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Abstract. The algorithm that computes the midpoint of an interval
with floating-point bounds requires some careful devising to correctly
handle all possible inputs. We review several implementations from promi-
nent C/C++ interval arithmetic packages and analyze their potential
failure to deliver correct results. We then highlight two implementations
that avoid common pitfalls. The results presented are also relevant to
non-interval arithmetic computation such as the implementation of bi-
section methods. Enough background on IEEE 754 floating-point arith-
metic is provided for this paper to serve as a practical introduction to
the analysis of floating-point computation.

1 Introduction

In his 1966 report [3] “How do you solve a quadratic equation?”, Forsythe con-
siders the seemingly simple problem of reliably solving a quadratic equation on
a computer using floating-point arithmetic. Forsythe’s goal is both to warn a
large audience off of unstable classical textbook formulae as well as get them ac-
quainted with the characteristics of pre-IEEE 754 standard floating-point arith-
metic [11], a dual objective shared by his later paper “Pitfalls in Computation,
or Why a Math Book isn’t Enough”[4].

Following Forsythe’s track, we consider here the problem of computing a
good approximation to the midpoint between two floating-point numbers. We
strive to provide both a reliable algorithm for midpoint computation and an
introduction to floating-point computation according to the IEEE 754 standard.

Given a non-empty interval I = [a, b], how hard can it be to compute its
midpoint m(I)? Over reals, the following simple formula does the job:

m([a, b]) =
a+ b

2
(1)

For a and b two floating-point numbers from a set F (See Section 2), the sum
a + b may not be a floating-point number itself, and we therefore have to take



care of rounding it correctly to ensure that our floating-point implementation of
m(I) does not violate the two following properties:

m(I) ∈ I (2)

∀v ∈ F : |c− v| > |c−m(I)| , with c =
a+ b

2
, c ∈ R (3)

Equation (2) and Eq. (3) both state reasonable facts, viz., that the floating-point
midpoint of an interval I should belong to I, and that it should be the floating-
point number closest to the real midpoint of I1. For non-empty intervals with
finite bounds, Eq. (3) trivially entails Eq. (2). However, some implementations
may choose to only ensure the latter and a relaxation of the former.

The midpoint operator is a staple of interval arithmetic [16,1,9] libraries. It is
also intensively used in many numerical methods such as root-finding algorithms
with bisection. It is, therefore, paramount that its floating-point implementation
at least verifies Eq. (2). Accuracy, as stipulated by Eq. (3), is also desirable.
Nevertheless, we will see in Section 3 that most formulae implemented in popular
C/C++ interval libraries may not ensure even the containment requirement for
some inputs. In Section 3, we analyze the various formulae both theoretically
and practically; contrary to most expositions, we consider the impact of both
overflow and underflow on the accuracy and correction of the formulae.

The error analysis conducted in this paper requires slightly more than a
simple working knowledge of floating-point arithmetic as defined by the IEEE
754 standard. As a consequence, the basic facts on floating-point arithmetic
required in Section 3 are presented in Section 2 for the sake of self-contentedness.

It turns out that the study of the correct implementation of a floating-point
midpoint operator may serve as a nice introduction to many important aspects
of floating-point computation at large: the formulae studied are simple enough
for their analysis to be easily understandable, while the set of problems raised
is sufficiently broad in scope to be of general interest. We then hope that this
paper will be valuable as both a technical presentation of reliable, accurate, and
fast methods to compute a midpoint as well as an introduction to error analysis
of floating-point formulae.

2 Floating-point Arithmetic in a Nutshell

According to the IEEE 754 standard [11], a floating-point number ϕ is repre-
sented by a sign bit s, a significand m (where m is a bit chain of the form “0.f”
or “1.f”, with f the fractional part) and an integral exponent E:

ϕ = (−1)s ×m× 2E (4)

The IEEE 754 standard defines several formats varying in the number of
bits l(f) and l(E) allotted to the representation of f and E, the most promi-

1 Note that if c is right between two floating-point numbers, there exist two possible
values for m(I) that verify Eq. (3).



nent ones being single precision—
(
l(E), l(f)

)
=
(
8, 23

)
—and double precision—(

l(E), l(f)
)

=
(
11, 52

)
. We will also use for pedagogical purposes an ad hoc

IEEE 754 standard-compliant tiny precision format—
(
l(E), l(f)

)
=
(
3, 3
)
.

Wherever possible, the significand must be of the form “1.f” since it is the
form that stores the largest number of significant figures for a given size of m:

ϕ = 0.01101 ×20

= 0.1101 ×2−1

= 1.101 ×2−2

Floating-point numbers with such a significand are called normal numbers. Such
prevalence is given to normal numbers that the leading “1” is left implicit in the
representation of an IEEE 754 number and only the fractional part f is stored
(See Fig. 1).

The exponent E is a signed integer stored as a biased exponent e = E+bias,
with bias = 2l(E)−1 − 1. The biased exponent e is a positive integer that ranges
from emin = 0 to emax = 2l(E) − 1. However, for the representation of normal
numbers, E only ranges from Emin = (emin−bias)+1 to Emax =

(
emax−bias

)
−1

because the smallest and largest values are reserved for special purposes (see
below). As an example of what precedes, the bias for the tiny format is equal to
3, e ranges from 0 to 7, and E ranges from −2 to +3.

b6

s

b5 b4 b3

e

b2 b1 b0

f

Fig. 1. Binary representation as a seven bits chain of a tiny floating-point num-
ber.

Evidently, it is not possible to represent 0 as a normal number. Additionally,
consider the number ϕ:

ϕ = 0.00011× 20

To store it as a tiny floating-point normal number requires shifting the leftmost
“1” of the fractional part to the left of the radix point:

ϕ = 1.100× 2−4

However, doing so requires an exponent smaller than Emin. It is nevertheless
possible to represent ϕ, provided we accept to store it with a “0” to the left of
the radix point:

ϕ = 0.011× 2−2

Numbers with a significand of the form “0.f” are called subnormal numbers.
Their introduction is necessary in order to represent 0 and to avoid the large
gap that would otherwise occur around 0 (Compare Fig. 2(a) and Fig. 2(b)).
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(a) Without subnormal numbers.
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(b) With subnormal numbers (dashed
red).

Fig. 2. The tiny floating-point format with and without subnormals (focus on
0)

To signal that a number is a subnormal number, the biased exponent e stored
is set to the reserved value 0, even though the unbiased exponent E is Emin (oth-
erwise, it would not be possible to distinguish between normal and subnormal
numbers whose unbiased exponent are Emin). Exceptional steps must be taken
to handle subnormal numbers correctly since their leading bit is “0”, not “1”.
This has far reaching consequences in terms of performances, as we will see at
the end of Section 3.

Fig. 3 shows the repeated division by two of a tiny number across the nor-
mal/subnormal divide. As seen in that figure, dividing an IEEE 754 floating-
point number by two is an error-free operation only if the result is not a subnor-
mal number. Otherwise, the rightmost bit of the fractional part may be shifted
out and lost. The values λ and µ are, respectively, the smallest positive normal
and the smallest positive subnormal floating-point numbers.

s e f
0 011 000
0 010 000
0 001 000
0 000 100
0 000 010
0 000 001
0 000 000

1.000× 20 = 1
1.000× 2−1 = 0 .5
1.000× 2−2 = 0 .25 (λ)
0.100× 2−2 = 0 .125
0.010× 2−2 = 0 .0625
0.001× 2−2 = 0 .03125 (µ)
0.000× 2−2 = 0

÷2

÷2

÷2

÷2

÷2

÷2

Normal numbers

Subnormal numbers

Fig. 3. Repeated division by two from 1.0 to 0.0 in the tiny format

The condition whereby an operation leads to the production of a subnormal
number is called underflow. On the other side of the spectrum, an operation
may produce a number that is too large to be represented in the floating-point
format on hand, leading to an overflow condition. In that case, the number is
replaced by an infinity of the right sign, which is a special floating-point number
whose biased exponent e is set to emax and whose fractional part is set to zero. In
the rest of this paper, we note F the set of normal and subnormal floating-point
numbers and F = F ∪ {−∞,+∞} its affine extension, the size of the underlying



format (tiny or double precision, mainly) being unambiguously drawn from the
context.

To ensure non-stop computation even in face of a meaningless operation, the
IEEE 754 standard defines the outcome of all operations, the undefined ones
generating an NaN (Not a Number), which is a floating-point number whose
biased exponent is set to emax and whose fractional part is any value different
from zero. We will have, e.g.:

√
−1 = NaN, ∞−∞ = NaN

The NaNs are supposed to be unordered, and any test in which they take part
is false2. As a consequence, the right way to test whether a is greater than b is
to check whether ¬(a 6 b) is true since that form returns a correct result even
if either a or b is an NaN.

To sum up, the interpretation of a chain bit representing a floating-point
number depends on the value of e and f as follows:

e = 0, f = 0: ϕ = (−1)s × 0.0
e = 0, f 6= 0: ϕ = (−1)s × (0.f)× 21−bias

0 < e < emax : ϕ = (−1)s × (1.f)× 2e−bias

e = emax f = 0: ϕ = (−1)s ×∞
e = emax f 6= 0: ϕ = NaN
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Fig. 4. IEEE 754 tiny floating-point (normal and subnormal) numbers.

Figure 4 presents the repartition of all tiny numbers from F on the real
line. The farther from 0, the larger the gap from a floating-point number to the
next. More specifically, as Fig. 5 shows, the difference between two consecutive
floating-point numbers doubles every 2l(e) numbers in the normal range, while
it is constant throughout the whole subnormal range.

Consider the binary number ρ = 1.0011. It cannot be represented as a tiny
floating-point number since its fractionnal part has four bits and the tiny format
has room for only three. It therefore has to be rounded to the floating-point
number fl〈ρ〉 according to one of four rounding directions3 (see Fig. 6):

2 Surprisingly enough to the unsuspecting, even the equality test turns false for an
NaN, so much so that the statement x 6= x is an easy way to check whether x is one.

3 The actual direction chosen may depend on the settings of the Floating-Point Unit
at the time, or alternatively, on the machine instruction used, for some architecture.
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0 001 111
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0 001 001
0 001 000
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0 000 000

1.010 · 2−1

1.001 · 2−1

1.000 · 2−1

1.111 · 2−2

1.001 · 2−2

1.000 · 2−2

0.001 · 2−2

0.000 · 2−2

2−3 × 2−1

2−3 × 2−1

2−3 × 2−2

2−3 × 2−2

2−3 × 2−2

Fig. 5. Gap between consecutive floating-point numbers in the tiny format.

– Rounding towards 0: fl〈ρ〉 = rndzr〈ρ〉;
– Rounding to nearest-even: fl〈ρ〉 = rndnr〈ρ〉;
– Rounding towards −∞: fl〈ρ〉 = rnddn〈ρ〉;
– Rounding towards +∞: fl〈ρ〉 = rndup〈ρ〉.

0

+∞
rndzr〈ρ〉 rndnr〈ρ〉

rnddn〈ρ〉 rndup〈ρ〉

ρ

Fig. 6. Rounding a real number according to the IEEE 754 standard

Note the use of angles “〈〉” instead of more conventional parentheses for the
rounding operators. They are used to express the fact that each individual value
and/or operation composing the expression in-between is individually rounded
according to the leading operator. For example:

fl〈ρ1 + ρ2〉 ≡ fl(fl(ρ1) + fl(ρ2)), ∀(ρ1, ρ2) ∈ R2

When rounding to the nearest, if ρ is equidistant from two consecutive floating-
point numbers, it is rounded to the one whose rightmost bit of the fractional
part is zero (the “even” number).
Rounding is order-preserving (monotonicity of rounding):

∀(ρ1, ρ2) ∈ R2 : ρ1 6 ρ2 =⇒ fl〈ρ1〉 6 fl〈ρ2〉

for the same instantiation of fl〈〉 in both occurrences. The IEEE 754 standard
also mandates that real constants and the result of some operations (addition,
subtraction, multiplication, and division, among others) be correctly rounded :



depending on the current rounding direction, the floating-point number used to
represent a real value must be one of the two floating-point numbers surround-
ing it. Disregarding overflow—for which error analysis is not very useful—, a
simple error model may be derived from this property: let ρ be a positive real
number4, ϕl the largest floating-point number smaller or equal to ρ and ϕr the
smallest floating-point number greater or equal to ρ. Let also rndnr〈ρ〉 be the
correctly rounded representation to the nearest-even of ρ by a floating-point
number (rndnr〈ρ〉 is either ϕl or ϕr). Obviously, we have:

|rndnr〈ρ〉 − ρ| 6 ϕr − ϕl
2

(5)

We may consider two cases depending on whether ϕl is normal or not:

Case ϕl normal. The real ρ may be expressed as mρ × 2E , with 1 6 mρ < 2.
Then, ϕl can be put into the form mϕl

× 2E , with 1 6 mϕl
< 2. If we call

εM the machine epsilon corresponding to the value 2−l(f) of the last bit in
the fractional part5 of a floating-point number, we have ϕr = ϕl + εM × 2E .
From Eq. (5), we get:

|rndnr〈ρ〉 − ρ| 6 εM
2
× 2E

We have (for ρ 6= 0):

|rndnr〈ρ〉 − ρ|
ρ

6
(εM/2)× 2E

mρ × 2E

We know 1 6 mρ < 2. Then:

|rndnr〈ρ〉 − ρ| 6 εM
2
ρ

or, alternatively:

rndnr〈ρ〉 = ρ(1 + δ), with |δ| 6 εM
2

(6)

Case ϕl subnormal. The distance between any subnormal number to the next
floating-point number is constant and equal to µ = εM×2Emin . From Eq. (5),
we then have:

|rndnr〈ρ〉 − ρ| 6 µ

2

which may be expressed as:

rndnr〈ρ〉 = ρ+ η, with |η| 6 µ

2
(7)

4 The negative case may be handled analogously.
5 Alternatively, εM may be defined as the difference between 1.0 and the next larger

floating-point number.



We may unify Eq. (6) and Eq. (7) as:

rndnr〈ρ〉 = ρ(1 + δ) + η, with

 δη = 0,
|δ| 6 εM

2
|η| 6 µ

2

(8)

where either one of δ and η has to be null (δ = 0 in case of underflow, and η = 0
otherwise). This error model is valid for all correctly rounded operations and
then:

∀(ϕ1, ϕ2) ∈ F2, ∀> ∈ {+,−,×,÷} :

rndnr〈ϕ1>ϕ2〉 = (ϕ1>ϕ2)(1 + δ) + η, with

 δη = 0,
|δ| 6 εM

2
|η| 6 µ

2

(9)

For the other rounding directions, the same error model can be used, except that
the bounds on δ and η are now larger:

|δ| < εM and |η| < µ

In case of overflow, a real may be represented either by ±∞ or by ±realmax
depending on the rounding direction used, where realmax is the largest finite
positive floating-point number.

Table 1. Characteristics of floating-point formats

Format l(E) l(f) Emin Emax ε†M λ? µ�

tiny 3 3 −2 +3 2−3 2−2 2−5

single 8 23 −126 +127 2−23 2−126 2−149

double 11 52 −1022 +1023 2−52 2−1022 2−1074

†)machine epsilon, equal to 2−l(f)

?) realmin (smallest positive normal number), equal to 2Emin

�) subrealmin (smallest positive subnormal number), equal to εMλ

Table 1 summarizes the values of the various constants encountered for the
tiny, single, and double precision floating-point formats.

The error model presented in Eq. (8) and Eq. (9) is pessimistic by nature as it
only gives an upper bound of the error. In some instances, it is possible to refine
it to more accurate bounds. For example, we have for any finite floating-point
number ϕ:

rndnr
〈ϕ

2

〉
=
ϕ

2
+ η with η ∈ {−µ

2
, 0,

µ

2
} (10)

The same holds when rounding towards zero; for upward and downward round-
ing, the possible values for η are reduced to, respectively, {0, µ/2} and {−µ/2, 0}.



The proof of Eq. (10) is easy: in the absence of underflow, the division by 2 is
error-free since it amounts to decrementing the biased exponent by one; in case
of underflow, the division by 2 is realized by shifting the fractional part one bit to
the right (See Fig. 3), which can only introduce an error of ±2−(l(f)+1)×2Emin =
± εM2 × 2Emin = ±µ2 if the discarded bit is a “1” and no error if the bit is a “0”.

We may also enjoy an error-free addition/subtraction for certain operands,
as stated by the following three theorems, which will be used in the next sec-
tion. Beforehand, note that we may consider for all practical purposes that
fl〈ϕ1 + ϕ2〉 = fl〈ϕ1 − (−ϕ2)〉 and fl〈ϕ1 − ϕ2〉 = fl〈ϕ1 + (−ϕ2)〉 since taking the
opposite of a floating-point number only involves flipping its sign bit, which is
error-free.

Theorem 1 (Hauser’s theorem 3.4.1 [8]). If ϕ1 and ϕ2 are floating-point
numbers, and if fl〈ϕ1 + ϕ2〉 underflows, then fl〈ϕ1 + ϕ2〉 = ϕ1 + ϕ2.

In effect, Theorem 1 means that η is always equal to 0 in Eq. (9) when “>”
is the addition or the subtraction.

Theorem 2 (Hauser’s theorem 3.4.1a [8]). If ϕ1 and ϕ2 are floating-point
numbers such that fl〈ϕ1 + ϕ2〉 < 2λ, then fl〈ϕ1 + ϕ2〉 = ϕ1 + ϕ2.

Theorem 3 (Hauser’s theorem 3.4.2 [8]6). If ϕ1 and ϕ2 are floating-point
numbers such that 1/2 6 ϕ1/ϕ2 6 2, then fl〈ϕ1 + ϕ2〉 = ϕ1 + ϕ2.

Many other results to narrow the error bounds for some expressions may be
found in the writings of Hauser [8], Goldberg [6] or Higham [10], to name a few,
but the ones presented here will be enough for our purpose.

Hauser’s theorems give sufficient conditions to have error-free additions and
subtractions. On the other hand, these operations may generate large errors
through absorption and cancellation.

Absorption. Consider the two tiny floating-point numbers a = 1.000 × 23 and
b = 1.000 × 2−1. In order to add them, we have first to align their exponents.
This is done by scaling the one with the smallest exponent:

a 1.000 ×23

b +0.0001 ×23

1.0001 ×23

The addition is performed with one extra bit for the significand of all values
involved, the guard bit, which is necessary to ensure the validity of the error
model of Eq. (9). However, the result loses this guard bit when stored in the
floating-point format on hand; if we round to the nearest-even, we then obtain
a+ b = 1.000× 23 = a. The absolute error is:

|rndnr〈a+ b〉 − (a+ b)| = 2−1

6 The better known Sterbenz’s theorem [22] states the same result in a restricted form
where underflows are forbidden [10].



while the relative error is:

|rndnr〈a+ b〉 − (a+ b)|
|a+ b| =

2−1

23 + 2−1
=

1

17

As expected by the error model in Eq. (9), the relative error is bounded by
εM/2 = 2−4 = 1/16.

Absorption in addition will occur whenever the difference in magnitude be-
tween the two operands leads to a shifting of all significant bits of one of the
operands to the right of the rightmost bit of its fractional part.

Cancellation. Consider two nearly equal tiny numbers a = 1.001 × 23 and
b = 1.000 × 23 and suppose they are the rounded approximations of earlier
computation, respectively a′ = 1.00011×23 and b′ = 1.00010×23. If we perform
the subtraction a− b, we get:

a 1.001 ×23

b −1.000 ×23

0.001 ×23

Even though the subtraction performed is error-free, we get the result “1” while
a′− b′ = 2−2. All correct figures from a and b cancel each other out and only the
wrong figures remain and are magnified in the process—the more so for large
a and b. As a rule of thumb, we should therefore avoid subtracting quantities
spoiled by previous errors.

3 The Floating-Point Midpoint Operator

As said at the beginning of Section 1, a naive floating-point implementation of
Eq. (1) must consider the rounding of ρ = a + b, for a and b two floating-point
numbers7. A floating-point implementation of Eq. (1) may fatally fail in two
different ways:

Pitfall 1. For the interval [−∞,+∞], a+ b returns a not-a-number (NaN), as
defined by the IEEE 754 standard for the addition involving two infinities
of differing signs;

Pitfall 2. If a and b have the same sign and their sum overflows, a+ b will be
an infinity, which divided by two will still give an infinity8.

The MPFI 1.4 [20] interval arithmetic library implements the midpoint op-
erator using Eq. (1) rounded to the nearest:

m([a, b]) = rndnr

〈
a+ b

2

〉
(MPFI 1.4)

7 In the rest of this paper, we consider the double precision format, even though all
results are applicable to other IEEE 754 formats as well.

8 See below for a proviso on this, though.



It avoids falling into the second pitfall by using MPFR [5], a package for arbitrary
precision floating-point computation. As a consequence, a+b does not overflow;
the addition is simply computed with the required number of bits and then
rounded down to the original size. On the other hand, the MPFI implementation
is obviously subject to the first problem, and that library will happily return an
NaN as midpoint of the interval [−∞,+∞].

The C++ Boost Interval Arithmetic Library [2] uses a slightly more complex
implementation of the midpoint operator, viz.:

m([a, b]) =


−realmax if a = −∞;

realmax if b = +∞;

rndnr
〈
a+b

2

〉
otherwise.

(Boost rev84)

The cases are not mutually exclusive; however, only one rule is used (the first
one that applies, in the order given), noting that the actual implementation adds
a zeroth case for empty interval inputs, for which it returns an NaN.

The error analysis for the third rule of Eq. (Boost rev84) is fairly simple with
the model of Eq. (9):

rndnr

〈
a+ b

2

〉
=

(a+ b)(1 + δ1) + η1

2
(1 + δ2) + η2

Thanks to Theorem 1, we have η1 = 0. We also have δ2 = 0, since a division by
two is error-free in the absence of underflow. Hence the simplified expression:

rndnr

〈
a+ b

2

〉
=

(a+ b)

2
(1 + δ1) + η2 (11)

with |δ1| 6 εM/2 and η2 ∈ {−µ2 , 0,
µ
2 } (See Eq. (10)). In the absence of over-

flow/underflow, we then have a correctly rounded result:

rndnr

〈
a+ b

2

〉
=
a+ b

2
(1 + δ1)

which is the best we can expect.
Thanks to the first rule, the Boost library will not return an NaN for m([−∞,+∞])

but −realmax. This result does not violate Eq. (2), and Eq. (3) is not relevant in
the context of intervals with an infinite radius. It might, however, appear odd to
the unsuspecting user to discover that the midpoint of a non-empty symmetric
interval9 may not be 0.

That the Boost library may, in some instances, not fall prey to Pitfall 2 may
come as a surprise; in fact, the occurrence of overflows depends on minute de-
tails on the actual compilation of the expression rndnr〈(a+ b)/2〉: for example,
on a computer with an ix86-based processor offering at least the SSE2 instruc-
tions set [12, Chap. 11], there are essentially two ways to compute with double
precision floating-point numbers:

9 A non-empty interval [a, b] with floating-point bounds is symmetric if a = −b.



1. With the FPU instructions set and 80-bits registers stack [12, Chap. 8]: com-
putation is performed internally with an extended precision format having
64 bits of significand and 15 bits of exponent. It is still possible to restrict
the size of the significand to 53 bits in order to emulate double precision10

but this feature is rendered almost useless by the fact that it is not possible
to restrict the size of the exponent;

2. With the SSE2 instructions set and the SSE2 registers: computation is per-
formed exclusively in double precision.

If a program that uses the Boost library is compiled without any particular
option on an ix86-based processor, the expression rndnr〈(a+ b)/2〉 will usually
be computed as follows:

1. The double precision variables a and b will be loaded into the FPU floating-
point registers and promoted to the 80 bits extended format;

2. The expression rndnr〈(a+ b)/2〉 will be computed entirely with extended
precision in the FPU registers;

3. The result of the expression will be stored back into a double precision
variable with a cast.

In this situation, the overflow cannot happen since rndnr〈a+ b〉 is always repre-
sentable by a finite number in extended precision; once divided by 2, the result
is again representable in double precision.

Now, suppose the program is compiled for an ix86 processor with a compiler
option that instructs it to emit code to store back floating-point values into
double precision variables after each operation11 (This behavior has an obvious
adverse effect on performances. It is useful, however, to ensure repeatability of
the computation across different platforms, some of which may not offer ex-
tended precision registers of the same size, if at all). In that case, the expression
rndnr

〈
a+b

2

〉
will be computed as follows:

1. The double precision variables a and b will be loaded into the FPU floating-
point registers and promoted to the 80 bits extended format;

2. The expression rndnr〈a+ b〉 will be computed with extended precision in the
FPU registers;

3. The value of rndnr〈a+ b〉 will be stored back as a double precision floating-
point number, at which point an overflow may occur;

4. The value of rndnr〈a+ b〉 will be loaded into an extended register, promoted
to 80 bits, and then divided by 2;

5. The result of the division will be stored in a double precision variable with
a cast.

In this situation, the Boost implementation of the midpoint operator may fail to
comply with its requirements, and will return an infinite value as the midpoint

10 Since version 4.3.0, The GNU C Compiler gcc offers the option -mpc64 to do that
easily.

11 This is the -ffloat-store option of gcc, or the -mp option for the Intel C++ com-
piler.



of any interval with finite bounds whose absolute value of the sum is greater
than realmax. The same problem would arise on architectures that do not rely
internally on extended precision floating-point registers.

A different way to achieve the same failure on an ix86 processor relies on the
possibility for modern compilers to transparently—or upon explicit request by
the programmer—make use of the SIMD facilities offered by the SSE2 instruc-
tions set: some floating-point expressions may be computed in double precision
SSE2 registers instead of the FPU extended precision registers. Once again,
rndnr〈a+ b〉 may overflow, as it will be computed in double precision only.12

To avoid the overflow problem that affects the Boost implementation, Intlab
V5.5 [21] uses the following formula:

m([a, b]) ={
0 if a = −∞ and b = +∞;
rndup

〈
a
2 + b

2

〉
otherwise.

(Intlab V5.5)

The first rule protects explicitly against the creation of an NaN for the interval
[−∞,+∞], while the second rule avoids an overflow by first dividing the operands
by two before adding the results, instead of the other way round.

The error analysis is as follows:

rndup

〈
a

2
+
b

2

〉
=

[(a
2

(1 + δ1) + η1

)
+

(
b

2
(1 + δ2) + η2

)]
(1 + δ3) + η3

Using Theorem 1 and Eq. (10), we may simplify the expression as:

rndup

〈
a

2
+
b

2

〉
=

(
a+ b

2
+ η1 + η2

)
(1 + δ3) (12)

with η1 ∈ {0, µ/2}, η2 ∈ {0, µ/2}, and 0 6 δ3 < εM , since results are rounded
upward now. In the absence of underflow/overflow, Eq. (12) simplifies to:

rndup

〈
a

2
+
b

2

〉
=
a+ b

2
(1 + δ3)

meaning that the result is correctly rounded. Note that, in practice, the quality
of this formula is not as good as Boost’s since the bound on δ3 in Eq. (12) is
twice the one on δ1 in Eq. (11).

This algorithm has a peculiar behavior in that the midpoint of an interval
with one infinite bound (but not both) is this infinite (for example: m([−∞, 3]) =
−∞ and m([3,+∞]) = +∞). In addition, a symmetric interval with finite bounds

12 This transparent use of SIMD registers instead of FPU ones leads to another problem:
the instructions that set the rounding direction for the FPU and SSE2 instructions
are separate; therefore, the rounding direction set by the programmer for some FPU
computation will not apply if, unbeknownst to him, the compiler chooses to use
SSE2 instructions instead.



may have a midpoint different from 0: the midpoint of the interval [−µ, µ] is
computed as µ because the expressions rndup〈0.5×−µ〉 and rndup〈0.5× µ〉 are
rounded, respectively, to 0 and µ. For the interval [−µ, µ], this has the unfortu-
nate effect of violating Eq. (3) since 0 is a representable floating-point number
closer to the midpoint of the interval.

Additionally and more importantly, Intlab V5.5 may also violate Eq. (2).
Consider the reduction of Eq. (12) for subnormal inputs:

rndup

〈
a

2
+
b

2

〉
=
a+ b

2
+ η1 + η2

We have η1 + η2 ∈ {0, µ/2, µ}, which means that in some cases, the result may
not be correctly rounded. Take for example, the interval [µ, µ]. Since we have:

rndup〈0.5× µ〉 = µ,

it follows:

m([µ, µ]) = 2µ /∈ [µ, µ]

BIAS 2.0.8 [14] follows a different path and computes the midpoint as follows:

m([a, b]) = rndup

〈
a+

b− a
2

〉
(BIAS 2.0.8)

Despite using a subtraction in place of an addition, this algorithm has the same
flaws as a naive implementation of midpoint: if b − a overflows (say, because
a and b are huge, with differing signs), the result will be infinite; additionally,
m([−∞,+∞]) is an NaN because b − a = +∞−−∞ = +∞ and a + (b − a) =
−∞+∞ = NaN.

The error analysis is also interesting:

rndup

〈
a+

b− a
2

〉
=

[
a+

(b− a)(1 + δ1) + η1

2
(1 + δ2) + η2

]
(1 + δ3) + η3

which reduces to:

rndup

〈
a+

b− a
2

〉
=

(
a+

(b− a)

2
(1 + δ1) + η2

)
(1 + δ3) (13)

with η2 ∈ {0, µ/2}, 0 6 δ1 < εM and 0 6 δ3 < εM . In the absence of over-
flow/underflow, we get:

rndup

〈
a+

b− a
2

〉
=
a+ b

2
+

(
δ1
b− a

2
+ δ3

a+ b

2
+ δ1δ3

b− a
2

)
In theory, BIAS’s formula is then even worse than Intlab V5.5’s in the absence of
underflow. On the other hand, the reduction of Eq. (13) for the case of subnormal
inputs shows that it is not affected by Intlab V5.5’s problem:

rndup

〈
a+

b− a
2

〉
=
a+ b

2
+ η2



For subnormal inputs, BIAS computes a correctly rounded result.

CXSC 2.4.0 [7] offers two functions to compute the midpoint: a “fast” one,
Mid(I), and an accurate one, mid(I). The fast one computes the midpoint by
a formula akin to both BIAS’s and Intlab’s, except for the rounding, which is
now downward:

m([a, b]) = rnddn

〈
a+ (

b

2
− a

2
)

〉
(CXSC 2.4.0)

That formula is still subject to the NaN problem whenever [a, b]=[−∞,+∞].
The accurate version uses extended precision, and then, contrary to the fast
version, it always returns the correctly rounded value for the midpoint, except
for the interval [−∞,+∞]. For that interval, CXSC aborts abruptly with an
exception.

The error analysis for the “fast” midpoint operator of CXSC gives:

rnddn

〈
a+ (

b

2
− a

2
)

〉
=[

a+

(( b
2

(1 + δ1) + η1

)
−
(a

2
(1 + δ2) + η2

))
(1 + δ3) + η3

]
(1 + δ4) + η4,

which simplifies to:

rnddn

〈
a+ (

b

2
− a

2
)

〉
=

[
a+

(
b− a

2
+ η1 − η2

)
(1 + δ3)

]
(1 + δ4) (14)

with η1 ∈ {−µ/2, 0}, η2 ∈ {−µ/2, 0}, −εM < δ3 6 0, and −εM < δ4 6 0.
In the absence of overflow/underflow, CXSC’s formula is as bad as BIAS’s:

rnddn

〈
a+ (

b

2
− a

2
)

〉
=
a+ b

2
+

(
δ3
b− a

2
+ δ4

a+ b

2
+ δ3δ4

b− a
2

)
For subnormal inputs, the halving of a and b may introduce some error, and the
subtraction b/2− a/2 may lead to some cancellation for a ≈ b. We have:

rnddn

〈
a+ (

b

2
− a

2
)

〉
=
a+ b

2
+ η1 − η2

with η1 − η2 ∈ {−µ/2, 0, µ/2}.

Fi lib++ 2.0 [15] uses almost the same formula as Intlab V5.5 with additional
rules to avoid some of the pitfalls previously encountered:

m([a, b]) =


a if a = b

0 if a = −b
rndnr

〈
a
2 + b

2

〉
otherwise

(Fi lib++ 2.0)



The error analysis for Fi lib++’s formula leads to the same expression as for
Intlab V5.5, except for the bounds on the errors:

rndnr

〈
a

2
+
b

2

〉
=

(
a+ b

2
+ η1 + η2

)
(1 + δ3) (15)

with η1 ∈ {−µ/2, 0, µ/2}, η2 ∈ {−µ/2, 0, µ/2}, and |δ3| 6 εM/2.
As for Intlab V5.5, the result is correctly rounded whenever no overflow/un-

derflow occurs. On the other hand, for subnormal inputs, we still get:

rndnr

〈
a

2
+
b

2

〉
=
a+ b

2
+ η1 + η2

with η1 + η2 ∈ {−µ,−µ/2, 0, µ/2, µ}, which means that the computed midpoint
may be one of the floating-point numbers that surround the correctly rounded
midpoint. For a degenerate interval reduced to one point, the first rule protects
against computing a midpoint outside the interval, as was the case with Intlab
V.5.5; Obviously, the formula ensures that the midpoint of an interval with a
width greater or equal to 2µ is included in it. For an interval whose bounds
a and b are consecutive subnormal floating-point numbers (hence, with a width
precisely equal to µ), it suffices to notice that exactly one of them has a rightmost
bit of the fractional part equal to “1” and the other one has the corresponding
bit equal to “0”. Consequently, η1 + η2 ∈ {−µ/2, 0, µ/2} and the inclusion is,
once again, ensured.

The second rule in Eq. (Fi lib++ 2.0) is more general than the first one
of Intlab V5.5: it protects against the computation of an NaN for the interval
[−∞,+∞] as well as ensuring that symmetric intervals in general have 0 as their
midpoint (another “flaw” of the Intlab V5.5 formula). The expression in the third
rule cannot overflow for finite a and b, which makes the whole formula immune
to the overflow problem. On the other hand, the midpoint of any interval with
an infinite bound (but not both) is infinite (e.g.: m([3,+∞]) = +∞). This result
does not violate Eq. (2) and Eq. (3); it may nevertheless lead to serious trouble if
the returned value is used as a bound of an interval, say in a bisection algorithm.

The recent Version 6 of the Intlab package has a different algorithm from
Version 5.5 to compute the midpoint of an interval:

m([a, b]) =
0 if a = −∞ and b = +∞;

b if a = −∞;

a if b = +∞;

rndnr
〈
a+ ( b2 − a

2 )
〉

otherwise;

(Intlab V6)

Once again, these rules are not mutually exclusive, but the first that applies is
executed to the exclusion of the others. The first rule explicitly avoids the NaN
problem for the interval [−∞,+∞]; the second and third rules ensure that the



midpoint of an interval with one infinite bound (and one only) is finite and equal
to the other—finite—bound. This is one possible choice among many to resolve
the problem and it would be interesting to investigate which choice is usually
the best.

Apart from the rounding direction, the formula in the fourth rule is the same
as CXSC’s formula, and consequently, an error analysis along the same lines may
be made:

rndnr

〈
a+ (

b

2
− a

2
)

〉
=

[
a+

(
(
b

2
+ η1)− (

a

2
+ η2)

)
(1 + δ3)

]
(1 + δ4) (16)

with η1 ∈ {−µ/2, 0, µ/2}, η2 ∈ {−µ/2, 0, µ/2}, |δ3| 6 εM/2, and |δ4| 6 εM/2.
For subnormal inputs, it may violate Eq. (3), as evident from the error for-

mula:

rndnr

〈
a+ (

b

2
− a

2
)

〉
=
a+ b

2
+ η1 − η2

with η1− η2 ∈ {−µ,−µ/2, 0, µ/2, µ}. For example, with Intlab V6’s formula, we
have:

m([−µ, µ]) = −µ
On the other hand, for finite a and b, the fourth rule is immune to overflow

and it ensures that Eq. (2) is verified, as proven by Prop. 1.

Proposition 1. Given a and b two finite floating-point numbers, with a 6 b,
we have:

a 6 rndnr

〈
a+

(
b

2
− a

2

)〉
6 b

Proof. Since a 6 b, we have rndnr〈a/2〉 6 rndnr〈b/2〉, thanks to rounding mono-
tonicity. This is true even if an underflow occurs. As a consequence, rndnr〈b/2− a/2〉 >
0, and then rndnr〈a+ (b/2− a/2)〉 > a, again by monotonicity of rounding. Note
that, for finite a and b, rndnr〈b/2− a/2〉 cannot overflow.

Let us now prove that rndnr〈a+ (b/2− a/2)〉 6 b. We first prove that rndnr〈b/2− a/2〉 6
b− a, restricting the discussion to the case a 6= b since the proof is trivial other-
wise. We have:

rndnr

〈
b

2
− a

2

〉
=

[(
b

2
+ η1

)
−
(
a

2
+ η2

)]
(1 + δ3) (17)

Using Eq. (17), let us now find the conditions such that rndnr〈b/2− a/2〉 >
b− a:

rndnr

〈
b

2
− a

2

〉
> b− a ⇐⇒ (b− a)

1 + δ3
2

+ (η1 − η2)(1 + δ3) > b− a

⇐⇒ b− a < 2(η1 − η2)
1 + δ3
1− δ3

We have |δ3| 6 εM/2, |η1| 6 µ/2, and |η2| 6 µ/2. As soon as l(f) > 1, (1 +
δ3)/(1 − δ3) is strictly smaller than 2. Hence, b − a has to be less than 4µ for
rndnr〈b/2− a/2〉 to be greater than b− a.



We then deduce that rndnr〈b/2− a/2〉 is safely strictly less than λ for any
floating-point format of practical use (just use b − a < 4µ in Eq. (17)), that is
rndnr〈b/2− a/2〉 underflows. In that case, δ3 = 0, thanks again to Theorem 1,
and then we have:

rndnr

〈
b

2
− a

2

〉
> b− a ⇐⇒ b− a

2
+ η1 − η2 > b− a

⇐⇒ b− a < 2(η1 − η2)

With the known bounds on η1 and η2, we now deduce that b− a must be strictly
less than 2µ for rndnr〈b/2− a/2〉 to be greater than b − a. But b − a must be a
strictly positive floating-point number (we have b > a, and b−a < λ implies that
Theorem 1 applies). Consequently, b− a must be equal to µ, which means that b
and a are two consecutive floating-point numbers. As a result, either a or b has
an “even” binary significand (rightmost bit equal to 0), which means that either
η1 = 0 or η2 = 0. We may then refine our condition:

rndnr

〈
b

2
− a

2

〉
> b− a ⇐⇒ b− a

2
+ η > b− a with |η| 6 µ/2

⇐⇒ b− a < µ

This condition is not possible for a 6= b since there is no positive floating-point
number smaller than µ. Consequently:

rndnr

〈
b

2
− a

2

〉
6 b− a ∀(a, b) ∈ F2

We then have:

a+ rndnr

〈
b

2
− a

2

〉
6 b

And, by monotonicity of rounding:

rndnr

〈
a+ (

b

2
− a

2
)

〉
6 b

ut

The formulae investigated so far all have defects: some are prone to overflows
(e.g., (a+ b)/2), some may violate the containment requirement (e.g., a/2 + b/2,
if used without precautions), and others may compute a value that is markedly
different from the center of the interval, thereby violating Eq. (3).

The true impact of the violation of Eq. (3) should be carefully assessed. But
for now, we will content ourselves with investigating whether it is possible to
design a formula that computes a correctly rounded floating-point approximation
of the midpoint of an interval, without exhibiting the flaws previously identified.

We should rule out a formula based on the expression (a+b)/2, as this would
require to detect a possible overflow in the addition. On the other hand, it is



easy to amend Fi lib++’s algorithm to avoid returning infinities when a bound
is not finite:

m([a, b]) =



a if a = b;

0 if a = −b;
? if a = −∞;

? if b = +∞;

rndnr
〈
a
2 + b

2

〉
otherwise.

(18)

In the absence of underflow, this algorithm computes a correctly rounded ap-
proximation of the midpoint, since then, dividing a floating-point number by 2
is error-free. The question marks for Cases 3 and 4 are here to remind us that
we may promote any finite value belonging to the interval [a, b] as the midpoint
without violating Eq. (3).

This algorithm fits the bill, except that, having so many cases, it is not very
efficient. However, it is possible to devise a correct algorithm wih less cases by
taking advantage of Hauser’s theorems:

m([a, b]) =
0 if a = −b;
? if a = −∞;

? if b = +∞;

rndnr
〈
(a− a

2 ) + b
2

〉
otherwise.

(H-method)

As before, only the first rule whose guard is true is considered. Case 4 rewrites
the expression “a + (b/2 − a/2)” from Intlab V6 as “(a − a/2) + b/2”, a small
algebraic manipulation indeed, but one that can have a significant impact on
the accuracy of the whole expression. In effect, the error analysis gives:

rndnr

〈(
a− a

2

)
+
b

2

〉
=

[(
a−

(a
2

(1 + δ1) + η1

))
(1 + δ2) + η2 +

( b
2

(1 + δ3) + η3

)]
(1 + δ4) + η4 (19)

This complicated formula may be simplified thanks to the following lemma:

Lemma 1. For any finite floating-point number a ∈ F, we have:

rndnr
〈
a− a

2

〉
= a−

(a
2

+ η
)
, with η ∈

{
−µ

2
, 0,

µ

2

}
Proof. There are basically two cases to consider: let us first suppose no underflow
occurs when halving a. Then, we have rndnr〈a/2〉 = a/2 since halving is error-
free in the absence of underflow. We may then use Hauser’s Theorem 3 to state
that rndnr〈a− a/2〉 = a− a/2.

Now, suppose an underflow occurs when halving a; then, rndnr〈a/2〉 = a/2+η.
This event is only possible if a/2 is strictly smaller than λ (by definition), and



this can happen only if a is strictly smaller than 2λ. But then, rndnr〈a− (a/2 + η)〉
is also strictly smaller than 2λ, and we may then use Theorem 2 to state that
rndnr〈a− a/2〉 = a− (a/2 + η). ut

Using Lemma 1 and the property on halving given by Eq. (10), we are able
to simplify Eq. (19) to:

rndnr

〈(
a− a

2

)
+
b

2

〉
=

(
a+ b

2
+ η3 − η1

)
(1 + δ4) (20)

with η1 ∈ {−µ/2, 0, µ/2}, η3 ∈ {−µ/2, 0, µ/2}, |δ4| 6 εM/2. It is then straight-
forward to show that containment is always ensured: no overflow can occur in
computing (a−a/2) + b/2 and, in the absence of underflow, a correctly rounded
midpoint is computed; additionally, in case of underflow, the error is bounded
by µ.

Implementation evidences presented below show that the cost of the extra
subtraction in Eq. (H-method) is compensated by having one test less than in
Eq. (18) while both have similar error bounds (Compare Eq. (20) and Eq. (15)).
At least, this is true for computers on which branching is more expensive than
floating-point arithmetic (most desktop computers nowadays, it appears). For
those computers that do not verify this statement, we should retain the formula
of Eq. (18). We therefore continue to consider both formulae in the rest of the
paper.

How should we instantiate the question marks in Eq. (H-method) and Eq. (18)?
Arnold Neumaier [17] argues for returning the other, finite, bound of the inter-
val, his justification being that this is a sensible choice when using a midpoint
in the context of centered forms [19]. On the other hand, that choice is not so
useful in the context of a dichotomic exploration algorithm (Neumaier’s stance
on the subject is that we should use a different, specialized operator for this kind
of algorithm).

For exploration algorithms, a simple choice seems to return ±realmax for
semi-unbounded intervals, obtaining the two formulae:

m([a, b]) =

a if a = b;

0 if a = −b;
−realmax if a = −∞;

+realmax if b = +∞;

rndnr
〈
a
2 + b

2

〉
otherwise.

m([a, b]) =
0 if a = −b;
−realmax if a = −∞;

+realmax if b = +∞;

rndnr
〈
(a− a

2 ) + b
2

〉
otherwise.

Obviously, any finite value from the interval could be used too. A direction
for future researches should be to identify the best choice for the case of semi-
unbounded intervals, depending on the main uses of the midpoint operator, viz.:

– Centered forms [19];



– Newton steps [16];
– Dichotomic exploration;
– Preconditioning of matrices [13].

From Theory to Practice

So far, we have only theoretically analyzed the various formulae to compute the
midpoint of an interval [a, b]. Table 2 synthesizes the error formulae in three
cases:

GC. The general case, where an underflow may or may not occur at any step of
the computation (for the experiments, overflows are allowed in the General
Case as well, though the formulae in Table 2 are then no longer relevant);

No OF/UF. The case where no overflow nor any underflow occurs at any step
of the computation;

UF. The case where all quantities manipulated (counting the initial inputs) are
subnormal numbers.

According to Table 2, we should be able to separate the various methods into
four classes for the case where no underflow nor any overflow occurs:

– Boost, Filib++ and the H-method, which deliver a correctly rounded result
to the unit roundoff (half the epsilon of the machine);

– Intlab V5.5, which delivers a correctly rounded result to the epsilon of the
machine;

– Intlab V6, which delivers a result to the unit roundoff;
– Bias and CXSC, which deliver a result to the epsilon of the machine.

This is indeed verified by the experiments, as shown in Table 3, where the
first column “Disc” indicates the number of floating-point numbers between
the correctly rounded midpoint (as computed by MPFR [5]) and the midpoint
computed by the method tested13. The last row “Fail” in the table indicates the
number of times a midpoint computed was not included in the interval input.
The table reports the results for the computation of the midpoint of ten millions
non-empty random intervals.

The comparison of all formulae when subnormal numbers are produced for
each operation shows less drastic differences (See Table 4): the best we can
compute in that case is (a+ b)/2 + η, with |η| ∈ {0, µ/2}, which is exactly what
is computed by Boost. BIAS exhibits the same error bound but the computed
result may differ by one unit in the last place from Boost’s, due to the upward
rounding. Intlab V5.5 shows a discrepancy of one unit in the last place almost
half of the time: the error is η1 + η2 with η1 and η2 both positive or null, which
means that they can never cancel each other out. On the other hand, CXSC
offers a good accuracy because the error term is η1 − η2 with both η1 and η2

13 If the real midpoint is equidistant from two floating-point numbers, we report the
shortest distance between the computed midpoint and both numbers to avoid the
arbitrary bias introduced by the “rounding to even” rule.



Table 2. Synthesis of error bounds

Error
Method GC No OF/UF UF

Boost a+b
2

(1 + δ1) + η2
a+b
2

(1 + δ1) a+b
2

+ η2

rndnr〈(a+ b)/2〉 |η2| ∈ {0, µ/2}, |δ1| 6 εM/2

Intlab V5.5

(
a+b
2

+
η1 + η2

)
(1 + δ3)

a+b
2

(1 + δ3)

a+b
2

+
η1+
η2

rndup〈a/2 + b/2〉 η1 ∈ {0, µ/2}, η2 ∈ {0, µ/2}, 0 6 δ3 < εM

BIAS

(
a+b
2

+
δ1

b−a
2

+
η2
)
(1 + δ3)

a+b
2

+(
δ1

b−a
2

+
δ3

a+b
2

+
δ1δ3

b−a
2

) a+b
2

+ η2

rndup〈a+ (b− a)/2〉 η2 ∈ {0, µ/2}, 0 6 δ1 < εM , 0 6 δ3 < εM

CXSC

[
a+(

b−a
2

+

η1 − η2
)
(1 + δ3)

]
(1 + δ4)

a+b
2

+(
δ3

b−a
2

+
δ4

a+b
2

+
δ3δ4

b−a
2

)
a+b
2

+
η1−
η2

rnddn〈a+ (b/2− a/2)〉 η1 ∈ {−µ/2, 0}, η2 ∈ {−µ/2, 0},−εM < δ3 6 0

Filib++

(
a+b
2

+
η1 + η2

)
(1 + δ3)

a+b
2

(1 + δ3)

a+b
2

+
η1+
η2

rndnr〈a/2 + b/2〉 |η1| ∈ {0, µ/2}, |η2| ∈ {0, µ/2}, |δ3| 6 εM/2

Intlab V6

[
a+(

b−a
2

+

η1 − η2
)
(1 + δ3)

]
(1 + δ4)

a+b
2

+(
δ3

b−a
2

+
δ4

a+b
2

+
δ3δ4

b−a
2

)
a+b
2

+
η1−
η2

rndnr〈a+ (b/2− a/2)〉 |η1| ∈ {0, µ/2}, |η2| ∈ {0, µ/2}, |δ3| 6 εM/2, |δ4| 6 εM/2

H-method
(
a+b
2

+ η3 − η1
)
(1 + δ4) a+b

2
(1 + δ4)

a+b
2

+
η3−
η1

rndnr〈(a− a/2) + b/2〉 |η1| ∈ {0, µ/2}, |η3| ∈ {0, µ/2}, |δ4| 6 εM/2



Table 3. Comparison of the quality of the midpoint() implementations — No
OF/UF

Disc. Boost Intlab V5.5 BIAS CXSC Filib++ Intlab V6 H-method

0 10000000 5012760 2512450 2512118 10000000 9867139 10000000
1 4987240 7483333 7483658 130507
2 2478 2442 1178
3 460 467
4 585 569 603
6 103 139
8 287 291 294

12 18 34
16 126 125 127
24 7 3
32 73 74 74
48 1 2
64 36 36 36
96 1

128 25 25 25
256 8 8 8
512 4 4 4

1024 4 4 4
16384 1 1 1

Fail 0 0 0 0 0 0 0



being of the same sign. Lastly, Filib++, Intlab V6 and the H-method are of
similar accuracy, with Intlab V6 and the H-method being rigorously equivalent,
as Table 2 suggests already.

Table 4. Comparison of the quality of the midpoint() implementations — UF

Disc. Boost Intlab V5.5 BIAS CXSC Filib++ Intlab V6 H-method

0 10000000 5001983 7502568 7500491 6251593 6250468 6250468
1 4998017 2497432 2499509 3748407 3749532 3749532

Fail 0 0 0 0 0 0 0

If we allow both underflows and overflows (See Table 5), we now have five
classes:

– Boost, which always returns a correctly rounded result, except when over-
flows make it fail to ensure inclusion of the midpoint;

– The H-method and Filib++, which never fail to meet the requirement of
inclusion while never departing of more than one unit in the last place from
the correctly rounded result;

– Intlab V5.5, which delivers half of the time a result departing from the
correctly rounded result by one ulp. Though it is not apparent from Table 5,
recall that it may fail to ensure containment in some rare cases (See page 14);

– Intlab V6, whose results may significantly depart from the correctly rounded
one, though it always meets the inclusion requirement;

– BIAS and CXSC, whose results may significantly depart from the correctly
rounded one, and which may not meet the inclusion requirement.

Note that discrepancies for intervals with at least one infinite bound are not
reported in Table 5.

From these tables, it seems clear that the most robust and accurate methods
to choose from are the modified version of Filib++’s shown in Eq. (18) and
the H-method (Eq. (H-method)). Table 6 also compares the various methods
performance-wise. All the methods have been implemented in C++ in the same
environment. Times are given in seconds for the computation of the midpoint of
fifty millions non-empty random intervals, with the same three categories (GC,
No OF/UF, UF) as in Table 2.

Note, en passant, the difference in time between the first two categories and
the last one: subnormal numbers have to be handled as exceptional values, of-
ten in software rather than in hardware, which slows the computation down
dramatically.

As hinted at previously, the H-method is competitive with the modified
Filib++ method, even though it requires one subtraction more, as it uses one
test less. Since they offer the same accuracy for both the normal and subnormal



Table 5. Comparison of the quality of the midpoint() implementations — GC

Disc. Boost Intlab V5.5 BIAS CXSC Filib++ Intlab V6 H-method

0 9990382 5007214 2510168 2509920 9990380 9857852 9990381
1 4983176 7475969 7476173 10 130087 9
2 2490 2488 1226
3 428 468
4 601 612 632
6 105 116
8 277 275 283

12 31 20
16 160 161 162
24 6 8
32 68 70 70
48 2 1
64 46 46 46
96 2

128 15 15 15
256 6 6 6
512 5 5 5

1024 3 3 3
8192 2 2 2

32768 1 1 1
> 1015 8 5

Fail 8 0 4847 4842 0 0 0

Table 6. Performances (in seconds) of different midpoint() implementations.

Boost intlab V5.5 BIAS CXSC Filib++ Intlab V6 H-method Eq. (18)?

GC

9.95 9.01 9.48 8.85 8.85 10.32 9.84 10.21

No OF/UF

10.03 8.86 8.66 8.70 9.09 10.09 9.69 10.13

UF

150.71 150.90 146.84 161.49 198.42 198.26 222.92 224.33
? filib++ formula with tests added to avoid returning an infinite value.



range, we advocate the use of the H-method as the standard implementation
for the midpoint of an interval. Only in those environments where a floating-
point subtraction incurs a cost significantly higher than a branching should the
modified Filib++ method be used.

To be fair, the Boost method should not be completely discarded since it is
the one that offers the best accuracy. However, it should only be used for those
problems where an overflow is sure never to occur.

4 Quis Custodiet Ipsos Custodes?

Table 7. Midpoint formulae shortcomings.

Package NaN Inf NC SYM IR

Boost rev84 (P. 11) X X
Intlab V5.5 (P. 13) X X X X
BIAS 2.0.8 (P. 14) X X X
CXSC 2.4.0 (Mid) (P. 15) X X X
Fi lib++ 2.0 (P. 15) X X
Intlab V6 (P. 16) X X
H-method (P. 19) X X

NaN. Returning an NaN for a non-empty interval (e.g., for m([−∞,+∞])).

Inf. Returning an infinite midpoint (e.g., in case of overflow in the addition a + b, or if a
bound is infinite).

NC. Failing to meet the containment requirement (e.g., m([a, b]) /∈ [a, b] in case of under-
flow).

SYM. Violation of Eq. (3): not returning 0 for a symmetric interval.

IR. Violation of Eq. (3): returning a value different from the correctly rounded center of
the interval in the absence of overflow.

Table 7 summarizes the potential shortcomings of the midpoint implementa-
tion for the packages we have considered. Constraint (3) is violated by almost all
packages. Pending further investigation, SYM and IR may be considered benign
errors in that they should not compromise the reliability of algorithms based on
packages that do exhibit them. All other problems are serious flaws that may put
reliability in jeopardy. At present, the only library that avoids them is Intlab V6.
This is a testimony to the difficulty of implementing one hundred percent reli-
able interval software, even for seemingly so simple an operator as the midpoint
operator. This is troublesome and calls for formally proved interval arithmetic
packages—similar to what is done by the INRIA Proval team for floating-point
operators [18]—if we really aspire to promote interval computation as proof.
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