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Abstract 

This paper reports the first study on the large amplitude oscillatory shear flow for magnetic 
fiber suspensions subject to a magnetic field perpendicular to the flow. The suspensions used 
in our experiments consisted of cobalt microfibers of the average length of 37 µm and 
diameter of 4.9 µm, dispersed in a silicon oil. Rheological measurements have been carried 
out at imposed stress using a controlled stress magnetorheometer. The stress dependence of 
the shear moduli presented a staircase-like decrease with, at least, two viscoelastic quasi-
plateaus corresponding to the onset of microscopic- and macroscopic scale rearrangement of 
the suspension structure, respectively. The frequency behavior of the shear moduli followed a 
power-law trend at low frequencies and the storage modulus showed a high-frequency 
plateau, typical for Maxwell behavior. Our simple single relaxation time model fitted 
reasonably well the rheological data. To explain a relatively high viscous response of the fiber 
suspension, we supposed a coexistence of percolating and pivoting aggregates. Our 
simulations revealed that the former became unstable beyond some critical stress and broke in 
their middle part. At high stresses, the free aggregates were progressively destroyed by shear 
forces that contributed to a drastic decrease of the moduli. We have also measured and 
predicted the output strain waveforms and stress-strain hysteresis loops. With the growing 
stress, the shape of the stress-strain loops changed progressively from near-ellipsoidal one to 
the rounded-end rectangular one due to a progressive transition from a linear viscoelastic to a 
viscoplastic Bingham-like behavior. 
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1. Introduction 

Magnetorheological (MR) fluids are suspensions of magnetic micron-sized particles in a 
carrier liquid. The MR fluid particles are subject to a reversible aggregation and the MR fluid 
develops a large yield stress upon application of a magnetic field. This phenomenon is known 
as the magnetorheological effect [1, 2]. So, the magnetic and mechanical properties of these 
fluids can be efficiently controlled by external magnetic fields and this makes them attractive 
for several industrial applications. Controlled stiffness dampers and magnetorheological 
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finishing of optical surfaces have been successfully commercialized during the last decade 
and the other magnetorheological smart devices, such as controlled hydrodynamic bearings, 
are being developed [3]. The improvement of the real time control of these devices and the 
increase of the controllability range of their control parameters (flow rate, stiffness) are still 
important issues. In general, there are two ways of solving these problems: either by 
optimization of the fluidic and the magnetic designs of the considered device or by improving 
the properties of the MR fluid.  

One way of improvement of the MR fluid stability and mechanical properties consists of 
using magnetic micro- or nanofibers instead of conventional spherical particles. The magnetic 
fiber suspensions have shown better sedimentation stability [4] and developed a yield stress a 
few times larger than that of the magnetic suspensions of spherical particles at the same 
magnetic field intensities and the same particle volume fraction [5–10]. Such enhanced 
magnetorheological effect in fiber suspensions have been explained in terms of the interfiber 
solid friction [11] and by enhanced magnetic permeability of these suspensions as compared 
to the permeability of conventional MR fluids [9, 12]. Note that the similar particle shape 
effect has been observed in electrorheological (ER) fluids [13-16] and was attributed to both 
the physical overlapping of the elongated particles and to their strong dielectric properties 
[17-18]. Kor and See [19] have recently carried out particle level simulations on ER fluids 
and also found the stress enhancement in suspensions of needle-like particles. 

Almost all the studies on elongated particle-based MR or ER fluids were focused on the 
steady shear or the small amplitude oscillatory shear flows. These studies give an important 
insight into the understanding of the general rheological behavior of the suspensions but have 
limited applications in ER and MR smart devices. For instance, in MR dampers, the MR fluid 
is subject to a reciprocal large amplitude straining motion. Thus, investigation of the large 
amplitude oscillatory shear (LAOS) flow of magnetic fiber suspensions would be very helpful 
for this application. Apart from its engineering importance, the LAOS response of the 
magnetic fiber suspensions could bring valuable information on their nonlinear viscoelasticity 
in the wide range of the excitation frequencies. 

In general, the LAOS tests have been successfully used to characterize the rheological 
properties of various kinds of soft materials, such as polymers, wormlike micelles, colloidal 
gels, biopolymer networks, see for instance [20, 21]. These tests consist of imposing a 
sinusoidal strain (or stress) to the material and recording its stress (or, respectively, strain) 
response. In the nonlinear viscoelastic regime, i.e. at large strains or stresses applied, the 
material response is non-sinusoidal with higher harmonics appearing. Fourier analysis of the 
measured response signal allows one to learn about a rheological behavior exhibited by the 
material (shear thinning/thickening, strain hardering/softenning). The general framework of 
treatment and interpretation of the LAOS data has been developed by Wilhelm [22] and 
Ewoldt et al. [23]. 

A number of works has been devoted to the LAOS response of conventional ER fluids and 
MR fluids, both composed of spherical particles [24-32]. The electrorheological and 
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magnetorheological effects are essentially similar in nature, so both ER and MR fluids show 
similar behavior in oscillatory shear. In most of the works, the first harmonic (or fundamental) 
shear moduli were used as the principle measure of the viscoelastic response of these fluids. 
In experiments, both storage and loss moduli have been found to increase with the magnetic 
(or electric) field strength because of the field-induced aggregation of the MR (or ER) fluids. 
At small strains, the aggregates spanned the gap between rheometer plates and the MR and 
ER fluids showed an elastic behavior with the storage modulus substantially larger than the 
loss modulus. Nevertheless, the loss modulus was non negligible and even a few orders of 
magnitude larger than the one of the dispersing liquid of the suspension. Such viscous 
response of the suspensions was interpreted in the two following ways. First, McLeish et al. 
[33] supposed a co-existence in the ER fluid of the gap-spanning particle chains with the free 
chains attached to the wall by one of the ends. The gap-spanning chains were supposed to 
move affinely with the suspending liquid and contributed to the suspension storage modulus, 
while the free chains moved out of phase with the rheometer walls and bended under the 
hydrodynamic forces exerted by the suspending liquid. Thus, a small fraction of the free 
chains contributed to the suspension loss modulus. Moreover, different chain bending modes 
gave an infinite series of relaxation times. To fit their theory to experimental data on the loss 
modulus, the authors adjusted the volume fraction of the free chains. On the other hand, 
Klingenberg [34] has carried out particle level simulations and shown that the non negligible 
viscous response of the ER fluids could arise from non-affine motion of the particles inside 
the gap-spanning aggregates even at strains as small as 10-4. 

With increasing strain amplitude, the storage modulus experiences a slow decrease until some 
critical strain followed by an abrupt decrease above this strain. The loss modulus also 
decreases with the strain but in a less extent, so that, at large strains, both moduli are usually 
of the same order of magnitude signifying the transition from solid to liquid like behavior 
[35]. Parthasarathy and Klingenberg [26, 27] explained the smooth initial decrease of the 
storage modulus by a short-scale rearrangement of particles in aggregates and they interpreted 
the further abrupt drop of the modulus by the large-scale structure rearrangement and by 
rupture and reformation of gap-spanning structures.   

In most cases, the frequency dependence of the shear moduli of ER and MR fluids followed a 
Maxwell-like behavior with the storage modulus increasing monotonically and attaining a 
high frequency plateau and the loss modulus having a maximum at intermediate frequency. 
Such dependence supports, at least qualitatively, both Mc Leish’s “free chain hypothesis” [33] 
and Parthasarathy and Klingenberg’s [27] observations of small and large scale cluster 
rearrangements.  

A deeper understanding of the nonlinear viscoelastic response of the ER and MR fluid could 
be achieved by analyzing the stress-strain hysteresis loops, called Lissajous plots. When 
increasing the amplitude of the applied strain, the suspension stress response becomes non-
linear and the Lissajous plots change their shape from the ellipsoidal shape at low strains to 
the parallelogram-like one at high strains [24]. Martin and Odinek [25] have attributed this 
particular shape of the Lissajous plots to rapid fragmentation and aggregation of particle 
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chains in oscillatory shear. They have proposed a phenomenological equation describing 
kinetics of chain aggregation/fragmentation and developed a theoretical model, which 
reproduced the experimental hysteresis loops reasonably well with a single fit parameter. 
Parthasarathy and Klingenberg [27] have also well reproduced the parallelogram-like 
hysteresis loops in their simulations and explained them in terms of plastic Bingham-like 
behavior. Namely, as the direction of shear is reversed, the stress varies rapidly until the 
structure yields, and the stress becomes independent of strain.  

Tracking back to the ER and MR fluids composed of elongated particles, only the paper of 
Tsuda et al. [15] reports on the nonlinear viscoelastic response of such fluids – the ER 
whisker suspension. In their paper, the authors measured the complex shear modulus as 
function of the applied stress and have found a similar abrupt decrease of the modulus with 
increasing stress as in the case of suspensions of spherical particles. However, the solid-to-
liquid transition in whisker suspensions (corresponding to the drop of the modulus) occurred 
at higher critical stresses. This was explained by the formation of branched intricate structures 
in whisker suspensions that were mechanically stiffer than the column structures in 
suspensions of spheres. No results have been presented on the stress and strain waveforms. 
Theoretical models have neither been reported to describe the LAOS response of the ER or 
MR suspensions of elongated particles. It is worth to mention the dipole interaction models of 
Kanu and Shaw [17] and de Vicente et al. [9] that predicted the elastic modulus of, 
respectively, ER and MR suspensions of needle-like particles in the linear viscoelastic regime 
at small applied stresses or strains. 

In this paper we have carried out a detailed investigation of the large amplitude oscillatory 
shear flow of the magnetic fiber suspensions in the presence of an external magnetic field. In 
experiments, we apply a sinusoidal shear stress and measure the output strain waveform. We 
examine effects of the magnetic field strength, stress amplitude and excitation frequency on 
the strain signal as well as on the shear moduli of the fiber suspension. Particular attention is 
focused on the stress dependence of the loss modulus which, to our opinion, has never been 
clearly explained even for conventional suspensions of spherical particles. Finally, we 
develop a microstructural model that allows describing, at least semi-quantitatively, all 
observed rheological behaviors in the non-linear viscoelastic regime. In particular, to explain 
relatively high values of the loss modulus, we assume a specific structure of the fiber 
suspension, composed of both percolating aggregates and the free branches attached by one 
extremity to either the walls of a flow cell or to the percolating aggregates. These free 
branches move out of phase with the suspending liquid and therefore contribute to the loss 
modulus. Having some similarities with McLeish’s string model [33], the one reported in the 
present paper seems to be more realistic and more appropriate to numerous branched 
structures that exist in fiber suspensions. 

This paper is organized as follows. In the next Section 2, we present experimental tools and 
methods used in this study. In the Section 3, we develop a theoretical model allowing us to 
predict the shear moduli and the output strain waveforms in the regime of the applied 
sinusoidal stress. Both experimental and theoretical results are reported and compared in the 
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4th Section. In the last Section 5, the main conclusions are outlined and some perspectives are 
proposed for the further investigations. 

2. Experimental 

The magnetic fiber suspension used in our study was composed of rod-like cobalt particles 
dispersed in the silicon oil (Rhodorsil ®; VWR International, dynamic viscosity at 25°C is 
0.485 Pa·s) at the volume fraction Φ=5% and stabilized by an appropriate amount of 
aluminum stearate (Sigma-Aldrich). The cobalt particles were synthesized via a polyol 
method described in [7] and were 37±3 µm in length and 4.9±1.0 µm in diameter. The 
magnetization curve of these particles followed the Fröhlich-Kennely law [36] with the 
saturation magnetization MS=1366±8 kA/m [7] and the initial magnetic susceptibility χi≈70. 
The dispersion of the particles in the silicon oil was performed according to the procedure 
described in [7, 8]. 

The oscillatory shear tests were carried out using the controlled-stress rheometer Thermo 
Haake RS150 equipped with the software allowing recording of the stress and strain 
waveforms. The titanium plate-plate geometry was used with the disk diameter of 35 mm and 
the gap between plates equal to 0.2 mm. A homogeneous magnetic field perpendicular to the 
rheometer plates was created by a solenoid placed around the measuring geometry.  

The experimental protocol was as follows. At the beginning of each measurement, the 
suspension was presheared at 50 s-1 during 1 min. Then, the magnetic field was applied and 
the suspension was kept at rest during 1 min. After that, we proceeded to either stress sweep 
or frequency sweep measurement. In both measurements, a sinusoidal stress of a fixed 
amplitude and frequency was applied to the suspension during the time necessary to produce 
20 periods of oscillations. The strain waveforms were recorded during the last 5 periods. 
Then, one of the parameters (stress amplitude or excitation frequency) increased in a step 
manner, the other parameter kept fixed, and the corresponding waveforms were recorded. In 

this manner, we realized the stress ramp from σ0=0.4Pa to 400 Pa at the frequency f=1 Hz and 

the frequency ramp from f=0.05Hz to 50Hz at two stress amplitudes, σ0=30Pa and 244Pa. The 
stress sweep was done for six values of the applied external magnetic field: 0, 6.1, 12.2, 18.3, 
20.4 and 30.6 kA/m, while the frequency sweep was done for the strongest magnetic field, 
H0=30.6 kA/m. We estimated inertia torques generated by the rheometer at high-frequency 
limit and excluded those experimental points, for which the ratio of inertia torque to the 
applied (viscoelastic) torque was larger than 25%. For each test, the experimental waveforms 
and Lissajous stress-strain loops were plotted and analyzed. In addition to it, the first 
harmonic storage and loss moduli were plotted as function of either applied stress or 
excitation frequency. 

3. Theory 

In this section, we develop a microstructural model of the magnetic fiber suspension under 
oscillatory shear allowing us to relate the structure parameters (aggregates’ orientation and 
size) to the macroscopic rheological properties of the suspension. Consider a fiber suspension 
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sandwiched between two parallel plates and subject to an external magnetic field, H0, 
perpendicular to the plates, as shown in Fig.1a. The lower plate is at rest and the upper one 
performs a reciprocal motion with the velocity v, and involves the suspension into oscillatory 
flow with a presumably linear velocity profile, ( ) ( )v t t zγ= ɺ , where ( )tγɺ  is the time-dependent 

shear rate. Oscillatory motion of the suspension is induced by an applied sinusoidal stress 

0( ) cost tσ σ ω= , where ω=2πf is the angular frequency of oscillations, f is the excitation 

frequency, σ0 is the stress amplitude.  

 

Fig.1. Microstructure of the magnetic fiber suspension: (a) – realistic representation of the suspension structure 
with percolating and pivoting aggregates and free branches of aggregates, all of them composed of non perfectly 
aligned fibers; (b) - the optical microscopy picture of the structure of quiescent fiber suspension subject to a 
magnetic field, H0=25 kA/m [8]. In figures (c) – (g) the schematic representation of different microstructures 
evolving with increasing oscillation amplitude is shown: (c) – coexisting percolating aggregates and pivoting 
chains; (d) – pivoting chains; (e) – free chains detached from the walls; (f) – free chains ruptured by the tensile 
hydrodynamic force; (g) –single non-aggregated fibers at high stresses applied. In figure (h), a sketch for the 
calculation of the hydrodynamic torque on a pivoting chain is presented; in the coordinate frame of the chain, the 
solvent velocity profile is decomposed into a constant velocity profile at the chain center C (bold arrows) and a 
linear velocity profile (thin arrows). 

The following assumptions and considerations are used in our model: 

1. According to optical observations of the quiescent magnetic fiber suspensions performed in 
our previous work [8], in the presence of the magnetic field, the fibers are attracted to each 
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other and form a non-regular intricate network, as shown in Fig.1b. In such network, one can 
distinguish percolating aggregates extending between two extremities of the cell and free 
branches of different sizes, attached by one end to the percolating aggregates and having 
another end free. We suppose the existence of these types of aggregates in oscillatory shear 
flow, at least at small-to-moderate amplitudes. In particular, the suspension consists of a 
number of percolating aggregates, some non-percolating aggregates attached by one of the 
ends to the upper or the lower plate and some free branches attached by one of the ends to 
percolating aggregates, as depicted schematically in Fig. 1a. The motion of percolating 
aggregates is affine so that they contribute only to the elastic response of the suspension. The 
motion of the free branches and non-percolating aggregates could be out of phase with the 
motion of the suspending liquid, so both viscous and elastic contributions are expected and 
the relative importance of each contribution will depend on the ratio of hydrodynamic to 
magnetic forces exerted on the aggregates. The behavior of the non-percolating aggregates 
and free branches is essentially similar in nature and described by the same equation of 
motion, so, we shall no more distinguish these two types of aggregates and call them pivoting 
aggregates, keeping in mind that the oscillations of the free branches could be restricted to 
lower amplitudes because of eventual collisions with percolating aggregates. 

2. The percolating aggregates are supposed to be thin chains of fibers stacked together both by 
their extremities and their lateral surfaces. In such configuration, the fibers can easily slide on 
each other, therefore, the percolating aggregates are easily extensible under strain. The 
pivoting aggregates are supposed to be straight and rigid single chains of fibers. The structure 
observation [Fig. 1b] reveals that these chains may have different length but it is not obvious 
to determine the chain length distribution for the non-equilibrium thermodynamic state of the 
magnetic suspension in the absence of Brownian motion. At this stage, we consider that all 
the pivoting chains have the same length, 2L, equal to the half of the gap, b, between plates. 
Therefore, the chain length-to-diameter ratio – referred to as aspect ratio – is equal to: 
p=b/(4a), with a being the fiber radius. This parameter is considered to be independent of the 
shear stress until a critical stress corresponding to the aggregate rupture by tensile 
hydrodynamic force. From the hydrodynamic point of view, the chains of fibers are 
assimilated to slender bodies and the Batchelor’s slender body theory is used to describe their 
motion and generated stresses [37, 38].  

3. To describe the quantities of particles and aggregates in the suspension, we introduce the 
volume fractions as follows: Φ is the volume fraction of particles in the suspension; φ is the 
relative volume fraction of the pivoting aggregates, i.e. the volume occupied by these 
aggregates divided by the total volume of all the aggregates; and (1–φ) is the relative volume 

fraction of percolating aggregates. φ is a free parameter of our model and could vary, in 

principle, between 0 and 1. We assume that the relative volume fraction, φ of pivoting 

aggregates does not depend on the applied stress until some critical stress, σ1, at which these 
aggregates become unstable and break (cf. Assumption #4). At higher stresses, only pivoting 

aggregates exist and φ=1. In other words, 1

1

adjustable parameter,

1,

σ σ
φ

σ σ
≤

=  >
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4. The suspension micro-structure is supposed to change with the increasing applied stress or 
strain, so, the five following sub-structures are expected. (I) At low-to-intermediate stresses, 
percolating clusters coexist with pivoting ones as explained above (Fig. 1c). (II) At some 
critical stress σ1, the percolating aggregates become unstable, break in their middle point and 
are transformed into pivoting aggregates of the length corresponding approximately to the 
half of the gap between walls: 2L≈b/2 (Fig.1d). This instability has been discovered in our 
simulations and is reported in the next Section 3. Since the radius of thin percolating 
aggregates is of the order of the fiber radius, a, the secondary pivoting chains (formed due to 
the breakage of the percolating aggregates) will have the aspect ratio, approximately equal to: 
p≈b/(4a), which is the same as the aspect ratio of the primary pivoting chains that existed 
before the breakage of the percolating chains. Thus, all the pivoting chains in this second 
aggregation regime are supposed to have approximately same size and aspect ratio, p≈b/(4a). 
(III) Oscillating chains are subject to tensile hydrodynamic forces exerted along their axis. 
These forces tend to detach them from the walls. The particles situated on the chain extremity 
attached to the wall are supposed to be trapped in the wall rugosities. So, the chain 
detachment is expected to be accompanied by the rupture of the bonds between the trapped 
particles and the neighboring particles. Thus, the chains detach from the wall and become 
totally free when the hydrodynamic force becomes larger than the cohesive magnetic force 
between particles (Fig.1e). The onset of the regime of free chains occurs at the second critical 

stress σ2 and is governed by the balance between these forces. (IV) Further increase of the 
stress, provokes an increase in hydrodynamic tensile forces, which destabilize the free chains 

and provoke their rupture in their middle part (Fig.1f). So, beyond the third critical stress, σ3, 
the chain length is no more fixed but decreases progressively with increasing stress (or strain). 
We find that, at the same shear rate, the hydrodynamic force required to detach a chain from 
the wall is about four times the force required to destroy a free chain. Therefore, the 3rd 
regime of unruptured free chains is expected to extend over a broad range of applied stresses, 
σ2<σ<σ3. (V) At high enough stresses, all the chains are completely destroyed and the 
suspension behaves as the one composed of isolated magnetic fibers (Fig.1g). The critical 

stress σ4 corresponding to the onset of this regime is defined as the stress, at which the chain 
aspect ratio approaches to the one of a single fiber, namely, p=7.6. 

5. In our model, we suppose that the percolating and pivoting aggregates do not slip on the 
walls. First, the magnetic field lines are concentrated in the rugosities of non-magnetic walls. 
This causes a strong adhesion of the aggregates to the walls, as pointed out by Laun et al. 
[39]. Second, the percolating aggregates are subject to tensile magnetic stresses, so the 
aggregates exert strong normal forces on rheometer walls [40]. Since the solid friction forces 
between the aggregate ends and the walls are directly proportional to the normal forces, we 
expect a strong wall friction, which could further enhance the adhesion between the 
aggregates and the walls. 

6. Whatever the aggregation regime is, all the aggregates are supposed to oscillate in the shear 
xz-plane. The percolating aggregates in the first regime are always in phase with the strain, 

γ(t), and their orientation angle is defined as: tan ( )tγΘ =  [Fig.1c]. The pivoting and free 



9 

 

chains are subject to the magnetic and hydrodynamic torques and make an angle θ(t) with the 

field direction, different from the angle Θ [Fig.1c]. 

7. The magnetic interactions between aggregates are taken into account by means of the mean 
field Maxwell-Garnett theory [41]. On the other hand, we neglect collisions and 
hydrodynamic interactions between aggregates in our fiber suspension of 5% volume fraction 
for the reasons discussed in [12]. Nevertheless, the validity of this hypothesis will be revisited 
in the following section. Under the present assumptions, the balance of the hydrodynamic and 
magnetic torques acting on the non-percolated and free aggregates reads:  

23
2 2 2

0 0

(1 )8
( cos ) (2 )sin cos

3ln(2 ) 2 (1 )
f

f

L f
H a L

p

χπ η γ θ θ µ π θ θ
χ

⊥ − Φ
− = ⋅

+ − Φ
ɺɺ   (1) 

The demonstration of the expression for the hydrodynamic torque (left-hand side of the Eq. 

(1)) together with the numerical factor f ⊥  is presented in Appendix, while the expression for 

the magnetic torque (right-hand side of the Eq. (1)) is given elsewhere [12]. The equation of 
motion of the non-percolated and free aggregates follows directly from Eq.(1): 

2 1
cos sin cos

( )
θ γ θ θ θ

τ θ
= −ɺ ɺ ,    (2) 

and can be rewritten in the alternative form, as follows: 

     
d tan tan

d ( )t

θ θ γ
τ θ

+ = ɺ ,     (3) 

where τ(θ) is the relaxation time, corresponding to a characteristic time required for the 
reorientation of the aggregate along the field direction in a quiescent fluid, and defined by the 
following equation: 

   
22

0
2 2

0 0

2 (1 ) ( )4
( )

(1 ) 3ln(2 )
f

f

p f

p H

χ η µ θτ θ
χ µ

⊥+ − Φ
= ⋅ ⋅

− Φ
    (4) 

In these equations, η0 is the dynamic viscosity of the suspending liquid, µ0=4π·10-7 H/m is the 

magnetic permeability of vacuum, χf is the magnetic susceptibility of fibers, H is the intensity 
of the magnetic field inside the fiber suspension sandwiched between two plates. Because of 
the demagnetizing effect, this field is smaller by the factor µ than the external magnetic field, 

H0, namely, H=H0/µ, where µ is the relative magnetic permeability of the fiber suspension. 
The latter is the function of the aggregates’ orientations and is defined using the Maxwell-
Garnet theory. In the general case, covering all aggregation regimes, the expression for the 

magnetic permeability µ(θ) reads: 

 
2

2 2
2 2 2 2

1
( ) cos sin (1 )

(1 ) (1 )

γµ θ φ µ θ µ θ φ µ µ
γ γ⊥ ⊥

 
 = + + − +   + + 
� �

,  (5) 
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where 1 fµ χ= + Φ
�

 and 2 (1 ) / 2 (1 )f fµ χ χ⊥    = + + Φ + − Φ     are the components of the 

suspension magnetic permeability along the major and minor axes of aggregates, the factors 
2 21/(1 )γ+  and 2 2 2/(1 )γ γ+  correspond to cos2Θ and sin2Θ, respectively, with Θ - the 

orientation angle of percolating aggregates (Fig. 1c). The first term of this equation stands for 
the contribution of the pivoting and free chains to the magnetic permeability and the second 
term – to the contribution of the percolating aggregates. In the four last aggregation regimes, 
percolating aggregates no more exist, so, the second term of Eq. (5) disappears and φ is taken 
to be 1 in the first term. Note that, since the magnetic permeability depends on the chain 
orientation angle θ, the relaxation time τ also depends on it, and, so, does not remain constant 

over the oscillation period. We can consider τ to be constant in the case of small amplitude 
oscillations.  

The hydrodynamic torque acting on pivoting chains appears to be roughly four times the 
torque acting on free chains of the same size and at the same shear rate. Therefore the 
relaxation time is about four times larger for pivoting chains as compared to free chains. The 

time τ is defined by the same Eq. (4) for both chains but the numerical factor f ⊥  is different, 

as pointed out in Appendix.   

In three first aggregation regimes (Figs.1c-e), the aspect ratio of the pivoting and free un-
ruptured chains is fixed and equal to: p=b/(4a). In the regime of the free ruptured chains 
(Fig.1d), their aspect ratio is governed by the balance of hydrodynamic tensile and magnetic 
forces, the expressions for these forces read: 

    
2

2
0 sin cos

ln(2 )h

L f
F

p

π η γ θ θ=
�

ɺ ,     (6) 

    2 2
02 cosm SF M Haπµ θ=      (7) 

where MS is the saturation magnetization of magnetic fibers, 2 (1 0.5 ) /(1 1.5 )f ε ε= + −� . The 

magnetic force [Eq.(7)], consolidating the chains is the attractive force acting between two 
contacting fibers. This force was calculated using the Ginder’s approach considering 
saturation effects in touching magnetic particles [42], as specified in details in [12]. In our 
model we consider that over a given oscillation period the free chain keeps the same length. 
Both the magnetic and hydrodynamic forces vary during the period of the chain oscillation. 
The chains are considered to be stable when the hydrodynamic tensile force is smaller than 

the magnetic force. But if, at a certain orientation angle, θ, the hydrodynamic force becomes 
larger than the magnetic one, the chains are supposed to break into two parts. We suppose that 
the rupture occurs when the maximum ratio of both forces, over the period, is equal to unity, 

namely: max( / ) 1h mF F = . Thus, by means of the Eqs. (6), (7), the expression for the aspect 

ratio of the ruptured free chains reads: 
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Here we have taken into account that the internal magnetic field is H=H0/µ.  

Note that the same force balance [Eqs. (6)-(8)] holds for determining the critical stress σ2 
corresponding to transition between the regimes of pivoting and free chains (the stress, at 
which the pivoting chains are ruptured from the walls). In this case, we have only to replace in 

Eqs. (6), (8) the numerical factor 2f
�  by appropriate value 2 4(1 0.307 ) /(1 0.5 )f ε ε= + −�  and 

take the aspect ratio fixed and equal to p=b/(4a). The critical stress σ2 intervenes implicitly 
into the Eq. (8) through the product, tanµγ θɺ , which is found by solving simultaneously Eqs. 

(3), (9).  

In the most general case, the shear stress developed in our fiber suspension has a contribution 
from the suspending liquid, σs, a contribution from percolating aggregates, σp, and a 

contribution from pivoting or free ones, σf-p, the two last weighed by the appropriate volume 

fraction, (1-φ) and φ, respectively, such that the total stress is 
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where the factor 2 2/(1 )γ γ+  corresponds to 3sin cosΘ Θ  for percolating aggregates and 

1 (1 0.64 ) /(1 1.5 )f ε ε= + −� , 1/ ln(2 )pε = . In the Eq. (9), the contribution from pivoting or free 

chains, σf-p, has both hydrodynamic and magnetic terms, while the contribution from the 

percolating aggregates, σp, has only magnetic term arisen from the restoring magnetic torque. 

The hydrodynamic term is absent in σp because the percolating aggregates move affinelly 
with the suspending liquid. In particular, these aggregates are supposed to be very thin (aspect 
ratio about 40), so at any point on the aggregate surface, there is no velocity difference 
between the solid and liquid phases. McLeish et al. [33] have also neglected the viscous 
dissipation coming from percolating chains and obtained a reasonable correspondence with 
experiments for the frequency dependence of the storage modulus. The last term of the Eq. (9) 
appears only in the first aggregation regime. In the last four regimes, the percolating 

aggregates are absent, and φ=1. 

The Eqs. (3)-(5), (8), (9) for the regime of free ruptured chains or (3)-(5), (9) for other four 
regimes form a closed system, which is solved under the initial conditions, as follows: θ(0)=0 

and γ(0)=0. Both the strain, γ(t) and the angle θ(t) are unknown functions, so, by change of 

variables, 
0

( ) (tan / )d
t

t tθ τΨ = ∫ , we reduce a pair of differential equations (3), (9) into a single 
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second order differential equation with respect to the function Ψ(t). Once this function is 

determined, the unknowns, θ(t) and γ(t) are found as: tanθ τ= Ψɺ  and γ τ= Ψ + Ψɺ . This trick 

is, however, used only for the first regime of coexisting percolating and pivoting aggregates. 

In the other four regimes, we solve the Eq.(9) directly for θ(t), after having replaced γɺ  by the 

left-hand side of the Eq.(3). 

At the next step, the output signal, γ(t), is expanded into Fourier series as follows [43]: 

{ }0 0 0( ) '( , )cos( ) "( , )sin( )n n
n

t J n t J n tγ σ σ ω ω σ ω ω= +∑ ,   (10) 

where Jn’, Jn” are the n-th harmonic real and imaginary part of the compliance, respectively. 
In our study, we use the fundamental shear moduli, G1’ and G1” as the principle characteristic 
of the fiber suspension viscoelasticity. These quantities are related to the compliance through 
the following expressions: 
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In the plate-plate geometry used in our experiments, the shear strain depends on the radial 
coordinate of the geometry, therefore, we must perform the Mooney correction for the stress 
amplitude, σ0, and for the shear moduli. The relation between the amplitude of the apparent 

stress, σa, measured by a rheometer, and the amplitude of the strain, γR, measured at the 
border of the rotating plate, takes the form [44]: 

    2
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4
d

R
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R

γ

σ σ γ γ
γ

= ∫       (12) 

In the present paper, we consider the stress controlled mode of the oscillatory shear. So, in 
order to perform the Mooney correction, first, we calculate the strain amplitude γ0 as function 

of the non-corrected stress σ0 with the help of the Eq. (10), then, we make a polynomial fit to 

σ0 versus γ0 dependence and finally we perform integration [Eq. (12)]. The shear moduli are 

calculated using the Eq. (11) and subsequently corrected by a multiplier σa/σ0. All results 
presented along this paper refer to the corrected quantities. 

We shall now analyze our theoretical and experimental results on the shear moduli of the 
suspension as well as on the output signal waveforms. 

4. Results and discussion 

4.1. Shear moduli 

Experimental dependencies of the shear moduli, G1’ and G1” on the stress amplitude, σ0, are 
shown in Figs.2a,b for the excitation frequency, f=1Hz and for six values of the external 
magnetic field, H0. In all cases, both moduli increase with the growth in the magnetic field 
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intensity and decrease with the stress amplitude. In particular, a short linear viscoelastic 

plateau at σ0≲1Pa is followed by a rapid decrease of the moduli until a second quasi-plateau, 

which is better distinguished for the loss modulus curves. After this second quasi-plateau, 
there is a second abrupt decrease of the moduli, at the end of which the storage modulus 
shows the third final plateau after some local minimum. 

 

Fig.2. Experimental stress dependencies of the storage (a) and loss (b) moduli at the excitation frequency of 1Hz 

The first viscoelastic plateau, which appears only for the magnetic fields H0≥12.2 kA/m, 
corresponds to the strain amplitudes, γ0, as low as 10-4 – 10-3. At such strains, the upper plate 
displacement during an oscillation cycle is as small as 20-200 nm, i.e. much smaller than the 
fiber’s minor dimension – diameter 2a=4.9µm. Thus, we cannot expect a homogenous 
deformation of the aggregates, but rather a rearrangement of fibers inside the aggregates 
accompanied by their microscopic displacement and/or by their elastic bending. The latter 
could explain high values of the storage modulus at small amplitudes (more than 10 kPa at the 
particle volume fraction of 5%). The large values of the loss modulus could come from the 
non-affinity of the fiber displacement on microscopic scale, as pointed out by Klingenberg 
[34]. The first decrease of the storage moduli followed by a second quasi-plateau probably 
corresponds to a gradual transition from microscopic-to-macroscopic scale deformation of the 
suspension structure. At the end of this transition, the percolating aggregates are expected to 
be strained uniformly at small but measurable angles. Actually, at the magnetic field intensity, 
H0=30.6 kA/m, the second quasi-plateau starts at γ0≈0.1 corresponding to the upper plate 

displacement of 20µm, which is at least, five times the fiber diameter. This second quasi-
plateau is attributed to the second quasi-linear viscoelastic regime governed only by 
macroscopic deformations of the structure. Starting from this quasi-plateau, we can safely 
apply our theory. For the better comparison with experiments, we plot both experimental and 
theoretical dependencies G1’(σ0), G1”(σ0) in Fig.3 for the magnetic field intensity 

H0=30.6kA/m and consider the stress range σ0>30 Pa corresponding to the beginning of the 
second quasi-plateau. 
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Fig.3. Comparison theory-experiments for the stress-dependence of the shear moduli at the magnetic field 

intensity, H0=30.6 kA/m and frequency f=1Hz. The fit parameter of the model is chosen to be φ=0.7. Solid lines 
correspond to calculations and points – to experimental results. 

The best correspondence between theory and experiments is achieved for the values of the 
fitting parameter equal to φ=0.7. This parameter is kept the same throughout all our 

simulations. Nevertheless, in the broad range of φ (0.5<φ<1), the calculated shear moduli 
differed not more than two times from the values reported in Fig.3. 

After a second viscoelastic quasi-plateau (which extends from σ0≈40 Pa to σ0≈100 Pa), a 
more gradual decrease in shear moduli is caused first by an abrupt increase in oscillation 
amplitude of the aggregates and, second, by their rupture starting from the critical stress equal 
to 430Pa in our theory. The storage modulus is subject to a more drastic decrease than the loss 
modulus. The crossover of both moduli occurs at σ0≈100 Pa and is well captured by our 
model. In our calculations, we did not reproduce the small local minimum of the storage 
modulus at σ0≈350 Pa [Fig.3]. A small increase of the storage modulus after this local 
minimum could occur because of the short-range hydrodynamic interactions and collisions 
between aggregates, which would restrict the aggregate motion to smaller amplitudes. Note 
that, apart from this local minimum, both experimental and theoretical curves G1’(σ0), 

G1”(σ0) are relatively smooth in the whole range of the applied stresses, thus, the transitions 
between the five aggregation regimes are not clearly distinguishable in these curves. 

However, the transition between the regime of coexisting percolating and pivoting aggregates 
[Fig.1c] to the regime of purely pivoting aggregates [Fig.1d] requires a special attention. At 
σ0>140 Pa, the solution for the strain γ(t) becomes strongly asymmetric relative to the 

equilibrium position, γ=0, which does not have any physical sense. The percolating clusters 
are considered to be unstable and they are supposed to break in the middle, remaining 
attached to one of the walls. So, they transform into pivoting aggregates, which, according to 
our calculations, are stable in the broad range of applied stress. Note that this instability is the 
one, which defines the static yield stress through its maximum versus applied strain [45]. 
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It is worth mentioning that, in the limit of small deformations, 1γ ≪ , 1θ ≪ , our model 

admits the following analytical solution for the shear moduli at the second viscoelastic 
plateau: 
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Here, the (G1’) f-p and (G1’) p terms in the expression for G1’stand for the elastic contributions 
of the pivoting/free and percolating aggregates, respectively. The loss modulus G1” has only a 
viscous contribution (G1”) f-p from pivoting/free chains (first two terms) and a solvent 

contribution, (G1”) s=η0ω. The term 02 ( / )aφ η ωΦ Φ  arises from the general expression for the 

viscous stress tensor of anisotropic particle suspensions [46, 47] and corresponds to the 
viscous dissipation due to eventual rotations of the chains around their major axis when they 
are slightly shifted from the shear plane. According to Eqs. (13), (14), the resultant response 
of the system of percolating and pivoting aggregates has features of the Maxwell-like and 
Kelvin-Voight behaviors. The former is provided by pivoting (or free) chains with the 

relaxation time τ, and the latter comes from percolating aggregates, which contribution to the 
storage modulus is frequency-independent. The resultant frequency behavior, predicted by 
Eqs. (13), (14) for the linear viscoelastic regime, is illustrated in Fig.4a. The low-frequency 
plateau of the storage modulus (solid curve) is due to the elastic response of the percolating 
aggregates. At growing frequencies, pivoting chains give a supplementary contribution to the 
storage modulus, which becomes frequency independent in the limit ( ) 1ωτ ≫  and provides 

the high-frequency plateau of G1’. The loss modulus increases linearly with ω in the low-
frequency limit. At high frequencies, pivoting chains contribute to a decrease of the loss 

modulus ( 1
1( ") ( )f pG ωτ −

− ∼ ), but the solvent contribution remains always increasing. So, the 

theoretical N-shape of the frequency dependence of the loss modulus is explained by a 
competition between both contributions, such that, in the limit ( ) 1ωτ ≫ , the aggregate 

contribution is shadowed by the solvent one and loss modulus again increases linearly with 

the frequency. The experimental data, obtained for a relatively low stress, σ0=30Pa, are not in 
a good correspondence with our model. A possible reason for such discrepancy is that, at this 
stress, a microscopic-scale rearrangement of fibers inside the aggregates is still important. 
However, both in experiments and in theory, we find a high-frequency plateau of the storage 
modulus and do not observe an important decrease of the loss modulus, as reported by 
McLeish et al. [33]. Perhaps, this is because in their study, the authors did not achieve the 
frequencies high enough to produce significant viscous response of the solvent. Since our 
theory is more relevant for large oscillation amplitudes, let us inspect now the frequency 

dependence of the shear moduli at large stress, σ0=244 Pa [Fig.4b]. 



16 

 

 

Fig.4. Frequency dependence of the shear moduli in the linear (a) and nonlinear (b) viscoelastic regimes. The 

stress amplitude is σ0=30 Pa in the first case (a) and 244 Pa in the second case (b). In both cases, the magnetic 
field intensity is H0=30.6 kA/m. 

We see that our theory (curves denoted by “a” in Fig. 4b) predicts a similar behavior as the 
one observed in experiments, however, the quantitative agreement is worse than for the stress 

dependence of the shear moduli. According to calculations, at the given stress, σ0=244 Pa, the 
suspension develops the second aggregation regime – regime of pivoting chains, within the 
whole frequency range considered (0.05Hz<f<50Hz). Since the percolating aggregates are 
absent, we do not observe a low-frequency plateau of the storage modulus [Fig.4b]. In theory, 

the latter increases as ω2 at low frequencies and approaches a plateau at f>10Hz. Such 
behavior of the storage modulus is relevant for the Maxwell viscoelastic response, as 
discussed above. In experiments, G1’ shows a weaker dependence at low frequencies 

( 1.34
1 'G ω∝ ) and the final plateau is shifted to lower frequency. The loss modulus also grows 

monotonically with the frequency (as ω1 in theory and ω0.73 in experiments) and does not 
show any local minimum as the one predicted for linear viscoelastic regime. Apart from a 
solvent contribution, a supplementary hydrodynamic contribution from aggregates appears at 
high stresses. Thus, the maximum of the G1”( f) curve might be suppressed by these 
hydrodynamic terms, both increasing with the frequency. Note finally that the loss modulus 
appears to be larger than the storage modulus within the whole frequency domain, that stands 
for the liquid-like behavior of the fiber suspension at the given stress amplitude and the given 
magnetic field. 

4.2. Supplementary characteristics of non-linear viscoelasticity 

Another important characteristic of the LAOS response of the fiber suspension is the 
dependency of the stress amplitude on the strain amplitude, shown in Fig.5 for the magnetic 
field intensity H0=30.6 kA/m and the frequency f=1Hz. This dependency shows clearly a 
strain softening behavior of the fiber suspension with the progressive decrease in the slope. At 
increasing stress, the oscillation amplitude increases, and the suspension structure becomes 
less rigid. First, the aggregates detach from the wall, then they are ruptured by the tensile 
force exerted by the ambient liquid. This should explain the strain softening observed. In the 
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present case of the controlled stress (solid line and points in Fig.5), the σ0(γ0)-curve shows a 

power-law dependence at the strain amplitudes γ0<3 and becomes quasi-linear at γ0>5. We 
observe a fairly good correspondence between theory and experiments at the applied stress up 
to 300 Pa. Above this value, our theory (solid curve) underestimates the strain amplitude and 
predicts a stronger elastic response. Such discrepancy could come from the overestimation of 
the length of chains subject to tensile hydrodynamic force. 

 

Fig.5. Stress amplitude, σ0, versus strain amplitude, γ0. Line stands for the theory, points – for experiments. The 
magnetic field intensity is H0=30.6 KA/m and the excitation frequency is f=1Hz. 

Useful information on the non-linear viscoelastic response can be provided by the waveforms 
and Fourier analysis of the output strain. In Fig.6, we present a set of the plots, including 
strain waveforms, Lissajous plots and harmonic analysis of the strain waveforms, for the 
frequency f=1Hz, magnetic field intensity H0=30.6 kA/m and for the three values of the 

applied stress amplitude, σ0=127, 244 and 342 Pa. These values correspond to three first 
aggregation regimes: regime of co-existing percolating and pivoting aggregates (Fig.1c), 
regime of pivoting chains (Fig.1d) and regime of free non-ruptured chains (Fig.1e).  
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Fig.6. From top-to-bottom: strain waveforms (solid line – experiments, dash line – theory); Lissajous plots (solid 
line – experiments, dash line – theory); Fourier analysis of the strain waveforms. All the data are collected for 
the excitation frequency f=1Hz, the magnetic field intensity H0=30.6 kA/m and for the three values of the 

amplitude σ0 of the applied stress: 127 Pa (left column), 244 Pa (middle column) and 342 Pa (right column). 

The strain waveforms show an important phase-shift with respect to the applied stress [first 
row in Fig. 6]. This phase-shift increases with increasing stress, signifying a progressive 
transition from solid-to-liquid-like behavior, which is consistent with the stress dependence of 
the shear moduli [Figs.2, 3]. The measured waveforms (solid lines) are non-sinusoidal that 
correspond to the nonlinear viscoelastic response of our suspension, and our theory (dashed 
lines) reproduces these waveforms reasonably well. Note that analysis of the output 
waveforms can only be reliable at a low noise level or at a high signal-to-noise ratio. For the 
three values of the applied stress shown in Fig.6, the signal-to-noise ratio is estimated as the 
square of the signal amplitude –to noise amplitude ratio and is found to be about 104, or 40 dB 
in decibel units. 

The viscoelastic non-linearity can also be visualized in Lissajous plots, σ(t) versus γ(t) 
[second row of the Fig.6]. We should keep in mind that this analysis can only be efficient at 

moderate-to-high levels of non-linearity. At the stress amplitude, σ0=127 Pa, a near-oval 
shape of the Lissajous plot is observed both in experiments (solid curve) and in theory 
(dashed curve). This shape indicates that, at the considered stress, we are still not far from the 

linear viscoelastic regime. The viscoelastic state at σ0=127 Pa belongs to the end part of the 
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viscoelastic quasi-plateau [Fig.3]. At higher stress, the Lissajous plots become more 

compressed, their shape tends to a rounded-end rectangular one at σ0=342 Pa. Such a shape 
could suggest a viscoplastic behavior of the suspension: at growing strains, the stress remains 
nearly constant until the structure yields and the stress is rapidly released when the strain 
direction is reversed. A similar explanation has been given by Parthasarathy and Klingenberg 
[27] for the LAOS response of ER fluids, however, the shape of their Lissajous plots were 
much noisier than the one reported in Fig.6. Note finally, that we obtain a reasonable 
correspondence between measured (solid lines) and calculated (dashed lines) Lissajous plots, 
even though our theory underestimates the strain amplitude at high stresses (244 and 342Pa). 

The non-linearity of the viscoelastic response can be better quantified by the amplitude of the 
higher harmonics of the strain signal. We have applied Fourier transform to both theoretical 

and measured γ(t)-signal following the Eq. (10) and reported the amplitude of each harmonic 
normalized by the first harmonic amplitude in Fig.6 (bottom row of figures). The normalized 
amplitudes of the higher harmonics were calculated using the following formula: 

1/ 2 1/ 22 2 2 2
1 1( ') ( ") / ( ') ( ")n n nA J J J J   = + +    . First, we see that the even harmonics are 

generally much less important than the odd harmonics and they are attributed to a noise in the 
processed signals. The smallness of even harmonics supports the fact that the viscoelastic 
response of the suspension must be symmetric with respect to shear strain and shear rate 
directions [48].This can also suggest the absence of the wall slip in the system, which 
confirms the assumption #5 of the Section 3. Second, the relative amplitude of the harmonics 
is generally a decreasing function of the harmonic number such that the 9th and higher 
harmonics become indiscernible from noise. 

A more detailed analysis of the viscoelastic non-linearity can be obtained by plotting the 
stress-dependence of amplitudes of the second and the third harmonics of the output strain 

(Fig.7). We plotted this graph for the stress amplitudes σ0>50 Pa, at which the ratio of the 3rd 
harmonic amplitude to noise amplitude is higher than 10. For the given stress range, the 
experimental amplitude A3 of the 3rd harmonic increases monotonically with the stress. This 
suggests an increase of the viscoelastic non-linearity with the growth in the excitation 
amplitude. In theory, the relative amplitude of the 3rd harmonic is non-monotonic function of 
the stress amplitude. However, within each aggregation regime, the theoretical value of A3 
remains a growing function of the applied stress but the transition to a next aggregation 
regime is accompanied with a jumped decrease in A3. Note that both theoretical and 
experimental values of the relative amplitude of the 3rd harmonic does not exceed 12%, so the 
eventual jumps in A3 do not lead to visible jumps of the stress-strain dependence (Fig. 5). The 
theoretical results on A3 agree with experimental ones only for the aggregation regimes of free 
non-ruptured and free ruptured chains (σ>230 Pa). At lower stresses the theory fails to 
reproduce correctly the values of A3. Such discrepancy at low to moderate stress does not 
contradict to a good agreement between theoretical and experimental waveforms. The later 
agreement comes from the fact that the theory predicts the fundamental harmonic reasonably 
well. So, the discrepancy in higher harmonics (which are less important) does not influence a 
lot a good correspondence between the output waveforms. Finally, we see in Fig. 7 that the 
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relative amplitude of the experimental 2nd harmonic A2 does not exceed the noise level in the 
whole range of the stresses, which is in agreement with our theory. 

 

Fig.7. Stress-dependence of the relative amplitudes of the 2nd and the 3rd harmonics of the output strain signal  

 

4.3. Discussion in view of existing models 

As already mentioned, our theory bears some features of McLeish’s string model of ER fluids 
[33]. Recall that in their model, the coexistence of percolated single chains with non-
percolated flexible chains has been supposed. First, the percolating chains were deformed 
affinelly and extended by the shear along their axis, such that the particles lost mechanical 
contacts between them and the spacing between particles increased with increasing strain. We 
consider this assumption to be unrealistic because, once stacked together, the particles will not 
separate until the chain is broken by an external (hydrodynamic) force. It is more likely that 
the particles form column structures that can be easily extended without loss of interparticle 
contacts. Second, in McLeish’s model, pivoting chains were supposed to be flexible and 
develop an infinite series of bending modes, each associated with appropriate relaxation time. 
In fiber suspension, the fibers composing the pivoting and free chains are likely stacked 
together by their lateral surfaces. So, these chains are supposed to be stiffer and less compliant 
to the bending compared to single chains of spherical particles. Therefore, we assumed our 
aggregates to be rigid, such that the suspension response was described by a single relaxation 
time. Surprisingly, at large amplitudes, our simple model gave a reasonable correspondence 

with experiments. At last, McLeish et al. [33] supposed a minor fraction, φ, of the pivoting 
chains, of the order of a few percent relative to the total quantity of the solid phase. In our 
case of the magnetic fiber suspension, this fraction was adjusted to a much higher value, 
φ=70%, which allowed us to explain a high loss modulus observed in experiments. Such big 
quantity of pivoting chains seems to be too important. However, apart from these chains, 
bridging structures cross-linking two percolating aggregates can exist and contribute to the 
viscous response of the suspension. So, the factor φ would rather stand for the relative 
quantity of the aggregates admitting non-affine motion, including pivoting, free and bridging 
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aggregates. Optical microscopy observations [Fig. 1b] revealed a relatively large quantity of 
these structures in fiber suspensions, compared to suspensions of spherical particles. This 
could explain an enhanced viscous response of the fiber suspensions. Of course, the variety of 
the intricate structures observed in fiber suspensions could generate a large spectrum of 
relaxation times, not accounted in our theory. However, our single-relaxation time model is 
the first necessary step to the understanding of the nonlinear viscoelastic response of magnetic 
fiber suspensions. Note that at large oscillation amplitudes, the motion of pivoting and 
bridging aggregates can be restricted by the neighboring aggregates, so that they could 
progressively stick to each other and form thick clusters with a reduced mobility. This could 
cause irreversible changes of the suspension structure provided that the Brownian motion is 
absent. Nevertheless, our experiments with increasing and decreasing stress ramps did not 
reveal a significant hysteresis of the shear moduli. This indicates that the structure can be 
efficiently reformed by the shear flow, at least in the short time scale, or irreversible 
transformations might have occurred at longer times. Note finally that the chains of different 
length are expected to oscillate out-of-phase relative to each other. So, the hydrodynamic 
screening effects, not accounted in our theory, should be more significant than in the case of a 
steady shear flow, for which the chains are considered to be more or less parallel to each other 
[12]. A detailed investigation into these points will be conducted in future. 

Klingenberg and coworkers have published several papers on particle-level simulations of 
oscillatory shear flow of ER fluids [26, 27, 34]. Sim et al. [49] have extended these 
simulations to the 3D-case. The particle-particle and particle-wall hydrodynamic interactions 
were rigorously modeled, the electrostatic interactions were considered in the point-dipole 
limit and the hard-sphere repulsion was introduced to prevent particle overlap. At such 
conditions, both percolating and pivoting aggregates were observed. Therefore, the 
rheological behaviors obtained by simulations were essentially similar to the ones predicted 
by our theory. The exactness brought by particle-level simulation is its unconditional 
advantage over any semi-rigorous theory. However, both hard sphere repulsion hypothesis 
and point-dipole approximation could significantly affect the final results. First, the particles 
in aggregates are always in closed mechanical contact, such that attractive magnetic and 
repulsive contact forces between them can balance each other. From this point of view, it 
seems reasonable to consider the aggregates as a continuum (as supposed in our theory) rather 
than as an ensemble of separated particles, at least at large oscillation amplitudes when the 
microscopic rearrangements inside aggregates play a minor role. Second, the dipole 
approximation can underestimate the cohesive strength of aggregates and the critical stress 
corresponding to their rupture. In our work, we use the Ginder’s approach, which accounts 
more rigorously for magnetic interactions. Finally, it seems to be rather difficult to adapt the 
particle-level simulations to the elongated particle shape [19], and may be these simulations 
are not worth the effort, providing that the simple model gives satisfactory predictions of the 
suspension behavior. 

Another interesting approach explaining a high viscous response of ER fluids has been 
proposed by Martin and co-workers. First, they applied the droplet model to oscillatory shear 
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and predicted a ω1/3-dependence of the loss modulus, consistent with their experiments [50]. 
However, the loss modulus was predicted to be much larger than the storage modulus, even at 
high electric fields, which contradicted to experiments. Furthermore, the energy minimum 
principle employed in this model may only be applied for low shear states. To overcome this 
obstacle, Martin and Anderson [51], Martin and Odinek [25], Martin et al. [28] have 
developed a chain model of ER fluids. They did not suggest gap-spanning structures but 
rather single straight chains, which length was governed by the balance between magnetic and 
hydrodynamic forces. They also introduced a phenomenological equation describing a 
periodic process of chain aggregation and fragmentation. The authors focused on chain 
dynamics but did not explicitly present any rheological data. De Vicente et al. [32] have 
applied this model to suspensions of spherical magnetic particles and found the values of the 
loss modulus to be one order of magnitude lower than those of the storage modulus. We 
decided to adapt the Martin’s model to our case of the magnetic fiber suspension and compare 
it with our model. We consider free single chains of fibers and use a point-dipole 
approximation for the magnetic forces acting between fibers. We apply the same Eqs. (3), (9) 
for the motion of chains and for the stress, with φ=1 and Φa=1. The main difference between 
our model and Martin’s model is that, in the latter, the aggregates are not gap-spanning even 
at low shear states and, instead of being of fixed length during an oscillating cycle as in our 
model, their aspect ratio varies during the oscillation cycle according to the aggregation-
fragmentation equation, as follows: 
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1
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where pmax is the maximum aspect ratio defined by the balance of magnetic and 

hydrodynamic forces and 2
0 0/k Hµ η∝  is the aggregation rate constant determined to a 

multiplier k0: 
2

0 0 0/k k Hµ η= . Since in all above equations, the aspect ratio is associated to 

the factor 2 / ln(2 )p pΩ ≡ , it is more convenient to write the last equation in terms of this 

factor. Neglecting the variation of the logarithmic term, the Eq. (15) reads: 
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where l and a are the fiber semi-length and radius, respectively, b is the width of the 
rheometer gap. The maximum chain aspect ratio (or factor Ω) is given by the Eq. (17), which 
postulates that the chain length is either bounded by the equilibrium length corresponding to 
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the equality of the hydrodynamic and magnetic forces (upper expression) or by the width of 
the rheometer gap, b (lower expression). Note that in their model, Martin and Odinek [25] did 
not take into account that the chain length may overcome the rheometer gap. So, at 0θγ <ɺ , 

the longitudinal hydrodynamic force is no more tensile but compressive, and the authors 
considered the maximum chain length to be infinite at 0θγ <ɺ . We think that such 

approximation could seriously overestimate the chain length, especially at low frequencies 
and strains, therefore, we include the limitation of the chain length by the rheometer gap. 

The Eqs. (3)-(5), (9), (16), (17) (Eq. (16) replaces Eq. (8)) form a closed system of equations 
for the modified Martin’s model and are solved for the sinusoidal stress input, 

0( ) cos( )t tσ σ ω=  and under initial conditions: θ(0)=0, Ω(0)=500. The free parameter k0 is 

varied in the range of 10-3<k0<103. Using this aggregation/fragmentation model, we have 

calculated the frequency dependence of the fundamental shear moduli at σ0=244 Pa and found 
the best fit to the experimental results at k0=0.02. In Fig. 4b, we compare the results of the 
modified Martin’s model (curves denoted by “b”) with the results of our model (curves 
denoted by “a”). We observe that, in the frequency range, f<1Hz, the 
aggregation/fragmentation model fits better the experimental results than our model. In fact, 
this model allows existence of particle chains with the length higher than the one defined by 
the equilibrium of hydrodynamic and magnetic forces. Even though these chains have a short 
lifetime compared to the oscillation period, they contribute significantly to both storage and 
loss moduli. Furthermore, the suspension viscoelastic response is described by, at least, two 

time scales: (i) the above considered hydrodynamic relaxation time τ and (ii) the characteristic 

time of aggregation/fragmentation, τa=1/k. Such two relaxation time model gives a power-law 

frequency response of the shear moduli at low frequencies: 2.8
1 'G ω∝  and 0.69

1 ''G ω∝ .  

The difference in viscoelastic response obtained by both models [Fig. 4b] arises likely due to 
different microstructures supposed by these models. In the Martin’s model only free particle 
chains, that may break and grow periodically, are considered, while our model imposes 
pivoting chains of a fixed length attached by one of its ends to a rheometer wall. In reality, the 
suspension microstructure is more complex [Fig. 1b] and combines the features of both model 
structures. In a real cross-linked network, some free branches simulated by our model could 
exist. On the other hand, under oscillatory shear, different branches of the network may 
overlap each other and may periodically break and reform. The kinetics of such process could 
be somewhat similar to the aggregation / fragmentation kinetics described by Martin’s model. 
In perspective, we are planning to develop a network model of the suspension microstructure 
and introduce an aggregation-fragmentation mechanism taking into account eventual 
collisions and overlapping of the neighboring branches. Anyway, the results of the present 
work will be helpful for this future investigation.  

5. Concluding remarks 

In this work, we have studied a LAOS response of a magnetic fiber suspension in the presence 
of a uniform magnetic field applied perpendicularly to the direction of shear. The experiments 
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and simulations were carried out in a controlled stress mode. The main results of this study 
can be summarized as follows: 

1. In experiments, the fundamental shear moduli developed a staircase-like stress dependence 
with, at least, two viscoelastic quasi-plateaus followed by a gradual decrease with the stress. 
The first plateau was observed at very small deformations, 10-4<γ0<10-3 and attributed to the 
linear viscoelastic regime corresponding to short-scale rearrangement of particles inside the 
aggregates. The second quasi-plateau occurred at larger deformations, 0.1<γ0<1, and was 
associated with the onset of purely macroscopic deformation of aggregates. An abrupt 
decrease of the moduli after the second quasi-plateau was explained by a significant increase 
in amplitudes of oscillations of aggregates as well as by their rupture by the hydrodynamic 
tensile force exerted by the solvent. Both moduli were of the same order of magnitude at the 
level of the second viscoelastic plateau, while the storage modulus became much lower than 
the loss modulus at high oscillation amplitudes. Lastly, a local minimum was observed in the 
stress dependence of the storage modulus at high stresses, which seems to be reproducible and 
unexpected behavior.  

2. For high enough stress, the experimental frequency dependence of the shear moduli 

followed power-law behavior at low frequency limit ( 1.34
1 'G ω∝ , 0.73

1"G ω∝ ), while at high 

frequencies, the storage modulus developed a plateau. The power-law exponents were lower 

than those typical for a single relaxation time Maxwell fluid ( 2
1 'G ω∝ , 1

1"G ω∝ ), suggesting 

existence of a relaxation time spectrum. This spectrum could be caused by a polydispersity of 
the aggregates or by complex cross-linking structure of the fiber suspension. 

3. The observed rheological behaviors are tightly bound to the suspension microstructure, 
which evolves with the growing oscillation amplitude. We suggested five simple 
microstructures replacing each other with the growing stress. A coexistence of percolating and 
pivoting aggregates at low stresses allowed us to explain a relatively high viscous response of 
the suspension. To describe the experimental results, we constructed a theoretical model 
allowing calculations of macroscopic rheological properties from the behavior of the proposed 
microstructures. The model contains a single free parameter - the fraction φ of pivoting chains 
in the suspension. Involving a single time hydrodynamic relaxation, this model fits the 
experimental stress dependence of the shear moduli reasonably well and reproduces the shape 
of the measured strain waveforms and of the stress-strain loops (Lissajous plots). The 
proposed model also gives a qualitative correspondence for the frequency dependence of the 
shear moduli, however, the quantitative comparison between theory and experiments is less 
obvious. 

4. The frequency behavior can be better reproduced by a modified Martin’s model, in which 
only free non-interacting particle chains are considered and their periodic aggregation and 
fragmentation is taken into account. However, in the present form, this model neglects 
important behaviors of the suspension structure and may be applied safely only for very 
diluted suspensions. The real structure of the fiber suspension should combine the features 
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described by both models – existence of percolating network with free branches from the one 
hand (our model) and aggregation/fragmentation of structure elements from the other hand 
(Martin’s model). Therefore, a synthesis of both models, together with the consideration of a 
complex cross-linked network, would significantly improve the theoretical description of the 
viscoelastic response of magnetic suspensions. Here, the polymer dynamics theories [52] 
could serve as a solid base. 

In our study, we did not account for solid friction between fibers in aggregates. Friction 
between fibers could play an important role in their microscopic rearrangement at small 
amplitude oscillatory shear and could significantly enhance the suspension shear moduli at the 
first viscoelastic plateau. In particular, Lopez-Lopez et al. [53] have recently explained high 
values of MR fluid loss modulus by a solid friction between particles at their microscopic 
displacements relative to each other. However, at large amplitudes, microscopic motions of 
particles and, consequently, interparticle friction are expected to play a non-negligible role but 
hydrodynamic and magnetic interactions are expected to be predominant. In order to estimate 
correctly the contribution of friction into the shear moduli, we must be able to determine the 
friction coefficient. So, the measurements of this quantity are required for the future progress 
in this direction. 

Acknowledgements 

Biomag (PACA), Eureka E! 3733 Hydrosmart project, Dynxperts project (ref. FP7-2010-
NMP-ICT-FoF-260073), FIS2009-07321 (MICINN, Spain), P08-FQM-3993, P09-FQM-4787 
(Junta de Andalucía, Spain) and Cooperation Program between CNRS and BRFFR (N° 
23178, France-Belarus) are acknowledged for the financial support. One of the authors 
(M.T.L.-L.) also acknowledges financial support by the University of Granada (Spain). 

Appendix. Hydrodynamic torque acting on pivoting chains 

Consider a long chain attached by its lower end to the wall and having a free upper end, as 
depicted in Fig. 1h. This chain is subject to a simple shear flow, such that the velocity profile 
of the suspending fluid can be presented as the sum of a constant velocity vc in the chain 
center of mass C and a linear velocity profile: 

cos cos coscv v z L zγ θ γ θ γ θ= + = +ɺ ɺ ɺ ,    (A.1) 

with z – longitudinal coordinate along the chain major axis (the origin is placed into the center 
of mass C of the chain). The constant velocity vc creates, inter alia, a hydrodynamic drag 

force F⊥  perpendicular to the aggregate major axis. This force creates, in its term, a torque 

F L⊥ , which tends to tilt the aggregate in the direction of shear. From the other hand, the 

linear velocity profile also exert a torque on the chain, ThC,. So, the resultant torque is  

     h hCT F L T⊥= +       (A.2) 
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The expressions for the drag force F⊥  and the torque ThC are given by the slender body theory 

[37]: 

0
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+

,    (A.3) 
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3 1 0.5hCT L
επη ε

ε
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−

,    (A.4) 

where 2( cos )U Lγ θ θ= − ɺɺ  is the normal to the chain component of the solvent velocity in the 

coordinate frame of the chain; 2cosγ θ θΩ = − ɺɺ  is the solvent angular velocity in the 

coordinate frame of the chain, 1/ ln(2 )pε = . Substituting the Eqs. (A.3) and (A.4) into 

Eq.(A.2), we obtain the final expression for the hydrodynamic torque acting on pivoting 
chains (left-hand side of the Eq. (1)) with a numerical factor 

(1 0.64 ) /(1 0.5 ) 3 (1 0.307 ) /(1 0.5 )f ε ε ε ε⊥ = + − + ⋅ + + .  

In contrast to pivoting chains, totally free chains [Fig. 1e,f] experience a zero hydrodynamic 

drug force F⊥  and are subjected only to the torque ThC. So, the hydrodynamic torque acting on 

free chains is defined by the same expression (left-hand side of the Eq. (1)), in which the 

numerical factor f ⊥  is equal to (1 0.64 ) /(1 0.5 )f ε ε⊥ = + − .  

References 

[1] Z. P. Shulman, W. I. Kordonsky, Magnetorheological effect, Nauka i Tehnika, Minsk, 
1982 (in Russian) 

[2] J. M. Ginder, Behavior of magnetorheological fluids, MRS Bull., 23 (1998) 26–29.  
[3] H. Urreta, Z. Leicht, A. Sanchez, A. Agirre, P. Kuzhir, G. Magnac, Hydrodynamic 
Bearing Lubricated With Magnetic Fluids, J. Intel. Mater. Syst. and Struct. DOI: 
10.1177/1045389X09356007 
[4] G. Ngatu, N.M. Wereley, J. Karli, R.C. Bell, Dimorphic Magnetorheological Fluids: 
Exploiting Partial Substitution of Microspheres by Nanowires, Smart Materials and 
Structures. 17 (2008) 045022. 

[5] R.C. Bell, E.D. Miller, J.O. Karli, A.N. Vavreck, D.T. Zimmerman, Influence of particle 
shape on the properties of magnetorheological fluids, Int. J. Mod. Phys. B, 21 (2007) 5018-
5025. 

[6] R.C. Bell, J.O. Karli, A.N. Vavreck, D.T. Zimmerman, G.T. Ngatu, N.M. Wereley, 
Magnetorheology of submicron diameter iron microwires dispersed in silicon oil, Smart 
Mater. Struct., 17 (2008) 015028. 
[7] M. T. López-López, G. Vertelov, P. Kuzhir, G. Bossis, J.D.G. Durán, New 
magnetorheological fluids based on magnetic fibers, J. Mater. Chem., 17 (2007) 3839-3844. 



27 

 

[8] M. T. López-López, P. Kuzhir, G. Bossis, Magnetorheology of fiber suspensions. I. 
Experimental, J. Rheol., 53 (2009) 115-126. 

[9] J. de Vicente, J.P. Segovia-Guitérrez, E. Anablo-Reyes, F. Vereda, R. Hidalgo-Alvarez, 
Dynamic rheology of sphere- an rod-based magnetorheological fluids, J.Chem. Phys. 131 
(2009) 194902. 

[10] A. Gómez-Ramírez, M.T. López-López, J.D.G. Durán, F. González-Caballero, Influence 
of particle shape on the magnetic and magnetorheological properties of nanoparticle 
suspensions, Soft Matter, 5 (2009) 3888–3895. 

[11] P. Kuzhir, M. T. López-López, G. Bossis, Magnetorheology of fiber suspensions. II. 
Theory, J. Rheol., 53 (2009) 127-151. 

[12] A. Gómez-Ramírez, P. Kuzhir, M.T. López-López, G. Bossis, A. Meunier, J.D.G. Durán, 
Steady shear flow of magnetic fiber suspensions: theory and comparison with experiments, 
J.Rheol., 55 (2011) 43-67. 

[13] K. Asano, H. Suto, K. Yatsuzuka, Influence of the particle configuration on 
electrorheological effect, J. Electrostat. 40-41 (1997) 573-578. 

[14] Y.Otsubo, Electrorheology of whiskers suspensions, Colloids and surfaces A 153 (1999) 
459-466.  

[15] K. Tsuda, Ya. Takeda, H. Ogura, Ya. Otsubo, Electrorheological behavior of whisker 
suspensions under oscillatory shear, Colloids and Surfaces A 299 (2007) 262-267. 

[16] M.M. Ramos-Tejada, M.J. Espin, R. Perea, A.V. Delgado, Electrorheology of 
suspensions of elongated goethite particles, J. NonNewt. Fluid Mech. 159 (2009) 34-40.  

[17] R.C. Kanu, M.T. Shaw, Enhanced electrorheological fluids using anisotropic particles, J. 
Rheol. 42 (1998) 657-660,. 

[18] A. Kawai, U. Kunio, I. Fumikazu, Effects of Shape and Size of Dispersoid on 
Electrorheology, Int. J. Mod. Phys. B 16, (2002) 2548-2554. 

[19] Ya. K. Kor, H. See, The electrorheological response of elongated particles, Rheol. Acta 
49 (2010) 741-756.  

[20] A.J. Giacomin, J.M. Dealy, in: “Techniques in Rheological Measurements”, Vol.4, A.A. 
Collyer, Ed., Chapman and Hall, London 1993, chapter 9. 

[21] K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, S. J. Lee, Nonlinear response of complex 
fluids under LAOS (large amplitude oscillatory shear) flow, Korea-Australia Rheology 
Journal 15 (2003) 97-105.  

[22] M. Wilhelm, Fourier-Transform Rheology, Macromol. Mater.Eng. 287 (2002) 83-105.  



28 

 

[23] R. H. Ewoldt, A. E. Hosoi, G. H. McKinley, New measures for characterizing nonlinear 
viscoelasticity in large amplitude oscillatory shear, J. Rheol. 52 (2008) 1427-1458. 

[24] D.R. Gamota, A.S. Wineman, F.E. Filisko, Fourier transform analysis: nonlinear 
dynamic response of an electrorheological material, J. Rheol. 37 (1993) 919-933. 

[25] J.E. Martin, J. Odinek, Aggregation, Fragmentation, and the Nonlinear Dynamics of 
Electrorheological Fluids in Oscillatory Shear, Phys. Rev. Lett. 75 (1995) 2827–2830. 

[26] M. Parthasarathy, D.J. Klingenberg, A microstructural investigation of the nonlinear 
response of electrorheological suspensions, Rheol. Acta 34 (1995) 417-429. 

[27] M. Parthasarathy, D.J. Klingenberg, Large amplitude oscillatory shear of ER 
suspensions, J. NonNewt. Fluid Mech. 81 (1999) 83-104.  

[28] J.E. Martin, J. Odinek, Th.C. Halsey, R. Kamien, Structure and dynamics of 
electrorheological fluids, Phys. Rev. E, 57 (1998) 756–775. 

[29] W.H. Li, H. Du, G. Chen, S.H. Yeo, N. Guo, Nonlinear viscoelastic properties of MR 
fluids under large-amplitude-oscillatory-shear, Rheol. Acta 42 (2003) 280-286.  

[30] W.H. Li, H. Du, N. Guo, Dynamic behavior of MR suspensions at moderate flux 
densities, Mater. Sci. Eng. A 371 (2004) 9-15.  

[31] J. Claracq, J. Sarrazin, J.-P. Montfort, Viscoelastic properties of magnetorheological 
fluids, Rheol. Acta 43 (2004) 38-49.  

[32] J. de Vicente, M.T. López-López, J.D.G. Durán, G. Bossis, A slender-body 
micromechanical model for viscoelasticity of magnetic colloids: Comparison with preliminary 
experimental data, J. Coll. Int. Sci. 282 (2005) 193-201.  

[33] T.C.B. McLeish, T Jordan, M.T. Shaw, Viscoelastic response of electrorheological 
fluids. I. Frequency dependence, J. Rheol. 35 (1991) 427-448.  

[34] D.J. Klingenberg, Simulation of the dynamic oscillatory response of electrorheological 
suspensions: Demonstration of a relaxation mechanism, J. Rheol. 37 (1993) 199-214.  

[35] T. Jordan, M.T. Shaw, T.C.B. McLeish, Viscoelastic response of electrorheological 
fluids. II. Field strength and strain dependence, J. Rheol., 36 (1992) 441-463. 

[36] D. Jiles, Introduction to Magnetism and Magnetic Materials, Chapman & Hill, London, 
1991. 
[37] G.K. Batchelor, Slender-body theory for particles of arbitrary cross-section in Stokes 
flow, J. Fluid. Mech. 44 (1970) 419-440.  

[38] G.K. Batchelor, The stress generated in a non-dilute suspension of elongated particles by 
pure straining motion, J. Fluid. Mech. 46 (1971) 813-829.  



29 

 

[39] H.M. Laun, C. Gabriel, C. Kieburg, Effect of wall materials and roughness on 
transmittable shear stress of magnetorheological fluids, submitted (2010) 

[40] M.T. López-López, P. Kuzhir, J.D.G. Durán, G. Bossis, Normal stresses in a shear flow 
of magnetorheological suspensions: Viscoelastic versus Maxwell stresses, J.Rheol. 54 (2010) 
1119-1136. 

[41] Berthier, S., “Optique des milieux composites”, Polytechnica, Paris (1993). 

[42] J. M. Ginder, L. C. Davis, L. D. Elie, Rheology of magnetorheological fluids: Models 
and measurements, Int. J. Mod. Phys. B 10 (1996) 3293-3303. 

[43] J. Läuger, H. Stettin, Differences between stress and strain control in the non-linear 
behavior of complex fluids, Rheol. Acta 49 (2010) 909-930. 

[44] Ch.W. Macosco, Rheology. Principles, Measurements, and Applications, Wiley-VCH, 
Inc., New York, 1994, pp. 217-222. 

[45] G. Bossis, E. Lemaire, O. Volkova, H. Clercx, Yield stress in magnetorheological and 
electrorheological fluids: A comparison between microscopic and macroscopic structural 
models, J. Rheol. 41 (1997) 687-704.  

[46] H. Brenner, Rheology of a dilute suspension of axisymmetric Brownian particles, Int. J. 
Multiphase Flow 1 (1974) 195-341. 

[47] V.N. Pokrovskiy, Statistical mechanics of diluted suspensions, Nauka, Moscow, 1978 (in 
Russian). 

[48] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids: Voulme I. 
Fluid Mechanics, Wiley, New York, 1987. 

[49] H. G. Sim, K.H. Ahn, S.J. Lee, Three-dimensional dynamics simulation of 
electrorheological fluids under large amplitude oscillatory shear flow, J. Rheol. 47 (2003) 
879-895.  

[50] J. E. Martin, D. Adolf, Th. C. Halsey, Electrorheology of a Model Colloidal Fluid, J.Coll. 
Int. Sci., 167 (1994) 437-452.  

[51] J.E. Martin, R.A. Anderson, Chain model of electrorheology, J.Chem.Phys 104 (1996) 
4814-4827. 

[52] R.B. Bird, O. Hassager, R.C. Armstrong, Ch. F. Curtiss, Dynamics of Polymeric Liquids 
Volume II. Kinetic Theory, Wiley Interscience, New York, 1987. 

[53] M.T. Lopez-Lopez, L. Rodriguez-Arco, A. Zubarev, L. Iskakova, J.D.G. Duran, Effect of 
gap thickness on the viscoelasticity of magnetorheological fluids, J.Appl.Phys., 108 (2010) 
doi:10.1063/1.3498804 


