High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2014

High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws

Résumé

The article first studies the propagation of well prepared high frequency waves with small amplitude $\varepsilon$ near constant solutions for entropy solutions of multidimensional nonlinear scalar conservation laws. Second, such oscillating solutions are used to highlight a conjecture of Lions, Perthame, Tadmor (1994), about the maximal regularizing effect for nonlinear conservation laws. For this purpose, a new definition of nonlinear flux is stated and compared to classical definitions. Then it is proved that the smoothness expected in Sobolev spaces cannot be exceeded.
Fichier principal
Vignette du fichier
J4.pdf (532.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00576662 , version 1 (15-03-2011)
hal-00576662 , version 2 (11-02-2013)
hal-00576662 , version 3 (21-06-2015)

Identifiants

Citer

Stéphane Junca. High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws. SIAM Journal on Mathematical Analysis, 2014, 46 (3), pp.2160-2184. ⟨10.1137/120880367⟩. ⟨hal-00576662v3⟩
430 Consultations
186 Téléchargements

Altmetric

Partager

More