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The Unitary Gas and its Symmetry Properties

Yvan Castin and Félix Werner

Abstract The physics of atomic quantum gases is currently taking radge of a
powerful tool, the possibility to fully adjust the interéat strength between atoms
using a magnetically controlled Feshbach resonance. Faidas with two internal
states, formally two opposite spin stateand |, this allows to prepare long lived
strongly interacting three-dimensional gases and to stine\BEC-BCS crossover.
Of particular interest along the BEC-BCS crossover is theated unitary gas,
where the atomic interaction potential between the oppagiin states has virtually
an infinite scattering length and a zero range. This unitay ig the main sub-
ject of the present chapter: It has fascinating symmetrypgnties, from a simple
scaling invariance, to a more subtle dynamical symmetryniisatropic harmonic
trap, which is linked to a separability of tidbody problem in hyperspherical co-
ordinates. Other analytical results, valid over the wholeCBBCS crossover, are
presented, establishing a connection between three heeeatisured quantities,
the tail of the momentum distribution, the short range péthe pair distribution
function and the mean number of closed channel molecules.

The chapter is organized as follows. In section 1, we intceduseful concepts,
and we present a simple definition and basic properties aftiitary gas, related to
its scale invariance. In section 2, we describe various fsddat may be used to de-
scribe the BEC-BCS crossover, and in particular the ungasy each model having
its own advantage and shedding some particular light ontitany gas properties:
scale invariance and a virial theorem hold within the zenoge model, relations be-
tween the derivative of the energy with respect to the irerscattering length and
the short range pair correlations or the tail of the momendiistribution are eas-
ily derived using the lattice model, and the same derivasemediately related to
the number of molecules in the closed channel (recently uredst Rice) using the
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two-channel model. In section 3, we describe the dynamyeahsetry properties of
the unitary gas in a harmonic trap, and we extract their glaysionsequences for
many-body and few-body problems.
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1 Simple facts about the unitary gas

1.1 What is the unitary gas ?

First, the unitary gas is.. a gas. As opposed to a liquid, it is a dilute system with
respect to the interaction ranpeits mean number density satisfies the constraint

pb® < 1. (1)

For a rapidly decreasing interaction poten¥dt), b is the spatial width oV (r).

In atomic physics, wher¥ (r) may be viewed as a strongly repulsive core and a
Van der Waals attractive ta#tCg/ r6, one usually assimilatésto the Van der Waals
length(mGs/R?)%/4.

The intuitive picture of a gas is that the particles mainlpexence binary scat-
tering, the probability that more than two particles arehimita volumeb® being
negligible. As a consequence, what should really mattehd@sknowledge of the
scattering amplituddy of two particles, wheré is the relative momentum, rather
than ther dependence of the interaction potenti@t). This expectation has guided
essentially all many-body works on the BEC-BCS crossovee Gses convenient
models folV (r) that are very different from the true atomic interactionguial, but
that reproduce correctly the momentum dependendg aif the relevant low values
of k, such as the Fermi momentum or the inverse thermal de Broghelength,
these relevant low values &fhaving to satisfyjkb <« 1 for this modelization to be
acceptable.

Second, the unitary gas is such that, for the relevant valtidse relative mo-
mentumk, the modulus offy reaches the maximal value allowed by quantum me-
chanics, the so-called unitary limit [1]. Here, we consislerave scattering between
two opposite-spin fermions, so thtdepends only on the modulus of the relative
momentum. The optical theorem, a consequence of the upitfrithe quantum
evolution operator [1], then implies

Im i, = K| |2 (2)

Dividing by | f|?, and usingfy/| fk|? = 1/ f;;, one sees that this fixes the value of the
imaginary part of 1fi, so that it is strictly equivalent to the requirement tharéh
exists a real function(k) such that

1
fu=———
“T TikFuk) @)
for all values ofk. We then obtain the upper bounf}| < 1/k. Ideally, the unitary
gas saturates this inequality for all valueskof

flimitary: 7&' (4)
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In reality, Eq.(4) cannot hold for ak. It is thus important to understand over
which range ok Eq.(4) should hold to have a unitary gas, and to estimateetie d
ations from Eq.(4) in that range in a real experiment. To ¢éimd, we use the usual
low-k expansion of the denominator of the scattering amplitu@leufider validity
conditions specified in [2]:

u(k):é—%rekz—k... (5)
The lengtha is the scattering length, the lengthis the effective range of the in-
teraction. Botha andre can be of arbitrary sign. Even for/& = 0, even for an
everywhere non-positive interaction potential,can be of arbitrary sign. As this
last property seems to contradict a statement in the salofiproblem 1 in§131 of
[3], we have constructed an explicit example depicted in Ejgvhich even shows
that the effective range may be very different in absolutee/érom the true po-
tential rangeb, i.e.re/b for a=* = 0 may be in principle an arbitrarily large and
negative number. Let us assume that than Eq.(5) are negligible ikb < 1, an
assumption that will be revisited 2.3.3. Notingky, a typical relative momentum
in the gas, we thus see that the unitary gas is in practicensutas a double limit,
a zero rangdimit

kyypb < 1, kyp|re| < 1 (6)

and aninfinite scattering lengthmit:
kypla > 1. (7)

At zero temperature, we assume tkgg = ke, where the Fermi momentum is
conventionally defined in terms of the gas total denpitgs for the ideal spin-1/2

mV(r)b? H°
1-¢ 1

/b

2

N

Fig. 1 A class of non-positive potentials (of compact support dfuab) that may lead to a nega-
tive effective range in the resonant casé = 0. The resonant case is achieved when the three pa-
rametersn, 3 ande satisfy ta(1— €)a]tan(eB) = a/B. Then from Smorodinskii's formula, see
Problem 1ir§131 of [3], one sees thag/b < 2. One also finds thait/b ~ — cog 8/(1e)? — —oo
whene — 0 witha = mT, Be — 6, where6 = 2.798386 .. solves 1 6tan6 = 0.
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Fermi gas:
ke = (3m°p)"/°. ®)

In a trap,p and thuskg are position dependent. Condition (7) is well satisfied ex-
perimentally, thanks to the Feshbach resonance. The com&ith < 1 is also well
satisfied at the per cent level, becabsethe Van der Waals length is in the nanome-
ter range. Up to now, there is no experimental tuning of tifiecéfe range,, and
there are cases whekg|re| is not small. However, to study the BEC-BCS crossover,
one uses in practice the so-called broad Feshbach resanariieh do not require

a too stringent control of the spatial homogeneity of the medig field, and where
[re| ~ b; then Eq.(6) is also satisfied.

We note that the assumptidg, = ke, although quite intuitive, is not automati-

cally correct. For example, for bosons, as shown by Efimoyd#d]effective three-
body attraction takes place, leading to the occurrence eftimov trimers; this
attraction leads to the so-called problentalf to the cente[3], and one has /iy,
of the order of the largest of the two randeand|re|. Eq.(6) is then violated, and
an extra length scale, the three-body parameter, has tdareelirced, breaking the
scale invariance of the unitary gas. Fortunately, for tHegmions, there is no Efi-
mov attraction, except for the case of different masseftwo spin components:
If two fermions of masan, interact with a lighter particle of mass,, the Efi-
mov effect takes place for, /m, larger tharn~ 13.607 [5, 6]. If a third fermion of
massmy is added, a four-body Efimov effect appears at a slightly fawass ratio
my/m; ~ 13.384 [7]. In what follows we consider the case of equal massasss
specified otherwise.

At non-zero temperaturé > 0, another length scale appears in the unitary gas
properties, the thermal de Broglie wavelenggi, defined as

,  2mh?
B miegT”

(9)

At temperatures larger than the Fermi temperafigre- h2kZ /(2mkg), one has to
takekyp ~ 1/Agg in the conditions (6,7). In practice, the most interestiegime is
however the degenerate regie< Tg, where the non-zero temperature does not
bring new conditions for unitarity.

1.2 Some simple properties of the unitary gas

As is apparent in the expression of the two-body scattennglitude Eq.(4), there
is no parameter or length scales issuing from the intenactie a consequence, for a
gas in the trapping potentill(r ), the eigenenergids of theN-body problem only
depend oﬂﬁz/m and on the spatial dependencékdf ): the length scale required to
get an energy out de/m is obtained from the shape of the container.

This is best formalized in terms of a spatial scale invaaualitatively, if one
changes the volume of the container, even if the gas becarigsély dilute, it re-
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mains at unitarity and strongly interacting. This is of csunot true for a finite value
of the scattering length: If one reduces the gas density/3a drops eventually to
small values, and the gas becomes weakly interacting.

Quantitatively, if one applies to the container a similafactor A in all direc-
tions, which changes its volume frovhto A3V, we expect that each eigenenergy
scales as

E.
E — )\—IZ (10)
and each eigenwavefunction scales as
Wi(X/A
wx) - L) 1)

Here X = (ry,...,rn) is the set of all coordinates of the particles, and the
dependent factor ensures that the wavefunction remainsali@ed. The proper-
ties (10,11), which are at the heart of what the unitary gayrés, will be put on
mathematical grounds in section 2 by replacing the interaatith contact condi-
tions ony. Simple consequences may be obtained from these scalipgnies, as
we now discuss.

In a harmonic isotropic trap, where a single particle has saillation angu-
lar frequencyw, taking as the scaling factor the harmonic oscillator laragt =
[A/(mw)]*?, one finds that -

1
hew
where the functions# are universal functions, ideally independent of the faat th
one uses lithium 6 or potassium 40 atoms, and depending ortlyeoparticle num-
ber.

In free space, the unitary gas cannot havg-body bound state (an eigenstate
of negative energy), whatever the valueNot 2. If there was such a bound state,
which corresponds to a square integrable eigenwavefungfithe relative (Jacobi)
coordinates of the particles, one could generate a continofusuch square inte-
grable eigenstates using Eqgs.(10,11). This would violatendamental property
of self-adjoint Hamiltonians [8]. Another argument is thia¢ energy of a discrete
universal bound state would depend onlyfoandm, which is impossible by di-
mensional analysis.

At thermal equilibrium in the canonical ensemble in a boy, aaubic box of
volumeV = L3 with periodic boundary conditions, several relations maypbtained
if one takes the thermodynamic linht— oo, L3 — 400 with a fixed density and
temperaturd’, and if one assumes that the free endfgig an extensive quantity.
Let us consider for simplicity the case of equal populatibthe two spin states,
N; = N,. Then, in the thermodynamic limit, the free energy per platf /N = f is
a function of the densityp and temperatur&. If one applies a similarity of factor
A and if one chang@ to T/A? so as to keep a constant rafig/ (ksT), that is a
constant occupation probability for each eigenstate, dtains from Eq.(10) that

f(p/A%T/A%) =1(p,T)/A% (13)

=Zi(N) (12)
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At zero temperaturef, reduces to the ground state energy per paréglp). From
Eq.(13) it appears thah(p) scales ap?/3, exactly as the ground state energy of
the ideal Fermi gas. One thus simply has

ideal 35 ﬁzk%

&(p)=¢e (P) =7 - (14)
wherekg is defined by Eq.(8) anél is a universal number. This is also a simple con-
sequence of dimensional analysis [9]. Taking the derieatiith respect tiN or to
the volume, this shows that the same type of relation holdthfozero temperature
chemical potentialo(p) = & ui9e3(p), and for the zero temperature total pressure,
Po(p) = &Ry™*?(p), so that

21,2
Ho(p) = £ 5 E (15)
R2k2
(D) = 2 o (16)

At non-zero temperature, taking the derivative of Eq.(18hwespect toA in
A =1, and using- = E — TS whereE is the mean energy arsl= —odrF is the
entropy, as well ag = dyF, one obtains

gE—uN:TS (17)

From the Gibbs-Duhem relation, the grand poteniak F — uN is equal to—PV,
whereP is the pressure of the gas. This gives finally the usefuliceiat

(18)

that can also be obtained from dimensional analysis [9], thatl of course also
holds at zero temperature (see above). All these propeutteslly also apply to the
ideal Fermi gas, which is obviously scaling invariant. Takation (18) for example
was established for the ideal gas in [10].

Let us finally describe at a macroscopic level, i.e. in a hglginamic picture, the
effect of the similarity Eq.(11) on the quantum state of a&anyigas, assuming that
it was initially at thermal equilibrium in a trap. In the iigt state of the gas, con-
sider a small (but still macroscopic) element, enclosedviolamedV around point
r. It is convenient to assume thd¥ is a fictitious cavity with periodic boundary
conditions. In the hydrodynamic picture, this small eletiemssumed to be at lo-
cal thermal equilibrium with a temperatufe Then one performs the spatial scaling
transform Eq.(10) on each many-body eigenstatef the thermal statistical mix-
ture, which does not change the statistical weigths. Howthd relevant physical
quantities be transformed in the hydrodynamic approach ?

The previously considered small element is now at positipnand occupies a
volumeA 3dV, with the same number of particles. The hydrodynamic measitie
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profile after rescalingg, , is thus related to the mean density profilbefore scaling
as

pA(AT) =p(r)/A%. (19)

Second, is the small element still at (local) thermal eqiilim after scaling ? Each
eigenstate of enerdyoc of the locally homogeneous unitary gas within the initial
cavity of volumedV is transformed by the scaling into an eigenstate within the
cavity of volumeA 3dV, with the eigenenerglioc/A 2. Since the occupation proba-
bilities of each local eigenstate are not changed, the Bia#iktical mixture remains
thermal provided that one rescales the temperature as

T, =T/A2 (20)

A direct consequence is that the entropy of the small elenfdhe gas is unchanged
by the scaling, so that the local entropgr particlesin the hydrodynamic approach
obeys

Sy(Ar) =9(r). (21)

Also, since the mean energy of the small element is reduceidofactorA 2 due to
the scaling, and the volume of the small element is muliiptigA 3, the equilibrium
relation Eq.(18) imposes that the local pressure is tranmsfd by the scaling as

PA(AT) = p(r)/A°. (22)

1.3 Application: Inequalities oné and finite-temperature
quantities

Using the previous constraints imposed by scale invariafiche unitary gas on
thermodynamic quantities, in addition to standard therynadhic inequalities, we
show that one can produce constraints involving both the-mperature quantity
¢ and finite-temperature quantities of the gas.

Imagine that, at some temperatdrethe energye and the chemical potential
of the non-polarized unitary Fermi gas have been obtaimethd thermodynamic
limit. If one introduces the Fermi momentum Eq.(8) and theresponding Fermi
energyEr = h%kZ /(2m), this means that on has at hand the two dimensionless quan-
tities

E
_ M
B= - (24)

As a consequence of Eq.(18), one also has access to thengrBs¥e now show
that the following inequalities hold at any temperattite
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3\%° . 5A
= B <
(SA) B<és3 (25)

In the canonical ensemble, the mean endgy, T,V) is an increasing function
of temperature for fixed volumé and atom numbeN. Indeed one has the well-
known relationkBTszE(N,T,V) = VarH, and the variance of the Hamiltonian is
non-negative. As a consequence, for any temperdture

E(N,T,V) > E(N,0,V). (26)

From Eq.(14) we then reach the upper boundagiven in Eq.(25).

In the grand canonical ensemble, the pres&{ge T) is an increasing function
of temperature for a fixed chemical potential. This resultenfthe Gibbs-Duhem
relationQ(u,T,V) = —VP(u, T) whereQ is the grand potential and the volume,
and from the differential relatiodr Q (1, T) = —SwhereS> 0 is the entropy. As a
consequence, for any temperattire

P(u,T) > P(u,0). (27)

For the unitary gas, the left hand side can be expressedrirstefA using (18).
Eliminating the density between Eq.(15) and Eq.(16) weialtkee zero temperature

pressure
1 R /2mp\%?
P(uvo) = 157T263/Zﬁ ( ﬁz ) . (28)
This leads to the lower bound dngiven in Eq.(25).

Let us apply Eq.(25) to the Quantum Monte Carlo results of:[Althe critical
temperaturd = T, A= 0.310(10) andB = 0.493(14), so that

0.48(3) < &9, < 0.52(2). (29)

This deviates by two standard deviations from the fixed nedelté < 0.40(1)
[12]. The Quantum Monte Carlo results of [13], if one takesperature equal
to the critical temperature of [11], give= 0.45(1) andB = 0.43(1); these values,
in clear disagreement with [11], lead to the non-restrectivacketing B0(2) <
5[13 < 0.75(2). The more recent work [14] findgT:/Er = 0.171(5) and at this
critical temperatureh = 0.276(14) andB = 0.429(9), leading to

0.41(3) < &34 < 0.46(2). (30)

Another, more graphical application of our simple boundmigissume some
reasonable value &f, and then to use Eq.(25) to construct a zone in the energy-
chemical potential plane that is forbidden at all tempersuln Fig.2, we took
& = 0.41, inspired by the fixed node upper bound on the exact valug [a2]:

The shaded area is the resulting forbidden zone, and the dilsks with error bars
represent the in principle exact Quantum Monte Carlo resflivarious groups at
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T = T.. The prediction of [11] lies within the forbidden zone. Theegiction of
[13] is well within the allowed zone, whereas the most reqgaetliction of [14] is
close to the boundary between the forbidden and the alloweds If one takes a
smaller value fog, the boundaries of the forbidden zone will shift as indidéty
the arrows on the figure. All this shows that simple reasasingy be useful to test
and guide numerical studies of the unitary gas.

1.4 Is the unitary gas attractive or repulsive ?

According to a common saying, a weakly interacting Fermi(gag| < 1) experi-
ences an effective repulsion for a positive scatteringtleag> 0, and an effective
attraction for a negative scattering lengtk: 0. Another common fact is that, in the
unitary limit |a] — +oo, the gas properties do not depend on the siga. &s the
unitary limit may be apparently equivalently obtained biitg the limita — +oco
or the limita— —oo, one reaches a paradox, considering the fact that the ygisar
does not have the same ground state energy than the idealdjaaranot be at the
same time an attractive and repulsive state of matter.

This paradox may be resolved by considering the case of twiicles in an
isotropic harmonic trap. After elimination of the centemofiss motion, and restric-
tion to a zero relative angular momentum to haweave interaction, one obtains

0.55—— — ——
e
- : 3© )
Burovski ,&‘e’& .\o\ﬂ\
L & ' |
0.5 % SR
I xe ]

Goulko Bulgac

, S

0.4 4

M(T)/E,
5

T

\ \ \
0.35 0.4 0.45 0.

’ E(T)/NE,

| |
0332 025 o

Fig. 2 For the spin balanced uniform unitary gas at thermal equilib: Assumingé = 0.41 in
Eq.(25) defines a zone (shaded in gray) in the plane enemgyichl potential that is forbidden
at all temperatures. The black disks correspond to the sabBi®uantum Monte Carlo results of
Burovski et al. [11], of Bulgac et al. [13], and of Goulko et Hl4] at the critical temperature.
Taking the unknown exact value éf which is below the fixed node upper bound 0.41 [12], will
shift the forbidden zone boundaries as indicated by thewstro
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the radial Schrodinger equation

2
_g_ﬂ Lﬂ’/(r) + %W(r)} + %Nwzrzw@) = Eetp(r), (31

with the relative masgt = m/2. The interactions are included in the zero range
limit by the r = 0 boundary conditions, the so-called Wigner-Bethe-Pemvhtact
conditions described in section 2:

Y(r)=Ar*—a*]+0(r) (32)

that correctly reproduce the free space scattering andglitu

k T oaliik

f2ero range_ 1 (33)

The general solution of Eq.(31) may be expressed in terms fuftskerM et W
functions. For an energlf¢| not belonging to the non-interacting spectrl:ﬂ(‘r% +
2n)hw,n € N}, the Whittaker functioM diverges exponentially for largeand has
to be disregarded. The smalbehavior of the Whittaker functiow, together with
the Wigner-Bethe-Peierls contact condition, leads to thglicit equation for the
relative energy, in accordance with [15]:

r 3 E;

( 4 ZH(ef.l) ) a‘frelcl (34)
1 Eey

(Ziﬁ o.l)) 2a

with the harmonic oscillator length of the relative motiaf§ = A/ (uw)]Y/2.

The functionrl (x) is different from zerovx € R and diverges on each non-
positive integers. Thus Eq.(34) immediately leads in theamycase to the spectrum
Erel € {(2n+1/2)hw,n € N}. This can be readily obtained by setting in Eq.(31)
Y(r)=f(r)/r, so thatf obeys Schrodinger’s equation for a 1D harmonic oscillator
with the constraint issuing from Eq.(32) thegr = 0) # 0, which selects the even
1D states.

The graphical solution of Eq.(34), see Fig. 3, allows to hesthe paradox about
the attractive or repulsive nature of the unitary gas. Baytiag with the ground
state wavefunction of the ideal gas case, of relative enExgy= %ﬁw, it appears
that the two adiabatic followings (= 0" — a= + and (i)a= 0" — — lead
to differentfinal eigenstates of the unitary case, to an excited &ate- gh_w for
the procedure (i), and to the ground sthtg = 3hew for procedure (ii).

The same explanation holds for the many-body case: Theaitieg gas has
indeed several energy branches in the BEC-BCS crossoveygiested by the
toy model® of [16], see Fig. 4. Starting from the weakly attractive Fegas and
ramping the scattering length down-t@o one explores a part of the ground energy

1 This toy model replaces the many-body problem with the oreroftterwave interacting with a
single scatterer in a hard wall cavity of raditisl/keg .
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branch, where the unitary gas is attractive; this groundditr@ontinuously evolves
into a weakly repulsive condensate of dimers [17] fafurther moves from 0 to

0" and then to+. The attractive nature of the unitary gas on the ground gnerg
branch will become apparent in the lattice model of sectio®12 the other hand,
starting from the weakly repulsive Fermi gas and rampingstiatering up tofoo,
one explores an effectively repulsive excited branch.

In the first experiments on the BEC-BCS crossover, the grdwadch was ex-
plored by adiabatic variations of the scattering length wad found to be stable.
The first excited energy branch was also investigated in &nky evork [18], and
more recently in [19] looking for a Stoner demixing instélibf the strongly re-
pulsive two-component Fermi gas. A difficulty for the studytlis excited branch
is its metastable character: Three-body collisions griytransfer the gas to the
ground branch, leading e.g. to the formation of dimers4f k-a < 1.

Fig. 3 For the graphical solu-
tion of Eq.(34), which gives
the spectrum for two parti-
cles in a three-dimensional
isotropic harmonic trap, plot
of the function fap(x) =

r(§-%)/I(5-3%) wherex 8765432101723
stands foiEel/ (hw). X

Fig. 4 In the toy model of I

[16], for the homogeneous 1’_4 7
two-component unpolarized E‘- r K—_
Fermi gas, energy per particle =

on the ground branch and 5 |
the first excited branch as
a function of the inverse
scattering length. The Fermi

wavevector is defined in 2k 4
Eq.(8), Er = R?kZ /(2m) is ‘ | ‘ ‘ !
the Fermi energy, andis the -10 - 10

scattering length.
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1.5 Other partial waves, other dimensions

We have previously considered the two-body scattering énag in thes-wave
channel. What happens for example in fieave channel ? This channelis relevant
for the interaction between fermions in the same interrekestwhere a Feshbach
resonance technique is also available [20, 21]. Can oneedst the unitarity limit
Eq.(4) in thep-wave channel ?

Actually the optical theorem shows that relation Eq.(3pdlelds for thep-wave
scattering amplituddy. What differs is the lowk expansion ofu(k), that is now
given by

u(k) ta+..., (35)

1
= o7
where’s is the scattering volume (of arbitrary sign) amdhas the dimension of the
inverse of a length. The unitary limit would requinék) negligible as compared to
k. One can in principle tungs to infinity with a Feshbach resonance. Can one then
have a small value af at resonance ? A theorem for a compact support interaction
potential of radiud shows however that [22, 23]

lim o>1/b. (36)
[ 75| =+

A similar conclusion holds using two-channel models of tshbach resonance
[23, 24].a thus assumes a huge positive value on resonance, whictstiteagcale
invariance and precludes the existence pfwave unitary gas. This does not prevent
however to reach the unitary limit in thecinity of a particular value ok. For 75

large and negative, neglecting the in Eq.(35) under the conditiokb <« 1, one
indeed hasu(k)| < k, so thatfy ~ —1/(ik), in a vicinity of

1

o= e

(37)

Turning back to the interaction in treewave channel, an interesting question is
whether the unitary gas exists in reduced dimensions.

In a one-dimensional system the zero range interaction reapddeled by a
Dirac potentialV (x) = gd(x). If g is finite, it introduces a length scafé/(mg)
that breaks the scaling invariance. Two cases are thusgdaWariant, the ideal
gasg = 0 and the impenetrable cas¢dgl= 0. The impenetrable case however is
mappable to an ideal gas in one dimension, it has in partitheasame energy
spectrum and thermodynamic properties [25].

In a two-dimensional system, the scattering amplitude fara range interaction
potential is given by [26]

D 1
W = ka2 %)
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wherey = 0.57721566.. is Euler’s constant anapp is the scattering length. For a
finite value ofayp, there is no scale invariance. The cagg — 0 corresponds to the
ideal gas limit. At first sight, the opposite limibp — + is a good candidate for
a two-dimensional unitary gas; however this limit also esponds to an ideal gas.
This appears in the 2D version of the lattice model of seci¢p7]. This can also
be checked for two particles in an isotropic harmonic trap&adating out the center
of mass motion, and taking a zero angular momentum statbémefative motion,
to have interaction in the-wave channel, one has to solve the radial Schrodinger
equation:
ﬁz " 1 / 1 2.2

—E[‘l’ () +—w (Nl+ SHWTY(r) = Ereitp(r) (39)
whereu = m/2 is the reduced mass of the two particlEg is an eigenenergy of
the relative motion, and is the single particle angular oscillation frequency. The
interactions are included by the boundary condition#a0:

Y(r) =Aln(r/agzp) + O(r), (40)

which is constructed to reproduce the expression of théesoag amplitude Eq.(38)
for the free space problem.

The general solution of Eq.(39) may be expressed in termdutta¥er functions
M andW. Assuming thatE does not belong to the ideal gas spectr{if2n +
1)hw,n € N}, one finds that th#! solution has to be disregarded because it diverges
exponentially for — +oc0. From the smali behavior of th&V solution, one obtains
the implicit equation

1 hw — Ee re
ELI-’ (%) +y=—In(axp/a%) (41)

where the relative harmonic oscillator lengtiai§ = [/ (1 w)]*/2 and the digamma
function ¢ is the logarithmic derivative of thE function. If a,p — 0, one then

finds thatEe tends to the ideal gas spectryti2n+ 1)hw,n € N} from below, see

Fig. 5, in agreement with the lattice model result that theg2ld with a large and
finite ayp is a weakly attractive gas.

2 Various models and general relations

There are basically two approaches to model the interattidween particles for
the unitary gas (and more generally for the BEC-BCS cros3ove

In the first approach, see subsections 2.1 and 2.3, one takeslal with a fi-
nite rangeb and a fixed (e.g. infinite) scattering length This model may be in
continuous space or on a lattice, with one or several chaniiélen one tries to
calculate the eigenenergies, the thermodynamic propédrtien the thermal density
operator] exp(—H), etc, and the zero range lintit— 0 should be taken at the
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end of the calculation. Typically, this approach is foll@hie numerical many-body
methods, such as the approximate fixed node Monte Carlo thé¢t2p 28, 29] or
unbiased Quantum Monte Carlo methods [11, 13, 30]. A nasatrijuestion how-
ever is whether each eigenstate of the model is univershgéindro range limit, that
is if the eigenenergl; and the corresponding wavefunctignconverge fob — 0.
In short, the challenge is to prove that the ground stateggrarthe system does
not tend to—c whenb — 0.

In the second approach, see subsection 2.2, one directydsoa the zero range
limit, and one replaces the interaction by the so-calledn&feBethe-Peierls con-
tact conditions on th&l-body wavefunction. This constitutes what we shall call the
zero-range modelThe advantage is that only the scattering length appeatsin
problem, without unnecessary details on the interactidnichvsimplifies the prob-
lem and allows to obtain analytical results. E.g. the saalariance of the unitary
gas becomes clear. A non-trivial question however is to kadwether the zero-
range model leads to a self-adjoint Hamiltonian, with a sp@c then necessar-
ily bounded from below for the unitary gas (see Section m#hout having to
add extra boundary conditions. Fir= 3 bosons, due to the Efimov effect, the
Wigner-Bethe-Peierls or zero-range model becomes s@fraanly if one adds an
extra three-body contact condition, involving a so-calleee-body parameter. In
an isotropic harmonic trap, at unitarity, there exists hasvea non-complete fam-
ily of bosonic universal states, independent from the tiregy parameter and to
which the restriction of the Wigner-Bethe-Peierls modéigsmitian [31, 32]. For
equal mass two-component fermions, it is hoped in the pbyg&rature that the
zero-range model is self-adjoint for an arbitrary numbepaiticlesN. Surpris-
ingly, there exist works in mathematical physics predtinat this isnotthe case
whenN is large enough [33, 34]; however the critical mass ratidlierappearance
of an Efimov effect in the unequal-mass-3 body problem given without proof
in [34] was not confirmed by the numerical study [7], and théateonal ansatz
used in [33] to show that the energy is unbounded below doekawe the proper
fermionic exchange symmetry. This mathematical problams tlemains open.

Fig. 5 For the graphical
solution of Eq.(41), which
gives the spectrum for two
interacting particles in a
two-dimensional isotropic
harmonic trap, plot of the
function fop(x) = Jy[(1-
x)/2] + y wherex stands for
Erel/(hw) and the special

F2p()
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2.1 Lattice models and general relations

2.1.1 The lattice models

The model that we consider here assumes that the spatisibpssare discretized
on a cubic lattice, of lattice constant that we ¢&dls the interaction range. Itis quite
appealing in its simplicity and generality. It naturallyoals to consider a contact
interaction potential, opposite spin fermions interagtimly when they are on the
same lattice site. Formally, this constitutes a separatitieryial for the interaction
(see subsection 2.3 for a reminder), a feature known to #yrgiagrammatic cal-
culations [35]. Physically, it belongs to the same clastiastubbard model, so that
it may truly be realized with ultracold atoms in optical le¢fs [36], and it allows to
recover the rich lattice physics of condensed matter pkyaid the corresponding
theoretical tools such as Quantum Monte Carlo methods [1]1, 3

The spatial coordinatasof the particles are thus discretized on a cubic grid of
stepb. As a consequence, the components of the wavevector of iglpdrave a
meaning modulo &/b only, since the plane wave function— exp(ik - r ) defined
on the grid is not changed if a componentkois shifted by an integer multiple of
2m/b. We shall therefore restrict the wavevectors to the firsii@rn zone of the
lattice:

T o3

5|
This shows that the lattice structure in real space aut@albtiprovides a cut-off
in momentum space. In the absence of interaction and of dogfpotential, eigen-
modes of the system are plane waves with a dispersion nelatio &, supposed
to be an even and non-negative functiorkofWe assume that this dispersion re-
lation is independent of the spin state, which is a naturalaghsince the and|
particles have the same mass. To recover the correct consrgpace physics in the
zero lattice spacing limib — 0, we further impose that it reproduces the free space
dispersion relation in that limit, so that

ke@z[ (42)

~—— for k : 4
& - or kb—0 (43)

The interaction between opposite spin particles takespldeen two particles are
on the same lattice site, as in the Hubbard model. In first igesthform, it is repre-
sented by a discrete delta potential:

V:%%h. (44)

The factor J/b?’ is introduced becausﬁ?’d’o is equivalent to the Dirac distribution
o(r) in the continuous space limit. To summarize, the lattice Hamian in second
quantized form in the general trapped case is
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d3k
H= O_ZN/@ Wfkcz(k)ca(k)+G:NZb3U(r)((p;wG)(r)

+00 3 (g w ) (r). (45)

The plane wave annihilation operatarg(k) in spin statec obey the usual con-
tinuous space anticommutation relatio{m%(k),cz,(k’)} = (2m)35(k — k') Oy if

k andk’ are in the first Brillouin zoné&, and the field operatorg,(r) obey the
usual discrete space anticommutation relatipuis(r ), w;,(r')} =b738,/854. In

the absence of trapping potential, in a cubic box with &izeteger multiple ofb,

with periodic boundary conditions, the integral in the kinenergy term is replaced
by the sumy .o £kc”:l06ka where the annihilation operators then obey the discrete
anticommutation relationgfkg,él,a,} = O Ogo fOrk. k' € 2.

The coupling constarty is a function of the grid spacing. It is adjusted to
reproduce the scattering length of the true interactiore 3d¢attering amplitude of
two atoms on the lattice with vanishing total momentum, tisatvith incoming
particles of opposite spin and opposite momenka, reads

oom [ d%k 1 -
flo =~ 4 {go /9 2nPE1i0" 28 (46)

as derived in details in [37] for a quadratic dispersiontietaand in [38] for a
general dispersion relation. Here the scattering stateggrie= 2, actually in-
troduces a dependence of the scattering amplitude on teetidin ofkg when the
dispersion relatiomy is not parabolic. If one is only interested in the expansibn o
1/ fy, up to second order iky, €.g. for an effective range calculation, one may con-
veniently use the isotropic approximatign= h_zkg/mthanks to (43). Adjustingg

to recover the correct scattering length gives from Eq.{d6k, — O:

1 1 dk 1

— = — =, 47

% 9 /z (2m)® 2¢ *7)
with g = 4nﬁza/m. The above formula Eq.(47) is reminiscent of the technigue o
renormalization of the coupling constant [39, 40]. A natease to consider is the
one of the usual parabolic dispersion relation,

?k?
=, 4
&= (48)
A more explicit form of Eq.(47) is then [41, 42]:
4nh?a/m
= — 4
% =T"Ka/b (49)

2 In the general cas@(k — k') has to be replaced withk 6(k —k’ —K) whereK ¢ (211/b)Z? is
any vector in the reciprocal lattice.
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with a numerical constant given by

/4
K = 1_712/ d6In(1+1/cof 0) = 2.442 749 607 806 335.,  (50)
0

and that may be expressed analytically in terms of the dip@gigl function.

2.1.2 Simple variational upper bounds

The relation Eqg.(49) is quite instructive in the zero ranggtlb — 0, for fixed non-
zero scattering length and atom numbenS,: In this limit, the lattice filling factor
tends to zero, and the lattice model is expected to convertheetcontinuous space
zero-range model, that is to the Wigner-Bethe-Peierls fraekeribed in subsection
2.2. For each of the eigenenergies this means that

ETO Ei(b) =E, (51)

where in the right hand side the setk are the energy spectrum of the zero range
model. On the other hand, for a small enough valué,ahe denominator in the
right-hand side of Eq.(49) is dominated by the teri{a/b, the lattice coupling
constanpy is clearly negative, and the lattice model is attractiveglesady pointed
out in [43]. By the usual variational argument, this showat the ground state en-
ergy of the zero range interacting gas is below the one oftdbal igas, for the same
trapping potential and atom numbes:

Eo < Edeal (52)

Similarly, at thermal equilibrium in the canonical ensemlihe free energy of the
interacting gas is below the one of the ideal gas:

F < Fideal (53)

As in [44] one indeed introduces the free-energy functiasfalhe (here lattice
model) interacting gasZ [p] = Tr[HP] + ksTTr[pInp], wherep is any unit trace
system density operator. Then

IR = FO)+ TR, 9

wherepided is the thermal equilibrium density operator of the idealigae lattice
model, andV is the interaction contribution to thé-body Hamiltonian. Since the
minimal value of #[p] over p is equal to the interacting gas lattice model free
energyF (b), the left hand side of Eq.(54) is larger thB(b). Since the operatdf

is negative for smalb, becausgg < 0, the right hand side of Eq.(54) is smaller than
Fidealh), Finally taking the limitb — 0, one obtains the desired inequality. The
same reasoning can be performed in the grand canonical bleseshowing that
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the interacting gas grand potential is below the one of tlkalidas, for the same
temperature and chemical potentigls

Q < Qe (55)

In [45], for the unpolarized unitary gas, this last ineqtyalias checked to be obeyed
by the experimental results, but it was shown, surprisirglype violated by some
of the Quantum Monte Carlo results of [11]. For the particezse of the spatially
homogeneous unitary gas, the above reasonings imply that in Eq.(14), so that
the unitary gas is attractive (in the ground branch, seeestion 1.4). Using the
BCS variational ansatz in the lattice mode}46] one obtains the more stringent
upper bound [40]:
& < é&pcs=0.5906... (56)

2.1.3 Finite-range corrections

For the parabolic dispersion relation, the expectatior{dag.was checked analyti-
cally for two opposite spin particles: For— 0, in free space the scattering ampli-
tude (46), and in a box the lattice energy spectrum, conuertpe predictions of the
zero-range model [42]. It was also checked numerically\fex 3 particles in a box,
with two 1 particles and ong particle: As shown in Fig. 6, for the first low energy
eigenstates with zero total momentum, a convergence oéttied eigenenergies to
the Wigner-Bethe-Peierls ones is observed, in a way thatistaally linear inb for
small enough values df. As discussed in [38], this asymptotic linear dependence
in b is expected for Galilean invariant continuous space models the first order
deviations of the eigenergies from their zero range valoedirzear in the effective
ranger. of the interaction potential, as defined in Eq.(5), with medddependent
coefficients:

dE

an (b— 0) is model-independent (57)
e

However, for lattice models, Galilean invariance is broker the scattering be-
tween two particles depends on their center-of-mass mamerthis leads to a
breakdown of the universal relation (57), while preserving linear dependence
of the energy withb at lowb [47].

A procedure to calculatr in the lattice model for a general dispersion relatipn
in presented in Appendix 1. For the parabolic dispersioatiah Eq.(48), its value
was given in [46] in numerical form. With the technique expdg Appendix 1, we
have now the analytical value:

3 One may check, e.g. in the sectdr= N; = 2, that the BCS variational wavefunction, which is a
condensate of pairs in some pair wavefunction, does not titseWigner-Bethe-Peierls boundary
conditions even if the pair wavefunction does, so it lootesgdriational character in the zero-range
model.



20 Yvan Castin and Félix Werner

rgarab—p 12\3[2 arcsin-— = 0.336 868 47..b, (58)
T V3
The usual Hubbard model, whose rich many-body physics iswed in [48], was
also considered in [46]: It is defined in terms of the tunreemplitude between
neighboring lattice sites, hete= —h?/(2mk?) < 0, and of the on-site interaction
U = go/b>. The dispersion relation is then

ﬁZ
— -5 Y [1-coskeb)] (59

a=xXyz

&k

where the summation is over the three dimensions of spaaepibduces the
free space dispersion relation only in a vicinitylof= 0. The explicit version of
Eq.(47) is obtained from Eq.(49) by replacing the numericaistanK by KHUb =
3.175911... In the zero range limit this leads far~ 0 toU /|t| — —7.913552.. .,
corresponding as expected toattractiveHubbard model, lending itself to a Quan-
tum Monte Carlo analysis for equal spin populations with igo problem [11, 13].
The effective range of the Hubbard model, calculated as ipefplix 1, remarkably
is negative [46]:

riub ~ —0.305718. (60)
3 - > > .9 - - ¢
o ® ¢ ¢ .
3.1 Lt | |
2.895 e ¢
2.8% :
|
Fig. 6 Diamonds: The first =26 e M :
low eigenenergies for three O 26 weee ‘
(114) fermions in a cubic box (NN il -
with a lattice model, as func- 252 R
tions of the lattice constarht 2 A% m——st |
[42]. The box size id., with ’
periodic boundary conditions, L 1.7% Sereg,
the scattering length is infi- i S,
nite, the dispersion relation is 1.72 \ \ s
parabolic Eq.(48). The unit of 1.46¢
energy isEp = (2rh)2/2mL2. i IRAR SR,
Straight lines: Linear fits 1.44- T
performed on the data over 0 o : *
the rangeb/L < 1/15, ex- 9 . ot
cept for the energy branch H JEPEE
E ~ 2.89E, which is linear on a—et
a smaller range. Starsin= 0: 0.7% : \ \
Eigenenergies predicted by 0 0.05 0.1
the zero-range model. b/L



The Unitary Gas and its Symmetry Properties 21

It becomes thus apparent that ad hoctuning of the dispersion relatiogxy may
lead to a lattice model with a zero effective range. As an g@tanwe consider a
dispersion relation

ﬁ2k2
~ 2m
whereC is a numerical constant less thaf8LFrom Appendix 1 we then find that

& [1—C(kb/m)?, (61)

re=0 for C=0.2570224.. (62)

The corresponding value gf is given by Eq.(49) withiK = 2.899952.. ..

As pointed out in [47], additionally fine-tuning the dispersrelation to can-
cel not onlyre but also another coefficient (denoted Byn [47]) may have some
practical interest for Quantum Monte Carlo calculationst thre performed with
a non-zerdb, by canceling the undesired linear dependence of thernzodigal
guantities and of the critical temperatdkeon b.

2.1.4 Energy functional, tail of the momentum distribution and pair
correlation function at short distances

A quite ubiquitous quantity in the short-range or large-neatam physics of gases
with zero range interactions is the so-called “contact”jolhrestricting here for
simplicity to thermal equilibrium in the canonical ensemfdan be defined by

=% (d(dlE/a>)s: T (72w, (©3)

For zero-range interactions, this quantfitydetermines the largk+ail of the mo-
mentum distribution

C
o) S i (64
as well as the short-distance behavior of the pair distidbufunction
/d3R d? (R+L R—L) . < (65)
: v 2" 2/ 10 (4mm)2

Here the spine momentum distributioms (k) is normalised ag %ng(k) = Ng.
The relations (63,64,65) were obtained in [49, 50]. Histalty, analogous relations
were first established for one-dimensional bosonic sys{bi$2] with techniques
that may be straightforwardly extended to two dimensiorgs tanee dimensions
[38]. Another relation derived in [49] for the zero-rangedrsbexpresses the energy
as a functional of the one-body density matrix:

d3k h%k? cl RC :
Eazm/ (2m7® 2m [”"(k)ﬁ]U—mﬁ UZN/ d°rU (1)po(r)  (66)
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wherepg(r) is the spatial number density.

One usually uses (64) to defieand then derives (63). Here we rather take (63)
as the definition ofc. This choice is convenient both for the two-channel model
discussed in Section 2.3 and for the rederivation of (68®b5that we shall now
present, where we use a lattice model before taking therzerge limit.

From the Hellmann-Feynman theorem (that was already pwéiiatin [51]), the
interaction energ¥i is equal tago(dE/dgp)s. Since we havel(1/go)/d(1/9) =1
[see the relation (47) betwegg andg], this can be rewritten as

R C
Eint = ﬁ & (67)
Expressing 1go in terms of ¥g using once again (47), adding the kinetic energy,
and taking the zero-range limit, we immediately get theti@te(66). For the integral
over momentum to be convergent, (64) must hold (in the atesefimathematical
pathologies).

To derive (65), we again use (67), which implies that thetiata
3 4(2) _ — C 2
Zb 9/ (R+r/2,R-r/2) (4n)2|<ﬂ(r)l (68)

holds forr = 0, were ¢(r) is the zero-energy two-body scattering wavefunction,
normalised in such a way that

(p(r):%—éforr»b (69)

[see [38] for the straightforward calculation gf(0)]. Moreover, in the regime
wherer is much smaller than the typical interatomic distances aad the thermal
de Broglie wavelength (but not necessarily smaller thiiit is generally expected
that ther-dependence cg%)(R +1/2,R —r1/2) is proportional to¢(r)|?, so that
(68) remains asymptotically valid. Taking the limiis+ 0 and themr — 0O gives the
desired (65).

Alternatively, the link (64,65) between short-range pairelations and largé-
tail of the momentum distribution can be directly deducexdhfrthe short-distance
singularity of the wavefunction coming from the contactdiion (75) and the cor-
responding tail in Fourier space [38], similarly to the amig) derivation in 1D [52].
Thus this link remains true for a generic out-of-equililnistatistical mixture of
states satisfying the contact condition [49, 38].

2.1.5 Absence of simple collapse
To conclude this subsection on lattice models, we try to @sklthe question of the

advantage of lattice models as compared to the standarthaous space model
with a binary interaction potenti#l(r) between opposite spin fermions. Apart from
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practical advantages, due to the separable nature of #r@ation in analytical cal-
culations, or to the absence of sign problem in the Quantumt®Garlo methods,
is there a true physical advantage in using lattice models ?

One may argue for example that everywhere non-positivedotion potentials
may be used in continuous space, such as a square well phtevith a range
dependent deptth(b) adjusted to have a fixed non-zero scattering and no two-body
bound states. E.g. for a square well potential) = —Vp08(b—r), whereb(x) is the
Heaviside function, one simply has to take

h2 /12
Vo= e (2) (70)
to have an infinite scattering length. For such an attradtitezaction, it seems then
that one can easily reproduce the reasonings leading tootneds Egs.(52,53). It
is known however that there exists a number of partibles the unpolarized case
N; = Ny, such that this model in free space has-hody bound state, necessarily
of energyl] —R?/(mt?) [53, 28, 54]. In the thermodynamic limit, the unitary gas is
thus not the ground phase of the system, it is at most a mblagihase, and this
prevents a derivation of the bounds Eqgs.(52,53). This trafalse is easy to predict
variationally, taking as a trial wavefunction the grounatstof the ideal Fermi gas
enclosed in a fictitious cubic hard wall cavity of stzé\/3 [55]. In the largeN limit,
the kinetic energy in the trial wavefunction is the8N /5)R?kZ /(2m), see Eq.(14),
where the Fermi wavevector is given by Eq.(8) with a density N/(b/+/3)3, so
that

ﬁZ
. 5/3
Ewin ON — (71)

Since all particles are separated by a distance lessithide interaction energy is
exactly
Eint = —Vo(N/2)? (72)

and wins over the kinetic energy fof large enough, 2808 N for the consid-
ered ansatz. Obviously, a similar reasoning leads to the samclusion for an ev-
erywhere negative, non-necessarily square well intemagibtential*. One could
imagine to suppress this problem by introducing a hard cepelsion, in which
case however the purely attractive naturé/oivould be lost, ruining our simple
derivation of Egs.(52,53).

The lattice models are immune to this catastrophic varafi@argument, since
one cannot put more than two spifi2lfermions “inside” the interaction potential,
that is on the same lattice site. Still they preserve thelpattractive nature of the
interaction. This does not prove however that their spetisibounded from below
in the zero range limit, as pointed out in the introductiothi$ section.

4 In fixed node calculations, an everywhere negative intEnagotential is used [12, 28, 29]. Itis
unknown ifN in these simulations exceeds the minimal value require@ve k bound state. Note
that the imposed nodal wavefunction in the fixed node methsuklly the one of the Hartree-Fock
or BCS state, would be however quite different from the onthefbound state.



24 Yvan Castin and Félix Werner

2.2 Zero-range model, scale invariance and virial theorem

2.2.1 The zero-range model

The interactions are here replaced with contact conditortheN-body wavefunc-
tion. In the two-body case, the model, introduced alreadigdpy32), is discussed in
details in the literature, see e.g. [56] in free space wherestattering amplitud

is calculated and the existence or 0 of a dimer of energy-h? /(2ua?) and wave-
functiongy(r) = (4ma)~Y2exp(—r /a)/r is discussedy being the reduced mass of
the two particles. The two-body trapped case, solved in [d&} already presented
in subsection 1.4. Here we present the model for an arbitta@ne ofN.

For simplicity, we consider in first quantized form the ca$e dixed number
N; of fermions in spin stat¢ and a fixed numbeN, of fermions in spin state,
assuming that the Hamiltonian cannot change the spin $t@roject theN-body
state vectof¥) onto the non-symmetrized spin state with fiefirst particles in
spin statel and theN; remaining particles in spin statg to define a scalaX-body
wavefunction:

NN
Y(X)= (W) (thraf@. (el @ (L) (73)
whereX = (ry,...,rn) is the set of all coordinates, and the normalization factor
ensures thay is normalized to unity. The fermionic symmetry of the state vector
allows to express the wavefunction on another spin stath @wiy different order of
1 and| factors) in terms ofy. For the considered spin state, this fermionic symmetry
imposes that is odd under any permutation of the fifgt positionsrs, ..., rn,, and
also odd under any permutation of the Ibstpositionsr, 11,...,In.

In the Wigner-Bethe-Peierls model, that we also call zamge model, the
Hamiltonian for the wavefunctiogy is simply represented by the same partial dif-
ferential operator as for the ideal gas case:

whereU is the external trapping potential supposed for simplititype spin state
independent. As is however well emphasized in the mathemafioperators on
Hilbert spaces [8], an operator is defined not only by a padiféerential operator,

but also by the choice of its so-calletbmainD(H). A naive presentation of this
concept of domain is given in the Appendix 2. Here the domaieschot coincide

with the ideal gas one. It includes the following WignerBe{eierls contact con-
ditions: For any pair of particleis j, whenrjj = |rj —rj| — O for a fixed position of

their centroidR;; = (ri +r;)/2, there exists a functiof;j such that

1/2
5 The inverse formula giving the full state vector in termsidi) is | &) = (%) AN
YNi| ), where the projectoh is the usual antisymmetrizing operatde= (1/N!) Y oes, £(0)Ps.
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W(X) = Aij (Rij; Nz j) (ri - —a ) + O(rij). (75)

These conditions are imposed for all valueRgfdifferent from the positions of the
other particlesy, k different fromi and j. If the fermionic particles andj are in
the same spin state, the fermionic symmetry impagses.,ri =rj,...) =0and one
has simplyAj; = 0. Fori andj in different spin states, the unknown functioks
have to be determined from Schrodinger’s equation, eggtteer with the energly
from the eigenvalue problem

Hy =Ey. (76)

Note that in Eq.(76) we have excluded the valuesXofvhere two particle posi-
tions coincide. Sincé, rijl = —4mnd(ri —rj), including these values would require
a calculation with distributions rather than with functspmith regularized delta in-
teraction pseudo-potential, which is a compact and sonestimseful reformulation
of the Wigner-Bethe-Peierls contact conditions [6, 56,581,

As already pointed out below Eq.(7%); =0 if i andj are fermions in the same
spin state. One may wonder if solutions exist such at= 0 even ifi andj are in
different spin states, in which cagewould simply vanish when;; — 0. These so-
lutions would then be common eigenstates to the interagésand to the ideal gas.
They would correspond in a real experimentto long lived esf&tes, protected from
three-body losses by the fact thatvanishes when two particles or more approach
each other. In a harmonic trap, one can easily construct‘sgchinteracting” solu-
tions, as for example the famous Laughlin wavefunction effhactional Quantum
Hall Effect. “Non-interacting” solutions also exists fquisless bosons. These non-
interacting states actually dominate the ideal gas dew$istates at high energy
[32, 55].

2.2.2 What is the kinetic energy?

The fact that the Hamiltonian is the same as the ideal gast fipen the domain,
may lead physically to some puzzles. E.g. the absence ghutten term may give
the impression that the ener@yis the sum of trapping potential energy and ki-
netic energy only. This is actually not so. The correct d#finiof the mean kinetic
energy, valid for general boundary conditions on the wavetion, is

h?
A 3Ny " 2
Ek.nf/d X 5 Ox . (77)

This expression in particular guaranties tkgh, > 0. If Ajj # 0 in Eq.(75), one
then sees that, although is square integrable in a vicinity af; = 0 thanks to
the Jacobiari] rﬁ coming from three-dimensional integration, the gradiehtpo
diverges as ﬂrﬁ and cannot be square integrable. Within the zero-range hoode
then obtains an infinite kinetic energy

ENBP = too. (78)
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Multiplying Eq.(76) by and integrating oveX, one realizes that the total energy
is split as the trapping potential energy,

N
Erap= [ X |WOOP 5 V() (79
i=
and as the sum of kinetic plus interaction energy:

ﬁZ
Ban+ B =~ [ d™X oy (80)

This means that the interaction energy-is in the Wigner-Bethe-Peierls model.
All this means is that, in reality, when the interaction hasoa-zero range, both
the kinetic energy and the interaction energy of intergcgiarticles depend on the
interaction rangd, and diverge fob — 0, in such a way however that the sum
Exin + Eint has a finite limit given by the Wigner-Bethe-Peierls modek Wave
seen more precisely how this happens for lattice modelsdticse2.1.4, see the
expression (67) o, and the subsequent derivation of (66).

2.2.3 Scale invariance and virial theorem

In the case of the unitary gas, the scattering length is tefisd that one setya==0
in Eq. (75). The domain of the Hamiltonian is then imposeddadnvariant by any
isotropic rescaling Eq.(11) of the particle positions. &yloecise, we define for any
scaling factoir > O:

W(X/A)

I (X) = BETR (81)

and we impose thap, € D(H) for all ¢y € D(H). This is the precise mathematical
definition of the scale invariance loosely introduced insadtion 1.2. In particular,
it is apparent in Eq.(75) that, for/a = 0, ), obeys the Wigner-Bethe-Peierls con-
tact conditions ifyy does. On the contrary, i obeys the contact conditions for a
finite scattering lengtla, /, obeys the contact condition for a different, fictitious
scattering lengtla, = Aa+# aandD(H) cannot be scaling invariant.

There are several consequences of the scale invariance afaitmain of the
HamiltonianD(H) for the unitary gas. Some of them were presented in subsectio
1.2, other ones will be derived in section 3. Here we preseatheer application,
the derivation of a virial theorem for the unitary gas. Thisifirst step towards the
introduction of a SO(2,1) Lie algebra in section 3. To thisl,ewe introduce the
infinitesimal generatdD of the scaling transform Eq.(81), such tRat

6 For a continuous-space model with an interaction poteMia), we have [76, 38]E =
# Jd3rV (r)|e(r)|> whereC is still defined by (63) and(r) still denotes the zero-energy two-

body scattering state normalised according to (69).

7 The scaling transform (81) defines a unitary operdtok) such thaty, = T(A)y. One has
T(A1)T(A2) = T(A1A2). To recover the usual additive structure as for the grouppafial transla-
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P (X) =e PN y(x). (82)

Taking the derivative of Eq.(81) with respectXdn A = 1, one obtains the hermitian

operator

%x@+&00:%fm0x (83)

The commutator oD with the Hamiltonian is readily obtained. From the relation
AxWy (X) =A~2(AP)(X/A), one has

D=

| | 1
gbnA (H— Htrap)eilDln)\ = P(H — Htrap) (84)

whereHirap = ziN:lU (ri) is the trapping potential part of the Hamiltonian. It rengin
to take the derivative il = 1 to obtain

i[D,H — Hirag = —2(H — Hyap).- (85)

The commutator ob with the trapping potential is evaluated directly from B3):

i[D,Htrap) = _iri -0 U (ri). (86)
This gives finally
i[D,H] 2(HHtrap)+iri -0 U(r). (87)

The standard way to derive the virial theorem in quantum raeids [59], in a direct
generalization of the one of classical mechanics, is théakiothe expectation value
of [D,H] in an eigenstate of H of eigenenerg¥. This works here for the unitary
gas because the domd@i(H ) is preserved by the action Bf On one side, by having
H acting ony from the right or from the left, one trivially ha§D,H])y = 0. On
the other side, one has Eq.(87), so that

N
E.Z<U(I’i)+%ri~d—iU(ri)>w. (88)

This relation was obtained with alternative derivationthia literature (see [60] and

references therein). One of its practical interests isitltates access to the energy
from the gas density distribution [61]. As already mentidtae scale invariance of

the domain oH is crucial to obtain this result. If fais non zero, a generalization of
the virial relation can however be obtained, that invold€gd(1/a), see [62, 63].

tions, one setd = expB, so thatT (61)T(62) = T(61+ 62) andT(6) = exp(—iOD) whereD is
the generator. This is why happears in Eq.(82).
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2.3 Two-channel model and closed-channel fraction

2.3.1 The two-channel model

The lattice models or the zero-range model are of courseatrasimplifications
of the real interaction between two alkali atoms. At largieliatomic distances,
much larger than the radius of the electronic orbitals, oag hope to realistically
represent this interaction by a functiviir) of the interatomic distance, with a van
der Waals attractive taW (r) ~ —Cg/r%, a simple formula that actually neglects
retardation effects and long-range magnetic dipole-@iptkractions. As discussed
below the gas phase condition Eq.(1), this allows to estimaiith the so-called van
der Waals length, usually in the range of 1-10 nm.

At short interatomic distances, this simple picture of dadateraction potential
V(r) has to be abandoned. Following quantum chemistry or maeptlysics meth-
ods, one has to introduce the various Born-Oppenheimenpakeurves obtained
from the solution of the electronic eigenvalue problem feedi atomic nuclei posi-
tions. Restricting to one active electron of spif2Iper atom, one immediately gets
two ground potential curves, the singlet one corresponttirthe total spirS= 0,
and the triplet one corresponding to the total spia 1. An external magnetic field
B is applied to activate the Feshbach resonance. This madisdi couples mainly
to the total electronic spin and thus induaifferentZeeman shifts for the singlet
and triplet curves. In reality, the problem is further corogied by the existence of
the nuclear spin and the hyperfine coupling, that couplesitigdet channel to the
triplet channel for nearby atoms, and that induces a hypesjitting within the
ground electronic state for well separated atoms.

A detailed discussion is given e.g. in [64, 65]. Here we take simplified
view depicted in Fig.7: The atoms interagh two potential curvesyoper(r) and
VelosedT). Atlarge distance/oper(r) conventionally tends to zero, wheré&gsedr)
tends to a positive valué., one of the hyperfine energy level spacings for a single
atom in the applied magnetic field. In the two-body scatteproblem, the atoms
come fronr = 4 in the internal state correspondindiger(r ), the so-called open
channel, with a kinetic enerdy < V... Due to a coupling between the two channels,
the two interacting atoms can have access to the internal&aresponding to the
curveVeosed ), but only at short distances; at long distances, the extatnenic
wavefunction in this so-called closed channel is an evamdswave that decays
exponentially withr sinceE < V.

Now assume that, in the absence of coupling between the elsithe closed
channel supports a bound state of endfgycalled in what followsthe molecular
state or the closed-channel moleculdssume also that, by applying a judicious
magnetic field, one tunes the energy of this molecular state¢o zero, that is to
the dissociation limit of the open channel. In this case oag expect that the scat-
tering amplitude of two atoms is strongly affected, by a neswe effect, given the
non-zero coupling between the two channels. This is in egsbaw the Feshbach
resonance takes place.
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The central postulate of the theory of quantum gases istibattort range details
of the interaction are unimportant, only the low-momentwattering amplitude
fx between two atoms is relevant. As a consequence, any siatpiifodel for the
interaction, leading to a different scattering amplitdﬂ@de', is acceptable provided
that

fmodel ~ f, (89)

for the relevant values of the relative momentkipopulated in the gas. We insist
here that we impose similar scattering amplitudes over sommentum range, not
just equal scattering lengtlas For spin 1/2 fermions, typical values lotan be

kyp € {@ ke, Age (90)

where the Fermi momentum is defined in Eq.(8) and the therm&rdglie wave-
length in Eq.(9). The appropriate value lafp, depends on the physical situation.
The first choiceky, ~ a1 is well suited to the case of a condensate of dimers
(a> 0) since it is the relative momentum of two atoms forming thmet. The sec-
ond choicekyp ~ ke is well suited to a degenerate Fermi gas of atoms (not dimers)
The third choicekyp ~ A~ is relevant for a non-degenerate Fermi gas.

The strategy is thus to perform an accurate calculationeofttiie” fy, to identify
the validity conditions of the simple models and of the unyiteegime assumption
Eqg.(4). One needs a realistic, though analytically trdetainodel of the Feshbach
resonance. This is provided by the so-calted-channemodels [65, 66, 67]. We
use here the version presented in [68], which is a particzdae of the one used
in [64, 69] and Refs. therein: The open channel part consfdise original gas of
spin 1/2 fermions that interactia a separable potential, that is in first quantized
form for two opposite spin fermions, in position space:

ri+ra ri+rt
rraienrsry) = 8 (P2 - B aox(ra-rox(s-rh). (@D

This potential does not affect the atomic center of masst sonserves total mo-
mentum and respects Galilean invariance. Its matrix elémnenlves the product

Fig. 7 Simple view of a Fes-
hbach resonance. The atomic
interaction is described by
two curves (solid line: open
channel, dashed line: closed
channel). When one neglects
the interchannel coupling

A, the closed channel has a
molecular state of enerds,
close to the dissociation limit
of the open channel. The en-
ergy spacing/. was greatly
exaggerated, for clarity.
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of a function of the relative position in the ket and of the safomction of the rel-
ative position in the bra, hence the naseparableThe separable potential is thus
in general non local. As we shall take a functigrof width ~ b this is clearly not
an issue. The coupling constamtof the separable potential is well-defined by the
normalization condition fog, [ d®r x(r) = 1. In the presence of this open channel
interaction only, the scattering length between fermitims,so-called background
scattering lengtha,g, is usually small, of the order of the potential rarigéence
the necessity of the Feshbach resonance to reach the umitéry

In the closed channel part, a single two-particle stateps, kke one correspond-
ing to the molecular state, of ener@y and of spatial rangeS b. The atoms thus
exist in that channel not in the form of spifiZfermions, but in the form of bosonic
spinless molecules, of mass twice the atomic mass. The iogupttween the two
channels simply corresponds to the possibility for eaclobas decay in a pair of
opposite spin fermions, or the inverse process that two sifgspin fermions merge
into a boson, in a way conserving the total momentum. Thigpait Bose-Fermi
conversion may take place only if the positiansandr, of the two fermions are
within a distancd, and is thus described by a relative position dependentiardpl
AX(r1—r2), where for simplicity one takes the same cut-off functjpms in the
separable potential. It is important to realize that theeBBsrmi conversion effec-
tively induces an interaction between the fermions, whiebdmes resonant for the
right tuning ofE, and leads to the diverging total scattering lenath

The model is best summarized in second quantized form [68hducing the
fermionic field operatorgi;(r), o =t,J, obeying the usual fermionic anticommu-
tation relations, and the bosonic field operapgfr ) obeying the usual bosonic com-
mutation relations:

R R
_ [ 43 T T _
H= / dr LZN Yo ( oo +U> Yo+ W, <Eb amr +Ub) ‘.Ub‘| (92)
+A / d3rid®rox(ri—ro) {t,ug[(rl +12) /2], (r1) s (r2) + h.c.}
+go/d3Rd3rd3r’X(r)X(r’)w;(R — 12 (R+1/2)w,(R+1'/2) s (R—1'/2),
whereU (r) andUp(r) are the trapping potentials for the fermions and the bosons,
respectively.
2.3.2 Scattering amplitude and universal regime
In free space, the scattering problem of two fermions is #yaolvable for a Gaus-
sian cut-off functiony (r) 0 exg—r?/(2b%)] [64, 68]. A variety of parameteriza-
tions are possible. To make contact with typical notatiovesassume that the en-

ergy Ep of the molecule in the closed channel is an affine functiorhefrhagnetic
field B, a reasonable assumption close to the Feshbach resonance:
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En(B) = E§ + (B —Bo) (93)

whereBy is the magnetic field value right on resonance gpds the effective mag-
netic moment of the molecule. Then the scattering lengtthimodel Eq.(92) can
be exactly written as the celebrated formula

AB
a.:abg(l—BBO)7 (94)

whereAB, such thaIEg + UpAB = A?/qgp, is the so-called width of the Feshbach
resonance. As expected, fiB — Bg| > |AB|, one finds that tends to the back-
ground scattering length,g solely due to the open channel interaction. WAB
one forms a lengtR, [70] which is always non-negative:

R A2
R. = MapghAB (2nbE8> ’ (95)

where the factor & is specific to our choice gf. Physically, the lengtlR, is also
directly related to the effective range on resonance:

4b
res= -2 — 96
e R* =+ \/ﬁv ( )
where the numerical coefficient in the last term depends erchoice ofyx. The
final result for the scattering amplitude for the model EB)(8

1 e a k2 , :
R ik + — [1— (1— 5g) W} —ikerf(—ikb) 97)

where erf is the error function, that vanishes linearly irozeand the wavevect@),
such that 1

~ BgR (1 ang/a)’ (%8)

Q= B (9oEp—A?)
Y%
may be real or purely imaginary.

The unitary limit assumption Eq.(4) implies that all thentsrin the right hand
side of Eq.(97) are negligible, except for the first one. W& d@scuss this assump-
tion, restricting for simplicity to an infinite scatteringrigtha—! = 0 (i.e. a magnetic
field sufficiently close to resonance) and a typical relati@mentunky, = ke (i.e.

a degenerate gas). To satisfy Eq.(89), wijff?®'= —1/(ik), one should then have,
in addition to the gas phase requiremkth < 1, that

kR,

m < 1 vke [0,ke]. (99)
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Table 1 summarizes the corresponding conditions to reachrfiary limit® ° Re-
markably, the conditiokg|rgS < 1 obtained in Eq.(6) from the expansion offi
to orderk? is not the end of the story. In particular,dhg < 0, Q2,s= —1/(apgR.)

is positive and 1 fy diverges folk = Qs if the location of this divergence is within
the Fermi sea, the unitary limit is not reachable. This fuoage however requires
huge values oR.apg, that is extremely small values of the resonance witih

h2k2

[oAB| < = (100)
This corresponds to very narrow Feshbach resonances [Hgsevexperimen-
tal use requires a good control of the magnetic field homageraad is more
delicate. Current experiments rather use broad Feshbacdmasces such as on
lithium 6, wherers = 4.7nm [72], apg = —74 nm,R, = 0.027nm [73], leading
to 1/(|apg|R:)Y/? = 700(um)~* much larger tharke ~ a few (um)~1, so that the
unitary limit is indeed well reached.

Table 1 In the two-channel model, conditions deduced from Eq.(88pplementary to the gas
phase conditiofgb < 1) to reach the unitary limit for a degenerate gas of spin éfghfons of
Fermi momentunkg. It is assumed that the magnetic field is tuned right on resmmaso that the
scattering length is infinite. The last column corresporndsatrow Feshbach resonances satisfying
Eq.(100).

ke \/[apg|Re < 1 ke \/lapg|R. > 1
apg > 0 keR. <1 (R./apg)"/? < 1
apg <0 keR, < 1 unreachable

2.3.3 Relation between number of closed channel moleculesdi“contact”

The fact that the two-channel model includes the underlgiiognic physics of the
Feshbach resonance allows to consider an observable thampdy absent from
single channel models, namely the number of molecules inltds=d channel, rep-
resented by the operator:

No= [ e g(r)n(r) (101)

whereys, is the molecular field operator. The mean numiéy) of closed channel
molecules was recently measured by laser molecular excitegchniques [74].

8 We discarded for simplicity the rather peculiar case wikerg/|apg|R. is < 1 but not< 1.

9 An additional condition actually has to be imposed to haveimausal gas, as we will see after
Eq.(106).
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This mean number can be calculated from a two-channel mgdaldirect ap-
plication of the Hellmann-Feynman theorem [75, 68] (see Bi§]). The key point
is that the only quantity depending on the magnetic field éHlamiltonian Eq.(92)
is the internal energf,(B) of a closed channel molecule. At thermal equilibrium
in the canonical ensemble, we thus have

dE dE
(5).- w5 (102

Close to the Feshbach resonance, we may assumé&ghatan affine function of
B, see EQ.(93), so that the scattering lenathepends on the magnetic field as in
Eq.(94). Parameterizing in terms of the inverse scattering length rather tBawe

can replacelE/dB by dE/d(1/a) timesd(1/a)/dB. The latter can be calculated
explicitly from (94). Thus

2
(Np) = %TR* (1- %) , (103)
whereC is the contact defined in Eq.(63), and we introduced the FeRgtdefined
in Eq.(95).

If the interacting gas is in the universal zero range regitsesnergyE depends
on the interactions only via the scattering length, indejeerly of the microscopic
details of the atomic interactions, and its dependencelyiétimay be calculated by
any convenient model. Then, at zero temperature, for thelariped cas®\; = N|,
the equation of state of the homogeneous gas can be expesssed

= (). (104)

wheregey ande'gea' are the ground state energy per particle for the interag@sgand
for the ideal gas with the same density, and the Fermi wavervke was defined
in Eq.(8). In particularf (0) = &, where the numbef was introduced in Eq.(14).
Setting{ = —f'(0), we have for the homogeneous unitary gas

Chom 2
v ¢ 5—nké, (105)
so that hom
N 3
{ blzl = keR 7 (106)

This expression is valid for a universal gas consisting hgadh fermionic atoms,
which requires thatN,)"™/N < 1, i. e.keR+ < 1. This condition was already
obtained in§2.3.2 for the broad resonances of the left column of Tablenthé
more exotic case of the narrow resonances of the second nadfifable 1, this
condition has to be imposed in addition to the ones of Table 1.
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2.3.4 Application of general relations: Various measuremets of the contact

The relation (103) allowed us to extract in [68] the con2df the trapped gas [re-
lated to the derivative of the total energy of the trappedvim&63)] from the values
of Ny measured in [74]. The result is shown in Fig.8, together aitiheoretical
zero-temperature curve resulting from the local densifyraximation in the har-
monically trapped case whetl(r) = my, w2xZ, the functionf of (104) being
obtained by interpolating between the fixed-node MontdeGdata of [29, 77] and
the known asymptotic expressions in the BCS and BEC I#hits

While this is the first direct measurements of the contacthim BEC-BCS
crossover, it has also been measured more recently:

e using Bragg scatteringja the large-momentum tail of the structure factor, di-
rectly related by Fourier transformation to the shortatise singularity Eq.(65)
of the pair correlation function [78], see the cross at uititén Fig.8

e viathe tail of the momentum distribution Eq.(64) measured hypthy turning
off both trapping potential and interactions [79], see tipasses in Fig.8

e via (momentum resolved) radio-frequency spectroscopy [7P, 80
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Fig. 8 The contacC = ﬁ 4—’ﬁT2—m of a trapped unpolarized Fermi gas. The circles are obtained
from the measurements () in [74], combined with the two channel model theory linkifid,)

toC [Eq.(103)]. The cross was obtained in [78] by measuring theeture factor. The squares were
obtained in [79] by measuring the momentum distributioriddoe: zero-temperature theoretical
prediction extracted from [29] as detailed in [68]. Here Begmi Wavevectok}:rap of the trapped
gas is defined bi? (KX2P)2 /(2m) = (3N)/3hw, with @ the geometric mean of the three oscillation

frequenciesw, andN the total atom number.

10 See [68] for details. The cusp at unitarity is of course aefact of this interpolation procedure.
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For the homogeneous unitary gas, the contact is conveyiexptessed in terms
of the dimensionless paramei@fsee (105)]. The experimental valde= 0.91(5)
was obtained by measuring the equation of state of the honeages gas (with the
technique proposed in [81]) and taking the derivative ofghergy with respect to
the inverse scattering length [Eq.(63)] (see [82] and th&rdaution of F. Chevy
and C. Salomon to this volume). From the fixed-node MontdeCealculations,
one gety ~ 1 by taking a derivative of the data of [29] for the functibnwhile
the data of [77] for the pair correlation function togethethvthe relation (65) give
{~0951

At unitarity, the contacC of the trapped gas is directly related to the contact
of the homogeneous gas, i.e. o Indeed the average over the trap can be done
analytically within the local density approximation, ydeig [68]

C 512 ¢
N k,t:'ap = s aA (107)

In conclusion, the smallness of the interaction range l¢éadsathematical sin-
gularities; at first sight this may seem to complicate thebfgnm as compared to
other strongly interacting systems; however these simigiela are well understood
and have a useful consequence: the existence of exacbrsatsulting from the
Hellmann-Feynman theorem [51] and from properties of therieo transform [52].
In particular this provides a “useful check on mutual cotesisy of various experi-
ments”, as foreseen in [83].

3 Dynamical symmetry of the unitary gas

In this section, we present some remarkable propertieseofitiitary gas, derived
from the zero-range model. The starting point is that theté@wolution of the gas
in a time dependent isotropic harmonic trap may be expressactly in terms of
a gauge and scaling transform, see subsection 3.1. Thigerple existence of a
S0O(2,1) dynamical (or hidden) symmetry of the system, a &pnoperty that we
shall link to concrete consequences, such as the existéraceaxactly decoupled
bosonic degree of freedom (the breathing mode of the gas)desection 3.2, or
the separability of thé&l-body wavefunction in hyperspherical coordinates, see sub
section 3.3, which holds both in an isotropic harmonic trad i free space and
has several important consequences such as the analgictbs of the trapped
three-body problem, see subsection 3.4. In subsec. 3.5 evthasxistence of the
undamped breathing mode to rederive a remarkable propethediomogeneous
unitary gas: its bulk viscosity vanishes. Subsection 3r&eons short-range scaling

11 This value is also compatible with the data of [77] for the tmeely density matrix, whose
short-range singular part is related by Fourier transfeionao the largek tail of the momentum
distribution [38].
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laws, which are related to the separability in hyperspla¢doordinates, but hold
for any scattering length and external potential.

3.1 Scaling solution in a time-dependent trap

In this section, we shall assume that the trapping potebki@l) introduced in

Eq.(74) is an isotropic harmonic potential. Whereas theoltygsis of harmonic-
ity may be a good approximation in present experiments fallsamough atomic
clouds, the isotropy is not granted and requires some axrpetal tuning that, to
our knowledge, remains to be done. On the other hand, we allgeneral time
dependence of the trap curvature, so that Schrodingeuatiem for theN-body

wavefunction defined in Eq.(73) is

2

S dx - SMa? (U)X Y(X.b), (108)

ihdy(X.t) = |-
where we recall thaX is the set of all particle coordinates, axt ) is the instanta-
neous angular oscillation frequency. The interaction keetwparticles is described
by the contact conditions Eq.(75), written here for theanyigas, that is foa 1 = 0:

. +O(rij). (109)
ij

Y(X) =

Let us consider the particular case, quite relevant expartially, where the gas
is initially at equilibrium in a static trapy(t = 0) = w. The gas is then in a statistical
mixture of stationary states, so we can assume that thaliNitbody wavefunction
is an eigenstate of the Hamiltonian with enefgyAt t > 0, the trap curvature is
varied, which leads to an arbitrary time depends(tf). In typical experiments, one
either sets abruptly(t) to zero, to perform a time of flight measurement, or one
modulateso(t) at some frequency to study the gas collective modes. Canewakqpr
the evolution of the system ? As shown in [58], the answerss g&we now explain.

In the absence of interactions, it is well known [84] tg&iX ,t) is deduced from
thet = 0 wavefunction by a simple gauge plus scaling ansatz:

ot imA (t
VXY = SE eXpllznﬁ]A Et;

whereA (t) =dA(t)/dt. Attimet = O, one clearly ha§(0) =0,

XZ] W(X/A(1),0), (110)

A(0)=1 and A(0)=0. (111)

Inserting this ansatz into Schrodinger’s equation (10&),0btain a Newton like
equation of motion foR:
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OJZ

Alt) = 80 W (A () (112)

to be solved with the initial conditions (111). We recallttha stands for theni-
tial angular oscillation frequency. The equation (112) is weltgd in the litera-
ture, under the name of the Ermakov equation [85], and is itiquéar amenable
to a linear form: One recognizes an equation for the distandée origin for a
two-dimensional harmonic oscillator of angular frequengy), as obtained from
Newton’s equation and from the law of equal areas. In pdeticif w(t) = wt is a
constant over some time interval(t) oscillates with a periodr/ ax; over that time
interval.
The global phasé(t) is given by

E (t dt

This suggests thaf still evolves at the stationary paceE/h provided that one
introduces a modified time, as done in [86] in a bosonic me#ah dientext:

tdt
T(t) = ) X2 (114)
We shall come back to this point below.

In presence of interactions, one has to check that the a(sa®) obeys the
contact conditions (109). First, the ansatz includes airggdtansform. As dis-
cussed in subsection 2.2, this preserves the contact camsliind the domain of
the Hamiltonian for the unitary gas. Second, the ansatod®d a quadratic gauge
transform. Turning back to the definition of the contact dtads, we select an ar-
bitrary pair of particles and j and we take the limitjj — O for a fixed centroid
positionR;j = (ri +rj)/2. In the gauge factor, the quantif = s, r2 appears.
The positiong of the particles other thanand j are fixed. What matters is thus
r?+r? that we rewrite as

1
I+ = 2Rj + 51 (115)
Rij is fixed.rjj varies but it appears squared in the gauge transform, so that
imA(t) , 1 1
2 /00 | — N B 11
eXp[zm 0/ ] [ri,— +O(“J)] o Ho) (116)

and the contact conditions are preserved by the gauge oramséven if the scatter-
ing lengtha was finite.

We thus conclude that the ansatz (110) gives the soluti@fatghe unitary gas.
This has interesting practical consequences. For measuterin position space,
one has simple scaling relations, not only for the mean thepsi(r,t) in each spin
componenu:
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po(r.0) = 535 Po(r/A(0).0) (117)

but also for higher order density correlation functionsr Egample, the second
order density correlation function defined in terms of therfienic field operators
as

gfg/(r,r’) = (lll;(r)wz_,(r’)wal(r’)wo—(r)), (118)
evolves in time according to the scaling
/ 1 ,
O (1.1',1) = Ae—mgfft),/(r//\ (t),r'/A(t),0). (119)

As a consequence, if one abruptly switches off the trappotgrgial at = 0", the
gas experiences a ballistic expansion with a scaling factor

At) = [1+ Y2, (120)

which acts as a perfect magnifying lens on the density digtion.

For non-diagonal observables in position space, somenreton is also ob-
tained, with the gauge transform now contributing. E.g. firet order coherence
function

gou(r.r') = (W wo(r)), (121)

which is simply the matrix element of the one-body densitgrapor betweerr, g|
and|r’, g), evolves according to

b 1.1') = 77 exp[iz”,}j Q- r'%} 0T /AM.FAD,0).  (122)

The momentum distribution, (k) in the spin componer is the Fourier transform
overr —r’ and the integral oveir +r’)/2 of the first order coherence function. For
a ballistic expansion, directly transposing to three disi@ms the result obtained in
[87] from a time dependent scaling solution for the one-disienal gas of impene-
trable bosons, one has that the momentum distribution didhstically expanding
unitary gas is asymptotically homothetic to the gas ingjzdtial density profile:

: 2ni\ ® Ak
t!Tan(k’t) = (@) Po (r = mﬁ) . (123)

We emphasize that the above results hold for an arbitrarpglasization, that is
for arbitrary numbers of particles in each of the two spitestar =1, |.. If the initial
state is thermal, they hold whatever the value of the tentpexalarger or smaller
than the critical temperatui. These results however require the unitary limit (in
particular|a| = +) and a perfectisotropy of the harmonic trap. If the expentak
goal is simply to have the ballistic expansion as a perfeamifging lens, these
two requirements remarkably may be removed, as shown in ii8&je is ready to
impose an appropriate time dependence to the scatterigthlett) and to the trap
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aspect ratio, in which case the ansatz (110) holds at alktitnethe particular case
of an isotropic trap, the procedure of [88] is straightforavip explain: If(t = 0)
obeys the contact conditions with a finite scattering lermgthe ansatz (110) obeys
the contact conditions for a scattering lengttt)a so one simply has to adjust the
actual scattering length in a time dependent way:

att)=A(t)a (124)

whereA evolves according to Eg.(112). As shown in the next subsecthe time
dependent solution in the unitary case, apart from progidonvenient scaling re-
lations on the density, is connected to several interestitnimsic properties of the
system, whereas the procedure of [88] does not imply sugbepties.

To be complete, we finally address the general case wheraittad wavefunc-
tion of the unitary gas is not necessarily a stationary statés arbitrary [89]. Then
the observables of the gas have in general a non-trivial tiepeendence, even for
a fixed trap curvature. If the trap curvature is time depehdea modify the gauge
plus scaling ansatz as follows:

imA (t)

W(th) = /\3N/2(t) eXplZﬁ/\ (t)XZ

GX/A ), (1)), (125)

wheret(t) is the modified time introduced in Eq.(113)t) evolves according to
Eq.(112) with the initial conditions (111), and the timepdadent wavefunctioy
coincides withy at timet = t = 0 and obeys the unitary gas contact conditions.
Then this ansatz obeys the contact conditions. When irserthe time dependent
Schrodinger equation (108), it leads to a Schrodingeagoun for { in the time
independent external potential fixed to the O trap:

2
iho; (X, 1) = fiAxwL}meXZ P(X,1). (126)
2m 2
The gauge plus scaling transform, and the redefinition oé tihmve then totally
cancelled the time dependence of the trap. If the initialefanction is an eigenstate
of energyE, as was previously the case, one simplefiés) = exp(—iET/h)y(t =
0) and one recovers the global phase factor in Eq.(110).

3.2 SO(2,1) dynamical symmetry and the decoupled breathing
mode

As shown in [90] for a two-dimensional Bose gas witfra interactions, the ex-
istence of a scaling solution such as Eq.(110) reflects achidgmmetry of the
Hamiltonian, the SO(2,1) dynamical symmetry. Followin@][8ve construct ex-
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plicitly this dynamical symmetry for the unitary gas and viw that it has inter-
esting consequences for the energy spectrum in a statiopgoharmonic trap.

Let us consider a gedankenexperiment: Starting from thieyngas is an energy
eigenstatay, we modify in an infinitesimal way the trap curvature durihg time
interval[0,t¢], and fort > t; we restore the initial trap curvature(t) = w(0) = .
Linearizing Eq.(112) aroundl = 1 fort > t¢, we see that the resulting change in the
scaling parametex is

At) —1=ge 29 g* 29 L O(g?) (127)

where ¢ is proportional to the infinitesimal curvature change. 8iAcoscillates
indefinitely at frequency @, this shows the existence of an undamped mode of
frequency 2v. This conclusion actually extends to excitations dufihgs] of arbi-
trarily large amplitudes, as noted below Eq.(112) [90].

We calculate the resulting change in tédody wavefunction, expanding Eq.(110)
to first order ing, putting in evidence the components that oscillate with rHod
quenciest2w:

W(X,t) = &9 [e BV _ ggriE+2n/m _’_g*efi(EfZﬁw)t/ﬁLi} W(X,0) + O(&2).
(128)
The time independent phasedepends on the details of the excitation procedure.
We have introduced the operators

L, — +iD + % - %’xz (129)
whereD is the generator of the scaling transforms, as defined irBBy.&ndL . =
L. We then read on Eq.(128) the remarkable property that ttienaof L, on an
energy eigenstatgy of energyE produces an energy eigenstate of endigy2hw
12 Similarly, the action ol._ on g produces an energy eigenstate of endkgy
2hw, or eventually gives zero since the spectrum is bounded frelow byE > 0
according to the virial theorem (88) applied Wqr) = %mwzrz. We see that the
spectrum has thus a very simple structure, it is a colleaf@emi-infinite ladders,
each ladder being made of equidistant energy levels sepbbgt hw, see Fig. 9,
andL. acting respectively as a raising/lowering operator in gtatcture. Within
each ladder, we cally the wavefunction corresponding to the ground step of that
ladder, such that

L_yg=0. (130)

As shown in [90], this structure implies a dynamical SO(Zymmetry, mean-
ing that the Hamiltoniamd is part of the SO(2,1) Lie algebra. One starts with the
commutation relations:

[H,Ly] = +2hwl 1 (131)

Ly, L] = —4H/(Fw). (132)

12 As shown in [89].L,  cannot be zero.
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The first relation was expected from the raising/loweringureof L. Both rela-
tions can be checked from the commutation relations Eq863%nd from

[%xz, f%Ax] =iD. (133)
We emphasize again the crucial point that the operdtorpreserve the domain
of the Hamiltonian in the present unitary case, sifcandX? do. Obtaining the
canonical commutation relations among the generdioi andTs of the SO(2,1)
Lie algebra,

[Tl,Tz] = —iT3, [TZ,T3] = iTl7 [T3,Tl] = iTz7 (134)

is then only a matter of rewriting:

Ti£iTy = %Li and Tz = %} (135)
Note the sign difference in the first commutator of Eq.(13#hwespect to the other
two commutators, and with respect to the more usual SO(3Y¢2)ie algebra.
Have we gained something in introducing the SO(2,1) Lielalggor is it simply
a formal rewriting of the ladder structure already apparerthe simple minded
approach Eq.(128), may ask a reader unfamiliar with dynahsigmmetries. Well,
an advantage is that we can immediately exhibit the sod&ksimir operatoC,

1

C=—4T2+ T -T2 =H>— 5

(Aw)?(L L +L Ly), (136)
guaranteed to commute with all the elementsT, and T3 of the algebra, so th&
is necessarily a scalar within each ladder. Taking as acodaitly simple case the
expectation value of within the ground steply of the ladder of energg, and
using Eq.(132) to evaluat@q|L_ L |(yg), we obtainC|yy) = Eg(Eg — 2hw)|(g).

————— E 8w
Fig. 9 The energy spec- 2hw

trum of the unitary gas in an E +6hw
isotropic harmonic trap is a 9
collection of semi-infinite lad- 2hw

ders such as the one depicted E +4hw
in the figure, with various 9
ground step energids,. This 2hw

structure is related to the exi_s— E +2hw
tence of a decoupled bosonic 9
mode, and holds whatever the 2hw

numbers of fermions in each E

of the two spin components. 9
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Inverting this relation thanks to the propeiy > 3hw/2 3, we can define the
ground energy step operatdg;:

Hg = hw + [C + (Aw)?] Y2, (137)

which is scalar and equal &, within each ladder. A useful application bf is to
rescale the raising and lowering operaltar to obtain simpler commutation rela-
tions: It appears that

b= [2(H + Hg)/ (hew)]~Y2L_ (138)

is a bosonic annihilation operator, which obeys the usuabbiz commutation re-
lations, in particular with its hermitian conjugate

[b,b"] = 1. (139)

b" andb have the same raising/lowering propertied.as and commute withHg.
They have the usual simple matrix elements, bi¢n) = (n+ 1)%/2|n+ 1) where
[n) is the step numbar of a laddern starting from 0. They allow an illuminating
rewriting of the Hamiltonian:

H = Hg + 2Rwb'b (140)

revealing that the unitary gas in a harmonic isotropic trap &a fully decoupled
bosonic degree of freedom. This bosonic degree of freedbysigally, is simply
the undamped breathing mode of the gas of frequengyidentified for a different
system in [90].

We now give two simple applications of the above formalis®] [&irst, one can
calculate the various moments of the trapping Hamiltoriag, = mw?X2, from

the identity
1 hw hw +
Htrap* EH*T(L++L7)— 7A A (141)
whereA = [b'b+ Hy/(Rw)]*/2 — b. Taking the expectation value of Eq.(141) within
a given eigenstate of ener@y or within a statistical mixture of eigenstates, imme-
diately gives

NI =

(Hirap) = 5 (H), (142)

a particular case of the virial theorem Eq.(88). Taking tkgeetation value olf-lt%ap
for the thermal equilibrium density operator gives

AHEap) = (H?) + (H)hw[2(b"b) + 1] (143)

13 To obtain this inequality, one uses a virial theorem aftpasation of the center of mass motion
[89].
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where we usedHgb'b) = (Hg)(b'b) for the thermal equilibrium. From the Bose
formula, one has alsth'b) = [exp(2Bhw) — 171, with B = 1/(ksT) andT is the
temperature.

The second, more impressive, application is to uncoveraimggresting struc-
ture of theN-body wavefunctionyy(X) of the ground energy step of an arbitrary
ladder. We introduce hyperspherical coordingdésn = X /X), wheren is a unit
vector is the space of\Breal coordinates. The innocent equation (130) becomes

3N
2

Eg mw,, _
X0X+@_?X Lpg(x)_o. (144)

This is readily integrated for a fixed hyperdirection
Yg(X) = & ™/ @ % £ (n) (145)

wheref(n) is an unknown function of the hyperdirection. Eq.(145) fescinating
consequences.

First, it shows thatjiyg, being the product of a function of the moduldsand
of a function of the hyperdirection, separablén hyperspherical coordinates. The
physical consequences of this separability, in particidathe few-body problem,
are investigated in subsection 3.4. Note that this sepéyalolds for all the other
steps of the ladder, sinte. only acts on the hyperradius.

Second, we take the limib — 0 in Eq.(145): According to Eq.(12fy/(hw) is a
constant, an&g — 0, whereas the Gaussian factor tends to unity.dimensionless,
and we can také (n) to bew independent if we do not normalizjg, to unity. We
thus obtain in this limit a zero energy eigenstate of the $gece problem,
3N

wheex) = xm~ 3 f(n) (146)

which is independent ad. This zero energy eigenstate is scaling invariant, in the
sense that

1
Yiree(x) = )\—Vw"ee(x) VA >0, (147)
wherey, is defined in Eq.(81) and
Eg
== 14
Y o (148)

In summary, starting from the wavefunctigrg of any ladder ground state of the
trapped gas spectrum, one gets a scaling-invariant zenaygiree-space eigenstate
yiree, simply by removing the gaussian facer™*/(2" in the expression (145)

of yg.
Remarkably, the reverse property is true. Let us imaginewleaknow a zero

energy eigenstatp™e of the free space problehiyee = —%Ax,

Ax™(X) =0, (149)
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that of course also obeys the Wigner-Bethe-Peierls cootaaditions for the uni-
tary gas. Sincélyee commutes with the generatbr of the scaling transforms, we
generally expecy™© to obey Eq.(147) with some exponantso that

iD wfree — waree_ (150)

Sincey™¢ s not square integrable, the hermiticity@fdoes not imply thav € iR;
on the contrary, we will see thate R. Let us multiplyy™e€ with a Gaussian factor:

Y(X) = e X/ yfreerx ), (151)

As we did for the gauge transform, see Eq.(116), we can shatwtlso defined
obeys the Wigner-Bethe-Peierls contact conditions. datityy the action onp of
the HamiltoniarH of the trapped gas, and using Eq.(150), we directly obtain

HyY = vhoy, (152)

i.e.  is indeed an eigenstate of the trapped gas with the eigegemér. This
Y corresponds to the ground energy step of a ladder. Repeectied af L will
generate the other states of the ladder.

We have thus constructed a mapping between the trapped mas$beazero en-
ergy free space case, for the unitary gas in an isotropic twaicrirap. A similar
mapping (restricting to the ground state) was construcyetaln in an unpublished
work [91].

3.3 Separability in internal hyperspherical coordinates

As shown in subsection 3.2, the SO(2,1) dynamical symmédtithe unitary gas
in an isotropic harmonic trap implies that the eigenstateeftanctionsy(X) may
be written as the product of a function of the moduXusind of a function of the
directionX /X. Here, following [89], we directly use this property at tieg¢l of the
N-body Schrodinger equation, fof > 2, and we derive an effective Schrodinger
equation for a hyperradial wavefunction, with interestiogsequences discussed in
subsection 3.4. The derivation is restricted here to the o&particles of identical
masses, as in the previous sections, but the separabilityeimal spherical coordi-
nates may also hold for particles of different masses, aslddtin Appendix 3.

First, we introduce a refinement to the separability of satiee 3.2: In a har-
monic trap, the center of mass of the system is totally deleaufsom the inter-
nal variables, that is from the relative coordinates r; of the particles. This is
quite straightforward in Heisenberg picture, for an intéian modeled by a poten-
tial V(|ri —rj|). The Heisenberg equations of motion for the center of masiipo

4

C

I
Z| -

I (153)
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and the center of mass momentn= YN p; are indeed coupled only among
themselves, due in particular to the fact that the intepagbiotential cannot change
the total momenturP of the system:

%ﬁ’(t) = —Nmw?C(t) (154)
d.. . P
0= (155)

The center of mass of the system thus behaves as a fictitiotislgpaf massNm
trapped in the harmonic potentidinw?C?/2, with a Hamiltonian

h2 1 22
HCM_—mAc—i—éwaC . (156)
The center of mass has of course the same angular oscillagquency as the
individual particles. This center of mass decoupling prgpelearly holds in the
general harmonienisotropiaase. It persists in the zero range limit so it holds also
for the zero-range model.

We can thus split the Hamiltonian Eq.(74) as the sum of theec@fimass Hamil-
tonianHcy and the internal HamiltoniaHiyema = H — Hem. AS a consequence,
we introduce as new spatial coordinates the center of massquaC and the set of
internal coordinates

R=(r1—C,...,rn—C), (157)

and we can seek eigenstates in the factorized i9(X) = Ycm(C) Yintemal(R)-

The crucial step is then to defieternalhyperspherical coordinates, consisting
in the hyperradius
1/2

(158)

and a convenient parameterization of the set of dimenseriitgernal coordinates
R/R. There is a technical subtlety due to the fact that the coatds ofR are not
independent variables: Since the sum of the componen®& albng each spatial
directionx, y andz is exactly zero, and sinde/R is a unit vector, the vectd® /R
contains actually onlylS — 4 independent dimensionless real variables. We then use
the following result, that may be obtained with the appraferiacobi coordinaté$
[92]: There exists a parameterizationRfR by a set of Bl — 4 internal hyperangles
that we callQ, such that the internal Hamiltonian takes the form

ﬁZ

3N—-4 1 1
Hinternal = “om {O%Jr T0R+ @AQ + EmeRz, (159)

14 For particles of equal masses one introduces the Jacobidicates uj =

(v2 [ —(N—i)*lz'j\‘:iﬂrj] for 1 <i<N-—1. Thendx = N-'Ac + yN!A, and

R? = X2~ NC? = yN 1 u?. The general case of arbitrary masses is detailed in therffip&.
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whereAq is the Laplacian on the unit sphere of dimensidh-34. The expression
between square brackets is the standard form for the uspé#dian in dimension
d = 3N — 3, written in hyperspherical coordinates, which justifies hame of “in-

ternal hyperspherical coordinates”.

The separability in internal spherical coordinates mebasthe internal eigen-
states in a trap can be written as products of a functioR ahd a function ofQ.
This basically results from the reasoning below Eq.(149h the little twist that
one can further assume that the zero-energy free spacestitgp™e(X) has a
zero total momentum, i. e. it is independent of the center agsipositiort®. The
scale invariance Eq.(147) or equivalently Eq.(150) theplies

(X)) = RE-(N-5)/2¢ ) (160)

with some exponerg shifted for convenience b{8N — 5) /2. The challenge is of
course to determine the unknown functi@f2) and the corresponding value af
From Schrodinger’s equatiafy (™€ = 0 and the expression of the internal Lapla-
cian in hyperspherical coordinates, see Eq.(159), one firats® solves the eigen-
value problem

2
- 5) 0(Q) = 20(Q). (161)

—A_Q-f—(

where@(Q) has to obey the Wigner-Bethe-Peierls contact conditionglBg) re-
formulated in hyperangular coordinatésThe merit of the shift 3N —5) /2 is thus
to reveal a symmetrg<» —s.

The generalization of the zero energy free space solutioflEQ) to the finite
energy trapped problem is simply provided by the ansatz:

W(X) = Yem(C)p(Q)R EN/2F(R). (162)

Hereycm(C) is any center of mass eigenstate wavefunction of enBeggy, ¢(Q)
is any solution of the eigenvalue problem Eq.(161). Injegthe ansatz into Schro-
dinger’s equation of eigenener&yand using Eq.(159), one finds that

E= ECM + Einternah (163)

where the hyperradial wavefunctiériR) and the internal eigenenerByemasolve
the eigenvalue problem:

ﬁZ

2
o {F”(R) + EF’(R)] + (E + }meRz) F(R) = EintemaF (R).  (164)

R 2mR2 2

15 The reasoning below Eq.(144) can also be adapted by puttingenter of mass in its ground

state Yom (C) O exp—NmwC?/(2h)] and by constructing purely internal raising and lowering
operators of an internal SO(2,1) dynamical symmetry, tbatat excite the center of mass motion
contrarily toL, andL_ [89].

16 These reformulated contact conditions are given expliait[55], Eq.(1.38).
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We note that, as detailed in the Appendix 3, this separgibéinarkably also holds
in the case where thd particles have different masses [89], provided that they al
have the same angular oscillation frequengyn the trap, and that the Wigner-
Bethe-Peierls model still defines a self-adjoint Hamileamior the considered mass
ratios. The separability even holds when the Wigner-Bé&arrls modekupple-
mented with an additional boundary condition for-R0 and fixedQ is self-adjoint,
as is the case e.g. fdf = 3 bosons, see below; indeed such a boundary condition
only affects the hyperradial problem.

In practice the explicit calculation fis possible for the few-body problem. The
most natural approach in general is to try to calculate thetfansA;j in Eq.(109)
in momentum space. From Eq.(109) it appears fats scaling invariant with an
exponens+ 1 — (3N —5)/2. Its Fourier transford{ is then also scaling invariant,
with an exponent given by a simple power-counting argun@iniceA;j is a func-
tion of 3(N — 2) variables, if one takes into account the fact that it doeslepend
on the center of mass positi@h) and since one hds+1— (3N—5) /2] +3(N—-2) =
s+ (3N —5)/2, its Fourier transforrd; scales as

Aij (K) = K —[s+(3N=5)/2] fij (K /K) (165)

whereK collects all the 8N — 2) variables ofAj; and f;; denotes some functions
to be determined. Remarkably it is the same quait8ly — 5) /2 which appears in
both Eqgs.(160,165).

This momentum space approach leads to integral equation®l E 3, this in-
tegral equation was obtained in [93]; it was solved anadfydn [94], the allowed
values ofs being the solutions of a transcendental equation. Thistemdental
equation was rederived from a direct analytical solutioifl®1) in position space
in [4], and generalised to arbitrary angular momenta, nsasd statistics in [4, 5];
for equal masses it is conveniently expressed in the fors] gfd refs. therein):

r+3) n (I+1+s l+1-s 3 1)
— = oF1 , Q4+22) (166)
rE)r (=) Van-2) 2 2 2'4

or alternatively [32]

1 (=Dl + 1)k (1=9)) /1. . 4
[||k% kk! k(l_s):( (2 kl(kfs)e +n(1)|73é6(2k+))]

=0 (167)

17 Since the Fourier transford; (K) = [d*N-2Y e K-YA; (Y) may lead to non-absolutely con-
verging integrals at infinity, the calculation has to be perfed using the language of distributions,
with a regularizing factoe Y, n — 0.
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wherel is the total internal angular momentum quantum numpeis —1 for
fermions \; = 2,N; = 1) or+2 for spinless bosonsfF; is a hypergeometric func-
tion, and(X)n = x(x+1)...(X+n—1) with (x)o = 1. The equation (166) has some
spurious integer solutions £ 0,s= 2 for fermions;] =0,s=4 andl = 1,s= 3 for
bosons) which must be eliminated. Rér= 4 there is no known analytical solution
of the integral equation. Using the scale invariancef\@(K) as in Eq.(165) and
rotational symmetry however brings it to a numerically tadte integral equation
involving the exponerg, that allowed to predict a four-body Efimov effect for three
same-spin state fermions interacting with a lighter pker{ic].

3.4 Physical consequences of the separability

As seen in the previous section 3.3, the solution ofXhkody problem N > 2)
for the unitary gas in a harmonic isotropic trap boils dowr(ijathe calculation
of exponentss from zero-energy free space solutions, and (ii) the salutibthe
hyperradial eigenvalue problem Eq.(164). Whereas (i)ésniost challenging part
on a practical point of view, the step (ii) contains a rich giog that we now discuss.
Formally, the hyperradial problem Eq.(164) is Schroditggequation for one
(fictitious) particle moving in two dimensions with zero ag momentum in the
(effective) potential ,
= Zﬁ—m é + %meRZ. (168)
We will see that the nature of this problem is very differegpending on the sign of
s?. The case? > 0, i.e.sreal, happens fdd = 3 fermions {; = 2,N; = 1), not only
for equal masses [as can be tested numerically from (167e@&id demonstrated
analytically from the corresponding hyperangular eig&rearoblem [32]] but also
for unequal masses provideg /m, is below the critical value 180... where one
of thes (in the angular momentuin= 1 channel) becomes imaginary [5]. Rd= 4
fermions with (; = 3, N| = 1), the critical mass ratio above which one of the
(in the angular momentuin= 1 channel) becomes imaginary is slightly smaller,
my/m; ~ 13.384 [7]. In the physics literature,is believed to be real for fermions
for any (N;,N,) for equal masses, this belief being supported by numenwhka-
perimental evidence. For 3 identical bosons, it is wellsknahat one of the values
of s(in thel = 0 channel) is imaginary [4], all other values being real.

Uet(R)

3.4.1 Universal case

In this subsection we assume tisé real and we can take the sign convengenO.
We impose that the hyperradial wavefunct®(R) is bounded folR — 0; indeed,
allowing F (R) to diverge would physically correspond td\abody resonance (see
Appendix 6). The spectrum and the corresponding hypefradizefunctions then
are [89]
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Eintemal= (S+1+209)hw, qeN (169)
(2

F(R) = Zano) L 170

B rerira w5 (e (170)

where L((f) is a generalised Laguerre polynomial of ordgran, = ,/m—z is the

harmonic oscillator length, and the normalisation is suwt fy’dRRFR)? = 1.
Eq. (169) generalises to excited states the result obténdége ground state in [91].

We thus recover thefiv spacing of the spectrum discussed in section 3.2. We
can also reinterpret the scaling solution of section 3.1 @isa-evolution of the
hyperradial wavefunction with a time-independent hypgtaar wavefunction; in
particular, the undamped breathing mode corresponds taailtation of the ficti-
tious particle in the effective potential (168).

The expression (170) df (R) immediately yields the probability distribution
P(R) of the hyperradius vi®(R) = F(R)?R. This analytical prediction is in good
agreement with the numerical results obtained in [96] fotaip7 fermions.

In the largeN limit (more precisely ifNy andN; tend to infinity and their ratio
goes to a constant), the ground state energy of the trapptdyugas is expected
to be given in an asymptotically exact way by hydrostatitso(aalled local density
approximation). Amusingly, this allows to predict the le#y asymptotics of the
smallest possible value sf ForN; = N; = N/2 — o this gives [91, 96]

4/3
s~ VEE) (a71)

whereé appears in the expression Eq.(14) for the ground state goétje homo-
geneous unitary gas.

For spin-1/2 fermions, Egs. (169,170), combined with tlam$cendental equa-
tion (166) and the expression of the hyperangular wavefoingt{5], provide the
complete solution of the unitary 3-body problem in an ispicdharmonic trap [32]
(for completeness, one also has to include the eigenstdieh ere common to
the unitary and the non-interacting problem [32], mentibaethe end of subsec-
tion 2.2.1). This was first realised for the ground state in].[®Remarkably, this
3-body spectrum in a trap allows to compute the third vir@@fficient of the homo-
geneous unitary gas [97], whose value was confirmed expetéaite (see [45] and
the contribution of F. Chevy and C. Salomon to this volume).

For spinless bosons, the unitary 3-body problem in an ipatrbarmonic trap
has two families of eigenstates (apart from the aforemaati@common eigenstates
with the non-interacting problem) [31, 32]: the states esponding to real solu-
tions s of the transcendental equation (166), which we call unalestates; and
the states corresponding to the imaginary solutiorsfavhich we call efimovian.

18 Strictly speaking, such a time evolution of the wavefuntiiointernal hyperspherical coordi-
nates corresponds to an internal scaling solution whereahier of mass wavefunction is constant,
whereas the scaling solution of 3.1 corresponds to a hygiatranotion in the hyperspherical co-
ordinates(X,n).
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Eqgs. (169,170) apply to universal states. The efimoviaestate discussed in the
next subsection.

3.4.2 Efimovian case

In this subsection we consider the case< 0, i.e.s is purely imaginary. In this
case, all solutions of the Schrodinger-like equation 164 bounded and oscillate
more and more rapidly wheR — 0. In order to obtain a hermitian problem with a
discrete spectrum, one has to impose the boundary con{®4o155]:

S
IA/F(R)~Alm [(%) } forR— 0, (172)
whereR; is an additional 3-body parameter. An equivalent form is:
p P R
JA/ F(R) ~ A sin [|s|ln (ﬁ)} forR— 0. (173)

The corresponding hyperradial wavefunctions are

F(R) = R "Wk 252(R%/ah,) (174)
whereW is a Whittaker function, and the spectrum is given by the iaijptquation

1+s—E/(hw)

argl [ >

] = —|s/In(R/ano) +argl (14 s) mod (175)
obtained in [31], whose solutions form a discrete seriesclvis unbounded from
below, and can be labeled by a quantum nunapefZ.

In free space@ = 0), there is a geometric series of bound states

2R?

mR?

F(R) =Ks (R\ /2m[E| /ﬁz) (77)

whereK is a Bessel function. For 3 particles this corresponds toaékknown
series of Efimov 3-body bound states [4, 5]. This also appligke 4-body bound
states in the aforementioned cas¢®# 1) fermions withm; /m; between> 13.384
and 13607... [7]. As expected, in the limiE — —oo, the spectrum of the efimovian
states in the trap (175) approaches the free space spedti@n The unbounded-
ness of the spectrum in the zero-range limit is a naturalequsnce of the Thomas
effect and of the limit cycle behavior [55].

2 2
Eq=— exp(—qérjL —argl'(1+s)) ,Q€Z (176)

ls|
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3.5 Vanishing bulk viscosity

In this subsection, we give a simple rederivation of the flaat the bulk viscosity of
the unitary gas in the normal phase is zero. This result wesrad in [98] (see also
[99)). It helps analysing e. g. the ongoing experimentaligsiof the shear viscosity,
whose value is of fundamental importance ([100] and refstetiim). Although the
superfluid regime was also treated in [98], we omit it herediomplicity. In our
rederivation we shall use the scaling solution and the emest of the undamped
breathing mode*®

In the hydrodynamic theory for a normal compressible visciuid [101, 98],
the (coarse-grained) evolution of the gas in a trappingmiiateJ (r,t) is described
by the atom number densip(r,t), the velocity vector field/(r,t), and the entropy
per particle (in units okg) s(r,t). These 5 scalar functions solve 5 equations which
are given for completeness in Appendix 4 although we will dio¢ctly use them
here. We will only need the equation for the increase of tted emtropyS= [ psdr
of the gas

dt */ dr 2T ax. Tax V) dr [ LlD-viFd
(178)

which follows from the hydrodynamic equations (218,21&)tenthat the thermal
conductivityk, the shear viscosityy and the bulk viscosity have to be> 0 so that
dS/dt > 0 [101]. The hydrodynamic theory is expected to become erdbe limit
where the length (resp. time) scales on which the aboveifimgary are much
larger than microscopic length (resp. time) scales suclylas (tesp.h/Eg).

We consider the following gedankenexperiment: Startindp wie gas at thermal
equilibrium in a trap of frequency, we suddenly switch the trapping frequency at
t = 0 to a different valuev, . As we have seen in subsection 3.1 and at the beginning
of subsection 3.2, this excites amdampeddreathing mode: For > 0, the size
of the gas oscillatemdefinitely This rigorously periodic evolution of the system
implies that the total entrop§(t) is periodic, and since it cannot decrease, it has to
be constant. Thus each of the terms in the right-hand-sifle7@), and in particular
the last term, has to vanish. Thgér,t)||0-v(r,t)|> = 0. This implies that is
identically zero, as we now check. From the scaling evotufidl0) of each many-
body eigenstate, one can deduce (using the quantum-meeheaxpression for the
particle flux) that

v(r,t) = %r, (179)

19 11 article [98], the vanishing of the bulk viscosity was deéd from the so-called general co-
ordinate and conformal invariance, the scaling solutiandpenknown to its author of at the time
of writing (although it had been obtained in [58]). The seglisolution was recently rederived
using this general coordinate and conformal invariancg B&veral other results presented in sub-
sections 3.2, 3.3 and 3.4 were also rederived using thistfieloretical formalism ([99] and refs.
therein).
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so thatO-v = 3A/A. Fort approaching O from above, we hawét) # 0, as is
intuitively clear and can be checked from Egs. (111,112)sti(r,t) = 0 and by
continuity {(r,t = 0) = 0. Since the central density and temperature in the initial
equilibrium state of the gas are arbitrary, we concludedtiat T) = O for all p and

T. An alternative derivation of this result is presented impapdix 5.

3.6 Short-range scaling laws

As opposed to the previous subsections, we now considerkatnaay scattering
length and an arbitrary external potential, possibly wignigdic boundary condi-
tions. Of all the particles,1..,N, let us consider a subs&t- {1,...,N} containing
n particles of spint andn, particles of spin.. From the particle positiong)ic,,
we can define a hyperradii& and hyperangle® ;, and a center of mass position
C,. The positions of all particles that do not belondtare denoted byz; = (ri)i¢.
In the absence of @ +n|)-body resonance (see Appendix 6), one expects that, for
any eigenstate, in the limR; — 0 where all particles belonging to the sub3etp-
proach each other whilg2;,C;,%;) remain fixed, there exists a functidg such
that

W(re,....tn) =Ry @(Q4) As(Cj, %3) +0(Ry). (180)

Here,v = syin(m,n)) — w with smin(ny,n; ) the smallest possible value &f
for the problem oh; particles of spirt andn; particles of spin, (sbeing defined in
Sec. 3.3) an@(Q;) is the corresponding hyperangular wavefunction (also ddfin
in Sec. 3.3). This statement is essentially contained in 917. It comes from the
intuition that, in the limit where the, +n particles approach each other, e
body wavefunction should be proprtional to tfhe + n)-body zero-energy free
space wavefunction Eq.(160). This was used in [17] to ptatit the formation
rate of deeply bound molecules by three-body recombinafiica fN/N, behaves
ashl /Er ~ K - (keb)?min(21) in the low-density limit, withb on the order of the
van der Waals range aril a numerical prefactor which depends on short-range
physics. The analytical solution of the hyperangular tHyedy problem [Eq.(167)]
yields snin(2,1) = 1.772724.. (this value is reached in the angular momentum
| =1 channel). Experimentally, this scaling has not been o dbut the smallness
of A" /Eg is one of the crucial ingredients which allow to realise théary gas.

Acknowledgements We thank O. Goulko, O. Juillet, T. Schafer, D. T. Son, B. &wsv and
S. Tan for helpful discussions while writing this manustrgnd the authors of [21] for their data.
F. W. is supported by NSF grant PHY-0653183, Y. C. is membdFBAF and acknowledges
support from the ERC project FERLODIM N.228177.
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Appendix 1: Effective range in a lattice model

To calculate the effective range [defined by Eq.(5)] for the lattice model of subsection 2t1s i
convenient to perform in the expression (46) of the scatgesimplitude an analytic continuation to
purely imaginary incoming wavevectoks, settingko = igqo with gp real and positive. Eliminating
1/go thanks to Eq.(47) we obtain the useful expression:

- *}—&-471/ ok
fi, a Jo (2m)3

We first treat the case of the parabolic dispersion relatigr(4B). A direct expansion of
Eq.(181) in powers ofjy leads to an infrared divergence. The trick is to use the faat the
integral overZ in EQ.(181) can be written as the integral of the same intefyaver the whole
space minus the integral over the supplementary sgdéeZ. The integral over the whole space
may be performed exactly using

d3k 1 1 qo
./Rs (2m)3 {q%+ Kk P} T am (182)

This leads to the transparent expression, where the temmaspmnding tok in Eq.(3), and which
is non-analytic in the enerdy, is now singled out:

1 1
0 -+ 2mey /R? - 2me /2

. (181)

1 1 ' d3k 1 1
_ fik%arab_ A q°74"/Rs\@ PIoE {7q%+k2 - @} . (183)

This is now expandable in powers (qﬁ leading to the effective range for the parabolic dispersio
relation: ;
1 d°k
rparab_ — —- 184
= oo T (184)
We now turn back to the general case. The trick is to considerdifference between the

inverse scattering amplitudes of the general case and thbgla case with a common value of
the scattering length:

11 11
o +2me /R Gg+Kk2 2me /AP K2

. (185)

11 n/ d3k
fk%arab fko .9(27-[)3

This is directly expandable to second ordeggnleading to:

d%k |1 R\ 2
__ pparab__ 7
re—r8 871/@ 2P {k‘l <—2 k) . (186)

The numerical evaluation of this integral for the Hubbarspersion relation Eq.(59) leads to the
Hubbard model effective range Eq.(60).

Finally, we specialize the general formula to the parabplics quartic form Eq.(61). Setting
k = (1/b)q and using Eq.(184), we obtain

or i d3q d3q 1
- =1 e N S 187
b -/n@\[—l«m ¢ Jiip @ { (1qu2)2} (87)

The trick is to split the cubé-1, 1] as the union oB(0, 1), the sphere of center 0 and unit radius,
and of the seK = [—1,1]3\ B(0,1). One has als¢R®\ [-1,1]*) UX = R*\ B(0, 1) so that
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or X d®q [ d%q 1 - d3q 1
- =4 bl [ [ S Y i 188
b /Rs\sm @ " eon o { (1—Cq2)2} /x q* (1-Cef)? (159

One then moves to spherical coordinates of ai$he first two terms in the right hand side
may be calculated exactly. In particular, one introducesiraifive of q~2(1—Cc¢?) 2, given by
CY2(CY2q) with

P(x) = X + §arctanh(— )—l( (189)

21-x2) 2
In the last term of Eqg.(188) one integrates over the modyhbfg for a fixed direction 8, @) where
6 is the polar angle ang the azimuthal angle. One then finds thaanges from 1 to some maximal
valueQ(0, @), and the integral ovey provides the difference(CY/2Q) — ®(C%?2). Remarkably,
the term—@(C%?) cancels the contribution of the first two integrals in thentipand side of
Eq.(188), so that

rmix C1/2 21T 1

= =5 [“do [ duoctQe.g) (190)
b ™ Jo J-1
where as usual we have set cos6. Using the symmetry under parity along each Cartesian axis,
which adds a factor 8, and restricting to the fage= 1 of the cube, which adds a factor 3, the
expression of)(0, @) is readily obtained, leading to

mix 1/2 m/4 — 1/2
= 2 [T [Vieteque (= ). (192)
b ™ Jo Jo cospv/1—u2

In the limitC — 0, r™* — 8% and Eq.(191) may be calculated analytically wabifx) ~ —1/x
and with an exchange of the order of integration: This lead&d.(58). For a general value of
C € [0,1/3] we have calculated Eq.(191) numerically, and we have itledtihe magic value d@
leading to a zero effective range, see Eq.(62). With the gaofeique, we can calculate the value
of K appearing in Eq.(49) from the expression

12 At cl/2
= d / Voo duarctanh—— . 192
ncl/2 /o ¢ 0 cospv1—u? (192)

Appendix 2: What is the domain of a Hamiltonian?

Let us consider a Hamiltoniad represented by a differential operator also caled naive and
practical definition of the domaiD(H) of H is that it is the set of wavefunctions over which the
action of the Hamiltonian is indeed represented by the densd differential operator. In other
words, if a wavefunctionlaq does not belong t®(H), one should not calculate the actiontf
on Ypag directly using the differential operatét. If H if self-adjoint, one should rather expand
Uhad ON the Hilbert basis of eigenstatestbfand calculate the action éf in this basis.

For example, for a single particle in one dimension in a bathwifinite walls inx = 0 and
x =1, so that 06X x < 1, one has the Hamiltonian

1d?

with the boundary conditions on the wavefunction
YO0 =y(1)=0 (194)

representing the effect of the box. To be in the domain, a fuaetion /(x) should be twice
differentiable for 0< x < 1 and should obey the boundary conditions (194). An exampke o
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wavefunction which is not in the domain is the constant wawefion y(x) = 1. An example of
wavefunction in the domain is

W(x) =30Y2x(1—x). (195)
If one is not careful, one may obtain wrong results. Let usudate the mean energy and the second
moment of the energy foy given by (195). By repeated action Bf onto ¢/, and calculation of
elementary integrals, one obtains

(H)y =5 (196)
(H2), = 0?! (197)

Eq.(196) is correct, but Eq.(197) is wrong (it would lead toemative variance of the energy)
becauséd  is not inD(H) and the subsequent illicit action bff as the differential operator (193)
gives zero.
How to calculate the right value dH?2), ? One introduces the orthonormal Hilbert basis of
eigenstates afl,
Un(x) =2Y2sin[m(n+1)x], neN, (198)

with the eigenenergy, = %(n-k 1)2. Theny of Eq.(195) may be expanded §§cnn(X), and

thek! moment of the energy may be defined as

HYp =Y () el (199)

neN

Sincec, = 4v/151+ (—1)"]/[m(n+ 1)]3, one recovergH )y, = 5 and one obtains the correct value
(H?), = 30, that leads to a positive energy variance as it should tse. (M), = 4o for k > 3.

The trick of expandingp in the eigenbasis dfl is thus quite powerful, it allows to define the
action ofH on any wavefunctiony in the Hilbert space (not belonging to the domain). It may be
applied of course only i is self-adjoint, as it is the case in our simple example.

Appendix 3: Separability and Jacobi Coordinates for arbitrary
masses

We here consideX > 2 harmonically trapped patrticles interacting in the umitanit, with possi-
bly different massesy but with the same isotropic angular oscillation frequencylhe Hamilto-
nian reads

= Z{ — A+ = mw r (200)

and the unitary interaction is described by the Wigner-BeéRierls contact conditions on thie

body wavefunction: For all pairs of particlés j), in the limitrjj = |r; —rj| — O with a fixed

value of the centroid of the particlésnd j, Rij = (mir +mjr;)/(m +my), that differs from the
positionsr of the other particless # i, j, there exists a functiof;; such that

Aij (Rijs (i, j)
I’ij

l,U(I']_,...,I’N): +O(|’ij). (201)

As is well known and as we will explain below, the internal Hiomian Hinternai = H — Hew,
whereHey = —%Ac + 3Mw?C?, takes the form

Hinternal = Zi { 7Au, +5 TT_\(A)ZUiZ (202)
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in suitably defined Jacobi coordinates [see Egs.(206,2H8)eC = TN, miri/M is the center of
mass positionM = TN, m is the total mass, anth is some arbitray mass reference, for example
the mean masl! /N. Then it is straightforward to express Eq.(202) in hypeesjglal coordinates,
the vector(uy, ..., un—1) with 3N — 3 coordinates being expressed in terms of its modRlard a
set of N — 4 hyperangle®2, so that

ﬁZ

1_
Hinternal= — > {aé + + Zmw’R? (203)

3N—-4 1
2

R Rtrla

whereA g, is the Laplacian over the unit sphere of dimensidh-34. As we shall see, the expres-
sion for the hyperradius is simply

N-1 5 1 N 5
R = i; w = a_i;mi(ri —C)2. (204)

This form of the Hamiltonian is then useful to show the sepiity of Schrodinger’s equation
for the unitary gas in hyperspherical coordinates [55, @]N > 3 and arbitrary masses. The
separability Eq.(162) that was described for simplicityhe case of equal mass particles in sub-
section 3.3 indeed still holds in the case of different masgehe Wigner-Bethe-Peierls model
defines a self-adjoint Hamiltoniaf We recall here the various arguments. First, for zero energy
free space eigenstates, the form Eq.(160) is expected frata swariance, if the Hamiltonian is
self-adjoint [89]. Second, the form Eq.(162) for the geheese, including non-zero energy and
an isotropic harmonic trap, is expected because (i) the aman (200), after separation of the
center of mass, has the separable form (203) in hypersphedordinates, and (ii) Eq.(162) obeys
the Wigner-Bethe-Peierls contact conditions if Eq.(166¢sl This point (ii) results from the fact
that the Wigner-Bethe-Peierls conditions are imposedeéwh pair of particle§, j), for rij; — 0
with a fixed value of R;; that differs from the positionsy of the other particlesk # i, j. Using

ri = Rjj +[m;/(m +my)]rij andrj = Rij — [my/(my +m)]rij, with rij = r; —rj, we indeed find

that mm;
MR = == -rf + (m +my)(Rij —C)*+ ; m(rk — C)%. (205)
k#1, ]

Com4m

For N > 3, we see that IiraaHoR2 > 0, so thatR varies only to second order iy in that limit.
Provided that the functiof (R) in Eq.(162) has no singularity at non-zeRpthe Wigner-Bethe-
Peierls contact conditions are preserved [similarly todtgument Eq.(116)]. Third, bosonic or
fermionic exchange symmetries imposed on fieody wavefunction cannot break the separa-
bility in hyperspherical coordinates: Exchanging the poss of particles of same mass does not
change the value of the hyperradiBsit only affects the hyperangles and thus the eigenvalues
[(3N —5)/2]? — & of the Laplacian on the unit sphere.

To derive the form Eq.(202) of the internal Hamiltonian, we@duce the usual Jacobi coordi-
nates given for example in [102]:

N .
Yi=iv1 M|

N .
Yi=it1M

We note thay; simply gives the relative coordinates of particleith respect to the center of mass
of the particles fromi + 1 to N. To simplify notations, we also sg = C. 2! In compact form,

Vi=Tri— for1<i<N-1 (206)

20 strictly speaking, it is sufficient that the Laplacian on tmt sphere together with the Wigner-
Bethe-Peierls boundary conditions reexpressed in ternmymérangles is self-adjoint, as exten-
sively used in [7]. This is less restrictive than having tb# Hamiltonian self-adjoint, since it
allows for example to have ld-body Efimov effect while th&l — 1 zero-range model is perfectly
well-defined and does not experience any Efimov effect.

21 Alternatively, Eq.(202) can be derived easily by recursiee p. 63 of [55].
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the Jacobi change of variables corresponds to segting 2?:1 Mijrj for 1 <i <N, where the
non-symmetric matri is such that:

e Inthe case K i <N, one hasMjj =0 for 1< j <i, Mjj = 1 for j =i, and Mjj; =
—m;/ (Sl ame) fori < j <N.
o Myj=m/(ziym)forl<j<N.

From the formula giving the derivative of a composite fuastithe kinetic energy operator writes

2NN

N ﬁZ
Hyin = i;_ﬁAri =-3 Z z S,kgraq/ -grad, , (207)

where thesymmetricmatrix Sis defined asic = TN ; MjiMy; /m. The explicit calculation of the
matrix elementsS is quite simple. Taking advantage of the fact tBas symmetric, one has to
distinguish three cases, ()< j,k <N —1, with j = kand ] < k as subcases, (ij)=k=N, and
(ii) j < N,k=N. One then finds th&8is purely diagonal, witt§; = 1/y; for 1 <i <N-—1 and
Sun = 1/M. Herey; is the reduced mass for the particiend for a fictitious particle of mass equal
to the sum of the masses of the particles friopl to N:

i.:i v for 1<i<N-1 (208)
K me 3 m
This results in the following form
N-1 2
Hun = gy~ 3 2,00 (209)

The next step is to consider the trapping potential enengy.tenspired by Eq.(209) one may
consider the guess

Hirap = S lmoozr2 ? 1Mw2C2+N711u W’y? (210)
t) = = i = = =M P

W= 2 g M 2 Ghery

Replacing eacly; by their expression in the guess gives

N—-1 N N
Mc2+_zlyi z z ikl Tk (211)
= :

whereQ is uniquely defined once it is imposed to beyanmetricmatrix. Setting\; = z’j\‘:iﬂmj
for0<i <N-1, andMy = 0, we find for the off-diagonal matrix elements

min(j,k)— Ul
+mjmy (212)

Hmin(j k) Mmax(j k) MjMmg
Q= +

: Mmin(j g M
where 1< j,k <N, min(j,k) and maxj,k) respectively stand for the smallest and for the largest
of the two indicesj andk. The key relation is then that

w1 1 11
" - - - = 213
M2 M m+M M Mg (213)

sinceM; +m; = Mj_; for 1 <i < N. This allows to calculate the sum ovesf ui/Miz, as all except
the border terms compensate by pairs. E.g,fark:

i1,
w11
_ 1 214
i; M2~ M5 M (214)
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sinceMp = M. One then finds that the off-diagonal elements of the m&nizanish. The diagonal

elements of) may be calculated using the same tricks (213,214), one @ads m; for 1 <i <N.

As a consequence, the guess was correct and the questiorcandoke removed from Eq.(210).
The last step to obtain Eq.(202) is to appropriately restteaisual Jacobi coordinates, setting

ui = (/m)?y; (215)

wherem'is an arbitrarily chosen mass. A useful identity is the eggi@n for the square of the
hyperradius, Eq.(204). Starting from the definition [firdeitity in EqQ.(204)] we see tha? =

,N 11 f‘T']yz Then the second identity in Eq.(204) results from the faat the guess in Eq.(210) is
correct.

Appendix 4: Hydrodynamic equations

The hydrodynamic equations for a normal compressible usdtuid are (see [98%, or §15
and§49 in [101)):
e the continuity equation

[;—f +0-(pv) =0, (216)
e the equation of motion

v _dp BU v, odv 2
mp<—+v Dv.> =T ax. Zaxk{ (—+_,__de”>}

ot ox¢ 0% 3
7]
+a—xi (¢O-v) (217)

wherem is the atomic masg; is the shear viscosity] is the bulk viscosity, and the pressure
p(r,t) [as well as the temperatufie(r,t) appearing in the next equation] is as always express-
ible in terms ofp(r,t) ands(r,t) via the equation of staté

e the entropy-production equation

17} Vi 7] Vi

ds 2 )
pT( +v- Ds) O-(kOT)+ 2%((7& Txf*a KO- v) +Z||0-v|?  (218)

wherek is the thermal conductivity.

Appendix 5: Alternative derivation of the vanishing bulk
viscosity

Consider the particular case of a unitary gas initially preg at thermal equilibrium in an isotropic
harmonic trap at a temperatufeabove the critical temperature. When the harmonic traprbeso
time dependent) (r,t) = %mwz(t)rz, each many-body eigenstate of the statistical mixturevesol
under the combination Eq.(110) of a time dependent gaugsftian and a time dependent scaling

22 There is a typo in Eq.(10) of [98]3;(pV d:s) should be replaced by (oV's).
23 |f we would neglect the position-dependencerpfnd ¢, (217) would reduce to the Navier-
Stokes equation.
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transform of scaling factok (t). The effect of the gauge transform s to shift the momentum op
eratorp; of each particle by the spatially slowly varying operataonrjA /A. In the hydrodynamic
framework, this is fully included by the velocity field Eq7@). 2 Using the macroscopic conse-
guences of a spatial scaling Egs.(19,20,21,22), apeori obtains a time dependent solution of
the hydrodynamic equations:

T(r,t) = T(t=0)/A%(t) (219)
p(r.t) = p(r/A,0)/A%() (220)
s(r,t) = s(r/A,0) (221)
p(r,t) = p(_r/hO)/AS(t) (222)
Vi(r,t) = %A (1) /A(t). (223)

One then maya posterioricheck that Eq.(216) is inconditionally satisfied, and thgt(EL8) is
satisfied if{ = 0. Setting{ =0 in Eq.(217), and using the hydrostatic conditiop = —p[JU at
timet = 0, one finds that Eq.(217) holds provided thdt) solves Eq.(112) as it should be.

Appendix 6: n-body resonances

Usually in quantum mechanics one takes the boundary condhit the wavefunction is bounded
when two particles approach each other; in contrast, thegvigethe-Peierls boundary condition
(75) expresses the existence of a 2-body resonance. If theation potential is fine-tuned not
only to be close to a two-body resonance (i.e. to haye> b) but also to be close to mbody
resonance (meaning that a real or virtnddody bound state consisting of particles of spinf
andn; particles of spin| is close to threshold), then one similarly expects thathenzero-range
limit, the interaction potential can be replaced by the WigBethe-Peierls boundary condition,
together with an additional boundary condition in the limitere any subset of particles of spin

T and n particles of spin| particles approach each otheldsing the notations of Section 3.6, this
additional boundary condition reads [70, 89, 103, 55]:

€ 3n-5

Wirstn) = (RS ) Ry 2 0(Q0)Au(C1. ) + o(RY) (224)

where s = syin(ny,n;), while | > 0 ande = £1 are parameters of the model playing a role
analogous to the absolute value and the sign of the two-bodtesing length. This approach

24 To formalize this statement, we consider a small but stiltrascopic element of the equilib-
rium gas of volumedV around pointr, with k,?l < dV¥3 <« R wherekeg is the Fermi momen-
tum andR the Thomas-Fermi radius of the gas. We can define the dens#yatordejem of this
element by taking the trace of the full-body density operator over the spatial modes outside
the element. Since the gauge transform in Eq.(110) is locabbition spaceeiem eXperiences
the same unitary gauge transform. It would be tempting taleole from the general formula
dS= —kgTr[PelemIn Pelen] that the entropyd Sof the element is not changed by the gauge trans-
form. This is a valid conclusion however only if the gaugensfarm does not brin@ejem too far
from local thermal equilibrium. To check this, we split theugie transform for a single particle of
positionr asmr?A /(2AA) = mA /(2RA)[F2 + 21 - (r — 1) + (r —1)?]. The first term is an innocu-
ous uniform phase shift. The second term performs a unifdiift i@ momentum space by the
announced valuew(r,t). Due to Galilean invariance, this has no effect on the thelynamic
quantities of the small element, such as its temperatw@réssure, its density, its entropy. With
the estimate\ /A ~ w, r ~ R, mwR ~ hkg, this second term is of ordég dvY/3 > 1, not negli-
gible. The third term is of ordemwdV?/3 /R ~ N~1/3k2dVv?/3, negligible in the thermodynamic
limit.
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is only possible if the wavefunction remains square inteigrai. e. if 0< s < 1, which we
assume in what follows. This condition is satisfied e.g. fier= 2,n, = 1 for a mass ratio
m,/m; €]8.62...;136.. .| [5]. Moreover we are assuming for simplicity theg 0.

Let us now consider the particular case where the two-baalyesing length is infinite, and the
external potential is either harmonic isotropic, or abs&hen the separability in internal hyper-
spherical coordinates of Section 3.3 still holdsifice N. Indeed, Eqg.(224) then translates into the
boundary condition on the hyperradial wavefunction

_ . —S i 2
RER/FR) = A (R |25R5> +0O(RY2) (225)
and does not affect the hyperangular problem. Consequi&ily
e For then-body bound state, which existsdf= +1:

T mR

r(l-s

F(R) =Ks (R\/g) . (227)

oR? {r(lm)}% (226)

e Forthe eigenstates in a trap:

Ls—E/(Aw) ) -/
Esolves:s-<mﬁ|2)s:r< 1SZE/(ﬁw)>r( S), (228)
o) = 7 (g

1 mw
FRI=gWe s (R (229)

In particular, forl = o, we are exactly at the-body resonance, since the energy of theody
bound state vanishes. The spectrum in a trap then=s(—s+ 1+ 29)hw with g € N.

Note that, most ofters > 1, in which case one would have to use an approach similareto th
one developped by Pricoupenko for the case of 2-body resesan non-zero angular momentum
channels, and to introduce a modified scalar product [22]. 104
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