N

N
N

HAL

open science

How do you compute the midpoint of an interval?

Frédéric Goualard

» To cite this version:

Frédéric Goualard. How do you compute the midpoint of an interval?. ACM Transactions on Mathe-

matical Software, 2014, 40 (2), 10.1145/2493882 . hal-00576641v2

HAL Id: hal-00576641
https://hal.science/hal-00576641v2

Submitted on 17 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00576641v2
https://hal.archives-ouvertes.fr

How do you compute the midpoint of an interval?

FREDERIC GOUALARD, CNRS, LINA, UMR 6241

The algorithm that computes the midpoint of an interval with floating-point bounds requires some careful
devising to handle all possible inputs correctly. We review several implementations from prominent C/C++
interval arithmetic packages and analyze their potential failure to deliver the expected results. We then
show how to amend them to avoid common pitfalls. The results presented are also relevant to non-interval
arithmetic computation such as the implementation of bisection methods. Enough background on IEEE 754
floating-point arithmetic is provided for this paper to serve as a practical introduction to the analysis of
floating-point computation.

Categories and Subject Descriptors: G.1.0 [General|: Computer arithmetic; Error analysis; Interval arith-
metic

General Terms: Algorithms, Reliability, Experimentation

Additional Key Words and Phrases: floating-point number, IEEE 754 standard, interval arithmetic, mid-
point, rounding error

1. INTRODUCTION

In his 1966 report | | “How do you solve a quadratic equation?”, Forsythe con-
siders the seemingly simple problem of reliably solving a quadratic equation on a computer
using floating-point arithmetic. Forsythe’s goal is both to warn a large audience away from
unstable classical textbook formulae as well as get them acquainted with the characteristics
of pre-IEEE 754 standard floating-point arithmetic, a dual objective shared by his later
paper “Pitfalls in Computation, or Why a Math Book isn’t Enough” |].

Following Forsythe’s track, we consider here the problem of computing a good approxi-
mation to the midpoint between two floating-point numbers. We strive to provide both a
reliable algorithm for midpoint computation and an introduction to floating-point compu-
tation according to the IEEE 754 standard [|

Given two real numbers a and b from R, with a < b, the midpoint m(I) of the closed
interval I = [a,b] = {x € R| a < = < b} can easily be obtained with the straightforward
formula:

a+b
m(la b)) = . (1)
1A new version of the original standard from 1985 was approved and released in 2008 []. Most

prominently, it considers both binary and decimal representations of floating-point numbers, while the 1985
version only considered a binary representation. In this paper, we only consider the features standardized
by the 1985 version—Dby far the most used to this day—for the sake of simplicity.

Part of the work presented here was funded by IFCPAR/CEFIPRA Project 4502-1.

Author’s address: F. Goualard, Université de Nantes. Nantes Atlantique Université. CNRS, LINA, UMR
6241, 2 rue de la Houssiniere, BP 92208, F-44322 NANTES CEDEX 3.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.

© YYYY ACM 0098-3500/YYYY/01-ARTA $10.00

DOI 10.1145,/0000000.0000000 http://doi.acm.org,/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.cefipra.org/

A:2 F. Goualard

But, if @ and b are two floating-point numbers from a set F of finite floating-point numbers,
the sum a + b may not be a floating-point number itself, and we therefore have to take care
of rounding it correctly to ensure that our floating-point implementation of m(I) does not
violate the fundamental property:

m(I) e I, (2)

viz., that the floating-point midpoint of an interval I should belong to I.

This property is a prerequisite to use the midpoint operator in the dichotomic search
process of some numerical algorithm, even though it is not sufficient to ensure that the
search space is separated into sub-spaces of the same size’?. There are, however, problems
that require more from a midpoint operator, viz., that it computes the floating-point number
closest to the real midpoint of I®:

b
YoeF: |e—v|>=]|c—m(I)], WithCZ%,CER. (3)

In interval arithmetic | ; ;], some ex-
amples of such problems are:

— On average, the least overestimation in defining a centered form [
] of a rational function is obtained by choosing a value closest to the mldpomt as
developing point | , p. 41];
— For the Krawczyk operator | , p. 177], the midpoint is the value that gives
the tightest result over all other points of the interval under consideration [
Theo. 5.1.9, p. 178].

)

Inclusion and precision are not, however, the only possible problems for floating-point im-
plementations of the midpoint operator: what should be, for example, the midpoint of an
empty interval? As we shall see in Section 2, the IEEE 754 standard comes to the rescue
here by defining a special Not-a-Number value (NaN) that should be used for such situation;
another difficulty lies in the fact that, as we will see in the next section, one or both bounds
of an interval with floating-point bounds may be an infinite value “£o0”. What should then

be the midpoint of an interval of the form [a, +00], [—00,b], or even [—oo, +00]? Though
the midpoint is mathematically undefined, many applications (e.g., constraint solvers such
as IBEX |] or Realpaver []) typically

expect finite values and would behave incorrectly, should the midpoint operator return a
NaN for these intervals. As a consequence, the current draft of the future IEEE P1788
standard on interval arithmetic defines the midpoint operator as follows:

m(2) is NaN,

m([—o0,b]) = —realmax,

m([a, —|—oo]) = realmax, for (a,b) € F?, (4)
m([—oc, +oc]) =0,
m([a,b}) = rndnr{(a + b)/2),

where rndnr(z) is defined in the next section as returning the floating-point value closest to
the real number z, and realmax is the largest positive element of F.
For non-empty intervals with finite bounds, Equation (3) implies Equation (2). However,
some implementations may choose to ensure only the latter and a relaxation of the former.
Due to its many uses (centered forms, Krawczyk operator, Newton operator | 1,
computation of preconditioning matrices |], representation of intervals in the

2Where the size w(I) of an interval I = [a, b] with floating-point bounds is defined as w(I) = b — a.
3If the real midpoint is midway between two floating-point numbers, there exist two possible values for
m(I) that satisfy Equation (3).

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

How do you compute the midpoint of an interval? A:3

midpoint/radius format |], -..), the midpoint operator is a staple of interval
arithmetic libraries. It is, therefore, paramount that its floating-point implementation at
least satisfies Equation (2). Accuracy, as stipulated by Equation (3), is also desirable, as
seen in the examples above. Nevertheless, we will see in Section 3 that some formulae
implemented in popular C/C++ interval libraries may not ensure even the containment
requirement for some inputs. However, this study should not be considered as a report on
the quality of these libraries since different implementations of the midpoint operator might
suit specific needs, and some libraries were defined with no provision to support intervals
with infinite bounds in the first place. We are only concerned here with the properties of
the formulae these libraries implement.

In Section 3, we analyze the various formulae both theoretically and practically; contrary
to most expositions, we consider the impact of both overflow and underflow on the accuracy
and correctness of the formulae.

The error analysis conducted in this paper requires slightly more than a simple working
knowledge of floating-point arithmetic as defined by the IEEE 754 standard. As a conse-
quence, the basic facts on floating-point arithmetic required in Section 3 are presented in
Section 2 for the sake of self-containedness.

It turns out that the study of the correct implementation of a floating-point midpoint
operator may serve as a nice introduction to many important aspects of floating-point
computation at large: the formulae studied are simple enough for their analysis to be easily
understandable, while the set of problems raised is sufficiently broad in scope to be of general
interest. We then hope that this paper will be valuable as both a technical presentation of
reliable, accurate, and fast methods to compute a midpoint as well as an introduction to
error analysis of floating-point formulae.

2. FLOATING-POINT ARITHMETIC IN A NUTSHELL

According to the IEEE 754 standard |], a floating-point number ¢ is represented
by a sign bit s, a significand m (where m is a bit string of the form “0.f” or “1.f”, with f
the fractional part) and an integral exponent E:

o= (=1 xm x 2%, (5)

The IEEE 754 standard defines several formats varying in the number of bits I(f) and
I(E) allotted to the representation of f and E, the most prominent ones being single preci-
sion—(I(E),1(f)) = (8,23)—and double precision—(I(E),l(f)) = (11,52). We will also use
for pedagogical purposes an ad hoc IEEE 754 standard-compliant tiny precision format—
(I(E),1(f)) = (3.3).

Wherever possible, the significand must be of the form “1.f” since it is the form that
stores the largest number of significant figures for a given size of m:

@ =0.01101 x2°
=0.1101 x27!
=1.101 x272.

Floating-point numbers with such a significand are called normal numbers. Such prevalence
is given to normal numbers that the leading “1” is left implicit in the representation of an
IEEE 754 number, and only the fractional part f is stored (see Figure 1).

The exponent FE is a signed integer stored as a biased exponent e = FE + bias, with
bias = 2/(F)=1 _ 1. The biased exponent e is a non-negative integer that ranges from
emin = 0 10 emax = 2/F) — 1. However, for the representation of normal numbers, E only
ranges from Epin = (€min — bias) + 1 to Fpax = (emax — bias) — 1 because the smallest
and largest values are reserved for special purposes (see below). As an example of what

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 F. Goualard

precedes, the bias for the tiny format is equal to 3, e ranges from 0 to 7, and E ranges from
—2 to +3.

b(', l),’,])1 Z);J, l)g l)y l)(]

S e f

Fig. 1. Binary representation as a seven bit string of a tiny floating-point number.

Consider the binary number p = 1.0011. It cannot be represented as a tiny floating-point
number since its fractional part has four bits, and the tiny format has room for only three.
It therefore has to be rounded to the floating-point number fl{p) according to one of four
rounding directions” (see Figure 2):

— Rounding toward 0: fl(p) = rndzr(p);

— Rounding to nearest-even: fl{p) = rndnr(p);
— Rounding toward —oo: fl{p) = rnddn{p);

— Rounding toward +o0: fl(p) = rndup(p).

rnddn(p) rndup(p)

| o o0
0 rndzr(p) rndnr(p)

Fig. 2. Rounding a real number according to the IEEE 754 standard.

Note the use of angles “()” instead of more conventional parentheses for the rounding
operators. They are used to express the fact that each individual value and/or operation
comprising the expression is individually rounded according to the leading operator. For
example:

fi{p1 + p2) = fl(fl(p1) +fl(p2)), V(p1,p2) € R%.

When rounding to nearest, if p is equidistant from two consecutive floating-point numbers,
it is rounded to the one whose rightmost bit of the fractional part is zero (the “even”
number).

It is not possible to represent 0 as a normal number. Additionally, consider the number

V2
© = 0.00011 x 2°.

To store it as a tiny floating-point normal number requires shifting the leftmost “1” of the
fractional part to the left of the radix point:

0 =1.100 x 274,

4The actual direction chosen may depend on the settings of the Floating-Point Unit at the time, or alter-
natively, on the machine instruction used, for some architectures.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

How do you compute the midpoint of an interval? A:b

However, doing so requires an exponent smaller than FE,. It is nevertheless possible to
represent (p, provided we accept to store it with a “0” to the left of the radix point:

©=0.011x 272,

Numbers with a significand of the form “0.f” (with f # 0) are called subnormal numbers.
Their introduction is necessary to reduce the large gap that would otherwise occur around
0 (compare Figure 3(a) and Figure 3(b)). The value “0” is also represented with the form
“0.f” (with f = 0) but it is considered by the IEEE 754 standard as neither normal nor
subnormal.

(a) Without subnormal numbers. (b) With subnormal numbers (dashed red).

Fig. 3. The tiny floating-point format with and without subnormals (focus on 0).

To signal that a number is a subnormal number, the biased exponent e stored is set to
the reserved value 0, even though the unbiased exponent F is E;, (otherwise, it would
not be possible to distinguish between a normal number and a subnormal number whose
unbiased exponent is Fyi,). Exceptional steps must be taken to handle subnormal numbers
correctly since their leading bit is “0”, not “1”. This has far reaching consequences in terms
of performance, as we will see at the end of Section 3.

Figure 4 shows the repeated division by two of a tiny number across the normal/subnor-
mal divide. As seen in that figure, dividing an IEEE 754 floating-point number by two is
an error-free operation if the result is not a subnormal number. Otherwise, the rightmost
bit of the fractional part is shifted out, and if it is non-zero, the operation is not error-free.
The values A and p are, respectively, the smallest positive normal and the smallest positive
subnormal floating-point numbers.

S e
., A0J[011][000] 1.000 x 2° = 1
"~3]0J[010J[000] 1.000 x 2= = 0.5
=2
) m 001{[000] 1.000 x 272 =0.25 (/\) Normal numbers
m 0001(100] 0.100 x 2_2 =0.125 Subnormal numbers
-, >0][000][010] 0.010 x 272 = 0.0625
~,210][000[001] 0.001 x 272 = 0.03125 (u)
"“X[0J[000][000] 0.000 x 2=2 = 0

Fig. 4. Repeated division by two from 1.0 to 0.0 in the tiny format (rounding to nearest/even).

The condition whereby an operation leads to the production of a subnormal number or
an inexact zero is called underflow. On the other side of the spectrum, an operation may
produce a number that is too large to be represented in the floating-point format on hand,
potentially leading to an overflow. In that case, depending on the rounding policy in effect,
the number is replaced either by an infinity of the right sign—which is a special floating-
point number whose biased exponent e is set to enax and whose fractional part is set to

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 F. Goualard

zero—, or by the largest (in absolute value) finite floating-point number with the right sign®.
In the rest of this paper, we denote by IF the set of normal and subnormal floating-point
numbers and by F = F U {—o0, +00} its affine extension, the size of the underlying format
(tiny or double precision, mainly) being unambiguously drawn from the context.

To ensure non-stop computation even in the face of a meaningless operation, the IEEE 754
standard defines the outcome of all operations, the undefined ones generating a NaN (Not a
Number), which is a floating-point datum whose biased exponent is set to epax and whose
fractional part is any value different from zero. We will have, e.g.:

v—1=NaN, o00o— oo = NaN.

The NaNs are supposed to be unordered, and any test in which they take part is false®. As
a consequence, the right way to test whether an interval [a,b] is empty is to check whether
—(a < b) is true since that form returns a correct result even if either a or b is a NaN.

To sum up, the interpretation of a bit string representing a floating-point number depends
on the values of e and f as follows:

e=0, f=0: ¢=(-1)*x0.0

e=0, f#0: o= (1) x (0.f) x 21—bias
0 < e < emax : = (=1)° x (1.f) x 2¢~bias
€ = €max f=0 p=(-1)°xo00

€ = €max f#0: o =NaN.

Fig. 5. IEEE 754 tiny floating-point (normal and subnormal) numbers.

Figure 5 presents the distribution of all ¢iny numbers from F on the real line. The farther
from 0, the larger the gap from a floating-point number to the next. More specifically, as
Figure 6 shows, the difference between two consecutive floating-point numbers doubles every
2/¢) numbers in the normal range, while it is constant throughout the whole subnormal
range.

Rounding is order-preserving (monotonicity of rounding):

Y(p1,p2) €R?: p1 < pa = fl{p1) < fl(pa)

for the same instantiation of fl() in both occurrences. The IEEE 754 standard also mandates
that real constants and the result of some operations (addition, subtraction, multiplication,
and division, among others) be correctly rounded: depending on the current rounding di-
rection, the floating-point number used to represent a real value must be one of the two
floating-point numbers surrounding it. Disregarding overflow—for which error analysis is
not very useful—, a simple error model may be derived from this property: let p be a
positive real number”, ¢; the largest floating-point number smaller or equal to p and ¢,
the smallest floating-point number greater or equal to p. Let also rndnr{p) be the correctly

5For example, if the sum a+ b overflows with a+b > 0, we have rnddn{a + b) = realmax and rndup(a + b) =
+o0.

6Surprisingly enough to the unsuspecting, even the equality test turns false for a NaN, so much so that the
statement x # x is an easy way to check whether x is a NaN.

"The negative case may be handled analogously.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

How do you compute the midpoint of an interval? A7

S €

@ 1.010- 271

by [0][010][001] 1.001 - 2-*

25 x> CLOO10][000] 1.000 - 27!
[0][001][111] 1.111-272

(@ 1.001 -
[0J[001][000] 1.000 -

93 x -2 (@ 0.001 - 272
[01[000][000] 0.000 - 2-2

Fig. 6. Gap between consecutive floating-point numbers in the tiny format.

273 x 271

273 x 272

rounded representation to the nearest-even of p by a floating-point number (rndnr{p) is
either ¢; or ¢,.). If p is a floating-point number, we have:

rndnr{p) = p. (6)

Otherwise, we have:

4
mdnr(p) — pl < ZEL. (7)
We may consider two cases depending on whether ¢; is normal or not:
— Case ¢; normal. The real p may be expressed as m, x 2F with 1 < m, < 2. Then, ¢
can be put into the form m,, x 2F with 1 < my, < 2. If we call €5 the machine epsilon

corresponding to the value 274 of the last bit in the fractional part® of a floating-point
number, we have o, = ¢; + ey x 2F. From Equation (7), we get:

[rndnr{p) — p| < %\/1 x 2F.
We have”:

rndnr(p) — p| _ (ear/2) x 27
P S om, x 28

We know 1 < m, < 2. Then:
EM
[rmdnr(p) —p| < -p
or, alternatively:
rndnr(p) = p(1+6), with [§| < %\4 (8)

— Case y; subnormal. The distance between any subnormal number to the next floating-
point number is constant and equal to u = 3 x 2Fmin. From Equation (7), we then
have:

[mdnr(p) — p| < %

8 Alternatively, e3; may be defined as the difference between 1.0 and the next larger floating-point number.
9Here, p is different from 0 since it is not a floating-point number at this point.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 F. Goualard

which may be expressed as:

mdnr(p) = p+, with f] < %. (9)
We may unify Equation (6), Equation (8), and Equation (9) as:
on =0,
rdnr(p) = p(1 +9) +n, with { |o] < =3¢, (10)
Inl < %,

where either one of ¢ and 7 has to be null (6 = 0 in case of underflow, and 7 = 0 otherwise).
This error model is valid for all correctly rounded operations and then:

v(8017§02) € FQ; VT e {+,_, X,+}Z

on
mdnr{o1 Tes) = (1 Tp2)(14+0) +n, with { }6||
n

For the other rounding directions, the same error model can be used, except that the bounds
on § and 7 are now larger:

0,
9 (1)
122

?

NN

|0] < enm and |n| < .

Table I. Characteristics of floating-point formats.

Format (E) U(f) Pmin Emax ‘5}va A* e

tiny 3 3 —2 +3 273 2—2 275
single 8 23 —126 +127 2728 2—126 9—149
double 11 52 —1022 41023 2752 2-1022 o-1074

t) machine epsilon, equal to 2 1)
*) realmin (smallest positive normal number), equal to 2Fmin
©) subrealmin (smallest positive subnormal number), equal to e A

Table I summarizes the values of the various constants encountered for the tiny, single,
and double precision floating-point formats.

The error model presented in Equation (10) and Equation (11) is pessimistic by nature
as it only gives an upper bound for the error. In some instances, it is possible to refine it to
more accurate bounds. For example, we have for any finite floating-point number ¢:

¥ P . no
rndnr<2>—2—|—n w1th77€{ 2,0,2}. (12)
The same holds when rounding toward zero; for upward and downward rounding, the pos-
sible values for n are reduced to, respectively, {0, u/2} and {—p/2,0}.

The proof of Equation (12) is easy: in the absence of underflow, the division by 2 is error-
free since it amounts to decrementing the biased exponent by one; in case of underflow, the
division by 2 is realized by shifting the fractional part one bit to the right (see Figure 4),
which can only introduce an error of £27U(HFD) »x 2Bmin — M x 2Fmin = L if the
discarded bit is a “1” and no error if the bit is a “0”.

We may also enjoy an error-free addition/subtraction for certain operands, as stated by
the following three theorems, which will be used in the next section. Beforehand, note that
we may consider for all practical purposes that, for @1, ps and @3 some floating-point
numbers, fl{p1 + p2) = fl{p1 — (—p2)) and fl{p1 — p2) = fl{p1 + (—p2)) since taking the
opposite of a floating-point number only involves flipping its sign bit, which is error-free.

THEOREM 2.1 (HAUSER'S THEOREM 3.4.1 | D). If o1 and o are floating-
point numbers, and if fl{p1 + @2) underflows, then fl{(p1 + 2) = 1 + V2.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

How do you compute the midpoint of an interval? A:9

In effect, Theorem 2.1 means that 7 is always equal to 0 in Equation (11) when “T” is
an addition or a subtraction.

THEOREM 2.2 (HAUSER'S THEOREM 3.4.1A | D If p1 and @2 are
floating-point numbers such that |p1 + @2| < 2X, then fl{p1 + @2) = 1 + @a.

THEOREM 2.3 (HAUSER'S THEOREM 3.4.2 | ', If o1 and o are
floating-point numbers such that 1/2 < ¢1/p2 < 2, then fl{p1 — v2) = 1 — pa.

Many other results to narrow the error bounds for some expressions may be found in the
writings of Hauser |], Goldberg |] or Higham |], to
name a few, but the ones presented here will be enough for our purpose.

Hauser’s theorems give sufficient conditions to have error-free additions and subtractions.
On the other hand, these operations may generate large errors through absorption and
cancellation.

Absorption. Consider the two tiny floating-point numbers a = 1.000 x 23 and b = 1.000 x
271, To add them, we have first to align their exponents. This is done by scaling the operand
with the smallest exponent:

a 1.000 x23
b +0.0007 x23
1.0007 x23

The addition is performed with one extra bit for the significand of all values involved, the
guard bit, which is necessary to ensure the validity of the error model of Equation (11).
However, the result loses this guard bit when stored in the floating-point format on hand;
if we round to the nearest-even, we then obtain a 4+ b = 1.000 x 23 = a. The absolute error
is:

Irdnr{a +b) — (a +b)| =271,

while the relative error is:

Imdnr{a +b) = (a+b)| 278 1
la + b 234271 T
As expected by the error model in Equation (11), the relative error is bounded by e5;/2 =

274 =1/16.

A loss of significance occurs whenever the difference in magnitude between the two
operands of the addition leads to a shifting of some significant bits of one of the operands
to the right of the rightmost bit of its fractional part. Absorption will occur when all the
significant bits of one of the operands are shifted out.

Cancellation. Consider two nearly equal tiny numbers a = 1.001 x 23 and b = 1.000 x 23
and suppose they are the rounded approximations of earlier computation, respectively a =
1.00011 x 23 and ¥ = 1.00010 x 23. If we perform the subtraction a — b, we get:

a 1.001 x23
b —1.000 x23
0.001 x23

Even though the subtraction performed is error-free, we get the result “1” while o’ —b' = 272,
All correct figures from a and b cancel each other out and only the wrong figures remain
and are magnified in the process—the more so for large a and b. As a rule of thumb, we
should therefore avoid subtracting quantities spoiled by previous errors.

19The better known Sterbenz’s theorem |] states the same result in a restricted form where
underflows are forbidden []

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 F. Goualard

3. THE FLOATING-POINT MIDPOINT OPERATOR

As said at the beginning of Section 1, a naive floating-point implementation of Equation (1)
must consider the rounding of p = a + b, for @ and b two floating-point numbers''. A
floating-point implementation of Equation (1) may fatally fail in two different ways with
respect to the definition given by Equation (4):

Pitfall 1. For the interval [—oo,+00], a + b returns a not-a-number (NaN), as defined
by the IEEE 754 standard for the addition involving two infinities of differing signs.
Mathematically, this does not violate the definition of midpoint, since the midpoint of
[—00, +00] is undefined. From a practical point of view, however, it violates Property (2)
since a NaN would not be considered to be between —oo and 4o00. As said previously,
for many current applications, it is better to return a finite value. Otherwise, the user
must take proper care to check for the occurrence of a NaN each time some midpoint is
computed, even for non-empty intervals;

Pitfall 2. If a and b have the same sign and their sum overflows, a 4+ b will be an infinity,
which divided by two will still give an infinity'?.

We have presented in Section 1 the definition chosen for the midpoint operator. In the rest
of this paper, we then require the implementation of midpoint to comply with Equation (2)
and Equation (3), and to also have the properties:

m(I) is NaN < I = @.
That is, the midpoint operator should return a NaN only for empty intervals. And:
VI =[a,b]: a=-b = m(I)=0.

That is, the midpoint of a symmetric interval should be 0 (the interval [—oo, +00] being
considered symmetric).

The most straightforward implementation of the midpoint operator—such as used in,
e.g., FI.LIB | |—has only one equation rounded to the nearest:

m([a,b]) = rndnr<a—2|—b>. (13)

Evidently, it falls into both pitfalls highlighted above, and will return an infinite value in
case a + b overflows, and a NaN for the interval [—oo, +00].

The C++ Boost Interval Arithmetic Library | | uses a slightly
more complex implementation of the midpoint operator, viz.:

—realmax if a = —o0;
m([a,b]) = { realmax if b = +o0; (Boost rev84)
rndnr<“7+b> otherwise.

The cases are not mutually exclusive; however, only one rule is used (the first one that
applies, in the order given), noting that the actual implementation adds a zeroth case for
empty interval inputs, for which it returns a NaN.

The error analysis for the third rule of Equation (Boost rev84)—also valid, obviously, for
FI_LIB—is fairly simple with the model of Equation (11):

i (52 _ 00 40)

(14 d2) + 7.

111n the rest of this paper, we consider the double precision format, even though all results are applicable
to other binary formats defined by the IEEE 754 standard [] as well.
123ee below for a proviso on this, though.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

How do you compute the midpoint of an interval? A:11

Thanks to Theorem 2.1, we have 177 = 0. We also have d5 = 0, since a division by two is
error-free in the absence of underflow. Hence the simplified expression:

rndnr<a—2|—b> = (a—2|—b) (1+61) + m2, (14)

with [01| < ep/2 and 12 € {—=5,0,5} (see Equation (12)). In the absence of overflow/un-
derflow, we then have a correctly rounded result:

rndnr<a—2|—b> = a+b(1 +41),

2

which is the best we can expect.

Thanks to the first rule, the Boost library will not return a NaN for m([—oo, +00]) but
—realmax. This result does not violate Equation (2), and Equation (3) is not relevant
in the context of intervals with an infinite radius. It might, however, appear odd to the
unsuspecting user to discover that the midpoint of a non-empty symmetric interval may
not be 0.

That the Boost library may, in some instances, not fall prey to Pitfall 2 may come as
a surprise; in fact, the occurrence of overflows depends on minute details of the actual
compilation of the expression rndnr{(a + b)/2): for example, on a computer with an ix86-
based processor offering at least the SSE2 instruction set | , Chap. 11], there are
essentially two ways to compute with double precision floating-point numbers:

(1) With the FPU instruction set and 80-bits registers stack | , Chap. 8]: com-
putation is performed internally with an extended precision format having 64 bits of
significand and 15 bits of exponent. It is still possible to restrict the size of the sig-
nificand to 53 bits in order to emulate double precision'® but this feature is rendered
almost useless by the fact that it is not possible to restrict the size of the exponent;

(2) With the SSE2 instruction set and the SSE2 registers: computation is performed exclu-
sively in double precision.

If a program that uses the Boost library is compiled without any particular option on an
ix86-based processor, the expression rndnr{(a + b)/2) might be computed as follows:

(1) The double precision variables a and b will be loaded into the FPU floating-point reg-
isters and promoted to the 80 bits extended format;

(2) The expression rndnr{(a + b)/2) will be computed entirely with extended precision in
the FPU registers, possibly incurring a first rounding in the extended format;

(3) The result of the expression will be demoted back into a double precision variable,
possibly incurring a second rounding in the double format.

In this situation, the overflow cannot happen since rndnr{a + b) is always representable by
a finite number in extended precision; once divided by 2, the result is again representable
in double precision. Additionnally, the two consecutive roundings may invalidate our error
analysis since, even in the absence of underflow and overflow, the resulting error may then
get larger than half a unit in the last place in rounding to nearest.

Now, suppose the program is compiled for an ix86 processor with a compiler option that
instructs it to emit code to store back floating-point values into double precision variables
after each operation'® (this behavior has an obvious adverse effect on performance. It is
useful, however, to promote repeatability of the computation across different platforms,

13Since version 4.3.0, the GNU C Compiler gcc offers the option -mpc64 to do that easily.
14This is the -ffloat-store option of gcc, or the -mp option for the Intel C++ compiler.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 F. Goualard

some of which may not offer extended precision registers of the same size, if at all)'®. In

that case, the expression rndnr<a7+b> will be computed as follows:

(1) The double precision variables a and b will be loaded into the FPU floating-point reg-
isters and promoted to the 80 bits extended format;

(2) The expression rndnr{(a + b) will be computed with extended precision in the FPU reg-
isters;

(3) The value of rndnr{a + b) will be stored back as a double precision floating-point number,
at which point an overflow may occur;

(4) The value of rndnr{a + b) will be loaded into an extended register, promoted to 80 bits,
and then divided by 2;

(5) The result of the division will be stored in a double precision variable with some possible
rounding.

In this situation, the Boost implementation of the midpoint operator may fail to comply
with its requirements, and will return an infinite value as the midpoint of any interval with
finite bounds whose absolute value of the sum is greater than realmax. The same problem
would arise on architectures that do not rely internally on extended precision floating-point
registers.

A different way to achieve the same failure on an ix86 processor relies on the possibility
for modern compilers to transparently—or upon explicit request by the programmer—use
the SIMD facilities offered by the SSE2 instruction set: some floating-point expressions
may be computed in double precision SSE2 registers instead of the FPU extended precision
registers. Once again, rndnr(a + b) may overflow, as it will be computed in double precision
only.'% Such possibilities for unexpected failures are compounded by the advent of processors
featuring new floating-point operations—such as fused multiply-add (fma), defined by the
most recent version of the IEEE 754 standard for floating-point arithmetic | —
whose rounding characteristics may invalidate the error analysis performed in this paper.

To avoid the overflow problem that affects the Boost implementation, Intlab V5.5 |
] uses the following formula:

- o) — 0 if a = —o00 and b = +o0;
([a,0]) = rndup(% + g) otherwise.

The first rule protects explicitly against the creation of a NaN for the interval [—oo, +00],
while the second rule avoids an overflow by first dividing the operands by two before adding
the results, instead of the other way round.

The error analysis is as follows:

rndup<; + S> = {(;(1 +6y) +m) + (;’(1 +5y) +772>] (1+ 33) + 75

Using Theorem 2.1 and Equation (12), we may simplify the expression as:

b b
rndup<; + 2> = (a;— +m +772> (1+63), (15)

(Intlab V5.5)

15However, due to the unavoidably larger range of the exponent, perfect repeatability cannot be guaranteed
for all cases.

16This transparent use of SIMD registers instead of FPU ones leads to another problem: the assembler
instructions that set the rounding direction for the FPU and SSE2 instructions are separate; therefore,
the rounding direction set by the programmer for some FPU computation will not apply if, unbeknownst
to him, the compiler chooses to use SSE2 instructions instead. However, this problem disappears if the
programmer can make use of recent enough versions of high level functions such as the C99 fesetround()
and Microsoft’s _controlfp(), which set the rounding direction for both FPU and SSE2 intructions.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

How do you compute the midpoint of an interval? A:13

with m € {0, u/2}, n2 € {0, /2}, and 0 < 3 < ey, since results are rounded upward now.
In the absence of underflow/overflow, Equation (15) simplifies to:

rndup<a + b> = a+b(1 + 83),

2 2 2

meaning that the result is correctly rounded (though not to the nearest). Note that, in
practice, the quality of this formula is not as good as Boost’s since the bound on J3 in
Equation (15) is twice the one on 4, in Equation (14).

With this algorithm, the midpoint of an interval with one infinite bound (but not both)
is this infinity (for example: m([—o0,3]) = —oco and m([3,400]) = +o0). In addition, a
symmetric interval with finite bounds may have a midpoint different from 0: the mid-
point of the interval [—pu, u] is computed as p because the expressions rndup(0.5 x —p) and
rndup(0.5 x u) are rounded, respectively, to 0 and p. For the interval [—p, u], this has the
unfortunate effect of violating Equation (3) since 0 is a representable floating-point number
closer to the midpoint of the interval.

Additionally and more importantly, Intlab V5.5 may also violate Equation (2). Consider
the reduction of Equation (15) for subnormal inputs:

a b a+b
rdup(5 +35)= +m + 02

2 2 2

We have 11 + 12 € {0, /2, u}, which means that in some cases, the result may not be
correctly rounded. Take for example, the interval [u, u]. Since we have:

rndup(0.5 X p) = p,

it follows:

m([p, pl) = 20 & [p, p]-

BIAS 2.0.8 | | follows a different path and computes the midpoint as follows:
b—a
m([a, b]) = rndup(a +) (BIAS 2.0.8)

Despite using a subtraction in place of an addition, this algorithm has the same flaws
as a naive implementation of midpoint: if b — a overflows (say, because a and b are huge,
with differing signs), the result will be infinite; additionally, m([—oo, +oc]) is a NaN because
b—a=+00——00=+o0 and a+ (b — a) = —0o + co = NaN.

The error analysis is also interesting:

b— b—a)(l+9
rndup<a+2a> = {a—i—(o) + 1)+n1(1+(52)+772:| (14 63) + ns3,

2

which reduces to:

rndup<a+b;a> = <a+ (b;a)(1+51)+n2> (1+3), (16)

with o € {0,1/2}, 0 < 61 < epr and 0 < J5 < €p. In the absence of overflow/underflow,

we get:
b—a a+b b—a a+b b—a
rndup<a+ 5 >— B + ((51 B +637+(5153 5)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 F. Goualard

In theory, BIAS’s formula is then even worse than Intlab V5.5’s in the absence of underflow.
On the other hand, the reduction of Equation (16) for the case of subnormal inputs shows
that it is not affected by Intlab V5.5’s problem:

< b—a> a+b
rndup(a + = + 2.

2 2

For subnormal inputs, BIAS computes a correctly rounded result.

CXSC 2.4.0 |] offers two functions to compute the midpoint: a “fast”
one, Mid (I), and an accurate one, mid (I). The fast one computes the midpoint by a formula
akin to both BIAS’s and Intlab’s, except for the rounding, which is now downward:

m([a,b]) = rnddn<a + <g - g) > (CXSC 2.4.0)
That formula is still subject to the NaN problem whenever [a, b]=[—00, +00]. The accurate
version uses extended precision, and then, contrary to the fast version, it always returns
the correctly rounded value for the midpoint, except for the interval [—oco, +00]. For that
interval, CXSC aborts abruptly with an exception.
The error analysis for the “fast” midpoint operator of CXSC gives:

o (1-3))

a+ <(g(1 +61) +m) — (g(l + &2) + ng)) (L+63) + 3| (L + d4) + ma,
which simplifies to:
rnddn<a + (g - g)> = {a + (b;a +m - 772> (1+ 53)} (1+64), (17)

with my € {—p/2,0}, 12 € {—p/2,0}, —epr < 03 <0, and —epy < 04 < 0.
In the absence of overflow/underflow, CXSC’s formula is as bad as BIAS’s:

rnddn<a—|—(g—;)> = a—2|—b+ <§3l);(1+54a;b+5354b;a>.

For subnormal inputs, we have:
b «a a+b
rnddn<a—|— (5 — 2)> =3 +m—n2,
with g1 —n2 € {—1/2,0, 1/2}.

Filib++ 2.0 |] uses the same formula as Intlab V5.5 rounded differently,
with additional rules to avoid some of the pitfalls previously encountered:

a if a =10,
m([a,b]) =< 0 if a = —b, (Filib++ 2.0)
rndnr<% + g> otherwise.

The error analysis for Filib++’s formula leads to the same expression as for Intlab V5.5,
except for the bounds on the errors:

b b
rndnr<g + 2> = (a—2|— +m +7]2) (1+d3), (18)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

How do you compute the midpoint of an interval? A:15

with m € {—=p/2,0,u/2}, 12 € {—11/2,0,p/2}, and |d5] < epr/2.
As for Intlab V5.5, the result is correctly rounded whenever no overflow /underflow occurs.
On the other hand, for subnormal inputs, we still get:

q a+b a+b+ n
rndnr{ — — =
279 g TR

with n1 + 12 € {—p, —p/2,0, p/2, u}, which means that the computed midpoint may be one
of the floating-point numbers that surround the correctly rounded midpoint. For a degen-
erate interval reduced to one point, the first rule protects against computing a midpoint
outside the interval, as was the case with Intlab V.5.5; obviously, the formula ensures that
the midpoint of an interval with a width greater or equal to 2u is included in it. For an in-
terval whose bounds a and b are consecutive subnormal floating-point numbers (hence, with
a width precisely equal to p), it suffices to notice that exactly one of them has a rightmost
bit of the fractional part equal to “1” and the other one has the corresponding bit equal to
“0”. Consequently, m1 + 12 € {—1/2,0, 11/2} and the inclusion is, once again, ensured.

The second rule in Equation (Filib++ 2.0) is more general than the first one of Intlab
V5.5: it protects against the computation of a NaN for the interval [—oo,+o0] as well
as ensuring that symmetric intervals in general have 0 as their midpoint (another “flaw”
of the Intlab V5.5 formula). The expression in the third rule cannot overflow for finite
a and b, which makes the whole formula immune to the overflow problem. On the other
hand, the midpoint of any interval with an infinite bound (but not both) is infinite (e.g.:
m([3,+00]) = +00). This result does not violate Equation (2) and Equation (3); it may
nevertheless lead to serious trouble when the returned value is used in, say, a bisection
algorithm or for a centered form without proper care.

The recent Version 6 of the Intlab package has a different algorithm from Version 5.5 to
compute the midpoint of an interval:

0 if a = —o0 and b = 400,
b if a = —o0,
m([a, b]) = " b= oo, (Intlab V6)

rdnr{a + (2 — £)) otherwise.

Once again, these rules are not mutually exclusive, but the first that applies is executed to
the exclusion of the others. The first rule explicitly avoids the NaN problem for the interval
[—00, +00]; the second and third rules ensure that the midpoint of an interval with one
infinite bound (and one only) is finite and equal to the other—finite—bound. This is one
possible choice among many to resolve the problem, though different from Equation (4).

Apart from the rounding direction, the formula in the fourth rule is the same as CXSC’s
formula, and consequently, an error analysis along the same lines may be made:

mane(at (3 - 5)) = o (Grm) =G) aron|aean (o)

with m1 € {=/2,0,1/2}, 02 € {—1/2,0,11/2}, 03] < en/2, and [0a] < enr/2.

For subnormal inputs, it may violate Equation (3), as evident from the error formula:

b a a+b
rndnr<a+(2—2)>: 5 +m — 12,

with 91 — 12 € {—p, —p/2,0, /2, u}. For example, with Intlab V6’s formula, we have:
m([—p, p]) = —p.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 F. Goualard

On the other hand, for finite a and b, the fourth rule is immune to overflow, and it ensures
that Equation (2) is satisfied, as proven by Prop. 3.1.

PRrROPOSITION 3.1. Given a and b two finite floating-point numbers, with a < b, we have:

b a
< +(===)) <o
a\rndnr<a (2 2>> <b

PROOF. Since a < b, we have rdnr{a/2) < rndnr(b/2), thanks to rounding monotonicity.
This is true even if an underflow occurs. As a consequence, mdnr(b/2 —a/2) > 0, and
then mdnr{a + (b/2 — a/2)) > a, again by monotonicity of rounding. For finite a and b,
rdnr{b/2 — a/2) cannot overflow.

Let us now prove that rndnr{(a + (b/2 — a/2)) < b. We first prove that rndnr(b/2 — a/2) <
b — a, restricting the discussion to the case a # b since the proof is trivial otherwise. We

have:
rndnr<g—;> _ Kg+m> - <‘2’+n2)] (1463 (20)

Using Equation (20), let us now find the conditions such that rndnr(b/2 —a/2) > b —a:
1+ d3

<b 1463
rndnr{ — —
2
1—03

2
We have |03| < en/2, |m| < p/2, and |n2| < /2. As soon as I(f) > 1, (1+d3)/(1 — d3) is
strictly smaller than 2. Hence, b—a has to be less than 4 for rndnr(b/2 — a/2) to be greater
than b — a.
We then deduce that rndnr(b/2 — a/2) is safely strictly less than A for any floating-point
format of practical use (just use b —a < 4p in Equation (20)), that is rmdnr(b/2 — a/2)
underflows. In that case, 63 = 0, thanks again to Theorem 2.1, and then we have:

=

>>b—a<:>(b—a) +(m—m2)(1+6d3)>b—a

e

<~ b—a<2(m —mn2)

rndnré 4 >b <:>B+ >b
272 “ g hTR “

= b—a < 2(m —n).
With the known bounds on n1 and n2, we now deduce that b—a must be strictly less than 2p
formdnr(b/2 — a/2) to be greater than b—a. But b—a must be a strictly positive floating-point
number (we have b > a, and b—a < X implies that Theorem 2.1 applies). Consequently, b—a
must be equal to p, which means that b and a are two consecutive floating-point numbers.
As a result, either a or b has an “even” binary significand (rightmost bit equal to 0), which
means that either m; = 0 or o = 0. We may then refine our condition:

b b—
rndnr<2;>>ba = Ta+7]>bfa with |n| < p/2

<~ b—a<pu.

This condition is not possible for a # b since there is no positive floating-point number
smaller than . Consequently:

b a
20N cp o 2,
rndnr<2 2> b—a V(a,b) €

b a
dnr{ — — =) <b
a—+rn nr<2 2>

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

We then have:

How do you compute the midpoint of an interval? A:17
And, by monotonicity of rounding:

rndnr<a + (g - ;)> < b.

O
The interval arithmetic library Gaol 4.0RC | | implements the midpoint
operator by taking advantage of Hauser’s theorems:
0 if a = —b,
—realmax if a = —o0,
m([a, b]) = coalmax b= too, (Gaol 4.0RC)

rndnr((a — %) +2) otherwise.

As before, only the first rule whose condition is true is considered. Case 4 rewrites the
expression “a + (b/2 — a/2)” from Intlab V6 as “(a — a/2) + b/2”, a small algebraic ma-
nipulation indeed, but one that can have a significant impact on the accuracy of the whole
expression. In effect, the error analysis gives:

rndnr<(a— g) + ;)> = {(a— (g(l +41) +771)) (1402) +n2 +

(g(l +d3) + 775)} (14 04) +m4. (21)

LEMMA 3.2. For any finite floating-point number a € F, we have:

a a : B
rndnr<a 2> =a (2 —|—77)7 with n € { 2,O7 2}.

PROOF. There are two cases to consider: let us first suppose no underflow occurs when
halving a. Then, we have rndnr{a/2) = a/2 since halving is error-free in the absence of
underflow. We may then use Hauser’s Theorem 2.3 to state that rdnr{a — a/2) = a —a/2.

Now, suppose an underflow occurs when halving a; then, rdnr{a/2) = a/2+n. This event
is only possible if a/2 is strictly smaller than A (by definition), and this can happen only
if a is strictly smaller than 2. But then, rndnr{a — (a/2 + 1)) is also strictly smaller than
2X, and we may then use Theorem 2.2 to state that rdnr{a —a/2) =a — (a/2+1n). O

Using Lemma 3.2 and the property on halving given by Equation (12), we are able to
simplify Equation (21) to:

rndnr<(a—;)+g> = (a;bJrns—m) (1+ d4), (22)

with my € {—p/2,0,1/2}, n3 € {—u/2,0,u/2}, |04] < epr/2. Tt is then straightforward to
show that containment is always ensured: no overflow can occur in computing (a — a/2) +
b/2 and, in the absence of underflow, a correctly rounded midpoint is computed; on the
other hand, in case of underflow, the error is bounded by g and not u/2. The benefit of
using “a —a/2” instead of “a/2” directly is apparent when we compare Equation (22) with
Equation (18): when a = b, we have 71 + 12 = £ in the worst case for Equation (18), and
n3 —m = 0 in all cases for Equation (22) (errors in halving a and b cancel out when a = b).

The formulae investigated so far all have defects with respect to the definition in Equa-
tion (4). Table IT synthesizes the error formulae in three cases:

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 F. Goualard

— GC. The general case, where an underflow may or may not occur at any step of the
computation (for the experiments, overflows are allowed in the general case as well,

although the formulae in Table II are then no longer relevant);
— No OF/SN. The case where no overflow nor any underflow occurs at any step of the

computation, and neither infinities nor subnormal numbers are used as bounds of the

test intervals;

— SN. The case where all quantities manipulated and produced (counting the initial inputs)
are subnormal numbers.

Table Il. Synthesis of worst-case error bounds.

Error
Method GC No OF /SN SN
Boost (14 61) + 12 atb (1 +6) atb 4y
rndnr((a + b)/2) In2| € {0, /2},101] < enr/2 \
a+
atby
2
Intlab V5.5 (5 +m)+ (& +m)) (1+6) atb(1 4 &) it
n2
rndup(a/2 + b/2) m € {0,1/2},m2 € {0, 11/2},0 < 3 < em
BIAS (a+E520+61) +m2) (1+65) (a+ 8520 +06)) (1 +8) 252 4m
rndup{a + (b — a)/2) n2 € {0,1/2},0 <61 <ep,0< 03 <en
a+b
==
2
CXSC [a+ (B+m)= (5 +m) A +8)] (1 +6) |a+ L5200 +8)| 1+8) m-
2
rnddn{a + (b/2 —a/2)) m € {—p/2,0},m2 € {—p/2,0}, —enr < 03 < 0,—ep <64 <O
a+b
ath
2
Filib+-+ (5 +m)+ (& +m)) (1+63) “2(1+63) m+
n2
rndnr{a/2 + b/2) In] € {0, /23, In2| € {0, n/2}, 13| < enr/2 ,
b a (b—a) %J’_
Intlab V6 [a+((§+711)—(§+772)) (1+63)] (14 64) [a+T(1+53)] (1+61) m—
72
rndnr(a + (b/2 — a/2)) |m| € {0, 1/2}, In2| € {0, p/2}, 03] < enr/2,104] < ens/2 "
atby
2
Gaol 4.0RC (9 4 mg —m) (1 + 64) atb (1 +54) 73—
m
rndnr((a —a/2) +b/2) |m| € {0, /2},|n3| € {0, n/2},104] < eps/2

For the general case (GC), Table II presents worst-case error bounds that may not be

reachable in practice. On close inspection, we can even refine these bounds. Consider for
example the formula for Filib-++:

rmdnr{a/2+b/2) = ((g +m)+ (g + 772)) (1+63).

It is not possible for 11, 72, and d3 to be simultaneously non-null: according to Theorem 2.2,
for d3 to be different from 0, we must have:

(%+771)+(g

But, for 7 and 12 to be both different from 0, we must have |a| < 2\ and |b] < 2, and
then, (£ +m1)| and |(+72)| are each at most equal to A. As a consequence, the only case

+m) + (4 +m2)| is precisely equal to 2, for

> 2. (23)

+n2)

where Equation (23) is satisfied is when [(§
which case d3 = 0.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

How do you compute the midpoint of an interval? A:19

On the other hand, for the two other columns of the table, it is possible to construct
examples for which all ds and ns are non-null simultaneously, and the worst-case error
bound is reached.

With respect to error bounds, the most promising expressions are:

—rndnr{(a + b)/2) (Boost), which has the best error bounds for all situations, but may
return an infinite value if a 4+ b overflows;

—rndnr(a/2 + b/2) (Filib++), which may return an infinite value for semi-unbounded in-
tervals (unbounded intervals being treated separately);

—rndnr{(a — a/2) + b/2) (Gaol 4.0RC).

The algorithms that use the first two expressions can be amended to remove the associated
flaws:

— Boost’s algorithm (Equation (Boost rev84)) can be supplemented by some a posteriori
test to check whether the output overflowed; if it is the case, the midpoint is recomputed
using a different formula for which an overflow cannot occur (e.g., rndnr{a/2 + b/2));

— Amending Filib++’s algorithm is easy by adding cases as follows:

a if a =b,
0 if a = —b,

m([a,b]) = { —realmax if a = —o0, (24)
realmax if b = 400,

rndnr<% + g> otherwise.

From Theory to Practice

So far, we have only theoretically analyzed the various formulae to compute the midpoint of
an interval [a, b]. According to Table II, we should be able to separate the various methods
into four classes for the case where no underflow nor any overflow occurs:

— Boost, Filib+4 and Gaol, which deliver a correctly rounded result to the unit roundoff
(half the epsilon of the machine);

— Intlab V5.5, which delivers a correctly rounded result to the epsilon of the machine;

— Intlab V6, which delivers a result with an error proportional to the unit roundoff;

— Bias and CXSC, which deliver a result with an error that may get twice as large as Intlab
V6’s for the same inputs.

This is indeed verified by the experiments, as shown in Table III, where the first column
“Disc” indicates the number of floating-point numbers between the correctly rounded mid-
point and the midpoint computed by the method tested. The last row “Fail” in the table
indicates the number of times a midpoint computed was not included in the interval input.
The table reports the results for the computation of the midpoint of ten million non-empty
random intervals.

The comparison of all formulae when subnormal numbers are produced for each operation
shows less drastic differences (see Table IV): the best we can compute in that case is (a +
b)/2 + n, with |n| € {0, u/2}, which is exactly what is computed by Boost. BIAS exhibits
the same error bound, but the computed result may differ by one unit in the last place from
Boost’s, due to the upward rounding. Intlab V5.5 shows a discrepancy of one unit in the
last place almost half of the time: the error is 17; + 12 with 77 and 7y both positive or null,
which means that they can never cancel each other out. On the other hand, CXSC offers
a good accuracy because the error term is 171 — 7o with both n; and 72 being of the same
sign. Lastly, Filib4++, Intlab V6 and Gaol are of similar accuracy, with Intlab V6 and Gaol
being rigorously equivalent, as Table IT suggests already.

If we allow both underflows and overflows (see Table V), we now have five classes:

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

F. Goualard

Table IIl. Comparison of the quality of the midpoint() implementations — No OF/SN.

Disc. ‘ Boost Intlab V5.5 BIAS CXSC Filib++ Intlab V6 Gaol 4.0RC
0 | 10000000 5008451 2508795 2508307 10000000 9864663 10000000
1 4991549 7486334 7486883 132983
2 3132 3028 1178
3 460 467
4 585 569 603
6 103 139
8 287 291 294
12 18 34
16 126 125 127
24 7 3
32 73 74 74
48 1 2
64 36 36 36
96 1
128 25 25 25
256 8 8 8
512 4 4 4
1024 4 4 4
16384 1 1 1
Fail ‘ 0 0 0 0 0 0

Table IV. Comparison of the quality of the midpoint() implementations — SN.

Disc. \ Boost Intlab V5.5 BIAS CXSC Filib+4 Intlab V6 Gaol 4.0RC
0 | 10000000 5001983 7502568 7500491 6251593 6250468 6250468
1 4998017 2497432 2499509 3748407 3749532 3749532
Fail | 0 0 0 0 0 0 0
Table V. Comparison of the quality of the midpoint() implementations — GC.
Disc. | Boost Intlab V5.5 BIAS CXSC Filib++ Intlab V6 H-method
0 | 9990382 5002986 2506554 2506186 9990379 9855400 9990381
1 4987404 7478969 7479251 11 132539 9
2 3104 3144 1226
3 428 468
4 601 612 632
6 105 116
8 277 275 283
12 31 20
16 160 161 162
24 6 8
32 68 70 70
48 2 1
64 46 46 46
96 2
128 15 15 15
256 6 6 6
512 5 5 5
1024 3 3 3
8192 2 2 2
32768 1 1 1
65536 8 5
Fail | 8 0 4847 4842 0 0 0

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

How do you compute the midpoint of an interval? A:21

— Boost, which always returns a correctly rounded result, except when overflows make it
fail to ensure inclusion of the midpoint;

— Gaol and Filib4++, which never fail to meet the requirement of inclusion while never
departing by more than one unit in the last place from the correctly rounded result;

— Intlab V5.5, which delivers half of the time a result departing from the correctly rounded
result by one ulp. Although it is not apparent from Table V, recall that it may fail to
ensure containment in some rare cases (see page 13);

— Intlab V6, whose results may significantly depart from the correctly rounded one, al-
though it always meets the inclusion requirement;

— BIAS and CXSC, whose results may significantly depart from the correctly rounded one,
and which may not meet the inclusion requirement.

Discrepancies for intervals with at least one infinite bound are not reported in Table V.
Figure 7 compares the various methods performance-wise for two different platforms
(Intel Xeon E5520 on Ubuntu 10.04.4, and Intel i7 “Sandy Bridge” on Ubuntu 11.04). All
the methods have been implemented in C++ in the same environment. Times are given in
seconds for the computation of the midpoint of fifty million non-empty random intervals,
with the same three categories (GC, No OF/SN, SN) as in Table II. The C++ compiler
used is GCC 4.8.0 with the options “~ffloat-store -00 -mpc64 -frounding-math”.

GC
No OF/SN
N

Intel Xeon

Times (in seconds)

Intel i7

o 5 S C x
SIS o o QO @ Ve
@ A2 \(\&\3 \(\ GPO \),a\:\

Algorithms
() Boost formula where Filib++'s formula is used in case of overflow

(%) Filib++ formula with tests added to avoid returning an infinite value.

Fig. 7. Performances of nine midpoint () implementations for two CPU architectures.

Note the difference in time between the first two categories (“GC” and “No OF/SN”)
and the last one (“SN”) for both architectures: subnormal numbers have to be handled as

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 F. Goualard

exceptional values, which slows the computation down dramatically. However, Intel Xeon
and Intel i7 “Sandy Bridge” differ in their handling of subnormal numbers, the latter im-
plementing part of its support in hardware rather than as microcode exceptions | ,
p. 102], which drastically reduces the overhead incurred in using subnormals.

Table VI. Midpoint formulae shortcomings.

Package NaN Inf NC SYM IR

Boost rev84 (P. 10)

Boost oo

Intlab V5.5 (P. 12)

BIAS 2.0.8 (P. 13) v
CXSC 2.4.0 (Mid) (P. 14) v
Filib++ 2.0 (P. 14)

Intlab V6 (P. 15)

Gaol 4.0RC (P. 17)

Equation (24) (P. 19)

NaN. Returning a NaN for a non-empty interval (e.g., for m([—oo, +0o0])).

SNENENENEN
SNENEN

SNEN
AENENENENENEN

Inf. Returning an infinite midpoint (e.g., in case of overflow in the addition a + b, or if a bound is
infinite).

NC. Failing to meet the containment requirement (e.g., m([a, b]) ¢ [a, b] in case of underflow).

SYM. Violation of Equation (3): not returning 0 for a non-empty symmetric interval.

IR. Violation of Equation (3): returning a value different from the correctly rounded center of the
interval in the absence of overflow.

Table VI summarizes the potential shortcomings of the midpoint implementation for the
packages we have considered. Constraint (3) is violated by almost all packages. Pending
further investigation, SYM and IR may be considered benign errors because they should
not compromise the reliability of algorithms based on packages that do exhibit them. All
other problems may put reliability in jeopardy for applications that expect a definition of
the midpoint operator matching Equation (4).

The corrected versions of Boost’s and Filib++’s formulae (Boosts, and Equation (24),
respectively) are the algorithms with the fewest number of “defects”. However, it seems
easier to avoid the symmetry problem of Boost., by returning 0 when the input is [—o0, +0o0]
than to correct Equation (24)’s rounding problem in presence of subnormal numbers.

Performance-wise, Boost, is also not an unreasonable choice if we keep in mind that
slightly faster methods may lead to incorrect results. Experiments also show that adding a
test for the interval [—oo, +00] as input to return 0 does not incur any significant overhead,
and gives us an algorithm that matches the requirements of Equation (4). The resulting
algorithm to compute the midpoint would then be the one given in pseudo-code in Table VII.

4. CONCLUSION

The IEEE Standards Association is currently supporting the definition of Standard
P1788 |] for interval arithmetic. There is an ongoing effort to rigorously
define the properties that functions such as the midpoint operator should exhibit. As the
numerous exchanges on the IEEE P1788 mailing list have shown, the consensus on these
properties is not trivial to reach, as different properties may be needed for different applica-
tions, which might give rise eventually to several specialized midpoint operators'”. Motion
37, passed in November 2012, defined after some heated debate the midpoint operator as
stated in Equation (4).

17Some applications might even benefit from different versions of the midpoint operator. A dichotomic
process, for example, might take advantage of using a geometric mean for wildly unbalanced intervals, while
resorting to the “regular” definition otherwise.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

How do you compute the midpoint of an interval? A:23

Table VII. Algorithm to compute the midpoint of an interval according to the specifications of the draft of the
future IEEE 1788 Standard on Interval Arithmetic.

midpoint ([a,b]):

[a, b] empty:
NaN # mid(empty set) == Nal
a == -inf:
b == +inf:
0.0 # mid([-o00, +00]) == 0
-realmax # mid([-o0o, b] == -realmax
b == +inf
+realmax # mid([a, +o00]) == +realmax
round_nearest () # Set rounding to nearest-even
mid = 0.5*(a+b)
mid == -inf mid == +inf: # (Overflow in computing mid?
0.5%a + 0.5%Db # Then, use Filib++'s formula
mid # Else, use Boost's formula

In particular, not everyone agrees on what the midpoint of unbounded or semi-bounded
intervals should be. For semi-bounded intervals, Arnold Neumaier | | argues
for returning the other, finite, bound of the interval, his justification being that this is
a sensible choice when using a midpoint in the context of centered forms |

]. On the other hand, that choice is not so useful in the context of a dichotomic
exploration algorithm (Neumaier’s stance on the subject is that we should use a different,
specialized operator for this kind of algorithm).

For exploration algorithms, a simple choice seems to be the one advocated by Motion 37,
viz. to return t+realmax. Obviously, any finite value from the interval could be used too. In
that situation, Zuras and Hayes [] suggest to return the midpoint of
the interval obtained by replacing in the original interval the infinite bound ~ by sign(vy) x
realmax; like the choice advocated by Motion 37, it preserves the monotonicity properties:

la,b] € [a,c] = m([a,b]) < m([a,c])
and

[a,b] € [¢,0] = m([a,b]) > m([c,b])

A downside of that approach is that it is more computationally demanding.

Even after having set the definition of the midpoint operator, there is still a lot of work
to do to ensure the reliability of the actual implementation. It is not up to the IEEE P1788
standard to prescribe an implementation, as that would restrict the possibilities of imple-
menters to take advantage of particular features of some platforms. Even after its release
and widespread acceptance, there might then still be some room for some implementations
to get it wrong, an easy thing to do, as this paper has shown.

ACKNOWLEDGMENTS

The origin of the work can be traced back to some email exchanges with Prof. Arnold Neumaier; Prof.
Siegfried Rump read a preliminary version of this paper and gave very valuable advice and feedback,
pointing out in particular an error in the first version of the proof of Prop. 3.1. Dr. Alexandre Goldsztejn

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 F. Goualard

made insightful comments on an early draft of the paper. I am indebted to the ACM TOMS reviewers
of this paper, whose thoroughtness, expertise and dedication helped to greatly improve its contents and
presentation. All remaining errors are, naturally, my own.

REFERENCES

ALEFELD, G. E. AND HERZBERGER, J. 1983. Introduction to Interval Computations. Academic Press.

BRONNIMANN, H., MELQUIOND, G., AND PION, S. 2006. The design of the Boost interval arithmetic library.
Theoretical Computer Science 351, 1, 111-118.

CHABERT, G., ArRAYA, 1., NEVEU, B., JAULIN, L., TROMBETTONI, G., AND BAIRE, A. 2012. The IBEX
constraint solver. http://www.emn.fr/z-info/ibex/.

Foa, A. 2012. The microarchitectures of Intel, AMD and VIA CPUs. An optimization guide for assembly
programmers and compiler makers. Technical report, Copenhagen University College of Engineering.

ForsYTHE, G. E. 1966. How do you solve a quadratic equation? Technical Report CS40, Computer Science
Department, Stanford University.

FORSYTHE, G. E. 1970. Pitfalls in computation, or why a math book isn’t enough. The American Mathe-
matical Monthly 77, 9, 931-956.

GOLDBERG, D. 1991. What every computer scientist should know about floating-point arithmetic. ACM
Computing Surveys 23, 1, 5-48.

GOUALARD, F. 2010. GAOL 4.0RC: Not Just Another Interval Arithmetic Library 5.0 Ed. Laboratoire
d’Informatique de Nantes-Atlantique. http://sourceforge.net/projects/gaol.

GRANVILLIERS, L. AND BENHAMOU, F. 2006. Algorithm 852: Realpaver: an interval solver using constraint
satisfaction techniques. ACM Trans. Math. Softw. 32, 1, 138-156.

HAMMER, R., RaTz, D., KuLiscH, U., AND HOoCks, M. 1997. C++ Toolbox for Verified Scientific Computing
I: Basic Numerical Problems. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

HAUSER, J. R. 1996. Handling floating-point exceptions in numeric programs. ACM Transactions on Pro-
gramming Languages and Systems 18, 2, 139-174.

HavEs, B. 2003. A lucid interval. American Scientist 91, 6, 484—488.

HicuAM, N. J. 2002. Accuracy and Stability of Numerical Algorithms Second Ed. Society for Industrial and
Applied Mathematics.

HoOFSCHUSTER, W. AND KRAMER, W. 1998. Fi_lib, eine schnelle und portable funktionsbibliothek fiir reelle
argumente und reelle intervalle im ieee-double-format. Tech. Rep. 98/7, Instituts fiir Wissenschaftliches
Rechnen und Mathematische Modellbildung (IWRMM) an der Universitat Karlsruhe.

IEEE. 1985. IEEE standard for binary floating-point arithmetic. Tech. Rep. IEEE Std 754-1985, Institute
of Electrical and Electronics Engineers. Reaffirmed 1990.

IEEE. 2008. IEEE standard for floating-point arithmetic. IEEE Standard IEEE Std 754-2008, IEEE Com-
puter Society.

IEEE 1788 2013. IEEE interval standard working group — p1788. http://grouper.ieee.org/groups/1788/.

INTEL. 2007. Intel 64 and IA-32 architectures software developer’s manual: Vol. 1, basic architecture. Manual
253665-025US, Intel Corporation.

KEARFOTT, R. B. 1990. Preconditioners for the interval Gauss—Seidel method. SIAM Journal on Numerical
Analysis 27, 3, 804—822.

KNUPPEL, O. 1994. PROFIL/BIAS—a fast interval library. Computing 53, 277-287.

LERCH, M., TISCHLER, G., GUDENBERG, J. W. V., HOFSCHUSTER, W., AND KRAMER, W. 2006. Filib++, a
fast interval library supporting containment computations. ACM Trans. Math. Softw 32, 299-324.

MOORE, R. E. 1966. Interval Analysis. Prentice-Hall, Englewood Cliff, NJ.

NEUMAIER, A. 1990. Interval methods for systems of equations. Encyclopedia of Mathematics and its Ap-
plications Series, vol. 37. Cambridge University Press.

NEUMAIER, A. 2010. Private communication.
RATscHEK, H. 1980. Centered forms. SIAM Journal on Numerical Analysis 17, 5, 656—662.

RATSCHEK, H. AND ROKNE, J. 1984. Computer Methods for the Range of Functions. Mathematics and its
applications. Ellis Horwood Ltd.

Ruwmp, S. 1999a. Fast and parallel interval arithmetic. BIT Numerical Mathematics 89, 3, 534-554.

Rump, S. 1999b. INTLAB - INTerval LABoratory. In Developments in Reliable Computing, T. Csendes,
Ed. Kluwer Academic Publishers, Dordrecht, 77-104. http://www.ti3.tu-harburg.de/rump/.

STERBENZ, P. 1974. Floating-point Computation. Prentice Hall.
ZURAS, D. AND HAYEs, N. T. 2012. Midpoint and unbounded intervals. Tech. rep., P1788 Working Group.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.emn.fr/z-info/ibex/
http://sourceforge.net/projects/gaol
http://grouper.ieee.org/groups/1788/
http://www.ti3.tu-harburg.de/rump/

	Introduction
	Floating-point Arithmetic in a Nutshell
	The Floating-Point Midpoint Operator
	Conclusion

