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Diffusion limit for a stochastic kinetic problem

A. Debussche∗and J. Vovelle†
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Abstract

We study the limit of a kinetic evolution equation involving a small

parameter and perturbed by a smooth random term which also involves

the small parameter. Generalizing the classical method of perturbed test

functions, we show the convergence to the solution of a stochastic diffusion

equation.

Keywords: Diffusion limit, kinetic equations, stochastic partial differential
equations, perturbed test functions.
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1 Introduction

Our aim in this work is to develop new tools to study the limit of kinetic
equations to fluid models in the presence of randomness. Without noise, this is
a thoroughly studied field in the literature. Indeed, kinetic models with small
parameters appear in various situations and it is important to understand the
limiting equations which are in general much easier to simulate numerically.
In this article, we consider the following model problem

∂tf
ε +

1

ε
a(v) · ∇xf

ε =
1

ε2
Lf ε +

1

ε
f εmε in R

+
t × T

d
x × Vv, (1)

with initial condition
f ε(0) = f ε

0 in T
d
x × Vv, (2)

where L is a linear operator (see (3) below) andmε a random process depending
on (t, x) ∈ R+ × Td (see Section 2.2). We will study the behavior in the limit
ε→ 0 of its solution f ε.

In the deterministic case mε = 0, such a problem occurs in various physical sit-
uations: we refer to [DGP00] and references therein. The unknown f ε(t, x, v) is
interpreted as a distribution function of particles, having position x and degrees
of freedom v at time t. The variable v belongs to a measure space (V, µ) where
µ is a probability measure. The actual velocity is a(v), where a ∈ L∞(V ;Rd).
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The operator L expresses the particle interactions. Here, we consider the most
basic interaction operator, given by

Lf =

∫

V

fdµ− f, f ∈ L1(V, µ). (3)

Note that L is dissipative since

−

∫

V

Lf · fdµ = ‖Lf‖2L2(V,µ), f ∈ L2(V, µ). (4)

In the absence of randomness, the density ρε =
∫
V
f εdµ converges to the solution

of the linear parabolic equation (see section 2.3 for a precise statement):

∂tρ− div(K∇ρ) = 0 in R
+
t × T

d,

where

K :=

∫

V

a(v)⊗ a(v)dµ(v) (5)

is assumed to be positive definite. We thus have a diffusion limit in the partial
differential equation (PDE) sense.

When a random term with the scaling considered here is added to a differen-
tial equation, it is classical that, at the limit ε → 0, a stochastic differential
equation with time white noise is obtained. This is also called a diffusion limit
in the probabilistic language, since the solution of such a stochastic differential
equation is generally called a diffusion. Such convergence has been proved ini-
tially by Khasminskii [Has66a, Has66b] and then, using the martingale approach
and perturbed test functions, in the classical article [PSV77] (see also [EK86],
[FGPS07], [Kus84]).

The goal of the present article is twofold. First, we generalize the perturbed
test function method to the context of a PDE and develop some tools for that.
We believe that they will be of interest for future articles dealing with more
complex PDEs. Second, we simultaneously take the diffusion limit in the PDE
and in the probabilistic sense. This is certainly relevant in a situation where
a noise with a correlation in time of the same order as a typical length of the
deterministic mechanism is taken. Our main result states that under some
assumptions on the random term m, in particular that it satisfies some mixing
properties, the density ρε =

∫
V f

εdµ converges to the solution of the stochastic
partial differential equation

dρ = div(K∇ρ)dt+ ρ ◦Q1/2dW (t), in R
+
t × T

d,

where K is as above, W is a Wiener process in L2(Td) and the covariance
operator Q can be written in terms of m. As is usual in the context of diffusion
limit, the stochastic equation involves a Stratonovitch product.

As already mentioned, we use the concept of solution in the martingale sense.
This means that the distribution of the process satisfies an equation written in
terms of the generator (see section 3.2 for instance). This generator acts on test
functions and the perturbed test function method is a clever way to choose the
test functions such that one can identify the generator of the limiting equation.
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Instead of expanding the solution of the random PDE f ε as is done in a Hilbert
development in the PDE theory, we work on the test functions acting on the
distributions of the solutions.

In section 2, we set some notations, describe precisely the random driving term,
recall the deterministic result and finally state our main result. Section 3 studies
the kinetic equation for ε fixed. In section 4, we build the correctors involved in
the perturbed test function method and identify the limit generator. Finally, in
section 5, we prove our result. We first show a uniform bound on the L2 norm
of the solutions, prove tightness of the distributions of the solutions and pass to
the limit in the martingale formulation.

We are not aware of any result on probabilistic diffusion limit using perturbed
test functions in the context of PDE, but the recent work [dBG11] (in a context
of nonlinear Schrödinger equations) and [PP03] (where the underlying PDE
is parabolic and the limit [ε → 0] associated to homogenization effects). A
diffusion limit is obtained for the nonlinear Schrödinger equation in [Mar06],
[dBD10], [DT10] but there the driving noise is one dimensional and the solution
of the PDE depends continuously on the noise so that in this case an easier
argument can be used. Eventually, note that a method of perturbed test func-
tion has also been introduced in the context of viscosity solutions by Evans in
[Eva89]. Actually, in the case m ≡ 0, i.e. for the deterministic version of (1),
the method of [Eva89] allows to obtain the diffusive (in the PDE sense) limit
[ε→ 0] of (1) when the velocity set V is finite.

2 Preliminary and main result

2.1 Notations

We work with PDEs on the torus Td, this means that the space variable x ∈
[0, 1]d and periodic boundary conditions are considered. The variable v belongs
to a measure space (V, µ) where µ is a probability measure. We shall write for
simplicity L2

x,v instead of L2(Td×V, dx⊗dµ), its scalar product being denoted by

(·, ·). We use the same notation for the scalar product of L2(Td); note that this
is consistent since µ(V ) = 1. Similarly, we denote by ‖u‖L2 the norm (u, u)1/2,
whether u ∈ L2

x,v or L2(Td). We use the Sobolev spaces on the torus Hγ(Td).

For γ ∈ N, they consist of periodic functions which are in L2(Td) as well as their
derivatives up to order γ. For general γ ≥ 0, they are easily defined by Fourier
series for instance. For γ < 0, Hγ(Td) is the dual of H−γ(Td). Classically,
for γ1 > γ2, the injection of Hγ1(Td) in Hγ2(Td) is compact. We use also
L∞(Td) and W 1,∞(Td), the subspace of L∞(Td) of functions with derivatives
in L∞(Td). Finally, L2(V ;H1(Td)) is the space of functions f of v and x such
that all derivatives with respect to x are in L2(Td) and the square of the norm

‖f‖2L2(H1) :=

∫

V

‖f‖2L2 +

d∑

i=1

‖∂if‖
2
L2dµ

is finite.
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2.2 The driving random term

The random term mε has the scaling

mε(t, x) = m

(
t

ε2
, x

)
,

where m is a stationary process on a probability space (Ω,F ,P) and is adapted
to a filtration (Ft)t∈R. Note that mε is adapted to the filtration (Fε

t )t∈R, with
Fε

t := Fε−2t, t ∈ R.

Our basic assumption is that, considered as a random process with values in a
space of spatially dependent functions, m is a stationary homogeneous Markov
process taking values in a subset E ofW 1,∞(Td). We assume that m is stochas-
tically continuous. Note that m is supposed not to depend on the variable v.
The law ν of m(t) is supposed to be centered:

Em(t) =

∫

E

ndν(n) = 0. (6)

In fact, we also assume that m is uniformly bounded in W 1,∞(Td) so that E is
included in a ball of W 1,∞(Td). We denote by (Pt)t≥0 a transition semigroup
on E associated to m and by M its infinitesimal generator.

As is usual in the context of diffusion limit, we use the notion of solution of the
martingale problem and need mixing properties on m. We assume that there is
a subset DM of Cb(E), the space of bounded continuous functions on E, such
that, for every ψ ∈ DM , Mψ is well defined and

ψ(m(t))−

∫ t

0

Mψ(m(s))ds

is a continuous and integrable martingale. Moreover, we suppose that m is
ergodic and satisfies some mixing properties in the sense that there exists a
subspace PM of Cb(E) such that for any θ ∈ PM the Poisson equation

Mϕ = θ −

∫

E

θ(n)dν(n) (7)

has a unique solution ϕ ∈ DM satisfying

∫

E

ϕdν = 0. When θ satisfies

∫

E

θdν = 0, (8)

we denote by M−1θ ∈ DM this solution and assume that it is given by:

M−1θ(n) = −

∫ ∞

0

Ptθ(n)dt.

In particular, we suppose that the above integral is well defined. It implies that

lim
t→+∞

Ptθ(n) = 0, ∀n ∈ E. (9)

We need that PM contains sufficiently many functions. In particular, we assume
that for each x ∈ Td, the evaluation function ψx defined by ψx(n) = n(x), n ∈
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E, is in PM . Also, we assume that, for any f, g ∈ L2
x,v, the function ψf,g :

n 7→ (f, ng) is in PM and we define M−1I from E into W 1,∞(Td) by

(f,M−1I(n)g) :=M−1ψf,g(n), ∀f, g ∈ L2
x,v. (10)

We need thatM−1I takes values in a ball ofW 1,∞(Td) and take C∗ large enough
so that

‖n‖W 1,∞(Td) ≤ C∗, ‖M−1I(n)‖W 1,∞(Td) ≤ C∗, (11)

for all n ∈ E. It is natural to require the following compatibility assumption,
which would follow from continuity properties of M−1:

M−1ψx(n) =M−1I(n)(x), ∀n ∈ E, x ∈ T
d. (12)

Note that by (6), ψf,g and ψx satisfy the centering condition (8). Note also
that, by (10) and (12), we have, taking g = 1,

∫

Td

f(x)M−1ψx(n)dx =M−1ψf,1(n). (13)

Eventually, we will also assume that for any f, g ∈ L2
x,v and for x ∈ Td, the

functions
Ψf,g : n 7→ (f, nM−1I(n)g), M−1ψf,1, M−1ψx

are in PM .

To describe the limit equation, we remark that since m(0) has law ν,

−

∫

E

ψy(n)M
−1ψx(n)dν(n) = −E

(
ψy(m(0))M−1ψx(m(0))

)
(14)

= E

(
ψy(m(0))

∫ ∞

0

Ptψx(m(0))dt

)
(15)

= E

(
ψy(m(0))

∫ ∞

0

ψx(m(t))dt

)
(16)

= E

(
m(0)(y)

∫ ∞

0

m(t)(x)dt

)
, (17)

where we have used the Markov property in the identity (15)-(16). We define
k ∈ L∞(Td × Td) by the formula

k(x, y) = E

∫

R

m(0)(y)m(t)(x)dt, x, y ∈ T
d.

Let F ∈ L∞(Td) be the trace

F (x) = k(x, x) = E

∫

R

m(0)(x)m(t)(x)dt, x ∈ T
d.

Note that, m being stationary,

k(x, y) = E

(∫ ∞

0

m(0)(y)m(t)(x)dt

)
+ E

(∫ 0

−∞

m(0)(y)m(t)(x)dt

)

= E

(∫ ∞

0

m(0)(y)m(t)(x)dt

)
+ E

(∫ 0

−∞

m(−t)(y)m(0)(x)dt

)

= E

(
m(0)(y)

∫ ∞

0

m(t)(x)dt

)
+ E

(
m(0)(x)

∫ ∞

0

m(t)(y)dt

)
, (18)
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so that k is symmetric. Let Q be the linear operator on L2(Td) associated to
the kernel k:

Qf(x) =

∫

Td

k(x, y)f(y)dy.

Lemma 1. The operator Q is self-adjoint, compact and non-negative: (Qf, f) ≥
0 for all f ∈ L2(Td).

Proof: Q is self-adjoint and compact since k is symmetric and bounded. To
prove that (Qf, f) ≥ 0, we will need the following fact: if ψ ∈ PM satisfies (8),
then

lim
T→+∞

E|PTψ(m(0))| = 0. (19)

Indeed

E|PTψ(m(0))| =

∫

E

|PTψ(n)|dν(n) and |PTψ(n)| ≤ ‖ψ‖Cb(E),

whence (19) by the mixing property (9) and by the dominated convergence
Theorem. In particular, if ψ ∈ PM satisfies (8) and if, furthermore, M−1ψ ∈
PM , then

Ptψ = PtMM−1ψ =
d

dt
PtM

−1ψ,

hence

E

∣∣∣∣
∫ ∞

T

Ptψ(m(0))

∣∣∣∣ = E|PTM
−1ψ(m(0))| → 0 (20)

when T → +∞. For simplicity, let us denote by ψf the function ψf,1. By (13),
(14), (18) and (20), we have

(Qf, f) = −2E
[
ψf (m(0))M−1ψf (m(0))

]

= 2E

[
ψf (m(0))

∫ T

0

Ptψf (m(0))dt

]
+ o(1), (21)

when T → +∞. On the other hand, for T > 0, we compute

1

T
E

∣∣∣∣∣

∫ T

0

ψf (m(t))dt

∣∣∣∣∣

2

=
1

T

∫ T

0

∫ T

0

E[ψf (m(t)))ψf (m(τ))]dtdτ (22)

=
2

T

∫ T

0

∫ t

0

E[ψf (m(t))ψf (m(τ))]dtdτ (23)

=
2

T

∫ T

0

∫ t

0

E[ψf (m(t− τ))ψf (m(0))]dtdτ (24)

=
2

T

∫ T

0

∫ t

0

E[ψf (m(τ))ψf (m(0))]dtdτ

=
2

T

∫ T

0

(T − τ)E[ψf (m(τ))ψf (m(0))]dτ

= 2

∫ T

0

E[ψf (m(τ))ψf (m(0))] + rT

= 2E

[
ψf (m(0))

∫ T

0

Ptψf (m(0))

]
+ rT , (25)
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where we have use the homogeneity of m(t) in (23)-(24). The remainder rT
satisfies

rT = −2E

(
ψf (m(0))

1

T

∫ T

0

τPτψf (m(0))dτ

)
.

Since ψf ∈ PM , Pτψf = d
dτ PτM

−1ψf : this gives

rT = −2E

(
ψf (m(0))

[
PTM

−1ψf (m(0))−
1

T

∫ T

0

Pτψf (m(0))dτ

])
.

By (19), we obtain rT = o(1). By (21), (Qf, f) is the limit of the left-hand side
of (22), which is non-negative, hence (Qf, f) ≥ 0.

As a result of Lemma 1, we can define the square root Q1/2. Note that Q1/2 is
Hilbert-Schmidt on L2(Td) and that, denoting by ‖Q1/2‖L2

its Hilbert-Schmidt
norm, we have

‖Q1/2‖2L2
= Tr Q =

∫

Td

k(x, x)dx.

We will not analyze here in detail which kind of processes satisfies our assump-
tions. The requirement (11) that m and M−1m are a.s. bounded in W∞(Td)
are quite strong. An example of process we may consider is

m(t) =
∑

j∈N

mj(t)ηj

with ηj ∈ W 1,∞(Td), ∑

j∈N

‖ηj‖W 1,∞(Td) <∞,

where the processes (mj)j∈N are independent real valued centered stationary,
satisfying the bound

|mj(t)| ≤ C, a.s., t ∈ R,

for a given C > 0. We are then reduced to analysis on a product space. The
invariant measure of m is then easily constructed from the invariant measures
of the mj ’s. Also, the Poisson equation can be solved provided each Poisson
equation associated to mj can be solved. This can easily be seen by working
first on functions ψ depending only on a finite number of j.
The precise description of the sets DM and PM depends on the specific pro-
cesses mj , j ∈ N. For instance, if mj are Poisson processes taking values in
finite sets Sj , then DM and PM can be taken as the set of bounded functions on∏

i∈N
Sj . More general Poisson processes could be considered (see [FGPS07]).

Actually, the hypothesis (11) can be slightly relaxed. The boundedness assump-
tion is used two times. First, in the proof of (30) and (31), but there it would be
sufficient to know that m has finite exponential moments. It is used in a more
essential way in Proposition 10. There, we need that the square of the norm
of m and M−1m have some exponential moments. However, (under suitable
assumptions on the variance of the processes for example), we may consider
driving random terms given by Gaussian processes, or more generally diffusion
processes.

7



2.3 The deterministic equation

There are also some structure hypotheses on the first and second moments of
µ: we assume ∫

V

a(v)dµ(v) = 0, (26)

and suppose that the following symmetric matrix is definite positive:

K :=

∫

V

a(v) ⊗ a(v)dµ(v) > 0. (27)

An example of (V, µ, a) satisfying the hypotheses above is given by V = Sd−1

(the unit sphere of Rd) with µ = d − 1-dimensional Hausdorff measure and
a(v) = v.

In the deterministic case m = 0, the limit problem when ε → 0 is a diffusion
equation, as asserted in the following theorem.

Theorem 2 (Diffusion Limit in the deterministic case). Suppose m ≡ 0. As-
sume that (f ε

0 ) is bounded in L2
x,v and that

ρ0,ε :=

∫

V

f ε
0dµ→ ρ0 in H−1(Td).

Assume (26)-(27). Then the density ρε :=
∫
V
f εdµ converges in weak-L2

t,x to
the solution ρ to the diffusion equation

∂tρ− div(K∇ρ) = 0 in R
+
t × T

d,

with initial condition: ρ(0) = ρ0 in Td.

This result is a contained is [DGP00] where a more general diffusive limit is
analyzed. Note that, actually, strong convergence of (ρε) can be proved by
using compensated compactness, see [DGP00] also.

2.4 Main result

In our context, the limit of the Problem (1)-(2) is a stochastic diffusion equation.

Theorem 3 (Diffusion Limit in the stochastic case). Assume that (f ε
0 ) is

bounded in L2
x,v and that

ρ0,ε :=

∫

V

f ε
0dµ → ρ0 in L2(Td).

Assume (6)-(11)-(26)-(27). Then, for all η > 0, the density ρε :=
∫
V f

εdµ
converges in law on C([0, T ];H−η) to the solution ρ to the stochastic diffusion
equation:

dρ = div(K∇ρ)dt+
1

2
Fρ+ ρQ1/2dW (t), in R

+
t × T

d, (28)

with initial condition: ρ(0) = ρ0 in Td. In (28), W is a cylindrical Wiener
process on L2(Td).
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It is not difficult to see that formally, (28) is the Itô form of the Stratonovitch
equation

dρ = div(K∇ρ)dt+ ρ ◦Q1/2dW (t), in R
+
t × T

d. (29)

Theorem 3 remains true in the slightly more general situation where the coeffi-
cient in factor of the noise in (1) is in the form 1

εσ(f)m
ε with

σ(f) = σ̄(ρ) + f, ρ :=

∫

V

fdµ,

where σ̄ is a smooth, sublinear function.

3 Resolution of the kinetic Cauchy Problem

3.1 Pathwise solutions

Problem (1)-(2) is linear and solved for instance as follows. Let A := a(v) · ∇x

denote the unbounded, skew-adjoint operator on L2
x,v with domain

D(A) := {f ∈ L2
x,v; a(v) · ∇xf ∈ L2

x,v}.

Since A is closed and densely defined, by the Hille-Yosida Theorem [CH98], it
defines a unitary group etA on L2

x,v.

Theorem 4. Assume (11). Then, for any f ε
0 ∈ L2

x,v and T > 0, there exists
a unique solution f ε P-a.s. in C([0, T ];L2

x,v) of (1)-(2) on [0, T ], in the sense
that,

f ε(t) = e−
t
εAf ε

0 +

∫ t

0

e−
t−s
ε A

(
1

ε2
Lf ε(s) + f ε(s)mε(s)

)
ds,

P-a.s., for all t ∈ [0, T ]. Besides, if f ε
0 ∈ L2(V ;H1(Td)), then, P-a.s. f ε ∈

C1([0, T ];L2
x,v) ∩ C([0, T ];L

2(V ;H1(Td))).

The proof of this result is not difficult and left to the reader. The last statement
is easily obtained since A commutes with derivatives with respect to x.

Energy estimates can be obtained. Indeed, for smooth integrable solutions f ε

to (1)-(2), we have the a priori estimate

d

dt
‖f ε(t)‖2L2 −

2

ε2
(Lf ε, f ε) = −

2

ε
(a(v) · ∇f ε, f ε) +

2

ε
(f εmε, f ε)

=
2

ε
(f εmε, f ε).

By (4) and (11), this gives the bound

‖f ε(t)‖2L2 +
2

ε2

∫ t

0

‖Lf ε(s)‖2L2ds ≤ ‖f ε
0‖

2
L2 +

2C∗

ε

∫ t

0

‖f ε(s)‖2L2
x,v
ds,

hence, by Gronwall’s Lemma, the following bound (depending on ε):

‖f ε(t)‖2L2 ≤ e
2C∗

ε t‖f ε
0‖

2
L2 . (30)

Similarly, we have

‖f ε(t)‖2L2(H1) ≤ e
4C∗

ε t‖f ε
0‖

2
L2(H1). (31)
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It is sufficient to assume f ε
0 ∈ L2(V ;H1(Td)) (resp. f ε

0 ∈ L2(V ;H2(Td))) to
prove (30) (resp. (31)). By density, the inequality holds true for f ε

0 ∈ L2
x,v

(resp. f ε
0 ∈ L2(V ;H1(Td))). In particular, ‖f ε(t)‖L2 is uniformly bounded in

ω ∈ Ω if f ε
0 ∈ L2

x,v and ‖f ε(t)‖L2(H1) also if f ε
0 ∈ L2(V ;H1(Td)).

3.2 Generator

The process f ε is not Markov but the couple (f ε,mε) is. Its infinitesimal gen-
erator is given by :

L
εϕ =

1

ε
LA∗ϕ+

1

ε2
LL∗ϕ, (32)

with 




LA∗ϕ(f, n) = −(Af,Dϕ(f, n)) + (fn,Dϕ(f, n)),

LL∗ϕ(f, n) = (Lf,Dϕ(f, n)) +Mϕ(f, n).

These are differential operators with respect to the variables f ∈ L2
x,v, n ∈ E.

Here and in the following, D denotes differentiation with respect to f and we
identify the differential with the gradient. For a C2 function on L2

x,v, we also
use the second differential D2ϕ of a function ϕ, it is a bilinear form and we
sometimes identify it with a bilinear operator on L2

x,v, by the formula:

D2ϕ(f) · (h, k) = (D2ϕ(f)h, k).

Let us define a set of test functions for the martingale problem associated to
the generator L ε.

Definition 5. We say that Ψ is a good test function if

• Ψ : L2(V ;H1(Td)) × E → R, (f,m) 7→ Ψ(f,m) is differentiable with
respect to f

• (f,m) 7→ DΨ(f,m) is continuous from L2(V ;H1(Td)) × E to L2
x,v and

maps bounded sets onto bounded sets

• (f,m) 7→MΨ(f,m) is continuous from L2(V ;H1(Td))×E to R and maps
bounded sets onto bounded sets of R

• for any f ∈ L2(V ;H1(Td)), Ψ(f, ·) ∈ DM .

We have the following result.

Proposition 6. Let Ψ be a good test function. Let fε
0 ∈ L2(V ;H1(Td)) and let

f ε be the solution to Problem (1)-(2). Then

M ε
Ψ(t) := Ψ(f ε(t),mε(t))−

∫ t

0

L
εΨ(f ε(s),mε(s))ds

is a continuous and integrable (Fε
t ) martingale with quadratic variation

〈M ε
Ψ,M

ε
Ψ〉(t) =

∫ t

0

(L ε|Ψ|2 − 2ΨL
εΨ)(f ε(s),mε(s))ds. (33)
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Proof: Let s, t ≥ 0 and let s = t1 < · · · < tn = t be a subdivision of [s, t] such
that maxi |ti+1 − ti| = δ. We have for any Fε

s measurable and bounded g

E

((
Ψ(f ε(t),mε(t)) −Ψ(f ε(s),mε(s))

)
g

)

= E

((∫ t

s

L
εΨ(f ε(σ),mε(σ))dσ

)
g

)
+A+B,

With

A =

n−1∑

i=1

E

((
Ψ(f ε(ti+1),m

ε(ti+1))−Ψ(f ε(ti),m
ε(ti+1))

−

∫ ti+1

ti

(−
1

ε
Af ε(σ) +

1

ε2
Lf ε(σ) +

1

ε
f ε(σ)mε(σ), DΨ(f ε(σ),mε(σ)))dσ

)
g

)

and

B =
n−1∑

i=1

E

((
Ψ(f ε(ti),m

ε(ti+1)) −Ψ(f ε(ti),m
ε(ti))

−

∫ ti+1

ti

MΨ(f ε(σ),mε(σ))dσ

)
g

)
.

We write

A = E

((∫ t

0

aδ(s)ds

)
g

)
,

with

aδ(s) =

n−1∑

i=1

1[ti,ti+1](s)
(
DΨ(f ε(s),mε(ti+1))−DΨ(f ε(s),mε(s))

)df ε

dt
(s).

Since f ε
0 ∈ L2(V ;H1(Td)), we deduce from (31) and the assumption on Ψ that

aδ is uniformly integrable with respect to (s, ω). Also f ε is almost surely contin-
uous and mε is stochastically continuous. It follows that DΨ(f ε(s),mε(ti+1))−
DΨ(f ε(s),mε(s)) converges to 0 in probability when δ goes to zero for any s.
By uniform integrability, we deduce that A converges to 0. Similarly, we have

B =

n−1∑

i=1

E

((∫ ti+1

ti

MΨ(f ε(ti),m
ε(σ)) −MΨ(f ε(σ),mε(σ))dσ

)
g

)
,

and, by the same argument, B converges to zero when δ goes to zero. The result
follows : M ε

Ψ is a continuous martingale. Since Ψ is a good test function and fε
0 ∈

L2(V ;H1(Td)), it follows from (31) and the bound (11) that t 7→ Ψ(f ε(t),mε(t))
and t 7→ L εΨ(f ε(t),mε(t)) are a.s. bounded. The expression (33) for the
quadratic variation can then either be computed by expanding

E|M ε
Ψ(t)|

2 = E






∑

i=1,...,n−1

Ψ(f ε,mε)(ti+1)−Ψ(f ε,mε)(ti)

−

∫ ti+1

ti

L
εΨ(f ε(s),mε(s))ds

]2)
,

where 0 = t1 < · · · < tn = t is an arbitrary subdivision of [0, t] with step δ ↓ 0,
or, quite similarly, by proceeding as in Appendix 6.9.1 in [FGPS07].
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4 The limit generator

To prove the convergence of (ρε), we use the method of the perturbed test-
function [PSV77]. The method of [PSV77] has two steps: first construct a
corrector ϕε to ϕ so that L εϕε is controlled, then, in a second step, use this
with particular test-functions to show the tightness of (ρε). In the first step, we
are led to identify the limit generator acting on ϕ.

4.1 Correctors

In this section, we try to understand the limit equation at ε→ 0. To that pur-
pose, we investigate the limit of the generator L ε by the method of perturbed
test-function.

We restrict our study to smooth test functions and introduce the following class
of functions. Let ϕ ∈ C3(L2

x,v). We say that ϕ is regularizing and subquadratic
if there exists a constant Cϕ ≥ 0 such that





|ϕ(f)| ≤ Cϕ(1 + ‖f‖L2)2,
‖AmDϕ(f)‖L2 ≤ Cϕ(1 + ‖f‖L2),
|D2ϕ(f) · (Am1h,Am2k)| ≤ Cϕ‖h‖L2‖k‖L2,
|D3ϕ(f) · (Am1h,Am2k,Am3 l)| ≤ Cϕ‖h‖L2‖k‖L2‖l‖L2,

(34)

for all f, h, k, l ∈ L2
x,v, for all m,mi ∈ {0, · · · , 3}, i = {1, 2, 3}. Note that

regularizing and subquadratic functions define good test functions (depending
on f only).

Given ϕ regularizing and subquadratic, we want to construct ϕ1, ϕ2 good test
functions, such that

L
εϕε(f, n) = L ϕ(f, n) +O(ε), ϕε = ϕ+ εϕ1 + ε2ϕ2.

The limit generator L is to be determined. By the decomposition (32), this is
equivalent to the system of equations

LL∗ϕ = 0, (35a)

LA∗ϕ+ LL∗ϕ1 = 0, (35b)

LA∗ϕ1 + LL∗ϕ2 = L ϕ(f, n), (35c)

LA∗ϕ2 = O(1). (35d)

4.1.1 Order ε−2

Equation (35a) constrains ϕ to depends on ρ = f̄ =
∫
V
fdµ uniquely:

ϕ(f) = ϕ(ρ), ρ :=

∫

V

fdµ, (36)

and imposes that the limit generator L acts on ϕ(f̄) uniquely, as expected in
the diffusive limit, in which we obtain an equation on the unknown

∫
V fdµ.

Indeed, since ϕ is independent on n, (35a) reads

(Lf,Dϕ(f)) = 0. (37)

12



Let (g(t, f))t≥0 denote the flow of L on L2(V, µ):

d

dt
g(t, f) = Lg(t, f), g(0, f) = f. (38)

An explicit expression for g is

g(t, f) = ρ+ e−t(f − ρ), ρ =

∫

V

f(v)dµ(v).

In particular, g(t, f) → ρ exponentially fast in L2(V, µ) when t→ +∞. By (38),
equation (37) is equivalent to

ϕ(f) = ϕ(g(t, f)), ∀t ∈ R,

i.e. (36) by letting t→ +∞.

4.1.2 Order ε−1

Let us now solve the second equation (35b). To that purpose, we need to invert
LL∗. Let us work formally in a first step to derive a solution. Assume that
m(t, n) is a Markov process with generator M , let g be defined by (38) and
consider the Markov process (g(t, f),m(t, n)). Its generator is precisely LL∗.
Denote by (Qt)t≥0 its transition semigroup. Since both g and m satisfy mixing
properties, the couple (g,m) also. In particular, we have

Qtψ(f, n) → 〈ψ〉(f̄) :=

∫

E

ψ(f̄ , n)dν(n), (39)

and it is expected that, under the necessary condition 〈LA∗ϕ〉 = 0, a solution
to (35b) is given by

ϕ1 =

∫ ∞

0

QtLA∗ϕdt.

Let us now compute LA∗ϕ. By (36), we have for h ∈ L2
x,v, (h,Dϕ(f)) =

(h̄, Dϕ(ρ)), where as above the upper bar denotes the average with respect to
v and ρ := f̄ . Hence

LA∗ϕ(f, n) = −(Af,Dϕ(ρ)) + (ρn,Dϕ(ρ)).

Since the first moments of a(v) and m(t) vanish, we have

Aρ = 0 and

∫

E

(ρn,Dϕ(ρ))dν(n) = 0,

and the cancellation condition 〈LA∗ϕ〉 = 0 is satisfied. We then write

ϕ1(f, n) =

∫ ∞

0

QtLA∗ϕ(f, n)dt

=

∫ ∞

0

E (LA∗ϕ(g(t, f),m(t, n))) dt.

13



Note that g is deterministic and ḡ = ρ, so that

ϕ1(f, n) =

∫ ∞

0

−(Ag(t, f), Dϕ(ρ)) + E ((ρm(t, n), Dϕ(ρ))) dt

= −

∫ ∞

0

(Ag(t, f), Dϕ(ρ))dt− (ρM−1I(n), Dϕ(ρ)).

Furthermore, regarding the term Ag(t, f), we have

d

dt
Ag(t, f) = A

d

dt
g(t, f) = ALg(t, f) = Aḡ(t, f)−Ag(t, f).

Since Af̄ = 0, we obtain
d

dt
Ag(t, f) = −Ag(t, f), i.e.

Ag(t, f) = e−tAf.

It follows that

ϕ1(f, n) = −(Af,Dϕ(ρ))− (ρM−1I(n), Dϕ(ρ)).

By (36), this is also equivalent to

ϕ1(f, n) = −(Af,Dϕ(f)) − (fM−1I(n), Dϕ(f)). (40)

This computation is formal but it is now easy to define ϕ1 by (40) and to check
that it satisfies (35b). It is also clear that ϕ1 is a good test function.

Proposition 7 (First corrector). Let ϕ ∈ C3(L2
x,v) be regularizing and sub-

quadratic according to (34). Assume that ϕ satisfy (36). Then (35b) has a
solution ϕ1 ∈ C1(L2

x,v × E) given by

ϕ1(f, n) = −(Af,Dϕ(f)) − (fM−1I(n), Dϕ(f)), (41)

for all f ∈ L2
x,v, n ∈ E. Moreover ϕ1 is a good test function.

4.1.3 Order ε0

Let us now analyze Equation (35c). Setting ρ = f̄ , it gives

L ϕ(ρ) = 〈LA∗ϕ1〉(ρ) =

∫

E

LA∗ϕ1(ρ, n)dν(n). (42)

We have
LA∗ψ(f, n) = (−Af + fn,Dψ(f, n))

and

ϕ1(f, n) = (−Af − fM−1I(n), Dϕ(f)) = −(Af,Dϕ(ρ))− (ρM−1I(n), Dϕ(ρ))

=: ϕ♯
1(f, n) + ϕ∗

1(f, n).

By (42), the limit generator is therefore the sum of two terms:

L ϕ(ρ) = L♯ϕ(ρ) + L∗ϕ(ρ).

14



The first term L♯ϕ(ρ) corresponds to the deterministic part of the equation.
We compute, for h ∈ L2

x,v,

(h,Dϕ♯
1(f, n)) = −(Ah,Dϕ(ρ)) −D2ϕ(ρ) · (Af, h̄).

In particular, evaluating at f = ρ we have

(h,Dϕ♯
1(ρ, n)) = −(Ah,Dϕ(ρ))

since Aρ = 0. Taking then h = −Aρ+ ρn and using once again the cancellation
property Aρ = 0, we obtain

L♯ϕ(ρ) =

∫

E

(A2ρ,Dϕ(ρ))dν(n),

i.e.
L♯ϕ(ρ) = (A2ρ,Dϕ(ρ)). (43)

The second part L∗ corresponds to the random part of the equation: since
Aρ = 0,

L∗ϕ(ρ) =

∫

E

(ρn,Dϕ∗
1(ρ, n))dν(n), ϕ∗

1(f, n) = −(ρM−1I(n), Dϕ(ρ)). (44)

Now that Lϕ = 〈LA∗ϕ1〉 has been identified, we go on with the resolution of
(35c). At least formally at a first stage, we can set

ϕ2(f, n) = −

∫ ∞

0

Qt{〈LA∗ϕ1〉 − LA∗ϕ1}(f, n)dt.

To the decomposition ϕ1 = ϕ♯
1 + ϕ∗

1 then corresponds a similar decomposition

ϕ2 = ϕ♯
2 + ϕ∗

2

for ϕ2. Since ϕ
∗
1(n) is linear with respect to n, the term

LA∗ϕ
∗
1(f, n) := (−Af + fn,Dϕ∗

1(f, n))

can be decomposed into two parts: one that is linear with respect to n, the
second that is quadratic in n. The first (linear) part does not contribute to ϕ∗

2

since m(t) is centered: Em(t) = 0. Let us thus compute the remaining part

q(f, n) := (fn,Dϕ∗
1(f, n)).

Since ϕ∗
1(f, n) depends on ρ only, we have q(f, n) = (ρn,Dϕ∗

1(ρ, n)). Since,
along the flow of L, the density g(t, f) = ρ is constant, we obtain

ϕ∗
2(f, n) = −

∫ ∞

0

Pt

{∫

E

q(ρ, n)dν(n) − q(ρ, ·)

}
(n)dt.

In particular, from the expression (44) for ϕ∗
1 and the fact that ϕ is subquadratic

and regularizing, it follows that ϕ∗
2 ∈ C(L2

x,v × E) is a good test function and
satisfies

|ϕ∗
2(f, n)| ≤ C

(
1 + ‖f‖2L2

)
, (45)

|LA∗ϕ
∗
2(f, n)| ≤ C

(
1 + ‖f‖2L2

)
, (46)
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for all f ∈ L2
x,v, n ∈ E, where C is a constant depending on the constant C∗

in (11) and on the constant Cϕ. Similarly, LA∗ϕ
♯
1(f, n) is the sum of one term

independent on n and one term linear with respect to n. This latter does not
contribute to ϕ♯

2 by the centering condition Em(t) = 0. We explicitly compute
the first term:

(−Af,Dϕ♯
1(f, n)) = (A2f,Dϕ(ρ)) +D2ϕ(ρ) · (Af,Af).

We have already proved (cf Section 4.1.2) that, along the flow g(t, f) of L, we
have Ag(t, f) = e−tAf . Similarly, we have

A2g(t, f)−A2ρ = e−t(A2f −A2ρ).

By integrating the exponential e−t with respect to t, it follows that

ϕ♯
2(f, n) = (A2f −A2ρ,Dϕ(ρ)) +

1

2
D2ϕ(ρ)(Af,Af).

In particular, ϕ♯
2 ∈ C(L2

x,v × E) is a good test function and satisfies (45)-(46).
By introducing Aρ = div(K∇ρ), whereK is given by (5), to identify L♯ in (43),
and by developing the expression (44) for L∗, we obtain the following result.

Proposition 8 (Second corrector). Let ϕ ∈ C3(L2
x,v) be regularizing and sub-

quadratic according to (34). Assume (36) and (6), (11), (26), (27). Let A
denote the unbounded operator defined by

Aρ = div(K∇ρ), D(A) = H2(Td) ⊂ L2(Td).

Then (35c) is satisfied for L defined by: ∀ψ ∈ C2(L2(Td)),

L ψ(ρ) = (Aρ,Dψ(ρ))

−

∫

E

{
(ρnM−1I(n), Dϕ(ρ)) +D2ϕ(ρ) · (ρM−1I(n), ρn)

}
dν(n), (47)

and a corrector ϕ2 ∈ C(L2
x,v × E) which is a good test function and satisfies

|ϕ2(f, n)| ≤ C
(
1 + ‖f‖2L2

)
,

|LA∗ϕ2(f, n)| ≤ C
(
1 + ‖f‖2L2

)
,

for all f ∈ L2
x,v, n ∈ E, where C is a constant depending on the constant C∗ in

(11) and on the constant Cϕ.

4.2 Limit equation

We will show here that L∗ is the generator of the semi-group associated to a
diffusion process on L2(Td). Then (44) is a form of L∗ corresponding to the
Stratonovitch formulation of the corresponding stochastic differential equation.
Actually, we use the expanded form of (47) (which corresponds to a stochastic
differential equation in Itô form) to identify more precisely the limit generator
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L . The notations for F , k, Q are those introduced in Section 2.2. We have
first:

−

∫

E

(ρnM−1I(n), Dϕ(ρ))dν(n) = E

∫ ∞

0

(ρm(0)m(t), Dϕ(ρ))dt

=
1

2
E

∫

R

(ρm(0)m(t), Dϕ(ρ))dt

=
1

2
(ρF,Dϕ(ρ)),

where

F (x) := E

∫

R

m(0)(x)m(t)(x)dt = k(x, x).

To recognize the part containing D2ϕ, we identify D2ϕ with its Hessian and
first assume that it is associated to a kernel Φ. Then, we write:

−

∫

E

D2ϕ(ρ) · (ρM−1n, ρn)dν(n)

= E

∫ ∞

0

D2ϕ(ρ) · (ρm(t), ρm(0))dt

=
1

2
E

∫

R

D2ϕ(ρ) · (ρm(t), ρm(0))dt

=
1

2
E

∫

R

(D2ϕ(ρ)(ρm(t)), ρm(0))dt

=
1

2
E

∫

R

∫

Td

∫

Td

Φ(x, y)ρ(x)m(t)(x)ρ(y)m(0)(y)dxdydt

=
1

2

∫

Td

∫

Td

Φ(x, y)k(x, y)ρ(x)ρ(y)dxdy.

Denote by q the kernel of Q1/2, then

k(x, y) =

∫

Td

q(x, z)q(y, z)dz,

which gives

∫

E

D2ϕ(ρ) · (ρM−1n, ρn)dν(n)

=
1

2

∫

Td

∫

Td

∫

Td

Φ(x, y)q(x, z)q(y, z)ρ(x)ρ(y)dxdydz

=
1

2
Trace[(ρQ1/2)D2ϕ(ρ)(ρQ1/2)∗]. (48)

By approximation, this formula holds for all C2 function ϕ. We conclude that
L is the generator associated to the stochastic PDE

dρ = div(K∇ρ)dt+
1

2
Fρdt+ ρQ1/2dW (t), (49)

where W is a cylindrical Wiener process.
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4.3 Summary

By Proposition 6, Proposition 7 and Proposition 8, we deduce:

Corollary 9. Let ϕ ∈ C3(L2
x,v) be a regularizing and subquadratic function

satisfying (36). There exist two good test functions ϕ1, ϕ2 such that, defining
ϕε = ϕ+ εϕ1 + ε2ϕ2,

|ϕ1(f, n)| ≤ C
(
1 + ‖f‖2L2

)
,

|ϕ2(f, n)| ≤ C
(
1 + ‖f‖2L2

)
,

|L εϕε(f, n)− Lϕ(f, n)| ≤ Cε
(
1 + ‖f‖2L2

)
,

(50)

for all f ∈ L2
x,v, n ∈ E, where C is a constant depending on the constant C∗ in

(11) and Cϕ. Moreover

M ε(t) := ϕε(f ε(t),mε(t))−

∫ t

0

L
εϕε(f ε(s),mε(s))ds, t ≥ 0,

is a continuous integrable martingale for the filtration (Fε
t ) generated by mε with

quadratic variation

〈M ε,M ε〉(t) =

∫ t

0

{
(M |ϕ1|

2 − 2ϕ1Mϕ1)(f
ε(s),mε(s)) + rε(t)

}
ds, (51)

where

|rε(t)| ≤ Cε

∫ t

0

(1 + ‖f ε(t)‖4L2)ds, (52)

for a constant C depending on C∗ and Cϕ. Finally, for 0 ≤ s1 ≤ · · · ≤ sn ≤
s ≤ t and ψ ∈ Cb((L

2
x,v)

n),

∣∣∣∣E
((

ϕ(ρε(t))− ϕ(ρε(s)) −

∫ t

s

Lϕ(ρε(σ))dσ

)
ψ(ρε(s1), . . . , ρ

ε(sn))

))

≤ Cε

(
1 + sup

s∈[0,T ]

E‖f ε(t)‖2L2

)
, (53)

with another constant C depending on the constant C∗ in (11), on Cϕ and on
the supremum of ψ.

Proof: Everything has already been proved except for (51) and the last state-
ment (53). For this latter, it suffices to write:

ϕ(ρε(t))− ϕ(ρε(s))−

∫ t

s

L ϕ(ρε(σ))dσ

=M ε(t)−M ε(s)− εϕ1(ρ
ε(t))− ε2ϕ2(ρ

ε(t)) + εϕ1(ρ
ε(s)) + ε2ϕ2(ρ

ε(s))

−

∫ t

s

(
L ϕ(ρε(σ)) − L

εϕε(ρε(σ))

)
dσ.
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Then, we multiply by ψ(ρε(s1), . . . , ρ
ε(sn)), take the expectation and use the

bounds (50) to conclude. Furthermore,

M|ϕ|2 − 2ϕMϕ = 0 (54)

if ϕ 7→ Mϕ is a linear first order operator in ϕ. Applying (54) to

Mϕ(f, n) =
1

ε
LA∗ϕ(f, n) +

1

ε2
(Lf,Dϕ(f, n))

gives
L

ε|ϕε|2 − 2ϕε
L

εϕε =M |ϕ1|
2 − 2ϕ1Mϕ1 + rε.

By (50), the remainder rε satisfies (52).

5 Diffusive limit

Our aim now is to prove the convergence in law of ρε =
∫
V
f εdµ to ρ, solution to

(29), or equivalently Equation (49). To that purpose, we use again the perturbed
test function method to get a bound on the solutions in L2

x,v then we prove that
ρε is tight in C([0, T ];H−η), η > 0. We follow (and adapt to our context)
the method in [FGPS07], paragraph 6.3.5. In particular, we use Kolmogorov
criterion to get tightness in section 5.2; an alternative method would be to use
Aldous’ criterion for tightness (e.g. Theorem 4.5 in [JS03]).

5.1 Bound in L
2
x,v

Proposition 10 (Uniform L2
x,v bound). Assume (11). Then, for all T > 0,

p ≥ 1, we have
E sup

t∈[0,T ]

‖f ε(t)‖pL2 ≤ C

where the constant C ≥ 0 depends on T , on p, on ‖a‖L∞(V ), on the constant
C∗ in (11) and supε>0 ‖f

ε
0‖L2 only.

Proof: Fix p ≥ 2. Let us write a(ε, t) . b(ε, t) if there exists a constant C
depending on T , on p, on ‖a‖L∞(V ) and on the constant C∗ in (11) only such

that a(ε, t) ≤ Cb(ε, t) for all t ∈ [0, T ]. Set ϕ(f) := 1
2‖f‖

2
L2. We want to apply

Corollary 9 to ϕ. This requires some care since ϕ is actually a function of f and
not of ρ. Thus, we first seek for one corrector ϕ1 ∈ C2(L2

x,v ×E) such that, for
the modified test-function

ϕε := ϕ+ εϕ1,

the term L εϕε(f ε,mε) can be accurately controlled: for f ∈ L2(V ;H1(Td)),
n ∈ E, we compute

L
εϕε(f, n) = ε−2

LL∗ϕ(f) + ε−1(LA∗ϕ+ LL∗ϕ1)(f, n) + LA∗ϕ1(f, n). (55)

Since Mϕ(f, n) = 0 (ϕ being independent on n), and since Dϕ(f, n) = f , the
first term in (55) is

ε−2
LL∗ϕ(f) = −

1

ε2
‖Lf‖2L2, (56)
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which has a favorable sign. Since A is skew-symmetric, LA∗ϕ(f, n) = (fn, f).
This term is difficult to control and we choose ϕ1 to compensate it. We set

ϕ1(f, n) = −(fM−1I(n), f),

so that Mϕ1 = −(fn, f) and the second term in (55) is

ε−1(LA∗ϕ+ LL∗ϕ1) =
1

ε
(Lf,Dϕ1(f, n)) = −

2

ε
(Lf, fM−1I(n)).

By (11), we obtain

ε−1(LA∗ϕ+ LL∗ϕ1)(f
ε(t),mε(t)) ≤

1

4ε2
‖Lf ε(t)‖2L2 + 4C2

∗‖f
ε(t)‖2L2 . (57)

The remainder LA∗ϕ1 satisfies the following bounds

LA∗ϕ1(f, n) = −(Af, fM−1I(n)) + (fn, fM−1I(n))

=
1

2
(f2, AM−1I(n)) + (fn, fM−1I(n))

≤

(
1

2
‖AM−1I(n)‖L∞

x,v
+ ‖M−1I(n)‖L∞

x,v
‖n‖L∞

x,v

)
‖f‖2L2

≤

(
1

2
‖a‖L∞

v
‖M−1I(n)‖W 1,∞

x
+ ‖M−1I(n)‖L∞

x,v
‖n‖L∞

x,v

)
‖f‖2L2.

By (11), (56), (57), we obtain

L
εϕε(f ε(t),mε(t)) . ‖f ε(t)‖2L2 . (58)

Set

M ε(t) := ϕε(f ε(t),mε(t))− ϕε(f ε
0 ,m

ε(0))−

∫ t

0

L
εϕε(f ε(s),mε(s))ds.

By definition of ϕ, ϕε and M ε, we have

1

2
‖f ε(t)‖2L2

x,v
=

1

2
‖f ε

0‖
2
L2

x,v
− ε(ϕ1(f

ε(t),mε(t))) − ϕ1(f
ε
0 ,m

ε(0)))

+

∫ t

0

L
εϕε(f ε(s),mε(s))ds +M ε(t).

By (58) and the estimate

|ϕ1(f
ε(t),mε(t))| . ‖f ε(t)‖2L2

x,v
, (59)

we deduce the bound

‖f ε(t)‖2L2
x,v

. ‖f ε
0‖

2
L2

x,v
+ ε‖f ε(t)‖2L2

x,v
+

∫ t

0

‖f ε(s)‖2L2
x,v
ds+ sup

t∈[0,T ]

|M ε(t)|.

For ε small enough, it follows that

‖f ε(t)‖2L2
x,v

. ‖f ε
0‖

2
L2

x,v
+

∫ t

0

‖f ε(s)‖2L2
x,v
ds+ sup

t∈[0,T ]

|M ε(t)|,
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and, by Gronwall Lemma,

‖f ε(t)‖2L2
x,v

. ‖f ε
0‖

2
L2

x,v
+ sup

t∈[0,T ]

|M ε(t)|. (60)

On the other hand, similarly to (51), we have

〈M ε,M ε〉(t) =

∫ t

0

(M |ϕ1|
2 − 2ϕ1Mϕ1)(f

ε(s),mε(s))ds.

(Note that there is no remaining terms here since ϕ2 ≡ 0, cf. the proof of (51)
in Corollary 9.) In particular, by (59) and the similar estimate for Mϕ1, we
have

|〈M ε,M ε〉(t)| .

∫ t

0

‖f ε(s)‖4L2
x,v
ds.

SinceM ε is a martingale with EM ε(t) = 0, Burkholder-Davis-Gundy inequality
gives

E[ sup
t∈[0,T ]

|M ε(t)|p|] ≤ CpE|〈M
ε,M ε〉(T )|p/2 .

∫ T

0

E‖f ε(s)‖2pL2
x,v
ds. (61)

By (60), E‖f ε(t)‖2pL2
x,v

. E‖f ε
0‖

2p
L2

x,v
+ E[supt∈[0,T ] |M

ε(t)|p]. Hence, by (61),

E‖f ε(T )‖2pL2
x,v

. E‖f ε
0‖

2p
L2

x,v
+

∫ T

0

E‖f ε(s)‖2pL2
x,v
ds.

By Gronwall Lemma, we obtain E‖fε(T )‖2pL2
x,v

. E‖f ε
0‖

2p
L2

x,v
. This actually

holds true for any t ∈ [0, T ]. Thus, using (61) and then (60) gives finally
E[supt∈[0,T ] ‖f

ε(t)‖2pL2
x,v

] . E‖f ε
0‖

2p
L2

x,v
.

5.2 Tightness

Proposition 11 (Tightness). Let T > 0, η > 0. Assume (6), (11), (26), (27)
and assume that (f ε

0 ) is bounded in L2. Then (ρε) is tight in C([0, T ];H−η(Td)).

Proof: Let ϕ(ρ) = ρ, or, more precisely (since the perturbed test-function
method has been developed for real-valued, regularizing functions), define the
test-function ϕj as follows. Let {pj; j ≥ 1} be a complete orthonormal system
in L2(Td), let γ > max{3, d} and let

J = (Id−∆x)
−1/2,

where Id is the identity on L2(Td). Note that ‖ρ‖H−γ(Td) = ‖Jγρ‖L2 and that Jγ

is Hilbert-Schmidt on L2(Td) since γ > d. We set ϕj(ρ) = (Jγρ, pj). It is clear
that ϕj is subquadratic (it is linear) and regularizing as in (34) (the operator
∇3Jγ is of order ≤ 0). Let ϕε

j be the correction of ϕj given by Corollary 9. Let

M ε
j (t) = ϕε

j(f
ε(t),mε(t))− ϕε

j(f
ε
0 ,m

ε(0))−

∫ t

0

L
εϕε

j(f
ε(s),mε(s))ds
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and

θεj (t) = ϕj(ρ
0) +

∫ t

0

L
εϕε

j(f
ε(s),mε(s))ds+M ε

j (t).

Then

ϕj(ρ
ε(t))− θεj(t) = [ϕj(ρ

ε(t))− ϕε
j(f

ε(t),mε(t))]− [[ϕj(ρ
ε
0)− ϕε

j(f
ε
0 ,m

ε(0))]].

By the estimates (50) on the correctors of ϕj and the L2-bounds of Proposi-
tion 10, we deduce that

E[ sup
t∈[0,T ]

|ϕj(ρ
ε(t))− θεj (t)|] . ε, (62)

where we write a(j, ε) . b(j, ε) if there exists a constant C depending on
‖a‖L∞(V ), on T , on the constant C∗ in (11) and on supε>0 ‖f

ε
0‖L2, but not on ε

and j such that a(j, ε) ≤ Cb(j, ε). Note also that, by (50), E supt∈[0,T ] |θ
ε
j (t)| .

1, hence

θε(t) := J−γ
∑

j≥1

θεj (t)J
γpj

is a.s. well defined for all t ∈ [0, T ] in H−γ(Td) since the sum is convergent in
L2(Td). By (62), we obtain

E[ sup
t∈[0,T ]

‖ρε(t)− θε(t)‖H−γ (Td)] . ε. (63)

Let η > 0. Let
w(ρ, δ) := sup

|t−s|<δ

‖ρ(t)− ρ(s)‖H−η(Td)

denote the modulus of continuity of a function ρ ∈ C([0, T ];H−η(Td)). Since
the injection L2(Td) ⊂ H−η(Td) is compact, the set

KR =

{
ρ ∈ C([0, T ];H−η(Td)); sup

t∈[0,T ]

‖ρ(t)‖L2 ≤ R;w(ρ, δ) ≤ ε(δ)

}
,

where R > and ε(δ) → 0 when δ → 0, is compact in C([0, T ];H−η(Td)) (Ascoli’s
Theorem). By Prokhorov’s Theorem, the tightness of (ρε) will follow if we prove
that, for all α > 0, there exists R > 0, such that

P( sup
t∈[0,T ]

‖ρε(t)‖L2 > R) < α, (64)

and
lim
δ→0

lim sup
ε→0

P(w(ρε, δ) > α) = 0. (65)

The estimate (64) follows from the L2-bound of Proposition 10 by the estimate

P( sup
t∈[0,T ]

‖ρε(t)‖L2 > R) ≤
1

R
E[ sup

t∈[0,T ]

‖ρε(t)‖L2 ].

Similarly, we will deduce (65) from a bound on Ew(ρε, δ) for δ > 0. Actually,
by the L2-bound of Proposition 10 and by interpolation, we have

E sup
|t−s|<δ

‖ρ(t)− ρ(s)‖
H−η♭ (Td)

≤ E sup
|t−s|<δ

‖ρ(t)− ρ(s)‖σ
H−η♯ (Td)
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for a certain σ > 0 if η♯ > η♭ > 0. Therefore it is indeed sufficient to work with
η = γ. Besides, by (63), it is sufficient to obtain an estimate on the increments
of θε. By definition

θεj (t)− θεj(s) =

∫ t

s

L
εϕε

j(f
ε(σ),mε(σ))dσ +M ε

j (t)−M ε
j (s),

for 0 ≤ s ≤ t ≤ T . By the L2-bound of Proposition 10 and by (50), we have

E

∣∣∣∣
∫ t

s

L
εϕε

j(f
ε(σ),mε(σ))dσ

∣∣∣∣
4

. |t− s|4.

By Burkholder-Davis-Gundy inequality,

E|M ε
j (t)−M ε

j (s)|
4 . E|〈M ε

j ,M
ε
j 〉(t)− 〈M ε

j ,M
ε
j 〉(s)|

2,

where 〈M ε
j ,M

ε
j 〉 is the quadratic variation ofM ε

j . By (51) and the L2-bound of
Proposition 10, we obtain

E|M ε
j (t)−M ε

j (s)|
4 . |t− s|2.

Finally, we have E|θεj (t)− θεj(s)|
4 . |t− s|2, and thus

E‖θε(t)− θε(s)‖4H−γ (Td) . |t− s|2.

It follows (by the Kolmogorov’s criterion) that, for α < 1/2,

E‖θε‖4Wα,4(0,T ;H−γ(Td)) . 1.

By the embedding

Wα,4(0, T ;H−γ(Td)) ⊂ C0,µ([0, T ];H−γ(Td)), µ < α−
1

4
,

we obtain Ew(θε, δ) . δµ for a certain positive µ. This concludes the proof of
the proposition.

5.3 Convergence

We conclude here the proof of Theorem 3. Fix η > 0. By Proposition 11,
there is a subsequence still denoted by (ρε) and a probability measure P on
C([0, T ];H−η(Td)) such that

P ε → P weakly on C([0, T ];H−η(Td))

where P ε is the law of ρε. We then show that P is a solution of the martingale
problem, with a set of test functions specified below, associated to the limit
equation (28).

By Skohorod representation Theorem [Bil99], and since C([0, T ];H−η(Td)) is

separable, there exists a new probability space (Ω̃, F̃ , P̃) and some random va-
riables

ρ̃ε, ρ̃ : Ω̃ → C([0, T ];H−η(Td)),
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with respective law P ε and P such that ρ̃ε → ρ̃ in C([0, T ];H−η(Td)), P̃ a.s.

Let ϕ ∈ C3(L2(Td)) be regularizing and subquadratic according to (34). By
Corollary 9 and the L2-bound of Proposition 10, we have for 0 ≤ s1 ≤ · · · ≤
sn ≤ s ≤ t and ψ ∈ Cb((L

2
x,v)

n),

∣∣∣∣E
[(
ϕ(ρε(t)) − ϕ(ρε(s))−

∫ t

s

Lϕ(ρε(σ))dσ

)
ψ(ρε(s1), . . . , ρ

ε(sn))

]∣∣∣∣ ≤ Cε

(66)
with a constantC depending on the constantC∗ in (11), on Cϕ, on supε>0 ‖f

ε
0‖L2

and on the supremum of ψ. Since ρε and ρ̃ε have the same law, this is still true
if ρε is replaced by ρ̃ε. Assume furthermore that ϕ is bounded and continuous
from H−η(Td) into R, then it is easy to take the limit ε → 0 in (66) and to
obtain

Ẽ

{[
ϕ(ρ̃(t)) − ϕ(ρ̃(s))−

∫ t

s

Lϕ(ρ̃(σ))dσ

]
ψ(ρ̃(s1), . . . , ρ̃(sn))

}
= 0. (67)

The additional hypothesis on ϕ can be relaxed. Indeed, thanks to Proposition
10, we can approximate every subquadratic and regularizing functions by func-
tions in Cb(H

−η(Td)) which are subquadratic and regularizing with a uniform
constant in (34) and which converge pointwise.

We have thus proved that P solves the martingale problem associated to L

with subquadratic and regularizing test functions. In particular, for all such ϕ:

Mϕ(t) = ϕ(ρ(t)) −

∫ t

0

L ϕ(ρ(s))ds, t ≥ 0, (68)

is a martingale with respect to the filtration Fs generated by (ρ(s)). The
quadratic variation of Mϕ is (cf (33))

〈Mϕ,Mϕ〉(t) = L |ϕ|2 − 2ϕLϕ.

Let Dϕ(ρ)⊗Dϕ(ρ) denote the bilinear form

(h, k) 7→ (h,Dϕ(ρ))(k,Dϕ(ρ))

on L2(Td). By (48), we have

Lϕ2(ρ)− 2ϕ(ρ(s))L ϕ(ρ(s)) =
1

2
Trace[ρQ1/2)Dϕ(ρ) ⊗Dϕ(ρ)ρQ1/2)∗]

=
∥∥∥ρQ1/2Dϕ(ρ)

∥∥∥
2

L2
.

We deduce that

M(t) = ρ(t)− ρ(0)−

∫ t

0

Aρ(s) +
1

2
Fρ(s)ds, t ≥ 0,

is a martingale with quadratic variation

∫ t

0

ρ(s)Q1/2
(
ρ(s)Q1/2

)∗
ds. Thanks

to martingale representation results (see for instance [DPZ92]), up to a change
of probability space, there exist a cylindrical Wiener process W such that

ρ(t)− ρ(0)−

∫ t

0

Aρ(s) +
1

2
Fρ(s)ds =

∫ t

0

ρ(s)Q1/2dW (s), t ≥ 0.
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It is well known that this equation has a unique solution with paths in the
space C([0, T ];H−η(Rd)). This can be shown for instance by energy estimates
using Itô formula after a suitable regularization argument. Moreover pathwise
uniqueness implies uniqueness in law and we deduce that P is the law of this
solution and is uniquely determined. Finally, by uniqueness of the limit, the
whole sequence (P ε) converges to P weakly in the space of probability measures
on C([0, T ];H−η(Rd)).
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