two positive numbers cd,s, Cd,s such that

0 < cd,s ≤ µd,s(h1) ≤ Cd,s < +∞, ∀A > 0, ∀h1 ∈]0, A].(6.4)

Furthermore, the optimal constant Cd,s is γd,s where

γd,s = lim
h1 → 0
h1 > 0

µd,s(h1) =
1

(d− 1 + s) · · · (1 + s)
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The constants cd,s and Cd,s are independent of A > 0. Notice that there is
a singularity for µd,s at h1 = 0 since µd,s(0) = 0 and µd,s > 0 on ]0, A].

Proof : It seems that µd,s(h1) is depending on A, µd,s(h1) = µAd,s(h1). But
by homogeneity the problem is reduced to the case A = 1 with the change of
variable hi = tiA, 0 < ti < 1.
Now µd,s(t1) = µ1

d,s(t1) = µAd,s(h1) is computed explicitly .

Let µd,s(t1, B) =

∫ 1

0

· · ·
∫ 1

0

t1+s
1

(t1 + t2 + · · ·+ td +B)d+s
dt2 · · · dtd for d > 1,

B ≥ 0. Notice that µd,s(t1) = µd,s(t1, 0).

For d = 1, set µ1,s(t1, B) =
t1+s
1

(t1 +B)1+s
, µ1,s(t1) = µ1,s(t1, 0) = 1. The

identity ∫ 1

0

dt

(t+B)(1+j+s)
= (j + s)−1

(
B−(j+s) − (B + 1)−(j+s)

)
,

yields (j + s)µ1+j,s(t1, B) = µj,s(t1, B) − µj,s(t1, B + 1), and proceeding by

induction with the notation Ck
n =

n!

k!(n− k)!
,

µd,s(t1, B) = γd,s

d−1∑
k=0

Ck
d−1(−1)kµ1(t1, B + k).

Hence, for B = 0,

µd,s(t1) = γd,s

d−1∑
k=0

Ck
d−1(−1)k

t1+s
1

(t1 + k)1+s
,(6.5)

which gives µd,s(0+) = γd,s > 0. Now, µd,s(.) belongs in C0(]0, 1],R+), µd,s(.)
is positive on ]0, 1] with a positive right limit at t1 = 0, thus positive constants
stated in the lemma exist,

0 < cd,s = inf]0,1]µd,s ≤ γd,s ≤ Cd,s = sup]0,1]µd,s < +∞.

For d = 2 we can show that C2,s = γ2,s = 1/(1+s) and c2,s = (1−2−(1+s))γ2,s.

That follows from the explicit formula µ2,s(t1) = γ2,s

(
1−

(
t1
t1+1

)s)
from (6.5),

and the fact that this function is decreasing on ]0, 1].

For d ≥ 2, let us show that Cd,s is still γd,s. It suffices to show that µd,s(t1) ≤

γd,s. Notice that

∫ 1

0

dt

(t+B)(1+j+s)
≤ 1

(j + s)Bj+s
. Now, we have the following
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computations for 0 < t1 ≤ 1:

µd,s(t1) =

∫ 1

0

· · ·
∫ 1

0

t1+s
1

(t1 + t2 + · · ·+ td)d+s
dt2 · · · dtd,

≤
∫ 1

0

· · ·
∫ 1

0

1

(0 + t2 + · · ·+ td)d+s
dt2 · · · dtd,

=

∫ 1

0

· · ·
(∫ 1

0

1

(td + [t2 + · · ·+ td−1])d+s
dtd

)
dt2 · · · dtd−1,

≤ 1

d− 1 + s

∫ 1

0

· · ·
∫ 1

0

1

(t2 + · · ·+ td−1)d−1+s
dt2 · · · dtd−1,

≤ · · · ≤ γd,s.

Then Cd,s = γd,s which completes the proof.

Our example of oscillating solutions is related to the following key example.
For instance Vε, defined by uε = ε Vε where uε is the solution of
∂t(uε) + ∂x|uε|1+γ = 0, uε(0, x) = 0 + ε U(0, ε−γx), satisfies the assumption of
the lemma on a bounded time interval ([4]).

Lemma 6.3. [Example of highly periodic oscillations on [0, T ]× R]
Let T , γ be positive. If U belongs to C1([0, T ] × R/Z,R) and non constant,
then Vε(t, x) = U(t, ε−γx) ' ε−sγ in C0([0, T ],W s,p

loc (R)) ∩W s,p
loc (]0, T [×R).

Remark 6.1. Notice that the upper bound is quite easy to get. It directly
follows from the fact that W s,p is an interpolated space of exponent θ = s
between Lp = W 0,p and W 1,p, [33]. But we also want a lower bound to obtain
an optimal estimate. This is a very crucial point in our study. For this purpose
we use the intrinsic semi-norm in the proofs. The computations are elementary
but long.

The same remark is still valid for all the next lemmas in this section.

Proof : First the fractional derivative w.r.t. x is estimated. Second the
whole fractional derivative in (t,x) is obtained.

Bounds in L∞([0, T ],W s,p
loc (R)): There exists t0 ∈]0, T [ such that θ 7→ U(t0, θ)

is non constant since U is non constant and continuous on [0, T ] × R/Z. For
fixed t0 the sharp estimate is a consequence of Lemma 6.1. For another t, we
get the same order ε−sγ or ε0 = 1. Finally, constants involved in this estimate
depend continuously on t so the bound in L∞([0, T ],W s,p

loc (R)) is obtained.
Since U ∈ C1, this previous bound is automatically in C0([0, T ],W s,p

loc (R)).

Bounds in W s,p
loc (]0, T [×R)): The only problem is to estimate for x0 ∈ R, t0 ∈

]0, T [ and min(t0, T − t0) > A > 0, the quadruple integral

IA = |Vε|p ˙̃
W s,p([t0−A,t0+A]×[x0−A,x0+A])

=

∫ t0+A

t0−A

∫ x0+A

x0−A

∫ A

−A

∫ A

−A

|U(t+ τ, ε−γ(x+ ξ))− U(t, ε−γx)|p

(|τ |+ |ξ|)2+sp
dξdτdxdt.
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Upper bound of IA:
Let Num be the numerator of the previous fraction, Q be U(t, ε−γ(x + ξ)) −
U(t, ε−γx), R be U(t+τ, ε−γ(x+ξ))−U(t, ε−γ(x+ξ)). Then, Num = |Q+R|p ≤
2p−1(|Q|p + |R|p).
Previous inequality implies IA ≤ 2p−1(IQ+ IR) with obvious notations.

IQ =

∫ ∫ ∫ ∫
|U(t, ε−γ(x+ ξ))− U(t, ε−γx)|p

(|τ |+ |ξ|)2+sp
dξdτdxdt,

=

∫ ∫ ∫
|U(t, ε−γ(x+ ξ))− U(t, ε−γx)|p

|ξ|1+sp
µ2,sp(ξ)dξdxdt,

with µ2,sp(.) is defined in Lemma 6.2. Lemmas 6.1, 6.2 yield IQ ' ε−sγ.
IR is easily bounded since

IR =

∫ ∫ ∫ ∫
|U(t+ τ, ε−γ(x+ ξ))− U(t, ε−γ(x+ ξ))|p

(|τ |+ |ξ|)2+sp
dξdτdxdt,

≤
∫ ∫ ∫ ∫

‖∂tU‖pL∞|τ |p

(|τ |+ |ξ|)2+sp
dτdξdxdt

≤ 8A2‖∂tU‖pL∞

∫ A

0

|τ |p(1−s)−1µ2,sp(τ)dτ,

which is finite, so IA ≤ IQ+ IR = O(ε−spγ).

Lower bound of IA:
We again use notations Q, R, Num. By a convex inequality, the numerator
satisfies: Num = |Q + R|p ≥ |Q|p − p|Q|p−1|R| = |Q|p − O(|τ ||Q|p−1) since
R = O(τ). Then IA ≥ IQ − O(IS), where IQ has order of ε−spγ. The
term IS has a lower order as we can find after the following computations as
in the proof of Lemma 6.1. Notice first that for all positive numbers A, b,∫ A

0

τ

(τ + b)2+β
dτ ≤ C

2bβ
where β > 0 and C = 2

∫ +∞
0

τ
(τ+1)2+β

dτ < +∞. Now

integrating on τ yields

IS =

∫ ∫ ∫ ∫
|τ ||Q|p−1

(|τ |+ |ξ|)2+sp
dξdτdxdt ≤ C

∫ ∫ ∫
|Q|p−1

|ξ|sp
dξdxdt.

We set η = εγ, X = x/η, Ξ = ξ/η. Then, the previous inequality becomes

IS ≤ Cη2−sp
∫ T

0

∫ A/η

−A/η

∫ A/η

−A/η

|Q|p−1

|Ξ|sp
dΞdXdt.
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We now focus on the integral with respect to Ξ and remark that Q = O(1)
and also Q = O(Ξ) since U is C1.∫ A/η

−A/η

|Q|p−1

|Ξ|sp
dΞ =

∫
|Ξ|<1

|Q|p−1

|Ξ|sp
dΞ +

∫
1<|Ξ|<A/η

|Q|p−1

|Ξ|sp
dΞ

≤
∫
|Ξ|<1

O(|Ξ|p−1)

|Ξ|sp
dΞ +

∫
1<|Ξ|<A/η

O(1)

|Ξ|sp
dΞ

≤
∫
|Ξ|<1

O(|Ξ|p(1−s)−1)dΞ +O(g(η)) = O(1) +O(g(η)),

where g(η) = ηsp−1 if sp 6= 1,else g(η) = ln(η).

To bound IS, we notice that the integral η
∫ A/η
−A/η dX is bounded by periodicity

and we can take the supremum with respect t on [0, T ]. So IS = O(1) if sp 6= 1
else IS = O(ln(η)) which is enough to have a lower order than IQ.

In conclusion, the bounds of IA yield Vε ' ε−sγ in W s,p
loc ([0, T ]× R).

Now, we estimate the Sobolev norm for the multidimensional case with one
phase.

Lemma 6.4. [Example of highly periodic oscillations on Rd]
Let v belong to W s,p

loc (R,R), γ > 0, ψ(x) = v ·x+b where v ∈ Rd, v 6= 0, b ∈ R
and 0 < ε < 1,

Wε(x) = v(ε−γψ(x)).

If v is a non constant periodic function and ∇ψ 6= 0, then

Wε ' ε−sγ in W s,p
loc (Rd,R).

Furthermore, when functions vε are one periodic functions for all ε ∈]0, 1],
which converge towards v in C1 and Wε(x) = vε(ε

−γψ(x)), the same conclusion
holds.

Proof : We first choose a new variable X = (X1, · · · , Xd) such that
X1 = ψ(x). This is possible since ∇xψ ≡ v 6= 0. Moreover, ψ is an affine
function so we choose an affine change of variables, X = Mx + B where M
is a d × d non-degenerate matrix and B ∈ Rd. With the new variable X, the
expounded proof has three steps.

Step 1: When W (x) = U(Mx+b), W and U are the same order in W s,p
loc since

detM 6= 0. More precisely, fix following positive constants m0 = | detM | > 0,
m1 = ‖|M‖| = sup{|Mx|, |x| = 1} > 0, m−1 = ‖|M−1‖| > 0, 0 < r < R such
that Qd(X0, r) ⊂MQd(x0, 1) ⊂ Qd(X0, R) where X0 = Mx0 +B. Performing
the change of variables X = Mx + B, Y = My + B yields for any x0 ∈ Rd
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and any A > 0

m−1
0 ‖U‖Lp(Qd(X0,rA)) ≤ ‖W‖Lp(Qd(x0,A)) ≤ m−1

0 ‖U‖Lp(Qd(X0,RA)),

m−2
0

m
(d+sp)
−1

|U |Ẇ s,p(Qd(X0,rA)) ≤ |W |Ẇ s,p(Qd(x0,A)) ≤
m−2

0

m
−(d+sp)
1

|U |Ẇ s,p(Qd(X0,RA)).

Step 2: Assume ψ(x) = x1, i.e. W (x) = W (x1, · · · , xd) = w(x1), x0 = ψ(x0).

Then, W in W s,p
loc (Rd) and w in W s,p

loc (R) have the same order. More precisely,
elementary computations yield

‖W‖L1(Qd(x0,A)) = (2A)d−1‖w‖L1(Q1(x0,A)),

|W | ˙̃
W
s,p

(Qd(x0,A))
≤ (2A)d−1Cd,sp|U | ˙̃

W
s,p

(Q1(x0,A))

≥ (2A)d−1cd,sp|U | ˙̃
W
s,p

(Q1(x0,A))
.

The two last inequalities and constants come from Lemma 6.2 since

|W | ˙̃
W
s,p

(Qd(x0,A))
=

∫
Qd(0,A)

∫
Qd(x0,A)

|w(x1 + h1)− w(x1)|
|h|d+sp

dxdh

= (2A)d−1

∫ A

−A

∫ x0+A

x0−A

|w(x1 + h1)− w(x1)|
|h1|1+sp

µd,sp(h1)dx1dh1.

Step 3: By step 1, Wε(x) = Vε(ε
−γψ(x)) ' Vε(ε

−γx1) in W s,p
loc (Rd), by step

2, x 7→ Vε(ε
−γx1) and x1 7→ Vε(ε

−γx1) have the same order in W s,p
loc (Rd) and

W s,p
loc (R). Finally we have by Lemma 6.1 Wε ' ε−sγ in W s,p

loc (Rd).

It is the last step to estimate the Sobolev norm for the multidimensional
case before proving Theorem 6.1.

Lemma 6.5. [Example of highly periodic oscillations on [0, T ]× Rd]
Let U belong to W s,p

loc (R,R), γ > 0, ϕ(t,x) = v · x + b t where v ∈ Rd, b ∈ R
and 0 < ε < 1,

Wε(t,x) = U(t, ε−γϕ(t,x)).

If U is a non constant function in C1([0, T ]× R/Z,R) and v 6= 0Rd, then

Wε ' ε−sγ in W s,p
loc ([0, T ]]× Rd,R).

Furthermore, when Uε belongs to C1([0, T ]×R/Z,R) for all ε ∈]0, 1] converging
towards U in C1 and Wε(t,x) = Uε(t, ε

−γϕ(t,x)), the same conclusion holds.

Proof : We proceed the proof as in the previous proofs. First with a
linear change of variable (t,x) 7→ (t,y) with y1 = ϕ(t,x). Wε has the same
estimates Vε = U(t, ε−γy1) in W s,p

loc (]0, T [×Rd,R). Notice that the change of
variable depends on t varying in the compact set [0, T ]. So we have uniform
estimates of positive constants m0, m1, m−1 used in the proof of Lemma 6.4.
Now, the estimates of Vε in W s,p

loc (]0, T [×Rd,R) and in W s,p
loc (]0, T [×R,R) have



28 STÉPHANE JUNCA

the same order since∫ A

−A
· · ·
∫ A

−A

dh0dh1 · · · dhd
(|h0|+ |h1|+ · · · |hd|)1+d+sp

=

∫ A

−A
· · ·
∫ A

−A

dh0dh1

(|h0|+ |h1|)2+sp

(|h0|+ |h1|)1+(sp+1)dh2 · · · dhd
(|h0|+ |h1|+ · · · |hd|)d+(sp+1)

=

∫ A

−A

∫ A

−A

dh0dh1

(|h0|+ |h1|)2+sp
µ2,(sp+1)(|h0|+ |h1|)

where h0 plays the role of time. From the bounds of µ2,(sp+1)(|h0| + |h1|) on
]0, 2A] in Lemma 6.2, we can complete the proof by Lemma 6.3
With a smooth extension of U on [−δ, T + δ]×R/Z, for a small positive δ, we
obtain estimates in W s,p

loc ([0, T ]× Rd,R).

We are now able to prove the Theorem by using Lemma 6.4 and the method
of characteristics.

Proof of Theorem 6.1: Bounds L∞([0, T0],W s,p
loc (Rd): Such bounds give

bounds in C0([0, T0],W s,p
loc ) since uε is in C1.

For t = 0, it is only an application of Lemma 6.4. The profile U(t, .) is non
constant for each t, else U0 must be constant by the method of characteristics.
And the estimates are uniform.

Bounds in W s,p
loc ([0, T0]× Rd) The semi-norms |.| ˙̃

W
s,p

(Qd+1(y0,A))
, where y0 =

(t0,x0), needs some precautions to use on [0, T0] × Rd. y0 must be such that
0 < t0 < T0 and A < min(t0, T0 − t0). Furthermore, only W s,p

loc (]0, T0[×Rd)
smoothness can be estimate. Indeed, (uε)0<ε≤1 is bounded in W s,p

loc ([0, T0]×Rd).
To prove this, let us use the following trick. By the methods of characteristics
the family of solutions (uε)0<ε≤1 exists on a maximal time interval ] − δ, T1[,
with 0 < δ < T0 < T1. Notice that solutions exist for negative time since the
initial data is smooth. Now estimates in W s,p

loc (] − δ, T1[×Rd) can be obtained
which is sufficient to get smoothness in W s,p

loc ([0, T0]×Rd). Now using Lemma
6.4 we complete the proof.

7. Super critical geometric optics and maximal smoothing
effect

In this short and final section we prove the Theorem 3.2 which gives a bound
for the maximal uniform smoothing effect. This theorem requires almost all
the previous results proven in this paper. Indeed it is a consequence of

• smooth critical geometric expansions in Theorem 3.1 under a ”station-
ary phase assumption” with respect to the flux, namely condition (3.5)
in Section 3,
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• links between ”stationary phase assumption” (3.5) and Lions-Perthame-
Tadmor definition 2.4 on nonlinear flux, by Definition 5.1 and Theorem
5.1 in Subsection 5.1,
• Sobolev estimates on our family of highly frequency waves in Theorem

6.1, Section 6 .

Proof of Theorem 3.2:
The proof is a consequence of three previous theorems.

By Theorem 5.1, there exists u ∈ [−M,M ] such that α =
1

dF[u]
. Let U0 be

a non constant smooth periodic function such that: −M ≤ u+U0(θ) ≤M for
all θ. Let v ∈ Rd such that ak(u) � v = 0 and v 6= 0 for k = 1, · · · , dF[u] − 1.
Such v exists by Definition of dF[u].

Now, let (uε) be the family of smooth solutions given by Theorem 3.1.
Theorem 6.1 is the desired conclusion.
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