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Abstract

This paper reports the first study on the large laoge oscillatory shear flow for magnetic
fiber suspensions subject to a magnetic field petjpelar to the flow. The suspensions used
in our experiments consisted of cobalt microfibefsthe average length of 37 um and
diameter of 4.9 um, dispersed in a silicon oil. 8lbgical measurements have been carried
out at imposed stress using a controlled stressyetadheometer. The stress dependence of
the shear moduli presented a staircase-like dexredh, at least, two viscoelastic quasi-
plateaus corresponding to the onset of microscapid- macroscopic scale rearrangement of
the suspension structure, respectively. The frecyubehavior of the shear moduli followed a
power-law trend at low frequencies and the storagmlulus showed a high-frequency
plateau, typical for Maxwell behavior. Our simplengle relaxation time model fitted
reasonably well the rheological data. To explarelatively high viscous response of the fiber
suspension, we supposed a coexistence of pergplaimd pivoting aggregates. Our
simulations revealed that the former became urestadyond some critical stress and broke in
their middle part. At high stresses, the free agaties were progressively destroyed by shear
forces that contributed to a drastic decrease efrntoduli. We have also measured and
predicted the output strain waveforms and strasgashysteresis loops. With the growing
stress, the shape of the stress-strain loops cagmmggressively from near-ellipsoidal one to
the rounded-end rectangular one due to a progeegsiasition from a linear viscoelastic to a
viscoplastic Bingham-like behavior.

Keywords. magnetorheology; fiber suspension; non-linear \@tsticity; oscillatory shear
1. Introduction

Magnetorheological (MR) fluids are suspensions afgnetic micron-sized particles in a

carrier liquid. The MR fluid particles are subjéata reversible aggregation and the MR fluid
develops a large yield stress upon application ignetic field. This phenomenon is known
as the magnetorheological effect [1, 2]. So, thgmetic and mechanical properties of these
fluids can be efficiently controlled by external gnetic fields and this makes them attractive
for several industrial applications. Controlledffaess dampers and magnetorheological



finishing of optical surfaces have been successittimmercialized during the last decade
and the other magnetorheological smart deviced) asccontrolled hydrodynamic bearings,
are being developed [3]. The improvement of thé tie@e control of these devices and the
increase of the controllability range of their qohtparameters (flow rate, stiffness) are still
important issues. In general, there are two wayssating these problems: either by
optimization of the fluidic and the magnetic desigri the considered device or by improving
the properties of the MR fluid.

One way of improvement of the MR fluid stability camnechanical properties consists of
using magnetic micro- or nanofibers instead of @mtiwnal spherical particles. The magnetic
fiber suspensions have shown better sedimentatzdmlitsy [4] and developed a yield stress a
few times larger than that of the magnetic suspassiof spherical particles at the same
magnetic field intensities and the same particluwe fraction [5-10]. Such enhanced
magnetorheological effect in fiber suspensions Haeen explained in terms of the interfiber
solid friction [11] and by enhanced magnetic perpiég of these suspensions as compared
to the permeability of conventional MR fluids [92]1 Note that the similar particle shape
effect has been observed in electrorheological (itiR)s [13-16] and was attributed to both
the physical overlapping of the elongated partided to their strong dielectric properties
[17-18]. Kor and See [19] have recently carried paiticle level simulations on ER fluids
and also found the stress enhancement in suspsrdioeedle-like particles.

Almost all the studies on elongated particle-bast®l or ER fluids were focused on the
steady shear or the small amplitude oscillatoryasfiews. These studies give an important
insight into the understanding of the general rbgiclal behavior of the suspensions but have
limited applications in ER and MR smart devices: ifgtance, in MR dampers, the MR fluid
is subject to a reciprocal large amplitude strgnmotion. Thus, investigation of the large
amplitude oscillatory shear (LAOS) flow of magnéditlzer suspensions would be very helpful
for this application. Apart from its engineering gortance, the LAOS response of the
magnetic fiber suspensions could bring valuablermtion on their nonlinear viscoelasticity
in the wide range of the excitation frequencies.

In general, the LAOS tests have been successfidbd uo characterize the rheological
properties of various kinds of soft materials, sashpolymers, wormlike micelles, colloidal
gels, biopolymer networks, see for instance [20]. Zhese tests consist of imposing a
sinusoidal strain (or stress) to the material aaxbrding its stress (or, respectively, strain)
response. In the nonlinear viscoelastic regime, atelarge strains or stresses applied, the
material response is non-sinusoidal with highentwarics appearing. Fourier analysis of the
measured response signal allows one to learn abodtological behavior exhibited by the
material (shear thinning/thickening, strain handgfsoftenning). The general framework of
treatment and interpretation of the LAOS data hesnbdeveloped by Wilhelm [22] and
Ewoldtet al. [23].

A number of works has been devoted to the LAOSaresp of conventional ER fluids and
MR fluids, both composed of spherical particles -B24. The electrorheological and



magnetorheological effects are essentially similamature, so both ER and MR fluids show
similar behavior in oscillatory shear. In most loé¢ tworks, the first harmonic (or fundamental)
shear moduli were used as the principle measutleo¥iscoelastic response of these fluids.
In experiments, both storage and loss moduli haen bound to increase with the magnetic
(or electric) field strength because of the figlduced aggregation of the MR (or ER) fluids.
At small strains, the aggregates spanned the gayebe rheometer plates and the MR and
ER fluids showed an elastic behavior with the gjerenodulus substantially larger than the
loss modulus. Nevertheless, the loss modulus wasnegligible and even a few orders of
magnitude larger than the one of the dispersingidicpf the suspension. Such viscous
response of the suspensions was interpreted itwthdollowing ways. First, McLeislet al.
[33] supposed a co-existence in the ER fluid ofghp-spanning particle chains with the free
chains attached to the wall by one of the ends. gdgspanning chains were supposed to
move affinely with the suspending liquid and cdmited to the suspension storage modulus,
while the free chains moved out of phase with theometer walls and bended under the
hydrodynamic forces exerted by the suspending diglihus, a small fraction of the free
chains contributed to the suspension loss modioseover, different chain bending modes
gave an infinite series of relaxation times. Tatigir theory to experimental data on the loss
modulus, the authors adjusted the volume fractibthe free chains. On the other hand,
Klingenberg [34] has carried out particle level siations and shown that the non negligible
viscous response of the ER fluids could arise fron-affine motion of the particles inside
the gap-spanning aggregates even at strains abasidl’.

With increasing strain amplitude, the storage mosl@ixperiences a slow decrease until some
critical strain followed by an abrupt decrease a&bdtkis strain. The loss modulus also
decreases with the strain but in a less extenthao at large strains, both moduli are usually
of the same order of magnitude signifying the titamrs from solid to liquid like behavior
[35]. Parthasarathy and Klingenberg [26, 27] exmdi the smooth initial decrease of the
storage modulus by a short-scale rearrangemerarttles in aggregates and they interpreted
the further abrupt drop of the modulus by the lesgale structure rearrangement and by
rupture and reformation of gap-spanning structures.

In most cases, the frequency dependence of the stoetuli of ER and MR fluids followed a

Maxwell-like behavior with the storage modulus E&sing monotonically and attaining a
high frequency plateau and the loss modulus haaimgaximum at intermediate frequency.
Such dependence supports, at least qualitativeti, Mc Leish’s “free chain hypothesis” [33]

and Parthasarathy and Klingenberg’'s [27] obsermatiof small and large scale cluster
rearrangements.

A deeper understanding of the nonlinear viscoeastponse of the ER and MR fluid could
be achieved by analyzing the stress-strain hyssetesps, called Lissajous plots. When
increasing the amplitude of the applied strain, ghspension stress response becomes non-
linear and the Lissajous plots change their shema the ellipsoidal shape at low strains to
the parallelogram-like one at high strains [24].riaand Odinek [25] have attributed this
particular shape of the Lissajous plots to rapabifnentation and aggregation of particle



chains in oscillatory shear. They have proposechenpmenological equation describing
kinetics of chain aggregation/fragmentation and ettgyed a theoretical model, which
reproduced the experimental hysteresis loops redéprwell with a single fit parameter.

Parthasarathy and Klingenberg [27] have also wefiraduced the parallelogram-like
hysteresis loops in their simulations and explaitfeem in terms of plastic Bingham-like

behavior. Namely, as the direction of shear is n&a@ the stress varies rapidly until the
structure yields, and the stress becomes indepentistrain.

Tracking back to the ER and MR fluids composed lohgated particles, only the paper of
Tsudaet al. [15] reports on the nonlinear viscoelastic resgoof such fluids — the ER
whisker suspension. In their paper, the authorssored the complex shear modulus as
function of the applied stress and have found alaimbrupt decrease of the modulus with
increasing stress as in the case of suspensiosghefical particles. However, the solid-to-
liquid transition in whisker suspensions (correspog to the drop of the modulus) occurred
at higher critical stresses. This was explainethieyformation of branched intricate structures
in whisker suspensions that were mechanically estiffhan the column structures in
suspensions of spheres. No results have been prdsem the stress and strain waveforms.
Theoretical models have neither been reported sorie the LAOS response of the ER or
MR suspensions of elongated particles. It is wtothmention the dipole interaction models of
Kanu and Shaw [17] and de Vicené al. [9] that predicted the elastic modulus of,
respectively, ER and MR suspensions of needledédwicles in the linear viscoelastic regime
at small applied stresses or strains.

In this paper we have carried out a detailed ingagon of the large amplitude oscillatory
shear flow of the magnetic fiber suspensions inpitesence of an external magnetic field. In
experiments, we apply a sinusoidal shear stressraasure the output strain waveform. We
examine effects of the magnetic field strengthesstramplitude and excitation frequency on
the strain signal as well as on the shear modufheffiber suspension. Particular attention is
focused on the stress dependence of the loss nwoddiich, to our opinion, has never been
clearly explained even for conventional suspensiohsspherical particles. Finally, we
develop a microstructural model that allows desaegp at least semi-quantitatively, all
observed rheological behaviors in the non-lineacatlastic regime. In particular, to explain
relatively high values of the loss modulus, we assua specific structure of the fiber
suspension, composed of both percolating aggregaigshe free branches attached by one
extremity to either the walls of a flow cell or tbhe percolating aggregates. These free
branches move out of phase with the suspendingdlignd therefore contribute to the loss
modulus. Having some similarities with McLeish’sirsg model [33], the one reported in the
present paper seems to be more realistic and mgpeo@riate to numerous branched
structures that exist in fiber suspensions.

This paper is organized as follows. In the nexttiBec2, we present experimental tools and
methods used in this study. In the Section 3, wesldg a theoretical model allowing us to
predict the shear moduli and the output strain fawes in the regime of the applied
sinusoidal stress. Both experimental and theoletgsaults are reported and compared in the



4™ Section. In the last Section 5, the main conchssiare outlined and some perspectives are
proposed for the further investigations.

2. Experimental

The magnetic fiber suspension used in our study eeasposed of rod-like cobalt particles
dispersed in the silicon oil (Rhodorsil ®; VWR Intational, dynamic viscosity at 25°C is
0.485 Ps&) at the volume fractiob=5% and stabilized by an appropriate amount of
aluminum stearate (Sigma-Aldrich). The cobalt ptet were synthesized via a polyol
method described in [7] and were 373 um in lengtid 4.9+£1.0 um in diameter. The
magnetization curve of these patrticles followed Eréhlich-Kennely law [36] with the
saturation magnetizatiomls=1366+8 kA/m [7] and the initial magnetic susceityp x;=70.
The dispersion of the particles in the silicon wds performed according to the procedure
described in [7, 8].

The oscillatory shear tests were carried out usimgy controlled-stress rheometer Thermo
Haake RS150 equipped with the software allowingomdiog of the stress and strain
waveforms. The titanium plate-plate geometry wasdusith the disk diameter of 35 mm and
the gap between plates equal to 0.2 mm. A homogesneagnetic field perpendicular to the
rheometer plates was created by a solenoid plaoethé the measuring geometry.

The experimental protocol was as follows. At thegibeing of each measurement, the
suspension was presheared at 3@sring 1 min. Then, the magnetic field was appked
the suspension was kept at rest during 1 min. Aftat, we proceeded to either stress sweep
or frequency sweep measurement. In both measuremansinusoidal stress of a fixed
amplitude and frequency was applied to the susperdiring the time necessary to produce
20 periods of oscillations. The strain waveformsaveecorded during the last 5 periods.
Then, one of the parameters (stress amplitude citagon frequency) increased in a step
manner, the other parameter kept fixed, and theesponding waveforms were recorded. In
this manner, we realized the stress ramp fagr0.4Pa to 400 Pa at the frequerfrey Hz and
the frequency ramp fror+0.05Hz to 50Hz at two stress amplitudes;30Pa and 244Pa. The
stress sweep was done for six values of the apphkeginal magnetic field: 0, 6.1, 12.2, 18.3,
20.4 and 30.6 kA/m, while the frequency sweep wasedfor the strongest magnetic field,
Hy=30.6 kA/m. We estimated inertia torques gener@gdhe rheometer at high-frequency
limit and excluded those experimental points, fdrick the ratio of inertia torque to the
applied (viscoelastic) torque was larger than 2b%s.each test, the experimental waveforms
and Lissajous stress-strain loops were plotted amalyzed. In addition to it, the first
harmonic storage and loss moduli were plotted axtion of either applied stress or
excitation frequency.

3. Theory

In this section, we develop a microstructural maafethe magnetic fiber suspension under
oscillatory shear allowing us to relate the struetparameters (aggregates’ orientation and
size) to the macroscopic rheological propertieghefsuspension. Consider a fiber suspension



sandwiched between two parallel plates and suliecan external magnetic fieldio,
perpendicular to the plates, as shown in Fig.1l& [dlver plate is at rest and the upper one
performs a reciprocal motion with the velocityand involves the suspension into oscillatory
flow with a presumably linear velocity profile(t) = y(t)z, where y(t) is the time-dependent
shear rate. Oscillatory motion of the suspensiomdsiced by an applied sinusoidal stress
o(t) =og,cosat, where a=21f is the angular frequency of oscillatiorfsis the excitation

frequency,op is the stress amplitude.
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Fig.1. Microstructure of the magnetic fiber suspens(a) — realistic representation of the suspmnsiructure
with percolating and pivoting aggregates and fresthes of aggregates, all of them composed oprdiectly
aligned fibers; (b) - the optical microscopy pietwf the structure of quiescent fiber suspensidesti to a
magnetic field,H,=25 kA/m [8]. In figures (c) — (g) the schemati@resentation of different microstructures
evolving with increasing oscillation amplitude isosvn: (c) — coexisting percolating aggregates andting
chains; (d) — pivoting chains; (e) — free chaintadeed from the walls; (f) — free chains rupturgdtre tensile
hydrodynamic force; (g) —single non-aggregatedrfbat high stresses applied. In figure (h), a $kébc the
calculation of the hydrodynamic torque on a pivgtahain is presented; in the coordinate frame @fctain, the
solvent velocity profile is decomposed into a canstvelocity profile at the chain center C (boldoars) and a
linear velocity profile (thin arrows).

The following assumptions and considerations aegl us our model:

1. According to optical observations of the quieggsragnetic fiber suspensions performed in
our previous work [8], in the presence of the maignieeld, the fibers are attracted to each



other and form a non-regular intricate networkslaswn in Fig.1b. In such network, one can
distinguish percolating aggregates extending batwia® extremities of the cell and free
branches of different sizes, attached by one enthdopercolating aggregates and having
another end free. We suppose the existence of tigpes of aggregates in oscillatory shear
flow, at least at small-to-moderate amplitudes.particular, the suspension consists of a
number of percolating aggregates, some non-pemcglaiggregates attached by one of the
ends to the upper or the lower plate and someldraeches attached by one of the ends to
percolating aggregates, as depicted schematicallfFig. 1a. The motion of percolating
aggregates is affine so that they contribute omlthe elastic response of the suspension. The
motion of the free branches and non-percolatingegages could be out of phase with the
motion of the suspending liquid, so both viscoud afastic contributions are expected and
the relative importance of each contribution wipgnd on the ratio of hydrodynamic to
magnetic forces exerted on the aggregates. Thevioehaf the non-percolating aggregates
and free branches is essentially similar in natmed described by the same equation of
motion, so, we shall no more distinguish these tiyp@s of aggregates and call them pivoting
aggregates, keeping in mind that the oscillatiohthe free branches could be restricted to
lower amplitudes because of eventual collision$ \wercolating aggregates.

2. The percolating aggregates are supposed tdrbelthins of fibers stacked together both by
their extremities and their lateral surfaces. lahsconfiguration, the fibers can easily slide on
each other, therefore, the percolating aggregateseasily extensible under strain. The
pivoting aggregates are supposed to be straightigitdsingle chains of fibers. The structure
observation [Fig. 1b] reveals that these chains hease different length but it is not obvious
to determine the chain length distribution for tiran-equilibrium thermodynamic state of the
magnetic suspension in the absence of Brownianomo#t this stage, we consider that all
the pivoting chains have the same length, équal to the half of the gap, between plates.
Therefore, the chain length-to-diameter ratio -emefd to as aspect ratio — is equal to:
p=b/(4a), with a being the fiber radius. This parameter is congid¢o be independent of the
shear stress until a critical stress correspondmgthe aggregate rupture by tensile
hydrodynamic force. From the hydrodynamic point \0éw, the chains of fibers are
assimilated to slender bodies and the Batcheltetsder body theory is used to describe their
motion and generated stresses [37, 38].

3. To describe the quantities of particles and egapes in the suspension, we introduce the
volume fractions as followsb is the volume fraction of particles in the suspemsgis the
relative volume fraction of the pivoting aggregatége. the volume occupied by these
aggregates divided by the total volume of all thgragates; and (- is the relative volume
fraction of percolating aggregateg.is a free parameter of our model and could vamy, i
principle, between 0 and 1. We assume that thdivelaolume fraction,@ of pivoting
aggregates does not depend on the applied strébsame critical stressg;, at which these
aggregates become unstable and break (cf. Assumipdip At higher stresses, only pivoting
adjustable parameter,< o,

aggregates exist angkl. In other wordS(p:{
l,o>0,



4. The suspension micro-structure is supposeddagsdwith the increasing applied stress or
strain, so, the five following sub-structures axpexted. (I) At low-to-intermediate stresses,
percolating clusters coexist with pivoting oneseaplained above (Fig. 1c). (I) At some
critical stressoi, the percolating aggregates become unstable, lmethkeir middle point and
are transformed into pivoting aggregates of thetlercorresponding approximately to the
half of the gap between wallsL#b/2 (Fig.1d). This instability has been discoveradour
simulations and is reported in the next SectionSBice the radius of thin percolating
aggregates is of the order of the fiber radajgshe secondary pivoting chains (formed due to
the breakage of the percolating aggregates) wilelihe aspect ratio, approximately equal to:
p=b/(4a), which is the same as the aspect ratio of theamy pivoting chains that existed
before the breakage of the percolating chains. ;Thlighe pivoting chains in this second
aggregation regime are supposed to have approXyrsgime size and aspect rafeb/(4a).

(Il Oscillating chains are subject to tensile hgdlynamic forces exerted along their axis.
These forces tend to detach them from the walls. @drticles situated on the chain extremity
attached to the wall are supposed to be trappethenwall rugosities. So, the chain
detachment is expected to be accompanied by thareupf the bonds between the trapped
particles and the neighboring particles. Thus, ¢hains detach from the wall and become
totally free when the hydrodynamic force becomegdathan the cohesive magnetic force
between particles (Fig.1e). The onset of the regififeee chains occurs at the second critical
stresso, and is governed by the balance between thesestoftd® Further increase of the
stress, provokes an increase in hydrodynamic tefmites, which destabilize the free chains
and provoke their rupture in their middle part (Efy So, beyond the third critical stregs,

the chain length is no more fixed but decreasegrpsesively with increasing stress (or strain).
We find that, at the same shear rate, the hydradiméorce required to detach a chain from
the wall is about four times the force requireddestroy a free chain. Therefore, th€ 3
regime of unruptured free chains is expected terekbver a broad range of applied stresses,
o<0c<az. (V) At high enough stresses, all the chains aympietely destroyed and the
suspension behaves as the one composed of isotetgdetic fibers (Fig.1g). The critical
stressa, corresponding to the onset of this regime is @efias the stress, at which the chain
aspect ratio approaches to the one of a single, filzenelyp=7.6.

5. In our model, we suppose that the percolatirg) @woting aggregates do not slip on the
walls. First, the magnetic field lines are concat@d in the rugosities of non-magnetic walls.
This causes a strong adhesion of the aggregatde tvalls, as pointed out by Laehal.
[39]. Second, the percolating aggregates are sulbgedensile magnetic stresses, so the
aggregates exert strong normal forces on rheometis [40]. Since the solid friction forces
between the aggregate ends and the walls are Igiggcportional to the normal forces, we
expect a strong wall friction, which could furthenhance the adhesion between the
aggregates and the walls.

6. Whatever the aggregation regime is, all the eggpes are supposed to oscillate in the shear
xz-plane. The percolating aggregates in the fegime are always in phase with the strain,
At), and their orientation angle is defined @asn® =y ¢) [Fig.1c]. The pivoting and free



chains are subject to the magnetic and hydrodyn&mgies and make an anghg) with the
field direction, different from the angt@ [Fig.1c].

7. The magnetic interactions between aggregatesmkea into account by means of the mean
field Maxwell-Garnett theory [41]. On the other klanwe neglect collisions and
hydrodynamic interactions between aggregates irfiber suspension of 5% volume fraction
for the reasons discussed in [12]. Neverthelessydhidity of this hypothesis will be revisited
in the following section. Under the present assuongt the balance of the hydrodynamic and
magnetic torques acting on the non-percolated saaddggregates reads:

3¢° . 1~
B (1 cog 6-6)= X 1-9)

3In(2p) mﬂo"' [(27a’L )sirg coé 1)

The demonstration of the expression for the hydnadyic torque (left-hand side of the Eq.
(1)) together with the numerical factdr” is presented in Appendix, while the expression for

the magnetic torque (right-hand side of the Eq) il piven elsewhere [12]. The equation of
motion of the non-percolated and free aggregatésafe directly from Eq.(1):

- coso- L s
6=ycos @ = sing cod, (2)

and can be rewritten in the alternative form, dlefes:

dtané N tard _
dt ()

V ®3)

where 7(6) is the relaxation time, corresponding to a charstic time required for the
reorientation of the aggregate along the fieldaiom in a quiescent fluid, and defined by the
following equation:

_ 24 ) A=®) Ap°fT o1 (6)

() =" 2
Xi @=®) 3In(2p) 1H,

(4)

In these equationgj is the dynamic viscosity of the suspending liquigs4rt10° H/m is the
magnetic permeability of vacuurg, is the magnetic susceptibility of fibeks,is the intensity

of the magnetic field inside the fiber suspensiandsviched between two plates. Because of
the demagnetizing effect, this field is smallertbg factoryi than the external magnetic field,
Ho, namely,H=Ho/1, whereu is the relative magnetic permeability of the filseispension.
The latter is the function of the aggregates’ oadohs and is defined using the Maxwell-
Garnet theory. In the general case, covering ajfegpation regimes, the expression for the
magnetic permeability( 6) reads:

1 v
Ay oy )

(8) = @ p4,coS O+, sirt 6]+ (}4 (5)
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where g =1+®y, and 4, :[2+)(f a+ (D)} /[ 2+ X, (1—<D)] are the components of the

suspension magnetic permeability along the majdrramor axes of aggregates, the factors
1/(1+y?)? and y?/(1+y?)? correspond to c6® and sif®, respectively, with® - the
orientation angle of percolating aggregates (Fij. The first term of this equation stands for
the contribution of the pivoting and free chainghlie magnetic permeability and the second
term — to the contribution of the percolating aggttes. In the four last aggregation regimes,
percolating aggregates no more exist, so, the setmym of Eq. (5) disappears amils taken

to be 1 in the first term. Note that, since the neig permeability depends on the chain
orientation angled, the relaxation time also depends on it, and, so, does not remain aanst
over the oscillation period. We can considdo be constant in the case of small amplitude
oscillations.

The hydrodynamic torque acting on pivoting chaippears to be roughly four times the
torque acting on free chains of the same size antheasame shear rate. Therefore the
relaxation time is about four times larger for ging chains as compared to free chains. The
time ris defined by the same Eq. (4) for both chainstbetnumerical factorf © is different,

as pointed out in Appendix.

In three first aggregation regimes (Figs.lc-e), aspect ratio of the pivoting and free un-
ruptured chains is fixed and equal fm=b/(4a). In the regime of the free ruptured chains
(Fig.1d), their aspect ratio is governed by theabe¢ of hydrodynamic tensile and magnetic
forces, the expressions for these forces read:

a’f) o
F = 2_p ysind coY , 6
h |n(2p),70y (6)
F, = 2m,M (Ha’ cos & (7)

whereMs is the saturation magnetization of magnetic fibefts = (1+0.5)/(1- 1.5 . The

magnetic force [Eq.(7)], consolidating the chaiaghe attractive force acting between two
contacting fibers. This force was calculated usihg Ginder's approach considering
saturation effects in touching magnetic particlé2][ as specified in details in [12]. In our
model we consider that over a given oscillationiquethe free chain keeps the same length.
Both the magnetic and hydrodynamic forces varyrduthe period of the chain oscillation.
The chains are considered to be stable when theothydamic tensile force is smaller than
the magnetic force. But if, at a certain orientatamgle,&, the hydrodynamic force becomes
larger than the magnetic one, the chains are sepposbreak into two parts. We suppose that
the rupture occurs when the maximum ratio of botieds, over the period, is equal to unity,
namely: max(F, /F, )= 1. Thus, by means of the Egs. (6), (7), the expoeskr the aspect

ratio of the ruptured free chains reads:
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|: p2 f2” } — 2:quSHO (8)
In(2p) ruptured ,70 ljnax{’uy tan9]

Here we have taken into account that the interreymatic field idH=H/ 1.

Note that the same force balance [Eqgs. (6)-(8)] idtat determining the critical stregs
corresponding to transition between the regimepiwdting and free chains (the stress, at
which the pivoting chains are ruptured from thelsjaln this case, we have only to replace in

Egs. (6), (8) the numerical factd' by appropriate valuef,' = 4(1+ 0.30% )/(+ 0.5 and

take the aspect ratio fixed and equaptd/(4a). The critical stresg» intervenes implicitly
into the Eq. (8) through the produgiytand, which is found by solving simultaneously Egs.

3). (9).

In the most general case, the shear stress dedelopealr fiber suspension has a contribution
from the suspending liquidgs, a contribution from percolating aggregates, and a
contribution from pivoting or free onesx.,, the two last weighed by the appropriate volume
fraction, (14 and g respectively, such that the total stress is

2«1l
0':05+0’f—p+0p:ﬂoy+¢{¢%y(2+;§f;msir?6co§0j+
, )
2 Xf (1_q)) y

2+ x; (-9) (T y° ¥

2 sz(l_q))

+®H
Hom vy, - o)

siné@ cos 6} + (F o )®uH

where the factory/(1+y?)* corresponds tosin@ cos© for percolating aggregates and
f!=(1+0.64)/(- 1.5 , £=1/In(2p). In the Eq. (9), the contribution from pivoting foee

chains, ai.p, has both hydrodynamic and magnetic terms, white dontribution from the
percolating aggregates,, has only magnetic term arisen from the restomagnetic torque.
The hydrodynamic term is absent é§ because the percolating aggregates move affinelly
with the suspending liquid. In particular, thesgraegates are supposed to be very thin (aspect
ratio about 40), so at any point on the aggregatéace, there is no velocity difference
between the solid and liquid phases. McLegstal. [33] have also neglected the viscous
dissipation coming from percolating chains and igt a reasonable correspondence with
experiments for the frequency dependence of thraggomodulus. The last term of the Eq. (9)
appears only in the first aggregation regime. le thst four regimes, the percolating
aggregates are absent, ad.

The Egs. (3)-(5), (8), (9) for the regime of fregtured chains or (3)-(5), (9) for other four
regimes form a closed system, which is solved utfgeinitial conditions, as follows10)=0
and 0)=0. Both the strainKt) and the angl&t) are unknown functions, so, by change of

t
variables,W(t) = J'(tanH /T )d, we reduce a pair of differential equations (9),i(ito a single
0
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second order differential equation with respecthe function¥(t). Once this function is
determined, the unknown&t) and )(t) are found as: tafi=7¥ and y=rW¥ +W. This trick

is, however, used only for the first regime of dsérg percolating and pivoting aggregates.
In the other four regimes, we solve the Eq.(9)dliyefor &t), after having replacegt by the
left-hand side of the Eq.(3).

At the next step, the output signgl), is expanded into Fourier series as follows [43]:

y(t) =0, {3, (0, w)cospat }+J, "@, w)sinbat ), (10)

whereld,, J," are then-th harmonic real and imaginary part of the comm& respectively.
In our study, we use the fundamental shear mo@uliand G,” as the principle characteristic
of the fiber suspension viscoelasticity. These tjtias are related to the compliance through
the following expressions:

| - ‘J]_l

- 11
1 J1'2+J1"2 ( )

w_
In the plate-plate geometry used in our experimethis shear strain depends on the radial
coordinate of the geometry, therefore, we mustgoerfthe Mooney correction for the stress
amplitude,g,, and for the shear moduli. The relation betweenammplitude of the apparent
stress,g,, measured by a rheometer, and the amplitude ofktfan, ), measured at the
border of the rotating plate, takes the form [44]:

4 YR
0,= 3 j Joyozdyo (12)
YR %o

In the present paper, we consider the stress dleatrmode of the oscillatory shear. So, in
order to perform the Mooney correction, first, vadctilate the strain amplitude as function
of the non-corrected stresg with the help of the Eq. (10), then, we make gpoimial fit to

O versusy, dependence and finally we perform integration [@®)]. The shear moduli are
calculated using the Eq. (11) and subsequentlyectad by a multiplierg,/gp. All results
presented along this paper refer to the correatedttifies.

We shall now analyze our theoretical and experialergsults on the shear moduli of the
suspension as well as on the output signal waveform

4. Results and discussion
4.1. Shear moduli

Experimental dependencies of the shear mo@4liand G;” on the stress amplitudeyp, are
shown in Figs.2a,b for the excitation frequentylHz and for six values of the external
magnetic field,Ho. In all cases, both moduli increase with the ghowt the magnetic field
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intensity and decrease with the stress amplitudepdrticular, a short linear viscoelastic
plateau atop<1Pa is followed by a rapid decrease of the modhiii @ second quasi-plateau,
which is better distinguished for the loss modutusves. After this second quasi-plateau,
there is a second abrupt decrease of the modutheaend of which the storage modulus
shows the third final plateau after some local mimmn.
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3 b)

a) —%— 0 kA/m
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Fig.2. Experimental stress dependencies of thagtofa) and loss (b) moduli at the excitation feegpy of 1Hz

The first viscoelastic plateau, which appears dolythe magnetic fielddH>12.2 kA/m,
corresponds to the strain amplitudgs,as low as 16— 10°. At such strains, the upper plate
displacement during an oscillation cycle is as $@&l20-200 nm, i.e. much smaller than the
fiber's minor dimension — diametera24.9um. Thus, we cannot expect a homogenous
deformation of the aggregates, but rather a regeraent of fibers inside the aggregates
accompanied by their microscopic displacement anblyotheir elastic bending. The latter
could explain high values of the storage modulusvall amplitudes (more than 10 kPa at the
particle volume fraction of 5%). The large valudgh® loss modulus could come from the
non-affinity of the fiber displacement on microsmopcale, as pointed out by Klingenberg
[34]. The first decrease of the storage modulicieltd by a second quasi-plateau probably
corresponds to a gradual transition from microscog@imacroscopic scale deformation of the
suspension structure. At the end of this transittbe percolating aggregates are expected to
be strained uniformly at small but measurable anghetually, at the magnetic field intensity,
Hy=30.6 kA/m, the second quasi-plateau startggad.1 corresponding to the upper plate
displacement of 3@m, which is at least, five times the fiber diamef€his second quasi-
plateau is attributed to the second quasi-lineacoglastic regime governed only by
macroscopic deformations of the structure. Starfmogn this quasi-plateau, we can safely
apply our theory. For the better comparison withezments, we plot both experimental and
theoretical dependencie&:'(m), Gi"(ov) in Fig.3 for the magnetic field intensity
Hy=30.6kA/m and consider the stress ramge30 Pa corresponding to the beginning of the
second quasi-plateau.
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Fig.3. Comparison theory-experiments for the stokgsendence of the shear moduli at the magnetid fie
intensity,Hy=30.6 kA/m and frequendg1Hz. The fit parameter of the model is choseneg@dD.7. Solid lines
correspond to calculations and points — to experiaigesults.

The best correspondence between theory and expesngachieved for the values of the
fitting parameter equal tgg=0.7. This parameter is kept the same throughoutoat
simulations. Nevertheless, in the broad rangep@0.5<¢<1), the calculated shear moduli
differed not more than two times from the valugsoréed in Fig.3.

After a second viscoelastic quasi-plateau (whictemas fromg;=40 Pa tog;=100 Pa), a
more gradual decrease in shear moduli is causstdlfyr an abrupt increase in oscillation
amplitude of the aggregates and, second, by thpture starting from the critical stress equal
to 430Pa in our theory. The storage modulus isestilbp a more drastic decrease than the loss
modulus. The crossover of both moduli occurso@tl00 Pa and is well captured by our
model. In our calculations, we did not reproduce #imall local minimum of the storage
modulus atgp=350 Pa [Fig.3]. A small increase of the storage whagl after this local
minimum could occur because of the short-range ddgramic interactions and collisions
between aggregates, which would restrict the aggeemotion to smaller amplitudes. Note
that, apart from this local minimum, both experinanand theoretical curve&;' (),
G1"( ) are relatively smooth in the whole range of theled stresses, thus, the transitions
between the five aggregation regimes are not glelstinguishable in these curves.

However, the transition between the regime of csténg percolating and pivoting aggregates
[Fig.1c] to the regime of purely pivoting aggregaf€ig.1d] requires a special attention. At
00>140 Pa, the solution for the straput) becomes strongly asymmetric relative to the
equilibrium position,)=0, which does not have any physical sense. Theolaing clusters
are considered to be unstable and they are supposédeak in the middle, remaining
attached to one of the walls. So, they transforio pivoting aggregates, which, according to
our calculations, are stable in the broad rangappfied stress. Note that this instability is the
one, which defines the static yield stress thratgymaximum versus applied strain [45].
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It is worth mentioning that, in the limit of smalleformations,y <1, 8«1, our model

admits the following analytical solution for theesin moduli at the second viscoelastic
plateau:

NP N , Xif1-®) (wr)? » XiP(-®)

G =Gt G, =P o) 1wy O o o)
"o " " _ 2 sz(l—CD) wr q)

G"=(G") -, +(G) s =pl®uH 24y, (1=®) 1+ (wr)2+2¢¢7a/70w+/70w (14)

Here, the G1')«p and G1')p terms in the expression f@;'stand for the elastic contributions
of the pivoting/free and percolating aggregatespeetively. The loss modul@,” has only a
viscous contribution G1")+p, from pivoting/free chains (first two terms) and salvent
contribution, G1”)s=ow. The term2¢p(® /P, ),w arises from the general expression for the

viscous stress tensor of anisotropic particle susipes [46, 47] and corresponds to the
viscous dissipation due to eventual rotations efdhains around their major axis when they
are slightly shifted from the shear plane. Accogdia Egs. (13), (14), the resultant response
of the system of percolating and pivoting aggregdtas features of the Maxwell-like and
Kelvin-Voight behaviors. The former is provided Ipyoting (or free) chains with the
relaxation timer, and the latter comes from percolating aggregatbg;h contribution to the
storage modulus is frequency-independent. The teggufrequency behavior, predicted by
Egs. (13), (14) for the linear viscoelastic regineillustrated in Fig.4a. The low-frequency
plateau of the storage modulus (solid curve) is tuthe elastic response of the percolating
aggregates. At growing frequencies, pivoting chaging a supplementary contribution to the
storage modulus, which becomes frequency indepéndehe limit (wr) >1 and provides

the high-frequency plateau @;’. The loss modulus increases linearly wihin the low-
frequency limit. At high frequencies, pivoting chaicontribute to a decrease of the loss

modulus (G,");_, ~(wr)™), but the solvent contribution remains always éasing. So, the

theoretical N-shape of the frequency dependencéh@floss modulus is explained by a
competition between both contributions, such thatthe limit (wr)>1, the aggregate
contribution is shadowed by the solvent one and fnsdulus again increases linearly with
the frequency. The experimental data, obtained fiialatively low stressz=30Pa, are not in

a good correspondence with our model. A possitdseae for such discrepancy is that, at this
stress, a microscopic-scale rearrangement of fimsisle the aggregates is still important.
However, both in experiments and in theory, we finkdigh-frequency plateau of the storage
modulus and do not observe an important decreastheofoss modulus, as reported by
McLeish et al. [33]. Perhaps, this is because in their studg, abthors did not achieve the
frequencies high enough to produce significant auscresponse of the solvent. Since our
theory is more relevant for large oscillation amjaes, let us inspect now the frequency
dependence of the shear moduli at large stmes244 Pa [Fig.4b].
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Fig.4. Frequency dependence of the shear moduliarinear (a) and nonlinear (b) viscoelastic reggmThe
stress amplitude igp=30 Pa in the first case (a) and 244 Pa in thergkcase (b). In both cases, the magnetic
field intensity isHy=30.6 kA/m.

We see that our theory (curves denoted by “a” op Bb) predicts a similar behavior as the
one observed in experiments, however, the quargtagreement is worse than for the stress
dependence of the shear moduli. According to catmnis, at the given stres%=244 Pa, the
suspension develops the second aggregation regiragime of pivoting chains, within the
whole frequency range considered (0.054&0Hz). Since the percolating aggregates are
absent, we do not observe a low-frequency platésluecstorage modulus [Fig.4b]. In theory,
the latter increases asf at low frequencies and approaches a plateafEHz. Such
behavior of the storage modulus is relevant for Maxwell viscoelastic response, as
discussed above. In experiments;’ shows a weaker dependence at low frequencies

(G,'0 ") and the final plateau is shifted to lower frequerThe loss modulus also grows

monotonically with the frequency (as' in theory ande?”® in experiments) and does not
show any local minimum as the one predicted foedinviscoelastic regime. Apart from a
solvent contribution, a supplementary hydrodynacaiotribution from aggregates appears at
high stresses. Thus, the maximum of B¢ (f) curve might be suppressed by these
hydrodynamic terms, both increasing with the freguye Note finally that the loss modulus
appears to be larger than the storage modulusntitie@ whole frequency domain, that stands
for the liquid-like behavior of the fiber suspensiat the given stress amplitude and the given
magnetic field.

4.2. Supplementary characteristics of non-linear viscoelasticity

Another important characteristic of the LAOS resgwrof the fiber suspension is the
dependency of the stress amplitude on the straplitaie, shown in Fig.5 for the magnetic
field intensity Hi=30.6 kA/m and the frequendy1Hz. This dependency shows clearly a
strain softening behavior of the fiber suspensidth the progressive decrease in the slope. At
increasing stress, the oscillation amplitude ineesa and the suspension structure becomes
less rigid. First, the aggregates detach from thé#, when they are ruptured by the tensile
force exerted by the ambient liquid. This shoul@lak the strain softening observed. In the
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present case of the controlled stress (solid lime @oints in Fig.5), thexp()s)-curve shows a
power-law dependence at the strain amplituge8 and becomes quasi-linear jg¢5. We
observe a fairly good correspondence between tremyexperiments at the applied stress up
to 300 Pa. Above this value, our theory (solid ejrwunderestimates the strain amplitude and
predicts a stronger elastic response. Such diseegpaould come from the overestimation of
the length of chains subject to tensile hydrodymaiimice.
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Fig.5. Stress amplitudey, versus strain amplitudegg. Line stands for the theory, points — for experitse The
magnetic field intensity isl;=30.6 KA/m and the excitation frequencyf+dHz.

Useful information on the non-linear viscoelastsponse can be provided by the waveforms
and Fourier analysis of the output strain. In Figv@ present a set of the plots, including
strain waveforms, Lissajous plots and harmonic yamalof the strain waveforms, for the
frequencyf=1Hz, magnetic field intensity4,=30.6 kA/m and for the three values of the
applied stress amplitudep=127, 244 and 342 Pa. These values correspondrée first
aggregation regimes: regime of co-existing peraojptand pivoting aggregates (Fig.1c),
regime of pivoting chains (Fig.1d) and regime effnon-ruptured chains (Fig.1e).
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the excitation frequencf=1Hz, the magnetic field intensit;=30.6 kA/m and for the three values of the
amplitudeg, of the applied stress: 127 Pa (left column), 2d4rRiddle column) and 342 Pa (right column).

The strain waveforms show an important phase-shitft respect to the applied stress [first
row in Fig. 6]. This phase-shift increases withreasing stress, signifying a progressive
transition from solid-to-liquid-like behavior, whids consistent with the stress dependence of
the shear moduli [Figs.2, 3]. The measured wavedofsolid lines) are non-sinusoidal that
correspond to the nonlinear viscoelastic respofissiosuspension, and our theory (dashed
lines) reproduces these waveforms reasonably wédite that analysis of the output
waveforms can only be reliable at a low noise lereht a high signal-to-noise ratio. For the
three values of the applied stress shown in Fitp& signal-to-noise ratio is estimated as the
square of the signal amplitude —to noise amplitadi® and is found to be about*1@r 40 dB

in decibel units.

The viscoelastic non-linearity can also be viswian Lissajous plotsg(t) versus (t)
[second row of the Fig.6]. We should keep in mihdtithis analysis can only be efficient at
moderate-to-high levels of non-linearity. At theess amplitudeg=127 Pa, a near-oval
shape of the Lissajous plot is observed both inegrpents (solid curve) and in theory
(dashed curve). This shape indicates that, atdhsidered stress, we are still not far from the
linear viscoelastic regime. The viscoelastic sttep=127 Pa belongs to the end part of the
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viscoelastic quasi-plateau [Fig.3]. At higher séteshe Lissajous plots become more
compressed, their shape tends to a rounded-enghgedar one atr=342 Pa. Such a shape
could suggest a viscoplastic behavior of the susipanat growing strains, the stress remains
nearly constant until the structure yields and stress is rapidly released when the strain
direction is reversed. A similar explanation hasrbgiven by Parthasarathy and Klingenberg
[27] for the LAOS response of ER fluids, howevdre tshape of their Lissajous plots were
much noisier than the one reported in Fig.6. Noballfy, that we obtain a reasonable
correspondence between measured (solid lines) @odlated (dashed lines) Lissajous plots,
even though our theory underestimates the straplitude at high stresses (244 and 342Pa).

The non-linearity of the viscoelastic response larbetter quantified by the amplitude of the
higher harmonics of the strain signal. We have iadpFourier transform to both theoretical
and measureg(t)-signal following the Eq. (10) and reported thepéitnde of each harmonic

normalized by the first harmonic amplitude in Figo@ttom row of figures). The normalized

amplitudes of the higher harmonics were calculateging the following formula:
1/ 1/2

A =13, +(3,"?] 2/[(Jl')2+(Jl") ?|"". First, we see that the even harmonics are
generally much less important than the odd harnsoand they are attributed to a noise in the
processed signals. The smallness of even harmenjgsorts the fact that the viscoelastic
response of the suspension must be symmetric wipect to shear strain and shear rate
directions [48].This can also suggest the absericthe wall slip in the system, which
confirms the assumption #5 of the Section 3. Secthrdrelative amplitude of the harmonics
is generally a decreasing function of the harmamienber such that the9and higher
harmonics become indiscernible from noise.

A more detailed analysis of the viscoelastic nowdirity can be obtained by plotting the
stress-dependence of amplitudes of the secondhenthird harmonics of the output strain
(Fig.7). We plotted this graph for the stress ampkso>50 Pa, at which the ratio of th& 3
harmonic amplitude to noise amplitude is highemtii®. For the given stress range, the
experimental amplitudés of the 3 harmonic increases monotonically with the str@$ss
suggests an increase of the viscoelastic non-iigeanth the growth in the excitation
amplitude. In theory, the relative amplitude of 8f€harmonic is non-monotonic function of
the stress amplitude. However, within each aggregategime, the theoretical value A§
remains a growing function of the applied stress the transition to a next aggregation
regime is accompanied with a jumped decreaseédsin Note that both theoretical and
experimental values of the relative amplitude &f 81 harmonic does not exceed 12%, so the
eventual jumps i do not lead to visible jumps of the stress-stoipendence (Fig. 5). The
theoretical results oAz agree with experimental ones only for the aggiegatgimes of free
non-ruptured and free ruptured chairs>Z30 Pa). At lower stresses the theory fails to
reproduce correctly the values Af. Such discrepancy at low to moderate stress does n
contradict to a good agreement between theoredicdl experimental waveforms. The later
agreement comes from the fact that the theory pietlhe fundamental harmonic reasonably
well. So, the discrepancy in higher harmonics (Wwhace less important) does not influence a
lot a good correspondence between the output wawsefd~inally, we see in Fig. 7 that the



20

relative amplitude of the experimentdf darmonicA, does not exceed the noise level in the
whole range of the stresses, which is in agreemghtour theory.

0.125 . . . T
A

0.100 /

v experiment-2"d harmonic
o experiment—3"’ harmonic ||
—A—theory-3" harmonic

[9]

S

C

o

£

[

e

2

[32] 4
e)

C

& 0.075 4 A '/n/\_
2 N °

[aY} / ./A,.A A
2 ] £ 1
= A °

‘G 0.050 - A/ . _
8 £

{ ] : -
= °

S 0,025 ¢ o 4
% & °

o 4 °

2 V. v \ v? M

< 0000 =Y " wyv YVYVVV ' Vy V

©

T T L
0 100 200 300 400 500
Stress amplitude, a, Pa
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4.3. Discussion in view of existing models

As already mentioned, our theory bears some feanfr&cLeish’s string model of ER fluids
[33]. Recall that in their model, the coexistende percolated single chains with non-
percolated flexible chains has been supposed., First percolating chains were deformed
affinelly and extended by the shear along theis,aguch that the particles lost mechanical
contacts between them and the spacing betweerlparincreased with increasing strain. We
consider this assumption to be unrealistic because stacked together, the particles will not
separate until the chain is broken by an exterdmairfodynamic) force. It is more likely that
the particles form column structures that can Imlyeaxtended without loss of interparticle
contacts. Second, in McLeish’s model, pivoting osawere supposed to be flexible and
develop an infinite series of bending modes, easlo@ated with appropriate relaxation time.
In fiber suspension, the fibers composing the pigptand free chains are likely stacked
together by their lateral surfaces. So, these shai@ supposed to be stiffer and less compliant
to the bending compared to single chains of spakegarticles. Therefore, we assumed our
aggregates to be rigid, such that the suspensgponse was described by a single relaxation
time. Surprisingly, at large amplitudes, our simpiedel gave a reasonable correspondence
with experiments. At last, McLeisét al. [33] supposed a minor fractiog of the pivoting
chains, of the order of a few percent relativehte total quantity of the solid phase. In our
case of the magnetic fiber suspension, this fractias adjusted to a much higher value,
¢=70%, which allowed us to explain a high loss maduwbserved in experiments. Such big
guantity of pivoting chains seems to be too impurtddowever, apart from these chains,
bridging structures cross-linking two percolatinggeegates can exist and contribute to the
viscous response of the suspension. So, the fagwwould rather stand for the relative
guantity of the aggregates admitting non-affineiomgtincluding pivoting, free and bridging
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aggregates. Optical microscopy observations [Fdj.révealed a relatively large quantity of
these structures in fiber suspensions, compareslispensions of spherical particles. This
could explain an enhanced viscous response oftibeguspensions. Of course, the variety of
the intricate structures observed in fiber susmerssicould generate a large spectrum of
relaxation times, not accounted in our theory. Haveour single-relaxation time model is
the first necessary step to the understandingeohtimlinear viscoelastic response of magnetic
fiber suspensions. Note that at large oscillatiompl#udes, the motion of pivoting and
bridging aggregates can be restricted by the nemghndp aggregates, so that they could
progressively stick to each other and form thiakstérs with a reduced mobility. This could
cause irreversible changes of the suspension steuprovided that the Brownian motion is
absent. Nevertheless, our experiments with inangaand decreasing stress ramps did not
reveal a significant hysteresis of the shear moduiis indicates that the structure can be
efficiently reformed by the shear flow, at least time short time scale, or irreversible
transformations might have occurred at longer tinhaste finally that the chains of different
length are expected to oscillate out-of-phase ivelaio each other. So, the hydrodynamic
screening effects, not accounted in our theoryukshlbbe more significant than in the case of a
steady shear flow, for which the chains are comettléo be more or less parallel to each other
[12]. A detailed investigation into these pointdlwe conducted in future.

Klingenberg and coworkers have published severpkgszaon particle-level simulations of
oscillatory shear flow of ER fluids [26, 27, 34]inE et al. [49] have extended these
simulations to the 3D-case. The particle-particid particle-wall hydrodynamic interactions
were rigorously modeled, the electrostatic inteoast were considered in the point-dipole
limit and the hard-sphere repulsion was introdutedorevent particle overlap. At such
conditions, both percolating and pivoting aggregateere observed. Therefore, the
rheological behaviors obtained by simulations wessentially similar to the ones predicted
by our theory. The exactness brought by partickellesimulation is its unconditional
advantage over any semi-rigorous theory. Howeveth Ihard sphere repulsion hypothesis
and point-dipole approximation could significandlifect the final results. First, the particles
in aggregates are always in closed mechanical cprgach that attractive magnetic and
repulsive contact forces between them can balaack ether. From this point of view, it
seems reasonable to consider the aggregates asirrucm (as supposed in our theory) rather
than as an ensemble of separated particles, dtde#srge oscillation amplitudes when the
microscopic rearrangements inside aggregates playireor role. Second, the dipole
approximation can underestimate the cohesive dtresigaggregates and the critical stress
corresponding to their rupture. In our work, we tise Ginder's approach, which accounts
more rigorously for magnetic interactions. Finallyseems to be rather difficult to adapt the
particle-level simulations to the elongated pagtishape [19], and may be these simulations
are not worth the effort, providing that the simptedel gives satisfactory predictions of the
suspension behavior.

Another interesting approach explaining a high eusc response of ER fluids has been
proposed by Martin and co-workers. First, they eggpthe droplet model to oscillatory shear
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and predicted @/>-dependence of the loss modulus, consistent with txperiments [50].
However, the loss modulus was predicted to be narger than the storage modulus, even at
high electric fields, which contradicted to expegims. Furthermore, the energy minimum
principle employed in this model may only be apglier low shear states. To overcome this
obstacle, Martin and Anderson [51], Martin and @#in[25], Martin et al. [28] have
developed a chain model of ER fluids. They did sogjgest gap-spanning structures but
rather single straight chains, which length wasegoed by the balance between magnetic and
hydrodynamic forces. They also introduced a phemmhogical equation describing a
periodic process of chain aggregation and fragniemtaThe authors focused on chain
dynamics but did not explicitly present any rhedday) data. De Vicentet al. [32] have
applied this model to suspensions of spherical mtgparticles and found the values of the
loss modulus to be one order of magnitude lowen tthense of the storage modulus. We
decided to adapt the Martin’s model to our casth@fmagnetic fiber suspension and compare
it with our model. We consider free single chaink fibers and use a point-dipole
approximation for the magnetic forces acting betwieers. We apply the same Egs. (3), (9)
for the motion of chains and for the stress, witil and®,=1. The main difference between
our model and Martin’s model is that, in the Igttéee aggregates are not gap-spanning even
at low shear states and, instead of being of fieedth during an oscillating cycle as in our
model, their aspect ratio varies during the odiilia cycle according to the aggregation-
fragmentation equation, as follows:

. _k 2
ng[l- = } (15)

where pmax iS the maximum aspect ratio defined by the balantemagnetic and
hydrodynamic forces and O g, H?/17, is the aggregation rate constant determined to a

multiplier ko: k =k,t,H?/n,. Since in all above equations, the aspect ratiasgciated to

the factor Q = p®/In(2p), it is more convenient to write the last equatiorterms of this
factor. Neglecting the variation of the logarithnteéem, the Eq. (15) reads:

Q= 21{1—&} , (16)
Qmax
3 H? | 1 2tand

2
,6’y20andQs( b )
2acosd

8( /),y | tand 2+ y, 1-o)]

b 2
( j , otherwise
2acosd

(17)

where| and a are the fiber semi-length and radius, respectjvblys the width of the
rheometer gap. The maximum chain aspect ratiog@ofQ) is given by the Eq. (17), which
postulates that the chain length is either bourmethe equilibrium length corresponding to
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the equality of the hydrodynamic and magnetic fer@gper expression) or by the width of
the rheometer gaj, (lower expression). Note that in their model, Magnd Odinek [25] did
not take into account that the chain length mayr@wee the rheometer gap. So,&t<0,

the longitudinal hydrodynamic force is no more tlenbut compressive, and the authors
considered the maximum chain length to be infirdie y<0. We think that such

approximation could seriously overestimate the rcHangth, especially at low frequencies
and strains, therefore, we include the limitatibthe chain length by the rheometer gap.

The Egs. (3)-(5), (9), (16), (17) (Eg. (16) repkés. (8)) form a closed system of equations
for the modified Martin’s model and are solved ftine sinusoidal stress input,
o(t) =o,cost ) and under initial conditions§0)=0, Q(0)=500. The free paramet&s is
varied in the range of 1®ko<10®. Using this aggregation/fragmentation model, weeha
calculated the frequency dependence of the fundeingmear moduli atp=244 Pa and found
the best fit to the experimental resultskgt0.02. In Fig. 4b, we compare the results of the
modified Martin’s model (curves denoted by “b”) tithe results of our model (curves
denoted by “a’). We observe that, in the frequenaange, f<lHz, the
aggregation/fragmentation model fits better theeexpental results than our model. In fact,
this model allows existence of particle chains wita length higher than the one defined by
the equilibrium of hydrodynamic and magnetic fordegen though these chains have a short
lifetime compared to the oscillation period, thentribute significantly to both storage and
loss moduli. Furthermore, the suspension viscdelassponse is described by, at least, two
time scales: (i) the above considered hydrodynaetexation timer and (ii) the characteristic
time of aggregation/fragmentation=1/k. Such two relaxation time model gives a power-law

frequency response of the shear moduli at low feeqies:G,' 0 «® and G, " 0 o*°.

The difference in viscoelastic response obtainetidiin models [Fig. 4b] arises likely due to
different microstructures supposed by these modiele Martin’s model only free particle
chains, that may break and grow periodically, avas@ered, while our model imposes
pivoting chains of a fixed length attached by ohé&sends to a rheometer wall. In reality, the
suspension microstructure is more complex [Fig.dy combines the features of both model
structures. In a real cross-linked network, somnee fosranches simulated by our model could
exist. On the other hand, under oscillatory sheéferent branches of the network may
overlap each other and may periodically break ahakm. The kinetics of such process could
be somewhat similar to the aggregation / fragmentdtinetics described by Martin’s model.
In perspective, we are planning to develop a nékwaodel of the suspension microstructure
and introduce an aggregation-fragmentation mechaniaking into account eventual
collisions and overlapping of the neighboring breas Anyway, the results of the present
work will be helpful for this future investigation.

5. Concluding remarks

In this work, we have studied a LAOS response miagnetic fiber suspension in the presence
of a uniform magnetic field applied perpendiculadythe direction of shear. The experiments
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and simulations were carried out in a controllegésst mode. The main results of this study
can be summarized as follows:

1. In experiments, the fundamental shear moduleldped a staircase-like stress dependence
with, at least, two viscoelastic quasi-plateausofeéd by a gradual decrease with the stress.
The first plateau was observed at very small deftions, 10'<)¢<10° and attributed to the
linear viscoelastic regime corresponding to shoales rearrangement of particles inside the
aggregates. The second quasi-plateau occurredrgar ldeformations, 0.1g<1, and was
associated with the onset of purely macroscopiordeition of aggregates. An abrupt
decrease of the moduli after the second quasiglaias explained by a significant increase
in amplitudes of oscillations of aggregates as wsllby their rupture by the hydrodynamic
tensile force exerted by the solvent. Both modwdrevof the same order of magnitude at the
level of the second viscoelastic plateau, whiledtwwage modulus became much lower than
the loss modulus at high oscillation amplitudesstlya a local minimum was observed in the
stress dependence of the storage modulus at liggses, which seems to be reproducible and
unexpected behavior.

2. For high enough stress, the experimental frequedependence of the shear moduli
followed power-law behavior at low frequency lini®,' 0 «**, G," 0 &™), while at high
frequencies, the storage modulus developed a plaiéee power-law exponents were lower
than those typical for a single relaxation time Ma fluid (G,'0 «/, G," 0 «'), suggesting

existence of a relaxation time spectrum. This spaticould be caused by a polydispersity of
the aggregates or by complex cross-linking strectirthe fiber suspension.

3. The observed rheological behaviors are tightiyrfal to the suspension microstructure,
which evolves with the growing oscillation amplisud We suggested five simple
microstructures replacing each other with the gngyatress. A coexistence of percolating and
pivoting aggregates at low stresses allowed ugptam a relatively high viscous response of
the suspension. To describe the experimental sgswi constructed a theoretical model
allowing calculations of macroscopic rheologicabgerties from the behavior of the proposed
microstructures. The model contains a single fiar@ameter - the fractiogof pivoting chains

in the suspension. Involving a single time hydragwic relaxation, this model fits the
experimental stress dependence of the shear nredigionably well and reproduces the shape
of the measured strain waveforms and of the ss&as: loops (Lissajous plots). The
proposed model also gives a qualitative correspuceléor the frequency dependence of the
shear moduli, however, the quantitative comparigetween theory and experiments is less
obvious.

4. The frequency behavior can be better reprodbgea modified Martin’s model, in which
only free non-interacting particle chains are cdesed and their periodic aggregation and
fragmentation is taken into account. However, ie firesent form, this model neglects
important behaviors of the suspension structure raag be applied safely only for very
diluted suspensions. The real structure of ther fdaspension should combine the features
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described by both models — existence of percolatatgork with free branches from the one
hand (our model) and aggregation/fragmentationtrafcgire elements from the other hand
(Martin’s model). Therefore, a synthesis of bothdels, together with the consideration of a
complex cross-linked network, would significantijprove the theoretical description of the
viscoelastic response of magnetic suspensions., Hieeepolymer dynamics theories [52]
could serve as a solid base.

In our study, we did not account for solid frictidmetween fibers in aggregates. Friction
between fibers could play an important role in thmicroscopic rearrangement at small
amplitude oscillatory shear and could significarhhance the suspension shear moduli at the
first viscoelastic plateau. In particular, Lopezpea et al. [53] have recently explained high
values of MR fluid loss modulus by a solid frictitetween particles at their microscopic
displacements relative to each other. Howeveramgel amplitudes, microscopic motions of
particles and, consequently, interparticle frictaoe expected to play a non-negligible role but
hydrodynamic and magnetic interactions are expectde predominant. In order to estimate
correctly the contribution of friction into the siremoduli, we must be able to determine the
friction coefficient. So, the measurements of tiumntity are required for the future progress
in this direction.
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Appendix. Hydrodynamic tor que acting on pivoting chains

Consider a long chain attached by its lower enthéowall and having a free upper end, as
depicted in Fig. 1h. This chain is subject to aparshear flow, such that the velocity profile
of the suspending fluid can be presented as the ;fuanconstant velocity. in the chain
center of mass C and a linear velocity profile:

V=V, +pzcosfd=yL cod+yz cob, (A.1)

with z — longitudinal coordinate along the chain majasdthe origin is placed into the center
of mass C of the chain). The constant veloegitycreatesjnter alia, a hydrodynamic drag
force F, perpendicular to the aggregate major axis. Thisef@reates, in its term, a torque

F.L, which tends to tilt the aggregate in the direttaf shear. From the other hand, the
linear velocity profile also exert a torque on dhain, Ti.c,. So, the resultant torque is

T, =FL+T. (A.2)
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The expressions for the drag forEe and the torqué@yc are given by the slender body theory
[37]:

1+0.30%
F =8mULe—————, A3
o =8mle——— (A.3)

8 L3 1+ 0.6%&

T . == Q , A4
hc 37770 1- 05 (A.4)

whereU = (ycos -6 L is the normal to the chain component of the sdlvetocity in the

coordinate frame of the chainQ =ycos -6 is the solvent angular velocity in the
coordinate frame of the chairg =1/In(2p). Substituting the Egs. (A.3) and (A.4) into
Eq.(A.2), we obtain the final expression for thedilopdynamic torque acting on pivoting
chains  (left-hand side of the Eg. (1)) with a nucar factor
f”=(1+0.64)/(1- 0.3 } B (¥ 0.307 )/@ Q5.

In contrast to pivoting chains, totally free chajrgy. 1e,f] experience a zero hydrodynamic
drug forceF, and are subjected only to the tordue. So, the hydrodynamic torque acting on

free chains is defined by the same expressiont{iitl side of the Eq. (1)), in which the
numerical factorf ” is equal tof ” = (1+0.64¢ ) /(- 0.5 .
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