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The Unitary Gas and its Symmetry Properties

Yvan Castin and Félix Werner

Abstract The physics of atomic quantum gases is currently taking advantage of a
powerful tool, the possibility to fully adjust the interaction strength between atoms
using a magnetically controlled Feshbach resonance. For fermions with two internal
states, formally two opposite spin states↑ and↓, this allows to prepare long lived
strongly interacting three-dimensional gases and to studythe BEC-BCS crossover.
Of particular interest along the BEC-BCS crossover is the so-called unitary gas,
where the atomic interaction potential between the opposite spin states has virtually
an infinite scattering length and a zero range. This unitary gas is the main sub-
ject of the present chapter: It has fascinating symmetry properties, from a simple
scaling invariance, to a more subtle dynamical symmetry in an isotropic harmonic
trap, which is linked to a separability of theN-body problem in hyperspherical co-
ordinates. Other analytical results, valid over the whole BEC-BCS crossover, are
presented, establishing a connection between three recently measured quantities,
the tail of the momentum distribution, the short range part of the pair distribution
function and the mean number of closed channel molecules.

The chapter is organized as follows. In section 1, we introduce useful concepts,
and we present a simple definition and basic properties of theunitary gas, related to
its scale invariance. In section 2, we describe various models that may be used to de-
scribe the BEC-BCS crossover, and in particular the unitarygas, each model having
its own advantage and shedding some particular light on the unitary gas properties:
scale invariance and a virial theorem hold within the zero-range model, relations be-
tween the derivative of the energy with respect to the inverse scattering length and
the short range pair correlations or the tail of the momentumdistribution are eas-
ily derived using the lattice model, and the same derivativeis immediately related to
the number of molecules in the closed channel (recently measured at Rice) using the
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two-channel model. In section 3, we describe the dynamical symmetry properties of
the unitary gas in a harmonic trap, and we extract their physical consequences for
many-body and few-body problems.
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The Unitary Gas and its Symmetry Properties 3

1 Simple facts about the unitary gas

1.1 What is the unitary gas ?

First, the unitary gas is. . . a gas. As opposed to a liquid, it is a dilute system with
respect to the interaction rangeb: its mean number densityρ satisfies the constraint

ρb3 ≪ 1. (1)

For a rapidly decreasing interaction potentialV(r), b is the spatial width ofV(r).
In atomic physics, whereV(r) may be viewed as a strongly repulsive core and a
Van der Waals attractive tail−C6/r6, one usually assimilatesb to the Van der Waals
length(mC6/h̄2)1/4.

The intuitive picture of a gas is that the particles mainly experience binary scat-
tering, the probability that more than two particles are within a volumeb3 being
negligible. As a consequence, what should really matter is the knowledge of the
scattering amplitudefk of two particles, wherek is the relative momentum, rather
than ther dependence of the interaction potentialV(r). This expectation has guided
essentially all many-body works on the BEC-BCS crossover: One uses convenient
models forV(r) that are very different from the true atomic interaction potential, but
that reproduce correctly the momentum dependence offk at the relevant low values
of k, such as the Fermi momentum or the inverse thermal de Brogliewavelength,
these relevant low values ofk having to satisfykb≪ 1 for this modelization to be
acceptable.

Second, the unitary gas is such that, for the relevant valuesof the relative mo-
mentumk, the modulus offk reaches the maximal value allowed by quantum me-
chanics, the so-called unitary limit [1]. Here, we considers-wave scattering between
two opposite-spin fermions, so thatfk depends only on the modulus of the relative
momentum. The optical theorem, a consequence of the unitarity of the quantum
evolution operator [1], then implies

Im fk = k| fk|2. (2)

Dividing by | fk|2, and usingfk/| fk|2 = 1/ f ∗k , one sees that this fixes the value of the
imaginary part of 1/ fk, so that it is strictly equivalent to the requirement that there
exists a real functionu(k) such that

fk =− 1
ik+u(k)

(3)

for all values ofk. We then obtain the upper bound| fk| ≤ 1/k. Ideally, the unitary
gas saturates this inequality for all values ofk:

f unitary
k =− 1

ik
. (4)
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In reality, Eq.(4) cannot hold for allk. It is thus important to understand over
which range ofk Eq.(4) should hold to have a unitary gas, and to estimate the devi-
ations from Eq.(4) in that range in a real experiment. To thisend, we use the usual
low-k expansion of the denominator of the scattering amplitude [1], under validity
conditions specified in [2]:

u(k) =
1
a
− 1

2
rek

2+ . . . (5)

The lengtha is the scattering length, the lengthre is the effective range of the in-
teraction. Botha and re can be of arbitrary sign. Even for 1/a = 0, even for an
everywhere non-positive interaction potential,re can be of arbitrary sign. As this
last property seems to contradict a statement in the solution of problem 1 in§131 of
[3], we have constructed an explicit example depicted in Fig. 1, which even shows
that the effective range may be very different in absolute value from the true po-
tential rangeb, i.e. re/b for a−1 = 0 may be in principle an arbitrarily large and
negative number. Let us assume that the. . . in Eq.(5) are negligible ifkb≪ 1, an
assumption that will be revisited in§2.3.3. Notingktyp a typical relative momentum
in the gas, we thus see that the unitary gas is in practice obtained as a double limit,
a zero rangelimit

ktypb≪ 1,ktyp|re| ≪ 1 (6)

and aninfinite scattering lengthlimit:

ktyp|a| ≫ 1. (7)

At zero temperature, we assume thatktyp = kF , where the Fermi momentum is
conventionally defined in terms of the gas total densityρ as for the ideal spin-1/2

-α2

-β2

1-ε 1

r/b

mV(r)b
2
/ /h

2

Fig. 1 A class of non-positive potentials (of compact support of radiusb) that may lead to a nega-
tive effective range in the resonant casea−1 = 0. The resonant case is achieved when the three pa-
rametersα ,β andε satisfy tan[(1− ε)α ] tan(εβ ) = α/β . Then from Smorodinskii’s formula, see
Problem 1 in§131 of [3], one sees thatre/b≤ 2. One also finds thatre/b∼−cos2 θ/(πε)2 →−∞
whenε → 0 with α = π , β ε → θ , whereθ = 2.798386. . . solves 1+θ tanθ = 0.
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Fermi gas:
kF = (3π2ρ)1/3. (8)

In a trap,ρ and thuskF are position dependent. Condition (7) is well satisfied ex-
perimentally, thanks to the Feshbach resonance. The condition kFb≪ 1 is also well
satisfied at the per cent level, becauseb≈ the Van der Waals length is in the nanome-
ter range. Up to now, there is no experimental tuning of the effective rangere, and
there are cases wherekF |re| is not small. However, to study the BEC-BCS crossover,
one uses in practice the so-called broad Feshbach resonances, which do not require
a too stringent control of the spatial homogeneity of the magnetic field, and where
|re| ∼ b; then Eq.(6) is also satisfied.

We note that the assumptionktyp = kF , although quite intuitive, is not automati-
cally correct. For example, for bosons, as shown by Efimov [4], an effective three-
body attraction takes place, leading to the occurrence of the Efimov trimers; this
attraction leads to the so-called problem offall to the center[3], and one has 1/ktyp

of the order of the largest of the two rangesb and|re|. Eq.(6) is then violated, and
an extra length scale, the three-body parameter, has to be introduced, breaking the
scale invariance of the unitary gas. Fortunately, for threefermions, there is no Efi-
mov attraction, except for the case of different masses for the two spin components:
If two fermions of massm↑ interact with a lighter particle of massm↓, the Efi-
mov effect takes place form↑/m↓ larger than≃ 13.607 [5, 6]. If a third fermion of
massm↑ is added, a four-body Efimov effect appears at a slightly lower mass ratio
m↑/m↓ ≃ 13.384 [7]. In what follows we consider the case of equal masses,unless
specified otherwise.

At non-zero temperatureT > 0, another length scale appears in the unitary gas
properties, the thermal de Broglie wavelengthλdB, defined as

λ 2
dB =

2π h̄2

mkBT
. (9)

At temperatures larger than the Fermi temperatureTF = h̄2k2
F/(2mkB), one has to

takektyp ∼ 1/λdB in the conditions (6,7). In practice, the most interesting regime is
however the degenerate regimeT < TF , where the non-zero temperature does not
bring new conditions for unitarity.

1.2 Some simple properties of the unitary gas

As is apparent in the expression of the two-body scattering amplitude Eq.(4), there
is no parameter or length scales issuing from the interaction. As a consequence, for a
gas in the trapping potentialU(r), the eigenenergiesEi of theN-body problem only
depend on̄h2/mand on the spatial dependence ofU(r): the length scale required to
get an energy out of̄h2/m is obtained from the shape of the container.

This is best formalized in terms of a spatial scale invariance. Qualitatively, if one
changes the volume of the container, even if the gas becomes arbitrarily dilute, it re-
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mains at unitarity and strongly interacting. This is of course not true for a finite value
of the scattering lengtha: If one reduces the gas density,ρ1/3a drops eventually to
small values, and the gas becomes weakly interacting.

Quantitatively, if one applies to the container a similarity factor λ in all direc-
tions, which changes its volume fromV to λ 3V, we expect that each eigenenergy
scales as

Ei →
Ei

λ 2 (10)

and each eigenwavefunction scales as

ψi(X)→ ψi(X/λ )
λ 3N/2

. (11)

Here X = (r1, . . . , rN) is the set of all coordinates of the particles, and theλ -
dependent factor ensures that the wavefunction remains normalized. The proper-
ties (10,11), which are at the heart of what the unitary gas really is, will be put on
mathematical grounds in section 2 by replacing the interaction with contact condi-
tions onψ . Simple consequences may be obtained from these scaling properties, as
we now discuss.

In a harmonic isotropic trap, where a single particle has an oscillation angu-
lar frequencyω , taking as the scaling factor the harmonic oscillator length aho =
[h̄/(mω)]1/2, one finds that

Ei

h̄ω
= Fi(N) (12)

where the functionsFi are universal functions, ideally independent of the fact that
one uses lithium 6 or potassium 40 atoms, and depending only on the particle num-
ber.

In free space, the unitary gas cannot have aN-body bound state (an eigenstate
of negative energy), whatever the value ofN ≥ 2. If there was such a bound state,
which corresponds to a square integrable eigenwavefunction of the relative (Jacobi)
coordinates of the particles, one could generate a continuum of such square inte-
grable eigenstates using Eqs.(10,11). This would violate afundamental property
of self-adjoint Hamiltonians [8]. Another argument is thatthe energy of a discrete
universal bound state would depend only onh̄ andm, which is impossible by di-
mensional analysis.

At thermal equilibrium in the canonical ensemble in a box, say a cubic box of
volumeV =L3 with periodic boundary conditions, several relations may be obtained
if one takes the thermodynamic limitN →+∞, L3 →+∞ with a fixed densityρ and
temperatureT, and if one assumes that the free energyF is an extensive quantity.
Let us consider for simplicity the case of equal population of the two spin states,
N↑ = N↓. Then, in the thermodynamic limit, the free energy per particleF/N ≡ f is
a function of the densityρ and temperatureT. If one applies a similarity of factor
λ and if one changeT to T/λ 2 so as to keep a constant ratioEi/(kBT), that is a
constant occupation probability for each eigenstate, one obtains from Eq.(10) that

f (ρ/λ 3,T/λ 2) = f (ρ ,T)/λ 2. (13)
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At zero temperature,f reduces to the ground state energy per particlee0(ρ). From
Eq.(13) it appears thate0(ρ) scales asρ2/3, exactly as the ground state energy of
the ideal Fermi gas. One thus simply has

e0(ρ) = ξ eideal
0 (ρ) =

3ξ
5

h̄2k2
F

2m
(14)

wherekF is defined by Eq.(8) andξ is a universal number. This is also a simple con-
sequence of dimensional analysis [9]. Taking the derivative with respect toN or to
the volume, this shows that the same type of relation holds for the zero temperature
chemical potential,µ0(ρ) = ξ µ ideal

0 (ρ), and for the zero temperature total pressure,
P0(ρ) = ξ Pideal

0 (ρ), so that

µ0(ρ) = ξ
h̄2k2

F

2m
(15)

P0(ρ) =
2ξ
5

ρ
h̄2k2

F

2m
. (16)

At non-zero temperature, taking the derivative of Eq.(13) with respect toλ in
λ = 1, and usingF = E−TS, whereE is the mean energy andS= −∂TF is the
entropy, as well asµ = ∂NF, one obtains

5
3

E− µN = TS. (17)

From the Gibbs-Duhem relation, the grand potentialΩ = F −µN is equal to−PV,
whereP is the pressure of the gas. This gives finally the useful relation

PV =
2
3

E, (18)

that can also be obtained from dimensional analysis [9], andthat of course also
holds at zero temperature (see above). All these propertiesactually also apply to the
ideal Fermi gas, which is obviously scaling invariant. The relation (18) for example
was established for the ideal gas in [10].

Let us finally describe at a macroscopic level, i.e. in a hydrodynamic picture, the
effect of the similarity Eq.(11) on the quantum state of a unitary gas, assuming that
it was initially at thermal equilibrium in a trap. In the initial state of the gas, con-
sider a small (but still macroscopic) element, enclosed in avolumedV around point
r . It is convenient to assume thatdV is a fictitious cavity with periodic boundary
conditions. In the hydrodynamic picture, this small element is assumed to be at lo-
cal thermal equilibrium with a temperatureT. Then one performs the spatial scaling
transform Eq.(10) on each many-body eigenstateψ of the thermal statistical mix-
ture, which does not change the statistical weigths. How will the relevant physical
quantities be transformed in the hydrodynamic approach ?

The previously considered small element is now at positionλ r , and occupies a
volumeλ 3dV, with the same number of particles. The hydrodynamic mean density



8 Yvan Castin and Félix Werner

profile after rescaling,ρλ , is thus related to the mean density profileρ before scaling
as

ρλ (λ r) = ρ(r)/λ 3. (19)

Second, is the small element still at (local) thermal equilibrium after scaling ? Each
eigenstate of energyEloc of the locally homogeneous unitary gas within the initial
cavity of volumedV is transformed by the scaling into an eigenstate within the
cavity of volumeλ 3dV, with the eigenenergyEloc/λ 2. Since the occupation proba-
bilities of each local eigenstate are not changed, the localstatistical mixture remains
thermal provided that one rescales the temperature as

Tλ = T/λ 2. (20)

A direct consequence is that the entropy of the small elementof the gas is unchanged
by the scaling, so that the local entropyper particles in the hydrodynamic approach
obeys

sλ (λ r) = s(r). (21)

Also, since the mean energy of the small element is reduced bythe factorλ 2 due to
the scaling, and the volume of the small element is multiplied byλ 3, the equilibrium
relation Eq.(18) imposes that the local pressure is transformed by the scaling as

pλ (λ r) = p(r)/λ 5. (22)

1.3 Application: Inequalities onξ and finite-temperature
quantities

Using the previous constraints imposed by scale invarianceof the unitary gas on
thermodynamic quantities, in addition to standard thermodynamic inequalities, we
show that one can produce constraints involving both the zero-temperature quantity
ξ and finite-temperature quantities of the gas.

Imagine that, at some temperatureT, the energyE and the chemical potentialµ
of the non-polarized unitary Fermi gas have been obtained, in the thermodynamic
limit. If one introduces the Fermi momentum Eq.(8) and the corresponding Fermi
energyEF = h̄2k2

F/(2m), this means that on has at hand the two dimensionless quan-
tities

A ≡ E
NEF

(23)

B ≡ µ
EF

. (24)

As a consequence of Eq.(18), one also has access to the pressure P. We now show
that the following inequalities hold at any temperatureT:
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(

3
5A

)2/3

B5/3 ≤ ξ ≤ 5A
3
. (25)

In the canonical ensemble, the mean energyE(N,T,V) is an increasing function
of temperature for fixed volumeV and atom numberN. Indeed one has the well-
known relationkBT2∂TE(N,T,V) = VarH, and the variance of the Hamiltonian is
non-negative. As a consequence, for any temperatureT:

E(N,T,V)≥ E(N,0,V). (26)

From Eq.(14) we then reach the upper bound onξ given in Eq.(25).
In the grand canonical ensemble, the pressureP(µ ,T) is an increasing function

of temperature for a fixed chemical potential. This results from the Gibbs-Duhem
relationΩ(µ ,T,V) =−VP(µ ,T) whereΩ is the grand potential andV the volume,
and from the differential relation∂TΩ(µ ,T) =−SwhereS≥ 0 is the entropy. As a
consequence, for any temperatureT:

P(µ ,T)≥ P(µ ,0). (27)

For the unitary gas, the left hand side can be expressed in terms of A using (18).
Eliminating the density between Eq.(15) and Eq.(16) we obtain the zero temperature
pressure

P(µ ,0) =
1

15π2ξ 3/2

h̄2

m

(

2mµ
h̄2

)5/2

. (28)

This leads to the lower bound onξ given in Eq.(25).
Let us apply Eq.(25) to the Quantum Monte Carlo results of [11]: At the critical

temperatureT = Tc, A= 0.310(10) andB= 0.493(14), so that

0.48(3)≤ ξ[11] ≤ 0.52(2). (29)

This deviates by two standard deviations from a the fixed noderesultξ ≤ 0.40(1)
[12]. The Quantum Monte Carlo results of [13], if one takes a temperature equal
to the critical temperature of [11], giveA= 0.45(1) andB= 0.43(1); these values,
in clear disagreement with [11], lead to the non-restrictive bracketing 0.30(2) ≤
ξ[13] ≤ 0.75(2). The more recent work [14] findskBTc/EF = 0.171(5) and at this
critical temperature,A= 0.276(14) andB= 0.429(9), leading to

0.41(3)≤ ξ[14] ≤ 0.46(2). (30)

Another, more graphical application of our simple bounds isto assume some
reasonable value ofξ , and then to use Eq.(25) to construct a zone in the energy-
chemical potential plane that is forbidden at all temperatures. In Fig.2, we took
ξ = 0.41, inspired by the fixed node upper bound on the exact value ofξ [12]: The
shaded areas are the resulting forbidden zone, and the filleddisks with error bars
represent the in principle exact Quantum Monte Carlo results of various groups at
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T = Tc. It is apparent that the prediction of [11] lies well within the forbidden zone
and thus violates thermodynamic inequalities. The prediction of [13] is well within
the allowed zone, whereas the most recent prediction of [14]is close to the boundary
between the forbidden and the allowed zones. If one takes a smaller value forξ , the
boundaries of the forbidden zone will shift as indicated by the arrows on the figure.
All this shows that simple reasonings may be useful to test and guide numerical
studies of the unitary gas.

1.4 Is the unitary gas attractive or repulsive ?

According to a common saying, a weakly interacting Fermi gas(kF |a| ≪ 1) experi-
ences an effective repulsion for a positive scattering length a> 0, and an effective
attraction for a negative scattering lengtha< 0. Another common fact is that, in the
unitary limit |a| → +∞, the gas properties do not depend on the sign ofa. As the
unitary limit may be apparently equivalently obtained by taking the limit a→ +∞
or the limita→−∞, one reaches a paradox, considering the fact that the unitary gas
does not have the same ground state energy than the ideal gas and cannot be at the
same time an attractive and repulsive state of matter.

This paradox may be resolved by considering the case of two particles in an
isotropic harmonic trap. After elimination of the center ofmass motion, and restric-

0.2 0.25 0.3 0.35 0.4 0.45 0.5
E(T)/NE

F

0.35

0.4

0.45

0.5

0.55

µ(
T

)/
E

F

Burovski

Bulgac
Goulko

gray area violates

therm
odynamic inequalitie

s

Fig. 2 For the spin balanced uniform unitary gas at thermal equilibrium: Assumingξ = 0.41 in
Eq.(25) defines a zone (shaded in gray) in the plane energy-chemical potential that is forbidden
at all temperatures. The black disks correspond to the unbiased Quantum Monte Carlo results of
Burovski et al. [11], of Bulgac et al. [13], and of Goulko et al. [14] at the critical temperature.
Taking the unknown exact value ofξ , which is below the fixed node upper bound 0.41 [12], will
shift the forbidden zone boundaries as indicated by the arrows.
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tion to a zero relative angular momentum to haves-wave interaction, one obtains
the radial Schrödinger equation

− h̄2

2µ

[

ψ ′′(r)+
2
r

ψ ′(r)

]

+
1
2

µω2r2ψ(r) = Erelψ(r), (31)

with the relative massµ = m/2. The interactions are included in the zero range
limit by the r = 0 boundary conditions, the so-called Wigner-Bethe-Peierls contact
conditions described in section 2:

ψ(r) = A[r−1−a−1]+O(r) (32)

that correctly reproduce the free space scattering amplitude

f zero range
k =− 1

a−1+ ik
. (33)

The general solution of Eq.(31) may be expressed in terms of WhittakerM et W
functions. For an energyErel not belonging to the non-interacting spectrum{(3

2 +
2n)h̄ω ,n∈N}, the Whittaker functionM diverges exponentially for larger and has
to be disregarded. The smallr behavior of the Whittaker functionW, together with
the Wigner-Bethe-Peierls contact condition, leads to the implicit equation for the
relative energy, in accordance with [15]:

Γ (3
4 −

Erel
2h̄ω )

Γ (1
4 −

Erel
2h̄ω )

=
arel

ho

2a
(34)

with the harmonic oscillator length of the relative motion,arel
ho = [h̄/(µω)]1/2.

The functionΓ (x) is different from zero∀x ∈ R and diverges on each non-
positive integers. Thus Eq.(34) immediately leads in the unitary case to the spectrum
Erel ∈ {(2n+ 1/2)h̄ω ,n ∈ N}. This can be readily obtained by setting in Eq.(31)
ψ(r) = f (r)/r, so thatf obeys Schrödinger’s equation for a 1D harmonic oscillator,
with the constraint issuing from Eq.(32) thatf (r = 0) 6= 0, which selects the even
1D states.

The graphical solution of Eq.(34), see Fig. 3, allows to resolve the paradox about
the attractive or repulsive nature of the unitary gas. E.g. starting with the ground
state wavefunction of the ideal gas case, of relative energyErel =

3
2h̄ω , it appears

that the two adiabatic followings (i)a= 0+ → a=+∞ and (ii) a= 0− →−∞ lead
to differentfinal eigenstates of the unitary case, to an excited stateErel =

5
2h̄ω for

the procedure (i), and to the ground stateErel =
1
2h̄ω for procedure (ii).

The same explanation holds for the many-body case: The interacting gas has
indeed several energy branches in the BEC-BCS crossover, assuggested by the
toy model1 of [16], see Fig. 4. Starting from the weakly attractive Fermi gas and

1 This toy model replaces the many-body problem with the one ofa matterwave interacting with a
single scatterer in a hard wall cavity of radius∝ 1/kF .
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ramping the scattering length down to−∞ one explores a part of the ground energy
branch, where the unitary gas is attractive; this ground branch continuously evolves
into a weakly repulsive condensate of dimers [17] if 1/a further moves from 0− to
0+ and then to+∞. The attractive nature of the unitary gas on the ground energy
branch will become apparent in the lattice model of section 2. On the other hand,
starting from the weakly repulsive Fermi gas and ramping thescattering up to+∞,
one explores an effectively repulsive excited branch.

In the first experiments on the BEC-BCS crossover, the groundbranch was ex-
plored by adiabatic variations of the scattering length andwas found to be stable.
The first excited energy branch was also investigated in the early work [18], and
more recently in [19] looking for a Stoner demixing instability of the strongly re-
pulsive two-component Fermi gas. A difficulty for the study of this excited branch
is its metastable character: Three-body collisions gradually transfer the gas to the
ground branch, leading e.g. to the formation of dimers if 0< kFa. 1.

Fig. 3 For the graphical solu-
tion of Eq.(34), which gives
the spectrum for two parti-
cles in a three-dimensional
isotropic harmonic trap, plot
of the function f3D(x) =
Γ ( 3

4 − x
2)/Γ ( 1

4 − x
2), wherex

stands forErel/(h̄ω).
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Fig. 4 In the toy model of
[16], for the homogeneous
two-component unpolarized
Fermi gas, energy per particle
on the ground branch and
the first excited branch as
a function of the inverse
scattering length. The Fermi
wavevector is defined in
Eq.(8),EF = h̄2k2

F/(2m) is
the Fermi energy, anda is the
scattering length.
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1.5 Other partial waves, other dimensions

We have previously considered the two-body scattering amplitude in thes-wave
channel. What happens for example in thep-wave channel ? This channel is relevant
for the interaction between fermions in the same internal state, where a Feshbach
resonance technique is also available [20, 21]. Can one alsoreach the unitarity limit
Eq.(4) in thep-wave channel ?

Actually the optical theorem shows that relation Eq.(3) also holds for thep-wave
scattering amplitudefk. What differs is the low-k expansion ofu(k), that is now
given by

u(k) =
1

k2Vs
+α + . . . , (35)

whereVs is the scattering volume (of arbitrary sign) andα has the dimension of the
inverse of a length. The unitary limit would requireu(k) negligible as compared to
k. One can in principle tuneVs to infinity with a Feshbach resonance. Can one then
have a small value ofα at resonance ? A theorem for a compact support interaction
potential of radiusb shows however that [22, 23]

lim
|Vs|→+∞

α ≥ 1/b. (36)

A similar conclusion holds using two-channel models of the Feshbach resonance
[23, 24].α thus assumes a huge positive value on resonance, which breaks the scale
invariance and precludes the existence of ap-wave unitary gas. This does not prevent
however to reach the unitary limit in thevicinity of a particular value ofk. For Vs

large and negative, neglecting the. . . in Eq.(35) under the conditionkb≪ 1, one
indeed has|u(k)| ≪ k, so thatfk ≃−1/(ik), in a vicinity of

k0 =
1

(α|Vs|)1/2
. (37)

Turning back to the interaction in thes-wave channel, an interesting question is
wether the unitary gas exists in reduced dimensions.

In a one-dimensional system the zero range interaction may be modeled by a
Dirac potentialV(x) = gδ (x). If g is finite, it introduces a length scalēh2/(mg)
that breaks the scaling invariance. Two cases are thus scaling invariant, the ideal
gasg = 0 and the impenetrable case 1/g = 0. The impenetrable case however is
mappable to an ideal gas in one dimension, it has in particular the same energy
spectrum and thermodynamic properties [25].

In a two-dimensional system, the scattering amplitude for azero range interaction
potential is given by [26]

f 2D
k =

1
γ + ln(ka2D/2)− iπ/2

(38)
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whereγ = 0.57721566. . . is Euler’s constant anda2D is the scattering length. For a
finite value ofa2D, there is no scale invariance. The casea2D → 0 corresponds to the
ideal gas limit. At first sight, the opposite limita2D → +∞ is a good candidate for
a two-dimensional unitary gas; however this limit also corresponds to an ideal gas.
This appears in the 2D version of the lattice model of section2 [27]. This can also
be checked for two particles in an isotropic harmonic trap. Separating out the center
of mass motion, and taking a zero angular momentum state for the relative motion,
to have interaction in thes-wave channel, one has to solve the radial Schrödinger
equation:

− h̄2

2µ
[ψ ′′(r)+

1
r

ψ ′(r)]+
1
2

µω2r2ψ(r) = Erelψ(r) (39)

whereµ = m/2 is the reduced mass of the two particles,Erel is an eigenenergy of
the relative motion, andω is the single particle angular oscillation frequency. The
interactions are included by the boundary condition inr = 0:

ψ(r) = Aln(r/a2D)+O(r), (40)

which are constructed to reproduce the expression of the scattering amplitude
Eq.(38) for the free space problem.

The general solution of Eq.(39) may be expressed in terms of Whittaker functions
M andW. Assuming thatErel does not belong to the ideal gas spectrum{(2n+
1)h̄ω ,n∈N}, one finds that theM solution has to be disregarded because it diverges
exponentially forr →+∞. From the smallr behavior of theW solution, one obtains
the implicit equation

1
2

ψ
(

h̄ω −Erel

2h̄ω

)

+ γ =− ln(a2D/arel
ho) (41)

where the relative harmonic oscillator length isarel
ho = [h̄/(µω)]1/2 and the digamma

functionψ is the logarithmic derivative of theΓ function. If a2D → +∞, one then
finds thatErel tends to the ideal gas spectrum{(2n+1)h̄ω ,n∈ N} from below, see
Fig. 5, in agreement with the lattice model result that the 2Dgas with a large and
finite a2D is a weakly attractive gas.

2 Various models and general relations

There are basically two approaches to model the interactionbetween particles for
the unitary gas (and more generally for the BEC-BCS crossover).

In the first approach, see subsections 2.1 and 2.3, one takes amodel with a fi-
nite rangeb and a fixed (e.g. infinite) scattering lengtha. This model may be in
continuous space or on a lattice, with one or several channels. Then one tries to
calculate the eigenenergies, the thermodynamic properties from the thermal density
operator∝ exp(−βH), etc, and the zero range limitb → 0 should be taken at the
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end of the calculation. Typically, this approach is followed in numerical many-body
methods, such as the approximate fixed node Monte Carlo method [12, 28, 29] or
unbiased Quantum Monte Carlo methods [11, 13, 30]. A non-trivial question how-
ever is wether each eigenstate of the model is universal in the zero range limit, that
is if the eigenenergyEi and the corresponding wavefunctionψi converge forb→ 0.
In short, the challenge is to prove that the ground state energy of the system does
not tend to−∞ whenb→ 0.

In the second approach, see subsection 2.2, one directly considers the zero range
limit, and one replaces the interaction by the so-called Wigner-Bethe-Peierls con-
tact conditions on theN-body wavefunction. This constitutes what we shall call the
zero-range model. The advantage is that only the scattering length appears inthe
problem, without unnecessary details on the interaction, which simplifies the prob-
lem and allows to obtain analytical results. E.g. the scale invariance of the unitary
gas becomes clear. A non-trivial question however is to knowwhether the zero-
range model leads to a self-adjoint Hamiltonian, with a spectrum then necessar-
ily bounded from below for the unitary gas (see Section 1.2),without having to
add extra boundary conditions. ForN = 3 bosons, due to the Efimov effect, the
Wigner-Bethe-Peierls or zero-range model becomes self-adjoint only if one adds an
extra three-body contact condition, involving a so-calledthree-body parameter. In
an isotropic harmonic trap, at unitarity, there exists however a non-complete fam-
ily of bosonic universal states, independent from the three-body parameter and to
which the restriction of the Wigner-Bethe-Peierls model ishermitian [31, 32]. For
equal mass two-component fermions, it is hoped in the physics literature that the
zero-range model is self-adjoint for an arbitrary number ofparticlesN. Surpris-
ingly, there exist works in mathematical physics predicting that this isnot the case
whenN is large enough [33, 34]; however the critical mass ratio forthe appearance
of an Efimov effect in the unequal-mass 3+1 body problem given without proof
in [34] was not confirmed by the numerical study [7], and the physical meaning
of the quadratic form shown in [33] to be unbounded below remains unclear. This
mathematical problem thus remains open.

Fig. 5 For the graphical
solution of Eq.(41), which
gives the spectrum for two
interacting particles in a
two-dimensional isotropic
harmonic trap, plot of the
function f2D(x) =

1
2ψ[(1−

x)/2] + γ wherex stands for
Erel/(h̄ω) and the special
functionψ is the logarithmic
derivative of theΓ function.
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2.1 Lattice models and general relations

2.1.1 The lattice models

The model that we consider here assumes that the spatial positions are discretized
on a cubic lattice, of lattice constant that we callb as the interaction range. It is quite
appealing in its simplicity and generality. It naturally allows to consider a contact
interaction potential, opposite spin fermions interacting only when they are on the
same lattice site. Formally, this constitutes a separable potential for the interaction
(see subsection 2.3 for a reminder), a feature known to simplify diagrammatic cal-
culations [35]. Physically, it belongs to the same class as the Hubbard model, so that
it may truly be realized with ultracold atoms in optical lattices [36], and it allows to
recover the rich lattice physics of condensed matter physics and the corresponding
theoretical tools such as Quantum Monte Carlo methods [11, 30].

The spatial coordinatesr of the particles are thus discretized on a cubic grid of
stepb. As a consequence, the components of the wavevector of a particle have a
meaning modulo 2π/b only, since the plane wave functionr → exp(ik · r ) defined
on the grid is not changed if a component ofk is shifted by an integer multiple of
2π/b. We shall therefore restrict the wavevectors to the first Brillouin zone of the
lattice:

k ∈ D ≡
[

−π
b
,

π
b

[3
. (42)

This shows that the lattice structure in real space automatically provides a cut-off
in momentum space. In the absence of interaction and of confining potential, eigen-
modes of the system are plane waves with a dispersion relation k → εk , supposed
to be an even and non-negative function ofk. We assume that this dispersion re-
lation is independent of the spin state, which is a natural choice since the↑ and↓
particles have the same mass. To recover the correct continuous space physics in the
zero lattice spacing limitb→ 0, we further impose that it reproduces the free space
dispersion relation in that limit, so that

εk ∼ h̄2k2

2m
for kb→ 0. (43)

The interaction between opposite spin particles takes place when two particles are
on the same lattice site, as in the Hubbard model. In first quantized form, it is repre-
sented by a discrete delta potential:

V =
g0

b3 δr1,r2. (44)

The factor 1/b3 is introduced becauseb−3δr ,0 is equivalent to the Dirac distribution
δ (r) in the continuous space limit. To summarize, the lattice Hamiltonian in second
quantized form in the general trapped case is
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H = ∑
σ=↑,↓

∫

D

d3k
(2π)3 εkc†

σ (k)cσ (k)+ ∑
σ=↑,↓

∑
r

b3U(r)(ψ†
σ ψσ )(r)

+g0∑
r

b3(ψ†
↑ψ†

↓ψ↓ψ↑)(r). (45)

The plane wave annihilation operatorscσ (k) in spin stateσ obey the usual con-
tinuous space anticommutation relations{cσ (k),c

†
σ ′(k′)} = (2π)3δ (k − k′)δσσ ′ if

k andk′ are in the first Brillouin zone2, and the field operatorsψσ (r) obey the
usual discrete space anticommutation relations{ψσ (r),ψ†

σ ′(r ′)} = b−3δrr ′δσσ ′ . In
the absence of trapping potential, in a cubic box with sizeL integer multiple ofb,
with periodic boundary conditions, the integral in the kinetic energy term is replaced
by the sum∑k∈D εk c̃†

kσ c̃kσ where the annihilation operators then obey the discrete
anticommutation relations{c̃kσ , c̃

†
k′σ ′}= δkk ′δσσ ′ for k,k′ ∈ D .

The coupling constantg0 is a function of the grid spacingb. It is adjusted to
reproduce the scattering length of the true interaction. The scattering amplitude of
two atoms on the lattice with vanishing total momentum, thatis with incoming
particles of opposite spin and opposite momenta±k0, reads

fk0 =− m

4π h̄2

[

g−1
0 −

∫

D

d3k
(2π)3

1
E+ i0+−2εk

]−1

(46)

as derived in details in [37] for a quadratic dispersion relation and in [38] for a
general dispersion relation. Here the scattering state energy E = 2εk0 actually in-
troduces a dependence of the scattering amplitude on the direction ofk0 when the
dispersion relationεk is not parabolic. If one is only interested in the expansion of
1/ fk0 up to second order ink0, e.g. for an effective range calculation, one may con-
veniently use the isotropic approximationE = h̄2k2

0/m thanks to (43). Adjustingg0

to recover the correct scattering length gives from Eq.(46)for k0 → 0:

1
g0

=
1
g
−
∫

D

d3k
(2π)3

1
2εk

, (47)

with g = 4π h̄2a/m. The above formula Eq.(47) is reminiscent of the technique of
renormalization of the coupling constant [39, 40]. A natural case to consider is the
one of the usual parabolic dispersion relation,

εk =
h̄2k2

2m
. (48)

A more explicit form of Eq.(47) is then [41, 42]:

g0 =
4π h̄2a/m
1−Ka/b

(49)

2 In the general case,δ (k−k′) has to be replaced with∑K δ (k−k′−K) whereK ∈ (2π/b)Z3 is
any vector in the reciprocal lattice.
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with a numerical constant given by

K =
12
π

∫ π/4

0
dθ ln(1+1/cos2 θ ) = 2.442 749 607 806 335. . . , (50)

and that may be expressed analytically in terms of the dilog special function.

2.1.2 Simple variational upper bounds

The relation Eq.(49) is quite instructive in the zero range limit b→ 0, for fixed non-
zero scattering lengtha and atom numbersNσ : In this limit, the lattice filling factor
tends to zero, and the lattice model is expected to converge to the continuous space
zero-range model, that is to the Wigner-Bethe-Peierls model described in subsection
2.2. For each of the eigenenergies this means that

lim
b→0

Ei(b) = Ei , (51)

where in the right hand side the set ofEi ’s are the energy spectrum of the zero range
model. On the other hand, for a small enough value ofb, the denominator in the
right-hand side of Eq.(49) is dominated by the term−Ka/b, the lattice coupling
constantg0 is clearly negative, and the lattice model is attractive, asalready pointed
out in [43]. By the usual variational argument, this shows that the ground state en-
ergy of the zero range interacting gas is below the one of the ideal gas, for the same
trapping potential and atom numbersNσ :

E0 ≤ Eideal
0 . (52)

Similarly, at thermal equilibrium in the canonical ensemble, the free energy of the
interacting gas is below the one of the ideal gas:

F ≤ F ideal. (53)

As in [44] one indeed introduces the free-energy functionalof the (here lattice
model) interacting gas,F [ρ̂ ] = Tr[Hρ̂ ] + kBTTr[ρ̂ ln ρ̂ ], whereρ̂ is any unit trace
system density operator. Then

F [ρ̂ ideal
th ] = F ideal(b)+Tr[ρ̂ ideal

th V], (54)

whereρ̂ ideal
th is the thermal equilibrium density operator of the ideal gasin the lattice

model, andV is the interaction contribution to theN-body Hamiltonian. Since the
minimal value ofF [ρ̂ ] over ρ̂ is equal to the interacting gas lattice model free
energyF(b), the left hand side of Eq.(54) is larger thanF(b). Since the operatorV
is negative for smallb, becauseg0 < 0, the right hand side of Eq.(54) is smaller than
F ideal(b). Finally taking the limitb → 0, one obtains the desired inequality. The
same reasoning can be performed in the grand canonical ensemble, showing that
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the interacting gas grand potential is below the one of the ideal gas, for the same
temperature and chemical potentialsµσ :

Ω ≤ Ω ideal. (55)

In [45], for the unpolarized unitary gas, this last inequality was checked to be obeyed
by the experimental results, but it was shown, surprisingly, to be violated by some
of the Quantum Monte Carlo results of [11]. For the particular case of the spatially
homogeneous unitary gas, the above reasonings imply thatξ ≤ 1 in Eq.(14), so that
the unitary gas is attractive (in the ground branch, see subsection 1.4). Using the
BCS variational ansatz in the lattice model3 [46] one obtains the more stringent
upper bound [40]:

ξ ≤ ξBCS= 0.5906. . . (56)

2.1.3 Finite-range corrections

For the parabolic dispersion relation, the expectation Eq.(51) was checked analyti-
cally for two opposite spin particles: Forb→ 0, in free space the scattering ampli-
tude (46), and in a box the lattice energy spectrum, convergeto the predictions of the
zero-range model [42]. It was also checked numerically forN= 3 particles in a box,
with two ↑ particles and one↓ particle: As shown in Fig. 6, for the first low energy
eigenstates with zero total momentum, a convergence of the lattice eigenenergies to
the Wigner-Bethe-Peierls ones is observed, in a way that is eventually linear inb for
small enough values ofb. As discussed in [38], this asymptotic linear dependence
in b is expected for Galilean invariant continuous space models, and the first order
deviations of the eigenergies from their zero range values are linear in the effective
rangere of the interaction potential, as defined in Eq.(5), with model-independent
coefficients:

dEi

dre
(b→ 0) is model-independent. (57)

However, for lattice models, Galilean invariance is brokenand the scattering be-
tween two particles depends on their center-of-mass momentum; this leads to a
breakdown of the universal relation (57), while preservingthe linear dependence
of the energy withb at lowb [47].

A procedure to calculatere in the lattice model for a general dispersion relationεk
in presented in Appendix 1. For the parabolic dispersion relation Eq.(48), its value
was given in [46] in numerical form. With the technique exposed in Appendix 1, we
have now the analytical value:

3 One may check, e.g. in the sectorN↑ = N↓ = 2, that the BCS variational wavefunction, which is a
condensate of pairs in some pair wavefunction, does not obeythe Wigner-Bethe-Peierls boundary
conditions even if the pair wavefunction does, so it looses its variational character in the zero-range
model.



20 Yvan Castin and Félix Werner

rparab
e = b

12
√

2
π3 arcsin

1√
3
= 0.336 868 47. . .b. (58)

The usual Hubbard model, whose rich many-body physics is reviewed in [48], was
also considered in [46]: It is defined in terms of the tunneling amplitude between
neighboring lattice sites, heret = −h̄2/(2mb2) < 0, and of the on-site interaction
U = g0/b3. The dispersion relation is then

εk =
h̄2

mb2 ∑
α=x,y,z

[1− cos(kαb)] (59)

where the summation is over the three dimensions of space. Itreproduces the
free space dispersion relation only in a vicinity ofk = 0. The explicit version of
Eq.(47) is obtained from Eq.(49) by replacing the numericalconstantK by KHub =
3.175911. . .. In the zero range limit this leads fora 6= 0 toU/|t| → −7.913552. . .,
corresponding as expected to anattractiveHubbard model, lending itself to a Quan-
tum Monte Carlo analysis for equal spin populations with no sign problem [11, 13].
The effective range of the Hubbard model, calculated as in Appendix 1, remarkably
is negative [46]:

rHub
e ≃−0.3056b. (60)

Fig. 6 Diamonds: The first
low eigenenergies for three
(↑↑↓) fermions in a cubic box
with a lattice model, as func-
tions of the lattice constantb
[42]. The box size isL, with
periodic boundary conditions,
the scattering length is infi-
nite, the dispersion relation is
parabolic Eq.(48). The unit of
energy isE0 = (2π h̄)2/2mL2.
Straight lines: Linear fits
performed on the data over
the rangeb/L ≤ 1/15, ex-
cept for the energy branch
E ≃ 2.89E0 which is linear on
a smaller range. Stars inb= 0:
Eigenenergies predicted by
the zero-range model.
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It becomes thus apparent that anad hoctuning of the dispersion relationεk may
lead to a lattice model with a zero effective range. As an example, we consider a
dispersion relation

εk =
h̄2k2

2m
[1−C(kb/π)2], (61)

whereC is a numerical constant less than 1/3. From Appendix 1 we then find that

re = 0 for C= 0.2570224. . . (62)

The corresponding value ofg0 is given by Eq.(49) withK = 2.899952. . ..
As pointed out in [47], additionally fine-tuning the dispertion relation to can-

cel not onlyre but also another coefficient (denoted byB in [47]) may have some
practical interest for Quantum Monte Carlo calculations that are performed with
a non-zerob, by canceling the undesired linear dependence of thermodynamical
quantities and of the critical temperatureTc onb.

2.1.4 Energy functional, tail of the momentum distribution and pair
correlation function at short distances

A quite ubiquitous quantity in the short-range or large-momentum physics of gases
with zero range interactions is the so-called “contact”, which, restricting here for
simplicity to thermal equilibrium in the canonical ensemble, can be defined by

C≡ 4πm

h̄2

(

dE
d(−1/a)

)

S
=

4πm

h̄2

(

dF
d(−1/a)

)

T
. (63)

For zero-range interactions, this quantityC determines the large-k tail of the mo-
mentum distribution

nσ (k) ∼
k→∞

C
k4 (64)

as well as the short-distance behavior of the pair distribution function

∫

d3R g(2)↑↓

(

R+
r
2
,R− r

2

)

∼
r→0

C
(4πr)2 . (65)

Here the spin-σ momentum distributionnσ (k) is normalised according to
∫ d3k

(2π)3 nσ (k)=
Nσ . The relations (63,64,65) were obtained in [49, 50]. Historically, analogous re-
lations were first established for one-dimensional bosonicsystems [51, 52] with
techniques that may be straightforwardly extended to two dimensions and three di-
mensions [38]. Another relation derived in [49] for the zero-range model expresses
the energy as a functional of the one-body density matrix:

E = ∑
σ=↑,↓

∫

d3k
(2π)3

h̄2k2

2m

[

nσ (k)−
C
k4

]

+
h̄2C

4πma
+ ∑

σ=↑,↓

∫

d3rU (r)ρσ (r) (66)
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whereρσ (r) is the spatial number density.
One usually uses (64) to defineC, and then derives (63). Here we rather take (63)

as the definition ofC. This choice is convenient both for the two-channel model
discussed in Section 2.3 and for the rederivation of (64,65,66) that we shall now
present, where we use a lattice model before taking the zero-range limit.

From the Hellmann-Feynman theorem (that was already put forward in [51]), the
interaction energyEint is equal tog0(dE/dg0)S. Since we haved(1/g0)/d(1/g) = 1
[see the relation (47) betweeng0 andg], this can be rewritten as

Eint =
h̄4

m2

C
g0

. (67)

Expressing 1/g0 in terms of 1/g using once again (47), adding the kinetic energy,
and taking the zero-range limit, we immediately get the relation (66). For the integral
over momentum to be convergent, (64) must hold (in the absence of mathematical
pathologies).

To derive (65), we again use (67), which implies that the relation

∑
R

b3g(2)↑↓ (R+ r/2,R− r/2)=
C

(4π)2 |φ(r)|
2 (68)

holds for r = 0, wereφ(r) is the zero-energy two-body scattering wavefunction,
normalised in such a way that

φ(r) ≃ 1
r
− 1

a
for r ≫ b (69)

[see [38] for the straightforward calculation ofφ(0)]. Moreover, in the regime
wherer is much smaller than the typical interatomic distances and than the thermal
de Broglie wavelength (but not necessarily smaller thanb), it is generally expected

that ther -dependence ofg(2)↑↓ (R+ r/2,R− r/2) is proportional to|φ(r)|2, so that
(68) remains asymptotically valid. Taking the limitsb→ 0 and thenr → 0 gives the
desired (65).

Alternatively, the link (64,65) between short-range pair correlations and large-k
tail of the momentum distribution can be directly deduced from the short-distance
singularity of the wavefunction coming from the contact condition (75) and the cor-
responding tail in Fourier space [38], similarly to the original derivation in 1D [52].
Thus this link remains true for a generic out-of-equilibrium statistical mixture of
states satisfying the contact condition [49, 38].

2.1.5 Absence of simple collapse

To conclude this subsection on lattice models, we try to address the question of the
advantage of lattice models as compared to the standard continuous space model
with a binary interaction potentialV(r) between opposite spin fermions. Apart from
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practical advantages, due to the separable nature of the interaction in analytical cal-
culations, or to the absence of sign problem in the Quantum Monte Carlo methods,
is there a true physical advantage in using lattice models ?

One may argue for example that everywhere non-positive interaction potentials
may be used in continuous space, such as a square well potential, with a range
dependent depthV0(b) adjusted to have a fixed non-zero scattering and no two-body
bound states. E.g. for a square well potentialV(r) =−V0θ (b− r), whereθ (x) is the
Heaviside function, one simply has to take

V0 =
h̄2

mb2

(π
2

)2
(70)

to have an infinite scattering length. For such an attractiveinteraction, it seems then
that one can easily reproduce the reasonings leading to the bounds Eqs.(52,53). It
is known however that there exists a number of particlesN, in the unpolarized case
N↑ = N↓, such that this model in free space has aN-body bound state, necessarily
of energy∝ −h̄2/(mb2) [53, 54, 55]. In the thermodynamic limit, the unitary gas is
thus not the ground phase of the system, it is at most a metastable phase, and this
prevents a derivation of the bounds Eqs.(52,53). This catastrophe is easy to predict
variationally, taking as a trial wavefunction the ground state of the ideal Fermi gas
enclosed in a fictitious cubic hard wall cavity of sizeb/

√
3 [56]. In the largeN limit,

the kinetic energy in the trial wavefunction is then(3N/5)h̄2k2
F/(2m), see Eq.(14),

where the Fermi wavevector is given by Eq.(8) with a densityρ = N/(b/
√

3)3, so
that

Ekin ∝ N5/3 h̄2

mb2 . (71)

Since all particles are separated by a distance less thanb, the interaction energy is
exactly

Eint =−V0(N/2)2 (72)

and wins over the kinetic energy forN large enough, 2800. N for the consid-
ered ansatz. Obviously, a similar reasoning leads to the same conclusion for an ev-
erywhere negative, non-necessarily square well interaction potential4. One could
imagine to suppress this problem by introducing a hard core repulsion, in which
case however the purely attractive nature ofV would be lost, ruining our simple
derivation of Eqs.(52,53).

The lattice models are immune to this catastrophic variational argument, since
one cannot put more than two spin 1/2 fermions “inside” the interaction potential,
that is on the same lattice site. Still they preserve the purely attractive nature of the
interaction. This does not prove however that their spectrum is bounded from below
in the zero range limit, as pointed out in the introduction ofthis section.

4 In fixed node calculations, an everywhere negative interaction potential is used [12, 28, 29]. It is
unknown ifN in these simulations exceeds the minimal value required to have a bound state. Note
that the imposed nodal wavefunction in the fixed node method,usually the one of the Hartree-Fock
or BCS state, would be however quite different from the one ofthe bound state.
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2.2 Zero-range model, scale invariance and virial theorem

2.2.1 The zero-range model

The interactions are here replaced with contact conditionson theN-body wavefunc-
tion. In the two-body case, the model, introduced already byEq.(32), is discussed in
details in the literature, see e.g. [57] in free space where the scattering amplitudefk
is calculated and the existence fora> 0 of a dimer of energy−h̄2/(2µa2) and wave-
functionφ0(r) = (4πa)−1/2exp(−r/a)/r is discussed,µ being the reduced mass of
the two particles. The two-body trapped case, solved in [15], was already presented
in subsection 1.4. Here we present the model for an arbitraryvalue ofN.

For simplicity, we consider in first quantized form the case of a fixed number
N↑ of fermions in spin state↑ and a fixed numberN↓ of fermions in spin stateN↓,
assuming that the Hamiltonian cannot change the spin state.We project theN-body
state vector|Ψ〉 onto the non-symmetrized spin state with theN↑ first particles in
spin state↑ and theN↓ remaining particles in spin state↓, to define a scalarN-body
wavefunction:

ψ(X)≡
(

N!
N↑!N↓!

)1/2

〈↑, r1|⊗ . . .〈↑, rN↑ |〈↓, rN↑+1|⊗ . . .〈↓, rN|Ψ〉 (73)

whereX = (r1, . . . , rN) is the set of all coordinates, and the normalization factor
ensures thatψ is normalized to unity5. The fermionic symmetry of the state vector
allows to express the wavefunction on another spin state (with any different order of
↑ and↓ factors) in terms ofψ . For the considered spin state, this fermionic symmetry
imposes thatψ is odd under any permutation of the firstN↑ positionsr1, . . . , rN↑ , and
also odd under any permutation of the lastN↓ positionsrN↑+1, . . . , rN.

In the Wigner-Bethe-Peierls model, that we also call zero-range model, the
Hamiltonian for the wavefunctionψ is simply represented by the same partial dif-
ferential operator as for the ideal gas case:

H =
N

∑
i=1

[

− h̄2

2m
∆r i +U(r i)

]

, (74)

whereU is the external trapping potential supposed for simplicityto be spin state
independent. As is however well emphasized in the mathematics of operators on
Hilbert spaces [8], an operator is defined not only by a partial differential operator,
but also by the choice of its so-calleddomainD(H). A naive presentation of this
concept of domain is given in the Appendix 2. Here the domain does not coincide
with the ideal gas one. It includes the following Wigner-Bethe-Peierls contact con-
ditions: For any pair of particlesi, j, whenr i j ≡ |r i − r j | → 0 for a fixed position of
their centroidRi j = (r i + r j)/2, there exists a functionAi j such that

5 The inverse formula giving the full state vector in terms ofψ(X) is |Ψ〉=
(

N!
N↑!N↓!

)1/2
A| ↑〉N↑ | ↓

〉N↓ |ψ〉, where the projectorA is the usual antisymmetrizing operatorA= (1/N!)∑σ∈SN
ε(σ )Pσ .
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ψ(X) = Ai j (Ri j ;(r k)k6=i, j )(r
−1
i j −a−1)+O(r i j ). (75)

These conditions are imposed for all values ofRi j different from the positions of the
other particlesr k, k different from i and j. If the fermionic particlesi and j are in
the same spin state, the fermionic symmetry imposesψ(. . . , r i = r j , . . .) = 0 and one
has simplyAi j ≡ 0. For i and j in different spin states, the unknown functionsAi j

have to be determined from Schrödinger’s equation, e.g. together with the energyE
from the eigenvalue problem

Hψ = Eψ . (76)

Note that in Eq.(76) we have excluded the values ofX where two particle posi-
tions coincide. Since∆r i r

−1
i j =−4πδ (r i − r j), including these values would require

a calculation with distributions rather than with functions, with regularized delta in-
teraction pseudo-potential, which is a compact and sometimes useful reformulation
of the Wigner-Bethe-Peierls contact conditions [6, 57, 58,59].

As already pointed out below Eq.(75),Ai j ≡ 0 if i and j are fermions in the same
spin state. One may wonder if solutions exist such thatAi j ≡ 0 even ifi and j are in
different spin states, in which caseψ would simply vanish whenr i j → 0. These so-
lutions would then be common eigenstates to the interactinggas and to the ideal gas.
They would correspond in a real experiment to long lived eigenstates, protected from
three-body losses by the fact thatψ vanishes when two particles or more approach
each other. In a harmonic trap, one can easily construct such“non-interacting” solu-
tions, as for example the famous Laughlin wavefunction of the Fractional Quantum
Hall Effect. “Non-interacting” solutions also exists for spinless bosons. These non-
interacting states actually dominate the ideal gas densityof states at high energy
[32, 56].

2.2.2 What is the kinetic energy?

The fact that the Hamiltonian is the same as the ideal gas, apart from the domain,
may lead physically to some puzzles. E.g. the absence of interaction term may give
the impression that the energyE is the sum of trapping potential energy and ki-
netic energy only. This is actually not so. The correct definition of the mean kinetic
energy, valid for general boundary conditions on the wavefunction, is

Ekin =

∫

d3NX
h̄2

2m
|∂Xψ |2. (77)

This expression in particular guaranties thatEkin ≥ 0. If Ai j 6= 0 in Eq.(75), one
then sees that, althoughψ is square integrable in a vicinity ofr i j = 0 thanks to
the Jacobian∝ r2

i j coming from three-dimensional integration, the gradient of ψ
diverges as 1/r2

i j and cannot be square integrable. Within the zero-range model one
then obtains an infinite kinetic energy

EWBP
kin =+∞. (78)
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Multiplying Eq.(76) byψ and integrating overX, one realizes that the total energy
is split as the trapping potential energy,

Etrap=

∫

d3NX |ψ(X)|2
N

∑
i=1

U(r i) (79)

and as the sum of kinetic plus interaction energy:

Ekin +Eint =−
∫

d3NX
h̄2

2m
ψ∗∆Xψ . (80)

This means that the interaction energy is−∞ in the Wigner-Bethe-Peierls model.
All this means is that, in reality, when the interaction has anon-zero range, both
the kinetic energy and the interaction energy of interacting particles depend on the
interaction rangeb, and diverge forb → 0, in such a way however that the sum
Ekin +Eint has a finite limit given by the Wigner-Bethe-Peierls model. We have
seen more precisely how this happens for lattice models in section 2.1.4, see the
expression (67) ofEint and the subsequent derivation of (66).6

2.2.3 Scale invariance and virial theorem

In the case of the unitary gas, the scattering length is infinite, so that one sets 1/a= 0
in Eq. (75). The domain of the Hamiltonian is then imposed to be invariant by any
isotropic rescaling Eq.(11) of the particle positions. To be precise, we define for any
scaling factorλ > 0:

ψλ (X)≡ ψ(X/λ )
λ 3N/2

, (81)

and we impose thatψλ ∈ D(H) for all ψ ∈ D(H). This is the precise mathematical
definition of the scale invariance loosely introduced in subsection 1.2. In particular,
it is apparent in Eq.(75) that, for 1/a= 0, ψλ obeys the Wigner-Bethe-Peierls con-
tact conditions ifψ does. On the contrary, ifψ obeys the contact conditions for a
finite scattering lengtha, ψλ obeys the contact condition for a different, fictitious
scattering lengthaλ = λa 6= a andD(H) cannot be scaling invariant.

There are several consequences of the scale invariance of the domain of the
HamiltonianD(H) for the unitary gas. Some of them were presented in subsection
1.2, other ones will be derived in section 3. Here we present another application,
the derivation of a virial theorem for the unitary gas. This is a first step towards the
introduction of a SO(2,1) Lie algebra in section 3. To this end, we introduce the
infinitesimal generatorD of the scaling transform Eq.(81), such that7

6 For a continuous-space model with an interaction potentialV(r), we have [77, 38]Eint =
C

(4π)2
∫

d3rV (r)|φ (r)|2 whereC is still defined by (63) andφ (r) still denotes the zero-energy two-

body scattering state normalised according to (69).
7 The scaling transform (81) defines a unitary operatorT(λ ) such thatψλ = T(λ )ψ. One has
T(λ1)T(λ2) = T(λ1λ2). To recover the usual additive structure as for the group of spatial transla-
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ψλ (X) = e−iD lnλ ψ(X). (82)

Taking the derivative of Eq.(81) with respect toλ in λ = 1, one obtains the hermitian
operator

D =
1
2i
(X ·∂X + ∂X ·X) =

3N
2i

− iX ·∂X. (83)

The commutator ofD with the Hamiltonian is readily obtained. From the relation
∆Xψλ (X) = λ−2(∆ψ)(X/λ ), one has

eiD lnλ (H −Htrap)e
−iD lnλ =

1
λ 2 (H −Htrap) (84)

whereHtrap=∑N
i=1U(r i) is the trapping potential part of the Hamiltonian. It remains

to take the derivative inλ = 1 to obtain

i[D,H −Htrap] =−2(H−Htrap). (85)

The commutator ofD with the trapping potential is evaluated directly from Eq.(83):

i[D,Htrap] =
N

∑
i=1

r i ·∂r iU(r i). (86)

This gives finally

i[D,H] =−2(H−Htrap)+
N

∑
i=1

r i ·∂r iU(r i). (87)

The standard way to derive the virial theorem in quantum mechanics [60], in a direct
generalization of the one of classical mechanics, is then totake the expectation value
of [D,H] in an eigenstateψ of H of eigenenergyE. This works here for the unitary
gas because the domainD(H) is preserved by the action ofD. On one side, by having
H acting onψ from the right or from the left, one trivially has〈[D,H]〉ψ = 0. On
the other side, one has Eq.(87), so that

E =
N

∑
i=1

〈U(r i)+
1
2

r i ·∂r iU(r i)〉ψ . (88)

This relation was obtained with alternative derivations inthe literature (see [61] and
references therein). One of its practical interests is thatit gives access to the energy
from the gas density distribution [62]. As already mentioned, the scale invariance of
the domain ofH is crucial to obtain this result. If 1/a is non zero, a generalization of
the virial relation can however be obtained, that involvesdE/d(1/a), see [63, 64].

tions, one setsλ = expθ , so thatT(θ1)T(θ2) = T(θ1 + θ2) andT(θ ) = exp(−iθD) whereD is
the generator. This is why lnλ appears in Eq.(82).
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2.3 Two-channel model and closed-channel fraction

2.3.1 The two-channel model

The lattice models or the zero-range model are of course dramatic simplifications
of the real interaction between two alkali atoms. At large interatomic distances,
much larger than the radius of the electronic orbitals, one may hope to realistically
represent this interaction by a functionV(r) of the interatomic distance, with a van
der Waals attractive tailV(r) ≃ −C6/r6, a simple formula that actually neglects
retardation effects and long-range magnetic dipole-dipole interactions. As discussed
below the gas phase condition Eq.(1), this allows to estimateb with the so-called van
der Waals length, usually in the range of 1-10 nm.

At short interatomic distances, this simple picture of a scalar interaction potential
V(r) has to be abandoned. Following quantum chemistry or molecular physics meth-
ods, one has to introduce the various Born-Oppenheimer potential curves obtained
from the solution of the electronic eigenvalue problem for fixed atomic nuclei posi-
tions. Restricting to one active electron of spin 1/2 per atom, one immediately gets
two ground potential curves, the singlet one correspondingto the total spinS= 0,
and the triplet one corresponding to the total spinS= 1. An external magnetic field
B is applied to activate the Feshbach resonance. This magnetic field couples mainly
to the total electronic spin and thus inducesdifferentZeeman shifts for the singlet
and triplet curves. In reality, the problem is further complicated by the existence of
the nuclear spin and the hyperfine coupling, that couple the singlet channel to the
triplet channel for nearby atoms, and that induces a hyperfine splitting within the
ground electronic state for well separated atoms.

A detailed discussion is given in [65]. Here we take the simplified view depicted
in Fig.7: The atoms interactvia two potential curves,Vopen(r) andVclosed(r). At
large distances,Vopen(r) conventionally tends to zero, whereasVclosed(r) tends to a
positive valueV∞, one of the hyperfine energy level spacings for a single atom in the
applied magnetic field. In the two-body scattering problem,the atoms come from
r = +∞ in the internal state corresponding toVopen(r), the so-called open channel,
with a kinetic energyE ≪ V∞. Due to a coupling between the two channels, the
two interacting atoms can have access to the internal state corresponding to the
curveVclosed(r), but only at short distances; at long distances, the external atomic
wavefunction in this so-called closed channel is an evanescent wave that decays
exponentially withr sinceE <V∞.

Now assume that, in the absence of coupling between the channels, the closed
channel supports a bound state of energyEb, denoted in what follows asthe molec-
ular state. Assume also that, by applying a judicious magnetic field, one sets the
energy of this molecular state close to zero, that is to the dissociation limit of the
open channel. In this case one may expect that the scatteringamplitude of two atoms
is strongly affected, by a resonance effect, given the non-zero coupling between the
two channels. This is in essence how the Feshbach resonance takes place.

The central postulate of the theory of quantum gases is that the short range details
of the interaction are unimportant, only the low-momentum scattering amplitude
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fk between two atoms is relevant. As a consequence, any simplified model for the
interaction, leading to a different scattering amplitudef model

k , is acceptable provided
that

f model
k ≃ fk (89)

for the relevant values of the relative momentumk populated in the gas. We insist
here that we impose similar scattering amplitudes over somemomentum range, not
just equal scattering lengthsa. For spin 1/2 fermions, typical values ofk can be

ktyp ∈ {a−1,kF ,λ−1
dB } (90)

where the Fermi momentum is defined in Eq.(8) and the thermal de Broglie wave-
length in Eq.(9). The appropriate value ofktyp depends on the physical situation.
The first choicektyp ∼ a−1 is well suited to the case of a condensate of dimers
(a> 0) since it is the relative momentum of two atoms forming the dimer. The sec-
ond choicektyp ∼ kF is well suited to a degenerate Fermi gas of atoms (not dimers).
The third choicektyp ∼ λ−1 is relevant for a non-degenerate Fermi gas.

The strategy is thus to perform an accurate calculation of the “true” fk, to identify
the validity conditions of the simple models and of the unitary regime assumption
Eq.(4). One needs a realistic, though analytically tractable, model of the Feshbach
resonance. This is provided by the so-calledtwo-channelmodels [66, 67, 68]. We
use here the version presented in [69], which is a particularcase of the one used
in [65, 70] and Refs. therein: The open channel part consistsof the original gas of
spin 1/2 fermions that interactvia a separable potential, that is in first quantized
form for two opposite spin fermions, in position space:

〈r1, r2|Vsep|r ′1, r ′2〉= δ
(

r1+ r2

2
− r ′1+ r ′2

2

)

g0χ(r2− r1)χ(r ′2− r ′1). (91)

This potential does not affect the atomic center of mass, so it conserves total mo-
mentum and respects Galilean invariance. Its matrix element involves the product
of a function of the relative position in the ket and of the same function of the rel-
ative position in the bra, hence the nameseparable. The separable potential is thus

Fig. 7 Simple view of a Fes-
hbach resonance. The atomic
interaction is described by
two curves (solid line: open
channel, dashed line: closed
channel). When one neglects
the interchannel coupling
Λ , the closed channel has a
molecular state of energyEb
close to the dissociation limit
of the open channel. The en-
ergy spacingV∞ was greatly
exaggerated, for clarity.
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in general non local. As we shall take a functionχ of width ≈ b this is clearly not
an issue. The coupling constantg0 of the separable potential is well-defined by the
normalization condition forχ ,

∫

d3r χ(r) = 1. In the presence of this open channel
interaction only, the scattering length between fermions,the so-called background
scattering lengthabg, is usually small, of the order of the potential rangeb, hence
the necessity of the Feshbach resonance to reach the unitarylimit.

In the closed channel part, a single two-particle state is kept, the one correspond-
ing to the molecular state, of energyEb and of spatial range. b. The atoms thus
exist in that channel not in the form of spin 1/2 fermions, but in the form of bosonic
spinless molecules, of mass twice the atomic mass. The coupling between the two
channels simply corresponds to the possibility for each boson to decay in a pair of
opposite spin fermions, or the inverse process that two opposite spin fermions merge
into a boson, in a way conserving the total momentum. This coherent Bose-Fermi
conversion may take place only if the positionsr1 andr2 of the two fermions are
within a distanceb, and is thus described by a relative position dependent amplitude
Λ χ(r1− r2), where for simplicity one takes the same cut-off functionχ as in the
separable potential. It is important to realize that the Bose-Fermi conversion effec-
tively induces an interaction between the fermions, which becomes resonant for the
right tuning ofEb and leads to the diverging total scattering lengtha.

The model is best summarized in second quantized form [69], introducing the
fermionic field operatorsψσ (r), σ =↑,↓, obeying the usual fermionic anticommu-
tation relations, and the bosonic field operatorψb(r) obeying the usual bosonic com-
mutation relations:

H =

∫

d3r

[

∑
σ=↑,↓

ψ†
σ

(

− h̄2

2m
∆r +U

)

ψσ +ψ†
b

(

Eb−
h̄2

4m
∆r +Ub

)

ψb

]

(92)

+Λ
∫

d3r1d3r2 χ(r1− r2)
{

ψ†
b[(r1+ r2)/2]ψ↓(r1)ψ↑(r2)+h.c.

}

+g0

∫

d3Rd3rd3r ′χ(r)χ(r ′)ψ†
↑ (R− r/2)ψ†

↓(R+ r/2)ψ↓(R+ r ′/2)ψ↑(R− r ′/2),

whereU(r) andUb(r) are the trapping potentials for the fermions and the bosons,
respectively.

2.3.2 Scattering amplitude and universal regime

In free space, the scattering problem of two fermions is exactly solvable for a Gaus-
sian cut-off functionχ(r) ∝ exp[−r2/(2b2)] [65, 69]. A variety of parameteriza-
tions are possible. To make contact with typical notations,we assume that the en-
ergyEb of the molecule in the closed channel is an affine function of the magnetic
field B, a reasonable assumption close to the Feshbach resonance:

Eb(B) = E0
b + µb(B−B0) (93)
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whereB0 is the magnetic field value right on resonance andµb is the effective mag-
netic moment of the molecule. Then the scattering length forthe model Eq.(92) can
be exactly written as the celebrated formula

a= abg

(

1− ∆B
B−B0

)

, (94)

where∆B, such thatE0
b + µb∆B = Λ2/g0, is the so-called width of the Feshbach

resonance. As expected, for|B−B0| ≫ |∆B|, one finds thata tends to the back-
ground scattering lengthabg solely due to the open channel interaction. With∆B
one forms a lengthR∗ [71] which is always non-negative:

R∗ ≡
h̄2

mabgµb∆B
=

(

Λ
2πbE0

b

)2

, (95)

where the factor 2π is specific to our choice ofχ . Physically, the lengthR∗ is also
directly related to the effective range on resonance:

r res
e =−2R∗+

4b√
π
, (96)

where the numerical coefficient in the last term depends on the choice ofχ . The
final result for the scattering amplitude for the model Eq.(92) is

− 1
fk

= ik+
ek2b2

a

[

1−
(

1− a
abg

)

k2

k2−Q2

]

− ikerf(−ikb) (97)

where erf is the error function, that vanishes linearly in zero, and the wavevectorQ,
such that

Q2 ≡ m

h̄2g0

(

g0Eb−Λ2)=
−1

abgR∗(1−abg/a)
, (98)

may be real or purely imaginary.
The unitary limit assumption Eq.(4) implies that all the terms in the right hand

side of Eq.(97) are negligible, except for the first one. We now discuss this assump-
tion, restricting for simplicity to an infinite scattering lengtha−1 = 0 (i.e. a magnetic
field sufficiently close to resonance) and a typical relativemomentumktyp = kF (i.e.
a degenerate gas). To satisfy Eq.(89), withf model

k =−1/(ik), one should then have,
in addition to the gas phase requirementkFb≪ 1, that

kR∗
|1+ k2abgR∗|

≪ 1 ∀k∈ [0,kF ]. (99)
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Table 1 summarizes the corresponding conditions to reach the unitary limit.8 9 Re-
markably, the conditionkF |r res

e | ≪ 1 obtained in Eq.(6) from the expansion of 1/ fk
to orderk2 is not the end of the story. In particular, ifabg < 0, Q2

res≡ −1/(abgR∗)
is positive and 1/ fk diverges fork= Qres; if the location of this divergence is within
the Fermi sea, the unitary limit is not reachable. This funnycase however requires
huge values ofR∗abg, that is extremely small values of the resonance width∆B:

|µb∆B|. h̄2k2
F

2m
. (100)

This corresponds to very narrow Feshbach resonances [72], whose experimen-
tal use requires a good control of the magnetic field homogeneity and is more
delicate. Current experiments rather use broad Feshbach resonances such as on
lithium 6, wherer res

e = 4.7nm [73], abg = −74 nm,R∗ = 0.027nm [74], leading
to 1/(|abg|R∗)1/2 = 700(µm)−1 much larger thankF ≈ a few (µm)−1, so that the
unitary limit is indeed well reached.

Table 1 In the two-channel model, conditions deduced from Eq.(99) (supplementary to the gas
phase conditionkF b ≪ 1) to reach the unitary limit for a degenerate gas of spin 1/2 fermions of
Fermi momentumkF . It is assumed that the magnetic field is tuned right on resonance, so that the
scattering length is infinite. The last column corresponds to narrow Feshbach resonances satisfying
Eq.(100).

kF
√

|abg|R∗ ≪ 1 kF
√

|abg|R∗ > 1

abg > 0 kFR∗ ≪ 1 (R∗/abg)
1/2 ≪ 1

abg < 0 kFR∗ ≪ 1 unreachable

2.3.3 Relation between number of closed channel molecules and “contact”

The fact that the two-channel model includes the underlyingatomic physics of the
Feshbach resonance allows to consider an observable that issimply absent from
single channel models, namely the number of molecules in theclosed channel, rep-
resented by the operator:

Nb ≡
∫

d3r ψ†
b(r)ψb(r) (101)

whereψb is the molecular field operator. The mean number〈Nb〉 of closed channel
molecules was recently measured by laser molecular excitation techniques [75].

8 We discarded for simplicity the rather peculiar case wherekF |abg|R∗ is≤ 1 but not≪ 1.
9 An additional condition actually has to be imposed to have a universal gas, as we will see after
Eq.(106).
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This mean number can be calculated from a two-channel model by a direct ap-
plication of the Hellmann-Feynman theorem [76, 69] (see also [77]). The key point
is that the only quantity depending on the magnetic field in the Hamiltonian Eq.(92)
is the internal energyEb(B) of a closed channel molecule. At thermal equilibrium
in the canonical ensemble, we thus have

(

dE
dB

)

S
= 〈Nb〉

dEb

dB
. (102)

Close to the Feshbach resonance, we may assume thatEb is an affine function of
B, see Eq.(93), so that the scattering lengtha depends on the magnetic field as in
Eq.(94). ParameterizingE in terms of the inverse scattering length rather thanB, we
can replacedE/dB by dE/d(1/a) timesd(1/a)/dB. The latter can be calculated
explicitly from (94). Thus

〈Nb〉=
C
4π

R∗
(

1− abg

a

)2
, (103)

whereC is the contact defined in Eq.(63), and we introduced the length R∗ defined
in Eq.(95).

If the interacting gas is in the universal zero range regime,its energyE depends
on the interactions only via the scattering length, independently of the microscopic
details of the atomic interactions, and its dependence with1/a may be calculated by
any convenient model. Then, at zero temperature, for the unpolarized caseN↑ = N↓,
the equation of state of the homogeneous gas can be expressedas

e0 = eideal
0 f

(

1
kFa

)

, (104)

wheree0 andeideal
0 are the ground state energy per particle for the interactinggas and

for the ideal gas with the same density, and the Fermi wavevector kF was defined
in Eq.(8). In particular,f (0) = ξ , where the numberξ was introduced in Eq.(14).
Settingζ ≡− f ′(0), we have for the homogeneous unitary gas

Chom

V
= ζ

2
5π

k4
F , (105)

so that
〈Nb〉hom

N
=

3
10

kFR∗ζ . (106)

This expression is valid for a universal gas consisting mainly of fermionic atoms,
which requires that〈Nb〉hom/N ≪ 1, i. e. kFR∗ ≪ 1. This condition was already
obtained in§2.3.2 for the broad resonances of the left column of Table 1. In the
more exotic case of the narrow resonances of the second column of Table 1, this
condition has to be imposed in addition to the ones of Table 1.
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2.3.4 Application of general relations: Various measurements of the contact

The relation (103) allowed us to extract in [69] the contactC of the trapped gas [re-
lated to the derivative of the total energy of the trapped gasvia (63)] from the values
of Nb measured in [75]. The result is shown in Fig.8, together witha theoretical
zero-temperature curve resulting from the local density approximation in the har-
monically trapped case whereU(r) = 1

2m∑α ω2
αx2

α , the functionf of (104) being
obtained by interpolating between the fixed-node Monte-Carlo data of [29, 78] and
the known asymptotic expressions in the BCS and BEC limits10.

While this is the first direct measurements of the contact in the BEC-BCS
crossover, it has also been measured more recently:

• using Bragg scattering,via the large-momentum tail of the structure factor, di-
rectly related by Fourier transformation to the short-distance singularity Eq.(65)
of the pair correlation function [79], see the cross at unitarity in Fig.8

• via the tail of the momentum distribution Eq.(64) measured by abruptly turning
off both trapping potential and interactions [80], see the squares in Fig.8

• via (momentum resolved) radio-frequency spectroscopy [80, 81]).

-2 -1 0 1 2
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Fig. 8 The contactC = dE
d(−1/a)

4πm
h̄2 of a trapped unpolarized Fermi gas. The circles are obtained

from the measurements of〈Nb〉 in [75], combined with the two channel model theory linking〈Nb〉
toC [Eq.(103)]. The cross was obtained in [79] by measuring the structure factor. The squares were
obtained in [80] by measuring the momentum distribution. Solid line: zero-temperature theoretical
prediction extracted from [29] as detailed in [69]. Here theFermi wavevectorktrap

F of the trapped
gas is defined bȳh2(ktrap

F )2/(2m) = (3N)1/3h̄ω̄, with ω̄ the geometric mean of the three oscillation
frequenciesωα andN the total atom number.

10 See [69] for details. The cusp at unitarity is of course an artefact of this interpolation procedure.
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For the homogeneous unitary gas, the contact is conveniently expressed in terms
of the dimensionless parameterζ [see (105)]. The experimental valueζ = 0.91(5)
was obtained by measuring the equation of state of the homogeneous gas with the
technique proposed by [82] and taking the derivative of the energy with respect to
the inverse scattering length [Eq.(63)] (see [83] and the contribution of F. Chevy
and C. Salomon to this volume). From the fixed-node Monte-Carlo calculations,
one getsζ ≃ 1 by taking a derivative of the data of [29] for the functionf , while
the data of [78] for the pair correlation function together with the relation (65) give
ζ ≃ 0.95.11 12

In conclusion, the smallness of the interaction range leadsto singularities; at first
sight this may seem to complicate the problem as compared to other strongly inter-
acting systems; however these singularities are well understood and have a useful
consequence: the existence of exact relations resulting from the Hellmann-Feynman
theorem [51] and from properties of the Fourier transform [52]. In particular this
provides a “useful check on mutual consistency of various experiments”, as fore-
seen in [84].

3 Dynamical symmetry of the unitary gas

In this section, we present some remarkable properties of the unitary gas, derived
from the zero-range model. The starting point is that the time evolution of the gas
in a time dependent isotropic harmonic trap may be expressedexactly in terms of
a gauge and scaling transform, see subsection 3.1. This implies the existence of a
SO(2,1) dynamical (or hidden) symmetry of the system, a formal property that we
shall link to concrete consequences, such as the existence of an exactly decoupled
bosonic degree of freedom (the breathing mode of the gas), see subsection 3.2, or
the separability of theN-body wavefunction in hyperspherical coordinates, see sub-
section 3.3, which holds both in an isotropic harmonic trap and in free space and
has several important consequences such as the analytical solution of the trapped
three-body problem, see subsection 3.4. In subsec. 3.5 we use the existence of the
undamped breathing mode to rederive a remarkable property of the homogeneous
unitary gas: its bulk viscosity vanishes. Subsection 3.6 concerns short-range scaling
laws, which are related to the separability in hypershperical coordinates, but hold
for any scattering length and external potential.

11 This value is also compatible with the data of [78] for the one-body density matrix, whose
short-range singular part is related by Fourier transformation to the large-k tail of the momentum
distribution [38].
12 At unitarity, the local density approximation can be done analytically, yielding for the contact
of the trapped gas: C

Nktrap
F

= 512
175

ζ
ξ 1/4 [69].
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3.1 Scaling solution in a time-dependent trap

In this section, we shall assume that the trapping potentialU(r) introduced in
Eq.(74) is an isotropic harmonic potential. Whereas the hypothesis of harmonic-
ity may be a good approximation in present experiments for small enough atomic
clouds, the isotropy is not granted and requires some experimental tuning that, to
our knowledge, remains to be done. On the other hand, we allowa general time
dependence of the trap curvature, so that Schrödinger’s equation for theN-body
wavefunction defined in Eq.(73) is

ih̄∂tψ(X, t) =

[

− h̄2

2m
∆X +

1
2

mω2(t)X2
]

ψ(X, t), (107)

where we recall thatX is the set of all particle coordinates, andω(t) is the instanta-
neous angular oscillation frequency. The interaction between particles is described
by the contact conditions Eq.(75), written here for the unitary gas, that is fora−1=0:

ψ(X) =
Ai j (Ri j ;(r k)k6=i, j)

r i j
+O(r i j ). (108)

Let us consider the particular case, quite relevant experimentally, where the gas
is initially at equilibrium in a static trapω(t = 0) =ω . The gas is then in a statistical
mixture of stationary states, so we can assume that the initial N-body wavefunction
is an eigenstate of the Hamiltonian with energyE. At t > 0, the trap curvature is
varied, which leads to an arbitrary time dependentω(t). In typical experiments, one
either sets abruptlyω(t) to zero, to perform a time of flight measurement, or one
modulatesω(t) at some frequency to study the gas collective modes. Can we predict
the evolution of the system ? As shown in [59], the answer is yes, as we now explain.

In the absence of interactions, it is well known [85] thatψ(X, t) is deduced from
thet = 0 wavefunction by a simple gauge plus scaling ansatz:

ψ(X, t) =
eiθ(t)

λ 3N/2(t)
exp

[

imλ̇(t)
2h̄λ (t)

X2

]

ψ(X/λ (t),0), (109)

whereλ̇(t) = dλ (t)/dt. At time t = 0, one clearly hasθ (0) = 0,

λ (0) = 1 and λ̇ (0) = 0. (110)

Inserting this ansatz into Schrödinger’s equation (107),we obtain a Newton like
equation of motion forλ :

λ̈ (t) =
ω2

λ 3(t)
−ω2(t)λ (t) (111)

to be solved with the initial conditions (110). We recall that ω stands for theini-
tial angular oscillation frequency. The equation (111) is well studied in the litera-
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ture, under the name of the Ermakov equation [86], and is in particular amenable
to a linear form: One recognizes an equation for the distanceto the origin for a
two-dimensional harmonic oscillator of angular frequencyω(t), as obtained from
Newton’s equation and from the law of equal areas. In particular, if ω(t) = ωct is a
constant over some time interval,λ (t) oscillates with a periodπ/ωct over that time
interval.

The global phaseθ (t) is given by

θ (t) =−E
h̄

∫ t

0

dt′

λ 2(t ′)
. (112)

This suggests thatθ still evolves at the stationary pace−E/h̄ provided that one
introduces a modified time, as done in [87] in a bosonic mean field context:

τ(t) =
∫ t

0

dt′

λ 2(t ′)
. (113)

We shall come back to this point below.
In presence of interactions, one has to check that the ansatz(109) obeys the

contact conditions (108). First, the ansatz includes a scaling transform. As dis-
cussed in subsection 2.2, this preserves the contact conditions and the domain of
the Hamiltonian for the unitary gas. Second, the ansatz includes a quadratic gauge
transform. Turning back to the definition of the contact conditions, we select an ar-
bitrary pair of particlesi and j and we take the limitr i j → 0 for a fixed centroid
positionRi j = (r i + r j)/2. In the gauge factor, the quantityX2 = ∑N

k=1 r2
k appears.

The positionsr k of the particles other thani and j are fixed. What matters is thus
r2
i + r2

j that we rewrite as

r2
i + r2

j = 2R2
i j +

1
2

r2
i j . (114)

Ri j is fixed.r i j varies but it appears squared in the gauge transform, so that

exp

[

imλ̇ (t)
2h̄λ (t)

r2
i j /2

]

[

1
r i j

+O(r i j )

]

=
1
r i j

+O(r i j ) (115)

and the contact conditions are preserved by the gauge transform, even if the scatter-
ing lengtha was finite.

We thus conclude that the ansatz (109) gives the solution also for the unitary gas.
This has interesting practical consequences. For measurements in position space,
one has simple scaling relations, not only for the mean density ρσ (r , t) in each spin
componentσ :

ρσ (r , t) =
1

λ 3(t)
ρσ (r/λ (t),0) (116)

but also for higher order density correlation functions: For example, the second
order density correlation function defined in terms of the fermionic field operators
as
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g(2)σσ ′(r , r ′)≡ 〈ψ†
σ (r)ψ

†
σ ′(r ′)ψσ ′(r ′)ψσ (r)〉, (117)

evolves in time according to the scaling

g(2)σσ ′(r , r ′, t) =
1

λ 6(t)
g(2)σσ ′(r/λ (t), r ′/λ (t),0). (118)

As a consequence, if one abruptly switches off the trapping potential att = 0+, the
gas experiences a ballistic expansion with a scaling factor

λ (t) = [1+ω2t2]1/2, (119)

which acts as a perfect magnifying lens on the density distribution.
For non-diagonal observables in position space, some information is also ob-

tained, with the gauge transform now contributing. E.g. thefirst order coherence
function

g(1)σσ (r , r
′)≡ 〈ψ†

σ (r
′)ψσ (r)〉, (120)

which is simply the matrix element of the one-body density operator between〈r ,σ |
and|r ′,σ〉, evolves according to

g(1)σσ (r , r
′, t) =

1
λ 3(t)

exp

[

imλ̇ (t)
2h̄λ (t)

(r2− r ′2)

]

g(1)σσ (r/λ (t), r ′/λ (t),0). (121)

The momentum distributionnσ (k) in the spin componentσ is the Fourier transform
overr − r ′ and the integral over(r + r ′)/2 of the first order coherence function. For
a ballistic expansion, directly transposing to three dimensions the result obtained in
[88] from a time dependent scaling solution for the one-dimensional gas of impene-
trable bosons, one has that the momentum distribution of theballistically expanding
unitary gas is asymptotically homothetic to the gas initialspatial density profile:

lim
t→+∞

nσ (k, t) =
(

2π h̄
mω

)3

ρσ

(

r =
h̄k
mω

,0

)

. (122)

We emphasize that the above results hold for an arbitrary gaspolarization, that is
for arbitrary numbers of particles in each of the two spin statesσ =↑,↓. If the initial
state is thermal, they hold whatever the value of the temperature, larger or smaller
than the critical temperatureTc. These results however require the unitary limit (in
particular|a|=+∞) and a perfect isotropy of the harmonic trap. If the experimental
goal is simply to have the ballistic expansion as a perfect magnifying lens, these
two requirements remarkably may be removed, as shown in [89], if one is ready to
impose an appropriate time dependence to the scattering length a(t) and to the trap
aspect ratio, in which case the ansatz (109) holds at all times. In the particular case
of an isotropic trap, the procedure of [89] is straightforward to explain: Ifψ(t = 0)
obeys the contact conditions with a finite scattering lengtha, the ansatz (109) obeys
the contact conditions for a scattering lengthλ (t)a so one simply has to adjust the
actual scattering length in a time dependent way:
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a(t) = λ (t)a (123)

whereλ evolves according to Eq.(111). As shown in the next subsection, the time
dependent solution in the unitary case, apart from providing convenient scaling re-
lations on the density, is connected to several interestingintrinsic properties of the
system, whereas the procedure of [89] does not imply such properties.

To be complete, we finally address the general case where the initial wavefunc-
tion of the unitary gas is not necessarily a stationary statebut is arbitrary [90]. Then
the observables of the gas have in general a non-trivial timedependence, even for
a fixed trap curvature. If the trap curvature is time dependent, we modify the gauge
plus scaling ansatz as follows:

ψ(X, t) =
1

λ 3N/2(t)
exp

[

imλ̇ (t)
2h̄λ (t)

X2

]

ψ̃(X/λ (t),τ(t)), (124)

whereτ(t) is the modified time introduced in Eq.(112),λ (t) evolves according to
Eq.(111) with the initial conditions (110), and the time-dependent wavefunctioñψ
coincides withψ at timet = τ = 0 and obeys the unitary gas contact conditions.
Then this ansatz obeys the contact conditions. When inserted in the time dependent
Schrödinger equation (107), it leads to a Schrödinger equation for ψ̃ in the time
independent external potential fixed to thet = 0 trap:

ih̄∂τ ψ̃(X,τ) =
[

− h̄2

2m
∆X +

1
2

mω2X2
]

ψ̃(X,τ). (125)

The gauge plus scaling transform, and the redefinition of time, have then totally
cancelled the time dependence of the trap. If the initial wavefunction is an eigenstate
of energyE, as was previously the case, one simple hasψ̃(τ) = exp(−iEτ/h̄)ψ(t =
0) and one recovers the global phase factor in Eq.(109).

3.2 SO(2,1) dynamical symmetry and the decoupled breathing
mode

As shown in [91] for a two-dimensional Bose gas with 1/r2 interactions, the ex-
istence of a scaling solution such as Eq.(109) reflects a hidden symmetry of the
Hamiltonian, the SO(2,1) dynamical symmetry. Following [90], we construct ex-
plicitly this dynamical symmetry for the unitary gas and we show that it has inter-
esting consequences for the energy spectrum in a static isotropic harmonic trap.

Let us consider a gedanken experiment: Starting from the unitary gas is an energy
eigenstateψ , we modify in an infinitesimal way the trap curvature during the time
interval[0, t f ], and fort > t f we restore the initial trap curvature,ω(t) = ω(0) = ω .
Linearizing Eq.(111) aroundλ = 1 for t > t f , we see that the resulting change in the
scaling parameterλ is
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λ (t)−1= ε e−2iωt + ε∗ e2iωt +O(ε2) (126)

whereε is proportional to the infinitesimal curvature change. Since λ oscillates
indefinitely at frequency 2ω , this shows the existence of an undamped mode of
frequency 2ω . This conclusion actually extends to excitations during[0, t f ] of arbi-
trarily large amplitudes, as noted below Eq.(111) [91].

We calculate the resulting change in theN-body wavefunction, expanding Eq.(109)
to first order inε, putting in evidence the components that oscillate with Bohr fre-
quencies±2h̄ω :

ψ(X, t) =
[

e−iEt/h̄− εe−i(E+2h̄ω)t/h̄L++ ε∗e−i(E−2h̄ω)t/h̄L−
]

ψ(X,0)+O(ε2).

(127)
We have introduced the operators

L± =±iD +
H
h̄ω

− mω
h̄

X2 (128)

whereD is the generator of the scaling transforms, as defined in Eq.(83), andL+ =
L†
−. We then read on Eq.(127) the remarkable property that the action of L+ on an

energy eigenstateψ of energyE produces an energy eigenstate of energyE+2h̄ω
13. Similarly, the action ofL− on ψ produces an energy eigenstate of energyE−
2h̄ω , or eventually gives zero since the spectrum is bounded frombelow byE ≥ 0
according to the virial theorem (88) applied toU(r) = 1

2mω2r2. We see that the
spectrum has thus a very simple structure, it is a collectionof semi-infinite ladders,
each ladder being made of equidistant energy levels separated by 2̄hω , see Fig. 9,
andL± acting respectively as a raising/lowering operator in thatstructure. Within
each ladder, we callψg the wavefunction corresponding to the ground step of that
ladder, such that

L−ψg = 0. (129)

As shown in [91], this structure implies a dynamical SO(2,1)symmetry, mean-
ing that the HamiltonianH is part of the SO(2,1) Lie algebra. One starts with the
commutation relations:

[H,L±] =±2h̄ωL± (130)

[L+,L−] =−4H/(h̄ω). (131)

The first relation was expected from the raising/lowering nature of L±. Both rela-
tions can be checked from the commutation relations Eqs.(85,86) and from

[
1
2

X2,−1
2

∆X ] = iD. (132)

We emphasize again the crucial point that the operatorsL± preserve the domain
of the Hamiltonian in the present unitary case, sinceD andX2 do. Obtaining the
canonical commutation relations among the generatorsT1,T2 andT3 of the SO(2,1)

13 As shown in [90],L+ψ cannot be zero.
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Lie algebra,
[T1,T2]≡−iT3, [T2,T3]≡ iT1, [T3,T1]≡ iT2, (133)

is then only a matter of rewriting:

T1± iT2 ≡
1
2

L± and T3 =
H

2h̄ω
. (134)

Note the sign difference in the first commutator of Eq.(133) with respect to the other
two commutators, and with respect to the more usual SO(3) or SU(2) Lie algebra.

Have we gained something in introducing the SO(2,1) Lie algebra, or is it simply
a formal rewriting of the ladder structure already apparentin the simple minded
approach Eq.(127), may ask a reader unfamiliar with dynamical symmetries. Well,
an advantage is that we can immediately exhibit the so-called Casimir operatorC,

C≡−4[T2
1 +T2

2 −T2
3 ] = H2− 1

2
(h̄ω)2(L+L−+L−L+), (135)

guaranteed to commute with all the elementsT1, T2 andT3 of the algebra, so thatC
is necessarily a scalar within each ladder. Taking as a particularly simple case the
expectation value ofC within the ground stepψg of the ladder of energyEg, and
using Eq.(131) to evaluate〈ψg|L−L+|ψg〉, we obtainC|ψg〉 = Eg(Eg − 2h̄ω)|ψg〉.
Inverting this relation thanks to the propertyEg ≥ 3h̄ω/2 14, we can define the
ground energy step operatorHg:

Hg = h̄ω +[C+(h̄ω)2]1/2, (136)

which is scalar and equal toEg within each ladder. A useful application ofHg is to
rescale the raising and lowering operatorL± to obtain simpler commutation rela-

Fig. 9 The energy spec-
trum of the unitary gas in an
isotropic harmonic trap is a
collection of semi-infinite lad-
ders such as the one depicted
in the figure, with various
ground step energiesEg. This
structure is related to the exis-
tence of a decoupled bosonic
mode, and holds whatever the
numbers of fermions in each
of the two spin components.

E
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14 To obtain this inequality, one uses a virial theorem after separation of the center of mass motion
[90].
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tions: It appears that
b= [2(H +Hg)/(h̄ω)]−1/2L− (137)

is a bosonic annihilation operator, which obeys the usual bosonic commutation re-
lations, in particular with its hermitian conjugate

[b,b†] = 1. (138)

b† andb have the same raising/lowering properties asL±, and commute withHg.
They have the usual simple matrix elements, e.g.b†|n〉 = (n+ 1)1/2|n+ 1〉 where
|n〉 is the step numbern of a ladder,n starting from 0. They allow an illuminating
rewriting of the Hamiltonian:

H = Hg+2h̄ωb†b (139)

revealing that the unitary gas in a harmonic isotropic trap has a fully decoupled
bosonic degree of freedom. This bosonic degree of freedom, physically, is simply
the undamped breathing mode of the gas of frequency 2ω , identified for a different
system in [91].

We now give two simple applications of the above formalism [90]. First, one can
calculate the various moments of the trapping HamiltonianHtrap=

1
2mω2X2, from

the identity

Htrap=
1
2

H − h̄ω
4

(L++L−) =
h̄ω
2

A†A (140)

whereA= [b†b+Hg/(h̄ω)]1/2−b. Taking the expectation value of Eq.(140) within
a given eigenstate of energyE, or within a statistical mixture of eigenstates, imme-
diately gives

〈Htrap〉=
1
2
〈H〉, (141)

a particular case of the virial theorem Eq.(88). Taking the expectation value ofH2
trap

for the thermal equilibrium density operator gives

4〈H2
trap〉= 〈H2〉+ 〈H〉h̄ω [2〈b†b〉+1] (142)

where we used〈Hgb†b〉 = 〈Hg〉〈b†b〉 for the thermal equilibrium. From the Bose
formula, one has also〈b†b〉 = [exp(2β h̄ω)−1]−1, with β = 1/(kBT) andT is the
temperature.

The second, more impressive, application is to uncover a very interesting struc-
ture of theN-body wavefunctionψg(X) of the ground energy step of an arbitrary
ladder. We introduce hyperspherical coordinates(X,n = X/X), wheren is a unit
vector is the space of 3N real coordinates. The innocent equation (129) becomes

[

3N
2

+X∂X +
Eg

h̄ω
− mω

h̄
X2
]

ψg(X) = 0. (143)

This is readily integrated for a fixed hyperdirectionn:
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ψg(X) = e−mωX2/(2h̄)X
Eg
h̄ω − 3N

2 f (n) (144)

where f (n) is an unknown function of the hyperdirection. Eq.(144) has fascinating
consequences.

First, it shows thatψg, being the product of a function of the modulusX and
of a function of the hyperdirection, isseparablein hyperspherical coordinates. The
physical consequences of this separability, in particularfor the few-body problem,
are investigated in subsection 3.4. Note that this separability holds for all the other
steps of the ladder, sinceL+ only acts on the hyperradius.

Second, we take the limitω → 0 in Eq.(144): According to Eq.(12),Eg/(h̄ω) is a
constant, andEg → 0, whereas the Gaussian factor tends to unity.n is dimensionless,
and we can takef (n) to beω independent if we do not normalizeψg to unity. We
thus obtain in this limit a zero energy eigenstate of the freespace problem,

ψ free(X) = X
Eg
h̄ω − 3N

2 f (n) (145)

which is independent ofω . This zero energy eigenstate is scaling invariant, in the
sense that

ψ free
λ (X) =

1
λ ν ψ free(X) ∀λ > 0, (146)

whereψλ is defined in Eq.(81) and

ν =
Eg

h̄ω
. (147)

In summary, starting from the wavefunctionψg of any ladder ground state of the
trapped gas spectrum, one gets a scaling-invariant zero-energy free-space eigenstate
ψ free

λ , simply by removing the gaussian factore−mωX2/(2h̄) in the expression (144)
of ψg.

Remarkably, the reverse property is true. Let us imagine that we know a zero
energy eigenstateψ free of the free space problemHfree=− h̄2

2m∆X ,

∆Xψ free(X) = 0, (148)

that of course also obeys the Wigner-Bethe-Peierls contactconditions for the uni-
tary gas. SinceHfree commutes with the generatorD of the scaling transforms, we
generally expectψ free to obey Eq.(146) with some exponentν, so that

iDψ free= νψ free. (149)

Sinceψ free is not square integrable, the hermiticity ofD does not imply thatν ∈ iR;
on the contrary, we will see thatν ∈R. Let us multiplyψ free with a Gaussian factor:

ψ(X)≡ e−mωX2/(2h̄)ψ free(X). (150)
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As we did for the gauge transform, see Eq.(115), we can show that ψ so defined
obeys the Wigner-Bethe-Peierls contact conditions. Calculating the action onψ of
the HamiltonianH of the trapped gas, and using Eq.(149), we directly obtain

Hψ = νh̄ωψ , (151)

i.e. ψ is indeed an eigenstate of the trapped gas with the eigenenergy νh̄ω . This
ψ corresponds to the ground energy step of a ladder. Repeated action of L+ will
generate the other states of the ladder.

We have thus constructed a mapping between the trapped case and the zero en-
ergy free space case, for the unitary gas in an isotropic harmonic trap. A similar
mapping (restricting to the ground state) was constructed by Tan in an unpublished
work [92].

3.3 Separability in internal hyperspherical coordinates

As shown in subsection 3.2, the SO(2,1) dynamical symmetry of the unitary gas
in an isotropic harmonic trap implies that the eigenstate wavefunctionsψ(X) may
be written as the product of a function of the modulusX and of a function of the
directionX/X. Here, following [90], we directly use this property at the level of the
N-body Schrödinger equation, forN > 2, and we derive an effective Schrödinger
equation for a hyperradial wavefunction, with interestingconsequences discussed in
subsection 3.4. The derivation is restricted here to the case of particles of identical
masses, as in the previous sections, but the separability ininternal spherical coordi-
nates may also hold for particles of different masses, as detailed in Appendix 3.

First, we introduce a refinement to the separability of subsection 3.2: In a har-
monic trap, the center of mass of the system is totally decoupled from the inter-
nal variables, that is from the relative coordinatesr i − r j of the particles. This is
quite straightforward in Heisenberg picture, for an interaction modeled by a poten-
tial V(|r i − r j |). The Heisenberg equations of motion for the center of mass position

C ≡ 1
N

N

∑
i=1

r i (152)

and the center of mass momentumP = ∑N
i=1pi are indeed coupled only among

themselves, due in particular to the fact that the interaction potential cannot change
the total momentumP of the system:

d
dt

P̂(t) = −Nmω2Ĉ(t) (153)

d
dt

Ĉ(t) =
P̂(t)
Nm

. (154)
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The center of mass of the system thus behaves as a fictitious particle of massNm
trapped in the harmonic potentialNmω2C2/2, with a Hamiltonian

HCM =− h̄2

2Nm
∆C +

1
2

Nmω2C2. (155)

The center of mass has of course the same angular oscillationfrequency as the
individual particles. This center of mass decoupling property clearly holds in the
general harmonicanisotropiccase. It persists in the zero range limit so it holds also
for the zero-range model.

We can thus split the Hamiltonian Eq.(74) as the sum of the center of mass Hamil-
tonianHCM and the internal HamiltonianHinternal≡ H −HCM. As a consequence,
we introduce as new spatial coordinates the center of mass positionC and the set of
internal coordinates

R ≡ (r1−C, . . . , rN −C), (156)

and we can seek eigenstates in the factorized formψ(X) = ψCM(C)ψinternal(R).
The crucial step is then to defineinternalhyperspherical coordinates, consisting

in the hyperradius

R=

[

N

∑
i=1

(r i −C)2

]1/2

(157)

and a convenient parameterization of the set of dimensionless internal coordinates
R/R. There is a technical subtlety due to the fact that the coordinates ofR are not
independent variables: Since the sum of the components ofR along each spatial
directionx, y andz is exactly zero, and sinceR/R is a unit vector, the vectorR/R
contains actually only 3N−4 independent dimensionless real variables. We then use
the following result, that may be obtained with the appropriate Jacobi coordinates15

[93]: There exists a parameterization ofR/Rby a set of 3N−4 internal hyperangles
that we callΩ , such that the internal Hamiltonian takes the form

Hinternal=− h̄2

2m

[

∂ 2
R+

3N−4
R

∂R+
1
R2 ∆Ω

]

+
1
2

mω2R2, (158)

where∆Ω is the Laplacian on the unit sphere of dimension 3N−4. The expression
between square brackets is the standard form for the usual Laplacian in dimension
d = 3N−3, written in hyperspherical coordinates, which justifies the name of “in-
ternal hyperspherical coordinates”.

The separability in internal spherical coordinates means that the eigenstates in a
trap can be written as products of a function ofRand a function ofΩ . This basically
results from the reasoning below Eq.(148), with the little twist that one can further
assume that the zero-energy free space eigenstateψ free(X) has a zero total momen-

15 For particles of equal masses one introduces the Jacobi coordinates ui =

( N−i
N+1−i )

1/2
[

r i − (N− i)−1∑N
j=i+1r j

]

for 1 ≤ i ≤ N − 1. Then ∆X = N−1∆C + ∑N−1
i=1 ∆ui and

R2 = X2−NC2 = ∑N−1
i=1 u2

i . The general case of arbitrary masses is detailed in the Appendix 3.
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tum, i. e. it is independent of the center of mass position16. The scale invariance
Eq.(146) or equivalently Eq.(149) then implies

ψ free(X) = Rs−(3N−5)/2φ(Ω ) (159)

with some exponents shifted for convenience by(3N− 5)/2. The challenge is of
course to determine the unknown functionφ(Ω ) and the corresponding value ofs.
From Schrödinger’s equation∆Xψ free= 0 and the expression of the internal Lapla-
cian in hyperspherical coordinates, see Eq.(158), one findsthats2 solves the eigen-
value problem

[

−∆Ω +

(

3N−5
2

)2
]

φ(Ω ) = s2φ(Ω ), (160)

whereφ(Ω ) has to obey the Wigner-Bethe-Peierls contact conditions Eq.(108) re-
formulated in hyperangular coordinates.17 The merit of the shift(3N−5)/2 is thus
to reveal a symmetrys↔−s.

The generalization of the zero energy free space solution Eq.(159) to the finite
energy trapped problem is simply provided by the ansatz:

ψ(X) = ψCM(C)φ(Ω )R−(3N−5)/2F(R). (161)

HereψCM(C) is any center of mass eigenstate wavefunction of energyECM, φ(Ω )
is any solution of the eigenvalue problem Eq.(160). Injecting the ansatz into Schrö-
dinger’s equation of eigenenergyE and using Eq.(158), one finds that

E = ECM +Einternal, (162)

where the hyperradial wavefunctionF(R) and the internal eigenenergyEinternalsolve
the eigenvalue problem:

− h̄2

2m

[

F ′′(R)+
1
R

F ′(R)

]

+

(

h̄2s2

2mR2 +
1
2

mω2R2
)

F(R) = EinternalF(R). (163)

We note that, as detailed in the Appendix 3, this separability remarkably also holds
in the case where theN particles have different masses [90], provided that they all
have the same angular oscillation frequencyω in the trap, and that the Wigner-
Bethe-Peierls model still defines a self-adjoint Hamiltonian for the considered mass
ratios. The separability even holds when the Wigner-Bethe-Peierls modelsupple-
mented with an additional boundary condition for R→ 0 and fixedΩ is self-adjoint,
as is the case e.g. forN = 3 bosons, see below; indeed such a boundary condition
only affects the hyperradial problem.

16 The reasoning below Eq.(143) can also be adapted by putting the center of mass in its ground
stateψCM(C) ∝ exp[−NmωC2/(2h̄)] and by constructing purely internal raising and lowering
operators of an internal SO(2,1) dynamical symmetry, that do not excite the center of mass motion
contrarily toL+ andL− [90].
17 These reformulated contact conditions are given explicitly in [56], Eq.(1.38).
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In practice the explicit calculation ofs is possible for the few-body problem. The
most natural approach in general is to try to calculate the functionsAi j in Eq.(108)
in momentum space. From Eq.(108) it appears thatAi j is scaling invariant with an
exponents+1− (3N−5)/2. Its Fourier transform18 is then also scaling invariant,
with an exponent given by a simple power-counting argument:SinceAi j is a func-
tion of 3(N− 2) variables, and since one has[s+ 1− (3N− 5)/2]+ 3(N− 2) =
s+(3N−5)/2, its Fourier transform̃Ai j scales as

Ãi j (K) = K−[s+(3N−5)/2] fi j (K/K) (164)

whereK collects all the 3(N− 2) variables ofÃi j and fi j denotes some functions
to be determined. Remarkably it is the same quantity(3N−5)/2 which appears in
both Eqs.(159,164).

This momentum space approach leads to integral equations. For N = 3, this in-
tegral equation was obtained in [94]; it was solved analytically in [95], the allowed
values ofs being the solutions of a transcendental equation. This transcendental
equation was rederived from a direct analytical solution of(160) in position space
in [4], and generalised to arbitrary angular momenta, masses and statistics in [5];
for equal masses it is conveniently rewritten in the form ([96] and refs. therein):

Γ
(

l + 3
2

)

Γ
(

l+1+s
2

)

Γ
(

l+1−s
2

) =
η√

3π(−2)l 2F1

(

l +1+ s
2

,
l +1− s

2
; l +

3
2

;
1
4

)

(165)

or equivalently [32]
[

i l
l

∑
k=0

(−l)k(l +1)k

k!
(1−s)l

(1−s)k

(

2−ki(k− s)eisπ
2 +η(−1)l 4√

3
ei π

6 (2k+s)
)

]

−
[

(−i)l
l

∑
k=0

(−l)k(l +1)k

k!
(1−s)l

(1−s)k

(

2−k(−i)(k− s)e−isπ
2 +η(−1)l 4√

3
e−i π

6 (2k+s)
)

]

= 0 (166)

where l is the total internal angular momentum quantum number,η is −1 for
fermions (N↑ = 2, N↓ = 1) or+2 for spinless bosons,2F1 is a hypergeometric func-
tion, and(x)n ≡ x(x+1) . . . (x+n−1) with (x)0 ≡ 1. This equation has some spu-
rious integer solutions (l = 0,s= 2 for fermions;l = 0,s= 4 andl = 1,s= 3 for
bosons) which must be eliminated. ForN = 4 there is no known analytical solution
of the integral equation. Using the scale invariance ofÃi j (K) as in Eq.(164) and
rotational symmetry however brings it to a numerically tractable integral equation

18 Since the Fourier transform̃Ai j (K) =
∫

d3(N−2)Y e−iK ·YAi j (Y) may lead to non-absolutely con-
verging integrals at infinity, the calculation has to be performed using the language of distributions,
with a regularizing factore−ηY , η → 0+.
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involving the exponents, that allowed to predict a four-body Efimov effect for three
same-spin state fermions interacting with a lighter particle [7].

3.4 Physical consequences of the separability

As seen in the previous section 3.3, the solution of theN-body problem (N > 2)
for the unitary gas in a harmonic isotropic trap boils down to(i) the calculation
of exponentss from zero-energy free space solutions, and (ii) the solution of the
hyperradial eigenvalue problem Eq.(163). Whereas (i) is the most challenging part
on a practical point of view, the step (ii) contains a rich physics that we now discuss.

Formally, the hyperradial problem Eq.(163) is Schrödinger’s equation for one
(fictitious) particle moving in two dimensions with zero angular momentum in the
(effective) potential

Ueff(R) =
h̄2

2m
s2

R2 +
1
2

mω2R2. (167)

We will see that the nature of this problem is very different depending on the sign of
s2. The cases2 ≥ 0, i.e.sreal, happens forN= 3 fermions (N↑ = 2,N↓ = 1), not only
for equal masses [as can be tested numerically from (166) andeven demonstrated
analytically from the corresponding hyperangular eigenvalue problem [32]] but also
for unequal masses providedm↑/m↓ is below the critical value 13.60. . . where one
of thes (in the angular momentuml = 1 channel) becomes imaginary [5]. ForN= 4
fermions with (N↑ = 3, N↓ = 1), the critical mass ratio above which one of thes
(in the angular momentuml = 1 channel) becomes imaginary is slightly smaller,
m↑/m↓ ≃ 13.384 [7]. In the physics literature,s is believed to be real for fermions
for any(N↑,N↓) for equal masses, this belief being supported by numerical and ex-
perimental evidence. For 3 identical bosons, it is well-known that one of the values
of s (in the l = 0 channel) is imaginary [4], all other values being real.

3.4.1 Universal case

In this subsection we assume thats is real and we can take the sign conventions≥ 0.
We impose that the hyperradial wavefunctionF(R) is bounded forR→ 0; indeed,
allowing F(R) to diverge would physically correspond to aN-body resonance (see
Appendix 6). The spectrum and the corresponding hyperradial wavefunctions then
are [90]

Einternal= (s+1+2q)h̄ω , q∈ N (168)

F(R) =

√

2q!
Γ (s+1+q)

Rs

(aho)s+1 e
−
(

R
2aho

)2

L(s)
q

(

(

R
aho

)2
)

(169)
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whereL(s)
q is a generalised Laguerre polynomial of orderq, aho ≡

√

h̄
mω is the

harmonic oscillator length, and the normalisation is such that
∫ ∞

0 dRRF(R)2 = 1.
Eq. (168) generalises to excited states the result obtainedfor the ground state in [92].

We thus recover the 2̄hω spacing of the spectrum discussed in section 3.2. We
can also reinterpret the scaling solution of section 3.1 as atime-evolution of the
hyperradial wavefunction with a time-independent hyperangular wavefunction; in
particular, the undamped breathing mode corresponds to an oscillation of the ficti-
tious particle in the effective potential (167).19

The expression (169) ofF(R) immediately yields the probability distribution
P(R) of the hyperradius viaP(R) = F(R)2R. This analytical prediction is in good
agreement with the numerical results obtained in [97] for upto 17 fermions.

In the largeN limit (more precisely ifN↑ andN↓ tend to infinity and their ratio
goes to a constant), the ground state energy of the trapped unitary gas is expected
to be given in an asymptotically exact way by hydrostatics (also called local density
approximation). Amusingly, this allows to predict the large-N asymptotics of the
smallest possible value ofs. ForN↑ = N↓ = N/2→ ∞ this gives [92, 97]

s∼
√

ξ
(3N)4/3

4
(170)

whereξ appears in the expression Eq.(14) for the ground state energy of the homo-
geneous unitary gas.

For spin-1/2 fermions, Eqs. (168,169), combined with the transcendental equa-
tion (165) and the expression of the hyperangular wavefunctions [5], provide the
complete solution of the unitary 3-body problem in an isotropic harmonic trap [32]
(for completeness, one also has to include the eigenstates which are common to
the unitary and the non-interacting problem [32], mentioned at the end of subsec-
tion 2.2.1). This was first realised for the ground state in [92]. Remarkably, this
3-body spectrum in a trap allows to compute the third virial coefficient of the homo-
geneous unitary gas [98], whose value was confirmed experimentally (see [45] and
the contribution of F. Chevy and C. Salomon to this volume).

For spinless bosons, the unitary 3-body problem in an isotropic harmonic trap
has two families of eigenstates (apart from the aforementioned common eigenstates
with the non-interacting problem) [31, 32]: the states corresponding to real solu-
tions s of the transcendental equation (165), which we call universal states; and
the states corresponding to the imaginary solution fors, which we call efimovian.
Eqs. (168,169) apply to universal states. The efimovian states are discussed in the
next subsection.

19 Strictly speaking, such a time evolution of the wavefunction in internal hypershperial coordi-
nates corresponds to an internal scaling solution where thecenter of mass wavefunction is constant,
whereas the scaling solution of 3.1 corresponds to a hyperradial motion in the hypershperical co-
ordinates(X,n).
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3.4.2 Efimovian case

In this subsection we consider the cases2 < 0, i.e. s is purely imaginary. In this
case, all solutions of the Schrödinger equation are bounded and oscillate more and
more rapidly whenR→ 0. In order to obtain a hermitian problem with a discrete
spectrum, one has to impose the boundary condition [95, 56]:

∃A/ F(R)∼ A Im

[(

R
Rt

)s]

for R→ 0, (171)

whereRt is an additional 3-body parameter. An equivalent form is:

∃A′/ F(R)∼ A′ sin

[

|s| ln
(

R
Rt

)]

for R→ 0. (172)

The corresponding hyperradial wavefunctions are

F(R) = R−1WE/2,s/2(R
2/a2

ho) (173)

whereW is a Whittaker function, and the spectrum is given by the implicit equation

argΓ
[

1+ s−E/(h̄ω)

2

]

=−|s| ln(Rt/aho)+argΓ (1+ s) modπ (174)

obtained in [31], whose solutions form a discrete series, which is unbounded from
below, and can be labeled by a quantum numberq∈ Z.

In free space (ω = 0), there is a geometric series of bound states

Eq =− 2h̄2

mR2
t

exp

(

q
2π
|s| +

2
|s|argΓ (1+ s)

)

, q∈ Z (175)

F(R) = Ks

(

R
√

2m|E|/h̄2
)

(176)

whereK is a Bessel function. For 3 particles this corresponds to thewell-known
series of Efimov 3-body bound states [4, 5]. This also appliesto the 4-body bound
states in the aforementioned case of(3+1) fermions withm↑/m↓ between≃ 13.384
and 13.607. . . [7]. As expected, in the limitE →−∞, the spectrum of the efimovian
states in the trap (174) approaches the free space spectrum (175). The unbounded-
ness of the spectrum in the zero-range limit is a natural consequence of the Thomas
effect and of the limit cycle behavior [56].
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3.5 Vanishing bulk viscosity

In this subsection, we give a simple rederivation of fact that the bulk viscosity of the
unitary gas in the normal phase is zero. This result was obtained in [99] (see also
[100]). It helps analysing e. g. the ongoing experimental studies of the shear viscos-
ity, whose value is of fundamental importance ([101] and refs. therein). Although
the superfluid regime was also treated in [99], we omit it herefor simplicity. In our
rederivation we shall use the scaling solution and the existence of the undamped
breathing mode.20

In the hydrodynamic theory for a normal compressible viscous fluid [102, 99],
the (coarse-grained) evolution of the gas in a trapping potentialU(r , t) is described
by the atom number densityρ(r , t), the velocity vector fieldv(r , t), and the entropy
per particle (in units ofkB) s(r , t). These 5 scalar functions solve 5 equations which
are given for completeness in Appendix 4 although we will notdirectly use them
here. We will only need the equation for the increase of the total entropyS=

∫

ρsd3r
of the gas

dS
dt

=

∫ κ‖∇T‖2

T2 d3r +
∫ η

2T ∑
ik

(

∂vi

∂xk
+

∂vk

∂xi
− 2

3
δik∇ ·v

)2

d3r +
∫ ζ

T
‖∇ ·v‖2d3r

(177)
which follows from the hydrodynamic equations (217,215); note that the thermal
conductivityκ , the shear viscosityη and the bulk viscosityζ have to be≥ 0 so that
dS/dt ≥ 0 [102]. The hydrodynamic theory is expected to become exactin the limit
where the length (resp. time) scales on which the above functions vary are much
larger than microscopic length (resp. time) scales such as 1/kF (resp.EF/h̄).

We consider the following Gedankenexperiment: Starting with the gas at thermal
equilibrium in a trap of frequencyω , we suddenly switch the trapping frequency at
t = 0 to a different valueω+. As we have seen in subsection 3.1 and at the beginning
of subsection 3.2, this excites anundampedbreathing mode: Fort > 0, the size
of the gas oscillatesindefinitely. This rigorously periodic evolution of the system
implies that the total entropyS(t) is periodic, and since it cannot decrease, it has to
be constant. Thus each of the terms in the right-hand-side of(177), and in particular
the last term, has to vanish. Thusζ (r , t)‖∇ · v(r , t)‖2 ≡ 0. This implies thatζ is
identically zero, as we now check. From the scaling evolution (109) of each many-
body eigenstate, one can deduce (using the quantum-mechanical expression for the
particle flux) that

v(r , t) =
λ̇
λ

r , (178)

20 In article [99], the vanishing of the bulk viscosity was deduced from the so-called general coor-
dinate and conformal invariance, the scaling solution being unknown to its author of at the time of
writing (although it had been obtained in [59]). The scalingsolution was recently rederived using
this general coordinate and conformal invariance [100]. Several other results presented in subsec-
tions 3.2, 3.3 and 3.4 were also rederived using this field theoretical formalism ([100] and refs.
therein).
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so that∇ · v = 3λ̇/λ . For t approaching 0 from above, we haveλ̇ (t) 6= 0, as is
intuitively clear and can be checked from Eqs. (110,111); thus ζ (r , t) = 0 and by
continuity ζ (r , t = 0) = 0. Since the central density and temperature in the initial
equilibrium state of the gas are arbitrary, we conclude thatζ (ρ ,T) = 0 for all ρ and
T. An alternative derivation of this result is presented in Appendix 5.

3.6 Short-range scaling laws

As opposed to the previous subsections, we now consider an arbitrary scattering
length and an arbitrary external potential, possibly with periodic boundary condi-
tions. Of all the particles 1, . . . ,N, let us consider a subsetJ⊂ {1, . . . ,N} containing
n↑ particles of spin↑ andn↓ particles of spin↓. From the particle positions(r i)i∈J,
we can define a hyperradiusRJ and hyperanglesΩ J, and a center of mass position
CJ. The positions of all particles that do not belong toJ are denoted byRJ =(r i)i /∈J.
In the absence of a(n↑+n↓)-body resonance (see Appendix 6), one expects that, for
any eigenstate, in the limitRJ → 0 where all particles belonging to the subsetJ ap-
proach each other while(Ω J,CJ,RJ) remain fixed, there exists a functionAJ such
that

ψ(r1, . . . , rN) = Rν
J φ(Ω J)AJ(C j ,RJ)+o(Rν

J). (179)

Here,ν = smin(n↑,n↓)−
3(n↑+n↓)−5

2 with smin(n↑,n↓) the smallest possible value ofs
for the problem ofn↑ particles of spin↑ andn↓ particles of spin↓ (sbeing defined in
Sec. 3.3) andφ(Ω J) is the corresponding hyperangular wavefunction (also defined
in Sec. 3.3). This statement is essentially contained in [17, 92]. It comes from the
intuition that, in the limit where then↑ + n↓ particles approach each other, theN-
body wavefunction should be proprtional to the(n↑ + n↓)-body zero-energy free
space wavefunction Eq.(159). This was used in [17] to predict that the formation
rate of deeply bound molecules by three-body recombination, Γ ≡−Ṅ/N, behaves
as h̄Γ /εF ∼ K · (kFb)2smin(2,1) in the low-density limit, withb on the order of the
van der Waals range andK a numerical prefactor which depends on short-range
physics. The analytical solution of the hyperangular three-body problem [Eq.(166)]
yields smin(2,1) = 1.772724. . . (this value is reached in the angular momentum
l = 1 channel). Experimentally, this scaling has not been checked, but the smallness
of h̄Γ /εF is one of the crucial ingredient which allow to realise the unitary gas.
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Appendix 1: Effective range in a lattice model

To calculate the effective rangere [defined by Eq.(5)] for the lattice model of subsection 2.1, it is
convenient to perform in the expression (46) of the scattering amplitude an analytic continuation to
purely imaginary incoming wavevectorsk0, settingk0 = iq0 with q0 real and positive. Eliminating
1/g0 thanks to Eq.(47) we obtain the useful expression:

− 1
fk0

=
1
a
+4π

∫

D

d3k
(2π)3

[

1

q2
0+2mεk/h̄2 − 1

2mεk/h̄2

]

. (180)

We first treat the case of the parabolic dispersion relation Eq.(48). A direct expansion of
Eq.(180) in powers ofq0 leads to an infrared divergence. The trick is to use the fact that the
integral overD in Eq.(180) can be written as the integral of the same integrand over the whole
space minus the integral over the supplementary spaceR

3 \D . The integral over the whole space
may be performed exactly using

∫

R3

d3k
(2π)3

[

1

q2
0+k2

− 1
k2

]

=− q0

4π
. (181)

This leads to the transparent expression, where the term corresponding toik in Eq.(3), and which
is non-analytic in the energyE, is now singled out:

− 1

f parab
k0

=
1
a
−q0−4π

∫

R3\D

d3k
(2π)3

[

1

q2
0+k2

− 1
k2

]

. (182)

This is now expandable in powers ofq2
0, leading to the effective range for the parabolic dispersion

relation:

rparab
e =

1
π2

∫

R3\D

d3k
k4 . (183)

We now turn back to the general case. The trick is to consider the difference between the
inverse scattering amplitudes of the general case and the parabolic case with a common value of
the scattering length:

1

f parab
k0

− 1
fk0

= 4π
∫

D

d3k
(2π)3

[

1

q2
0+2mεk/h̄2 − 1

q2
0+k2

− 1

2mεk/h̄2 +
1
k2

]

. (184)

This is directly expandable to second order inq0, leading to:

re− rparab
e = 8π

∫

D

d3k
(2π)3

[

1
k4 −

(

h̄2

2mεk

)2
]

. (185)

The numerical evaluation of this integral for the Hubbard dispersion relation Eq.(59) leads to the
Hubbard model effective range Eq.(60).

Finally, we specialize the general formula to the parabolicplus quartic form Eq.(61). Setting
k = (π/b)q and using Eq.(183), we obtain

π3rmix
e

b
=

∫

R3\[−1,1]3

d3q
q4 +

∫

[−1,1]3

d3q
q4

[

1− 1
(1−Cq2)2

]

. (186)

The trick is to split the cube[−1,1]3 as the union ofB(0,1), the sphere of center 0 and unit radius,
and of the setX = [−1,1]3\B(0,1). One has also

(

R
3 \ [−1,1]3

)

∪X = R
3 \B(0,1) so that
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π3rmix
e

b
=
∫

R3\B(0,1)

d3q
q4 +

∫

B(0,1)

d3q
q4

[

1− 1
(1−Cq2)2

]

−
∫

X

d3q
q4

1
(1−Cq2)2 . (187)

One then moves to spherical coordinates of axisz. The first two terms in the right hand side
may be calculated exactly. In particular, one introduces a primitive of q−2(1−Cq2)−2, given by
C1/2Φ(C1/2q) with

Φ(x) =
x

2(1−x2)
+

3
2

arctanhx− 1
x
. (188)

In the last term of Eq.(187) one integrates over the modulusqof q for a fixed direction(θ ,φ )where
θ is the polar angle andφ the azimuthal angle. One then finds thatq ranges from 1 to some maximal
valueQ(θ ,φ ), and the integral overq provides the differenceΦ(C1/2Q)−Φ(C1/2). Remarkably,
the term−Φ(C1/2) cancels the contribution of the first two integrals in the right hand side of
Eq.(187), so that

rmix
e

b
=−C1/2

π3

∫ 2π

0
dφ
∫ 1

−1
duΦ [C1/2Q(θ ,φ )] (189)

where as usual we have setu= cosθ . Using the symmetry under parity along each Cartesian axis,
which adds a factor 8, and restricting to the faceqx = 1 of the cube, which adds a factor 3, the
expression ofQ(θ ,φ ) is readily obtained, leading to

rmix
e

b
=−24C1/2

π3

∫ π/4

0
dφ
∫

cosφ√
1+cos2 φ

0
duΦ

(

C1/2

cosφ
√

1−u2

)

. (190)

In the limit C → 0, rmix
e → rparab

e , and Eq.(190) may be calculated analytically withΦ(x) ∼−1/x
and with an exchange of the order of integration: This leads to Eq.(58). For a general value of
C∈ [0,1/3[ we have calculated Eq.(190) numerically, and we have identified the magic value ofC
leading to a zero effective range, see Eq.(62). With the sametechnique, we can calculate the value
of K appearing in Eq.(49) from the expression

K =
12

πC1/2

∫ π/4

0
dφ
∫

cosφ√
1+cos2 φ

0
duarctanh

C1/2

cosφ
√

1−u2
. (191)

Appendix 2: What is the domain of a Hamiltonian?

Let us consider a HamiltonianH represented by a differential operator also calledH. A naive and
practical definition of the domainD(H) of H is that it is the set of wavefunctions over which the
action of the Hamiltonian is indeed represented by the considered differential operator. In other
words, if a wavefunctionψbad does not belong toD(H), one should not calculate the action ofH
on ψbad directly using the differential operatorH. If H if self-adjoint, one should rather expand
ψbad on the Hilbert basis of eigenstates ofH and calculate the action ofH in this basis.

For example, for a single particle in one dimension in a box with infinite walls inx = 0 and
x= 1, so that 0≤ x≤ 1, one has the Hamiltonian

H =−1
2

d2

dx2 , (192)

with the boundary conditions on the wavefunction

ψ(0) = ψ(1) = 0 (193)

representing the effect of the box. To be in the domain, a wavefunction ψ(x) should be twice
differentiable for 0< x < 1 and should obey the boundary conditions (193). An example of a



The Unitary Gas and its Symmetry Properties 55

wavefunction which is not in the domain is the constant wavefunctionψ(x) = 1. An example of
wavefunction in the domain is

ψ(x) = 301/2x(1−x). (194)

If one is not careful, one may obtain wrong results. Let us calculate the mean energy and the second
moment of the energy forψ given by (194). By repeated action ofH onto ψ, and calculation of
elementary integrals, one obtains

〈H〉ψ = 5 (195)

〈H2〉ψ = 0?! (196)

Eq.(195) is correct, but Eq.(196) is wrong (it would lead to anegative variance of the energy)
becauseHψ is not inD(H) and the subsequent illicit action ofH as the differential operator (192)
gives zero.

How to calculate the right value of〈H2〉ψ ? One introduces the orthonormal Hilbert basis of
eigenstates ofH,

ψn(x) = 21/2 sin[π(n+1)x], n∈ N, (197)

with the eigenenergyεn = π2

2 (n+1)2. Thenψ of Eq.(194) may be expanded as∑n cnψn(x), and
thekth moment of the energy may be defined as

〈Hk〉ψ = ∑
n∈N

(εn)
k|cn|2. (198)

Sincecn = 4
√

15[1+(−1)n]/[π(n+1)]3, one recovers〈H〉ψ = 5 and one obtains the correct value
〈H2〉ψ = 30, that leads to a positive energy variance as it should be. Also 〈Hk〉ψ =+∞ for k≥ 3.

The trick of expandingψ in the eigenbasis ofH is thus quite powerful, it allows to define the
action ofH on any wavefunctionψ in the Hilbert space (not belonging to the domain). It may be
applied of course only ifH is self-adjoint, as it is the case in our simple example.

Appendix 3: Separability and Jacobi Coordinates for arbitrary
masses

We here considerN ≥ 2 harmonically trapped particles interacting in the unitary limit, with possi-
bly different massesmi but with the same isotropic angular oscillation frequencyω. The Hamilto-
nian reads

H =
N

∑
i=1

[

− h̄2

2mi
∆r i +

1
2

miω2r2
i

]

(199)

and the unitary interaction is described by the Wigner-Bethe-Peierls contact conditions on theN-
body wavefunction: For all pairs of particles(i, j), in the limit r i j = |r i − r j | → 0 with a fixed
value of the centroid of the particlesi and j , Ri j ≡ (mi r i +mj r j )/(mi +mj ), that differs from the
positionsrk of the other particles,k 6= i, j , there exists a functionAi j such that

ψ(r1, . . ., rN) =
Ai j (Ri j ; (rk)k6=i, j)

r i j
+O(r i j ). (200)

As is well known and as we will explain below, the internal Hamiltonian Hinternal= H −HCM,

whereHCM =− h̄2

2M ∆C + 1
2Mω2C2, takes the form

Hinternal=
N−1

∑
i=1

[

− h̄2

2m̄
∆ui +

1
2

m̄ω2u2
i

]

(201)
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in suitably defined Jacobi coordinates [see Eqs.(205,214)]. HereC = ∑N
i=1mi r i/M is the center of

mass position,M = ∑N
i=1 mi is the total mass, and ¯m is some arbitray mass reference, for example

the mean massM/N. Then it is straightforward to express Eq.(201) in hyperspherical coordinates,
the vector(u1, . . .,uN−1) with 3N−3 coordinates being expressed in terms of its modulusRand a
set of 3N−4 hyperanglesΩ , so that

Hinternal=− h̄2

2m̄

[

∂ 2
R+

3N−4
R

∂R+
1
R2 ∆Ω

]

+
1
2

m̄ω2R2 (202)

where∆Ω is the Laplacian over the unit sphere of dimension 3N−4. As we shall see, the expres-
sion for the hyperradius is simply

R2 ≡
N−1

∑
i=1

u2
i =

1
m̄

N

∑
i=1

mi(r i −C)2. (203)

This form of the Hamiltonian is then useful to show the separability of Schrödinger’s equation
for the unitary gas in hyperspherical coordinates [56, 90] for N ≥ 3 and arbitrary masses. The
separability Eq.(161) that was described for simplicity inthe case of equal mass particles in sub-
section 3.3 indeed still holds in the case of different masses, if the Wigner-Bethe-Peierls model
defines a self-adjoint Hamiltonian.21 We recall here the various arguments. First, for zero energy
free space eigenstates, the form Eq.(159) is expected from scale invariance, if the Hamiltonian is
self-adjoint [90]. Second, the form Eq.(161) for the general case, including non-zero energy and
an isotropic harmonic trap, is expected because (i) the Hamiltonian (199), after separation of the
center of mass, has the separable form (202) in hyperspherical coordinates, and (ii) Eq.(161) obeys
the Wigner-Bethe-Peierls contact conditions if Eq.(159) does. This point (ii) results from the fact
that the Wigner-Bethe-Peierls conditions are imposed, foreach pair of particles(i, j), for r i j → 0
with a fixed value ofRi j that differs from the positionsrk of the other particles,k 6= i, j . Using
r i = Ri j + [mj/(mi +mj )]r i j andr j = Ri j − [mi/(mi +mj)]r i j , with r i j ≡ r i − r j , we indeed find
that

m̄R2 =
mimj

mi +mj
r2
i j +(mi +mj)(Ri j −C)2+ ∑

k6=i, j

mk(rk −C)2. (204)

For N ≥ 3, we see that limri j →0 R2 > 0, so thatR varies only to second order inr i j in that limit.
Provided that the functionF(R) in Eq.(161) has no singularity at non-zeroR, the Wigner-Bethe-
Peierls contact conditions are preserved [similarly to theargument Eq.(115)]. Third, bosonic or
fermionic exchange symmetries imposed on theN-body wavefunction cannot break the separa-
bility in hyperspherical coordinates: Exchanging the positions of particles of same mass does not
change the value of the hyperradiusR, it only affects the hyperangles and thus the eigenvalues
[(3N−5)/2]2−s2 of the Laplacian on the unit sphere.

To derive the form Eq.(201) of the internal Hamiltonian, we introduce the usual Jacobi coordi-
nates given for example in [103]:

yi ≡ r i −
∑N

j=i+1mj r j

∑N
j=i+1mj

for 1≤ i ≤ N−1. (205)

We note thatyi simply gives the relative coordinates of particlei with respect to the center of
mass of the particles fromi +1 to N. To simplify notations, we also setyN ≡ C. In compact form,
the Jacobi change of variables corresponds to settingyi = ∑N

j=1Mi j r j for 1 ≤ i ≤ N, where the
non-symmetric matrixM is such that:

21 Strictly speaking, it is sufficient that the Laplacian on theunit sphere together with the Wigner-
Bethe-Peierls boundary conditions reexpressed in terms ofhyperangles is self-adjoint, as exten-
sively used in [7]. This is less restrictive than having the full Hamiltonian self-adjoint, since it
allows for example to have aN-body Efimov effect while theN−1 zero-range model is perfectly
well-defined and does not experience any Efimov effect.
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• In the case 1≤ i < N, one has:Mi j = 0 for 1 ≤ j < i, Mi j = 1 for j = i, and Mi j =

−mj/(∑N
k=i+1mk) for i < j ≤ N.

• MN j = mj/(∑N
k=1 mk) for 1≤ j ≤ N.

From the formula giving the derivative of a composite function, the kinetic energy operator writes

Hkin ≡
N

∑
i=1

− h̄2

2mi
∆r i =− h̄2

2

N

∑
j=1

N

∑
k=1

Sjkgrady j
·gradyk

, (206)

where thesymmetricmatrix S is defined asSjk = ∑N
i=1M ji Mki/mi . The explicit calculation of the

matrix elementsSjk is quite simple. Taking advantage of the fact thatS is symmetric, one has to
distinguish three cases, (i) 1≤ j ,k≤ N−1, with j = k and j < k as subcases, (ii)j = k= N, and
(iii) j < N,k= N. One then finds thatS is purely diagonal, withSii = 1/µi for 1≤ i ≤ N−1 and
SNN = 1/M. Hereµi is the reduced mass for the particlei and for a fictitious particle of mass equal
to the sum of the masses of the particles fromi +1 to N:

1
µi

=
1
mi

+
1

∑N
j=i+1mj

for 1≤ i ≤ N−1. (207)

This results in the following form

Hkin =− h̄2

2M
∆C −

N−1

∑
i=1

h̄2

2µi
∆yi . (208)

The next step is to consider the trapping potential energy term. Inspired by Eq.(208) one may
consider the guess

Htrap≡
N

∑
i=1

1
2

miω2r2
i

?
=

1
2

Mω2C2+
N−1

∑
i=1

1
2

µiω2y2
i . (209)

Replacing eachyi by their expression in the guess gives

MC2+
N−1

∑
i=1

µiy
2
i =

N

∑
j=1

N

∑
k=1

Q jkr j · rk (210)

whereQ is uniquely defined once it is imposed to be asymmetricmatrix. SettingMi = ∑N
j=i+1mj

for 0≤ i ≤ N−1, andMN = 0, we find for the off-diagonal matrix elements

Q jk =−
µmin( j ,k)mmax( j ,k)

Mmin( j ,k)
+

mjmk

M
+mjmk

min( j ,k)−1

∑
i=1

µi

M2
i

(211)

where 1≤ j ,k≤ N, min( j ,k) and max( j ,k) respectively stand for the smallest and for the largest
of the two indicesj andk. The key relation is then that

µi

M2
i

=
1

Mi
− 1

mi +Mi
=

1
Mi

− 1
Mi−1

(212)

sinceMi +mi = Mi−1 for 1≤ i ≤ N. This allows to calculate the sum overi of µi/M2
i , as all except

the border terms compensate by pairs. E.g. forj < k:

j−1

∑
i=1

µi

M2
i

=
1

M j−1
− 1

M
(213)
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sinceM0 = M. One then finds that the off-diagonal elements of the matrixQ vanish. The diagonal
elements ofQ may be calculated using the same tricks (212,213), one findsQii = mi for 1≤ i ≤ N.
As a consequence, the guess was correct and the question markcan be removed from Eq.(209).

The last step to obtain Eq.(201) is to appropriately rescalethe usual Jacobi coordinates, setting

ui ≡ (µi/m̄)1/2yi (214)

wherem̄ is an arbitrarily chosen mass. A useful identity is the expression for the square of the
hyperradius, Eq.(203). Starting from the definition [first identity in Eq.(203)] we see thatR2 =
∑N−1

i=1
µi
m̄y2

i . Then the second identity in Eq.(203) results from the fact that the guess in Eq.(209) is
correct.

Appendix 4: Hydrodynamic equations

The hydrodynamic equations for a normal compressible viscous fluid are (see [99]22, or §15
and§49 in [102]):

• the continuity equation
∂ ρ
∂ t

+∇ · (ρv) = 0, (215)

• the equation of motion

mρ
(

∂vi

∂ t
+v ·∇vi

)

= − ∂ p
∂xi

−ρ
∂U
∂xi

+∑
k

∂
∂xk

[

η
(

∂vi

∂xk
+

∂vk

∂xi
− 2

3
δik∇ ·v

)]

+
∂

∂xi
(ζ ∇ ·v) (216)

wherem is the atomic mass,η is the shear viscosity,ζ is the bulk viscosity, and the pressure
p(r , t) [as well as the temperatureT(r , t) appearing in the next equation] is as always express-
ible in terms ofρ(r , t) ands(r , t) via the equation of state,23

• the entropy-production equation

ρT

(

∂s
∂ t

+v ·∇s

)

= ∇ · (κ∇T)+
η
2 ∑

i,k

(

∂vi

∂xk
+

∂vk

∂xi
− 2

3
δik∇ ·v

)2

+ζ (∇ ·v)2 (217)

whereκ is the thermal conductivity.

Appendix 5: Alternative derivation of the vanishing bulk
viscosity

Consider the particular case of a unitary gas initially prepared at thermal equilibrium in an isotropic
harmonic trap at a temperatureT above the critical temperature. When the harmonic trap becomes
time dependent,U(r , t) = 1

2mω2(t)r2, each many-body eigenstate of the statistical mixture evolves
under the combination Eq.(109) of a time dependent gauge transform and a time dependent scaling

22 There is a typo in Eq.(10) of [99]:∇i(ρvi∂is) should be replaced by∇i(ρvis).
23 If we would neglect the position-dependence ofη andζ , (216) would reduce to the Navier-
Stokes equation.
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transform of scaling factorλ (t). The effect of the gauge transform is to shift the momentum op-
eratorpi of each particlei by the spatially slowly varying operatormr i λ̇/λ . In the hydrodynamic
framework, this is fully included by the velocity field Eq.(178). 24 Using the macroscopic conse-
quences of a spatial scaling Eqs.(19,20,21,22), onea priori obtains a time dependent solution of
the hydrodynamic equations:

T(r , t) = T(t = 0)/λ 2(t) (218)

ρ(r , t) = ρ(r/λ ,0)/λ 3(t) (219)

s(r , t) = s(r/λ ,0) (220)

p(r , t) = p(r/λ ,0)/λ 5(t) (221)

vi(r , t) = xi λ̇ (t)/λ (t). (222)

One then maya posterioricheck that Eq.(215) is inconditionally satisfied, and that Eq.(217) is
satisfied ifζ ≡ 0. Settingζ ≡ 0 in Eq.(216), and using the hydrostatic condition∇p= −ρ∇U at
time t = 0, one finds that Eq.(216) holds provided thatλ (t) solves Eq.(111) as it should be.

Appendix 6: n-body resonances

Usually in quantum mechanics one takes the boundary condition that the wavefunction is bounded
when two particles approach each other; in contrast, the Wigner-Bethe-Peierls boundary condition
(75) expresses the existence of a 2-body resonance. If the interaction potential is fine-tuned not
only to be close to a two-body resonance (i.e. to have|a| ≫ b) but also to be close to an-body
resonance (meaning that a real or virtualn-body bound state consisting ofn↑ particles of spin↑
andn↓ particles of spin↓ is close to threshold), then one similarly expects that, in the zero-range
limit, the interaction potential can be replaced by the Wigner-Bethe-Peierls boundary condition,
together with an additional boundary condition in the limitwhere any subset of n↑ particles of spin
↑ and n↓ particles of spin↓ particles approach each other. Using the notations of Section 3.6, this
additional boundary condition reads [71, 90, 104, 56]:

ψ(r1, . . ., rN) =
(

R−s
J − ε

l2sRs
J

)

R
− 3n−5

2
J φ (ΩJ)AJ(C j ,RJ)+o(Rν

J ) (223)

where s = smin(n↑,n↓), while l > 0 and ε = ±1 are parameters of the model playing a role
analogous to the absolute value and the sign of the two-body scattering length. This approach

24 To formalize this statement, we consider a small but still macroscopic element of the equilib-
rium gas of volumedV around point̄r , with k−1

F ≪ dV1/3 ≪ R wherekF is the Fermi momen-
tum andR the Thomas-Fermi radius of the gas. We can define the density operatorρ̂elem of this
element by taking the trace of the fullN-body density operator over the spatial modes outside
the element. Since the gauge transform in Eq.(109) is local in position space,̂ρelem experiences
the same unitary gauge transform. It would be tempting to conclude from the general formula
dS= −kBTr[ρ̂elemln ρ̂elem] that the entropydSof the element is not changed by the gauge trans-
form. This is a valid conclusion however only if the gauge transform does not brinĝρelem too far
from local thermal equilibrium. To check this, we split the gauge transform for a single particle
of positionr asmr2λ̇/(2h̄λ ) = mλ̇/(2h̄λ )[r̄2+2r̄ · (r − r̄ )+(r − r̄ )2]. The first term is an innoc-
cuous uniform phase shift. The second term performs a uniform shift in momentum space by the
announced valuemv(r̄ , t). Due to Galilean invariance, this has no effect on the thermodynamic
quantities of the small element, such as its temperature, its pressure, its density, its entropy. With
the estimatėλ/λ ∼ ω, r̄ ∼ R, mωR∼ h̄kF , this second term is of orderkF dV1/3 ≫ 1, not negli-
gible. The third term is of ordermωdV2/3/h̄ ∼ N−1/3k2

F dV2/3, negligible in the thermodynamic
limit.
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is only possible if the wavefunction remains square integrable, i. e. if 0≤ s < 1, which we
assume in what follows. This condition is satisfied e.g. forn↑ = 2,n↓ = 1 for a mass ratio
m↑/m↓ ∈]8.62. . . ;13.6. . .] [5]. Moreover we are assuming for simplicity thats 6= 0.

Let us now consider the particular case where the two-body scattering length is infinite, and the
external potential is either harmonic isotropic, or absent. Then the separability in internal hyper-
spherical coordinates of Section 3.3 still holds forn= N. Indeed, Eq.(223) then translates into the
boundary condition on the hyperradial wavefunction

∃A∈ R/ F(R) =
R→0

A ·
(

R−s− ε
l2sRs

)

+O
(

Rs+2) (224)

and does not affect the hyperangular problem. Consequently[56],

• For then-body bound state, which exists ifε =+1:

E =− 2h̄2

ml2

[

Γ (1+s)
Γ (1−s)

]
1
s

, (225)

F(R) = Ks

(

R

√

−2E
m

h̄2

)

. (226)

• For the eigenstates in a trap:

E solves : − ε ·
(

h̄
mω l2

)s

=
Γ
(

1+s−E/(h̄ω)
2

)

Γ (−s)

Γ
(

1−s−E/(h̄ω)
2

)

Γ (s)
, (227)

F(R) =
1
R

W E
2h̄ω , s

2

(

R2 mω
h̄

)

. (228)

In particular, forl = ∞, we are exactly at then-body resonance, since the energy of then-body
bound state vanishes. The spectrum in a trap then isE = (−s+1+2q)h̄ω with q∈N.

Note that, most often,s≥ 1, in which case one would have to use an approach similar to the
one developped by Pricoupenko for the case of 2-body resonances in non-zero angular momentum
channels, and to introduce a modified scalar product [22, 105].
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Poincaré, Paris(2007), www.phys.ens.fr/˜castin/filespdf.html
85. H. R. Lewis, J. Math. Phys.9, 1976 (1968).
86. V.P. Ermakov, Univ. Izv. Kiev.20, 1 (1880).
87. Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Phys. Rev.A 54, R1753 (1996).
88. A. Minguzzi, D. M. Gangardt, Phys. Rev. Lett.94, 240404 (2005).
89. C. Lobo and S. D. Gensemer, Phys. Rev. A78, 023618 (2008).
90. F. Werner, Y. Castin, Phys. Rev. A74, 053604 (2006).
91. L.P. Pitaevskii and A. Rosch, Phys. Rev. A55, R853 (1997).
92. S. Tan, arXiv:cond-mat/0412764.
93. L.D. Faddeev, S.P. Merkuriev, inQuantum scattering theory for several particle systems,

§1.3.1, edited by M. Flato, Kluwers Academic Publishers (Dordrecht, 1993).
94. G.V. Skorniakov and K.A. Ter-Martirosian, Sov. Phys. JETP 4, 648 (1957).



The Unitary Gas and its Symmetry Properties 63

95. G. S. Danilov, Sov. Phys. JETP13, 349 (1961).
96. M. C. Birse, J. Phys. A39, L49 (2006).
97. D. Blume, J. von Stecher and C. H. Greene, Phys. Rev. Lett.99, 233201 (2007).
98. X.-J. Liu, H. Hu, P. D. Drummond, Phys. Rev. Lett.102, 160401 (2009).
99. D. T. Son, Phys. Rev. Lett.98, 020604 (2007).
100. Contribution by Y. Nishida and D. T. Son to this volume, also available at arXiv:1004.3597.
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