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Abstract

Given a tuple &4, ..., Xi) of irreducible characters of GIF,) we define a star-shaped quivier
together with a dimension vector Assume thatXs, ..., Xx) is generic Our first result is a formula
which expresses the multiplicity of the trivial characterthe tensor product; ® - - - ® X, as the trace
of the action of some Weyl group on the intersection cohoglaf some (non-éine) quiver varieties
associated toI{,v). The existence of such a quiver variety is subject to someition. Assuming that
this condition is satisfied, we prove our second result: Thetiplicity (X; ® --- ® Xk, 1) is hon-zero
if and only if v is a root of the Kac-Moody algebra associated WithThis is somehow similar to the
connection between Horn'’s problem and the representdimory of GL,(C) [28, Section 8].
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1 Introduction

1.1 Decomposing tensor products of irreducible characters

The motivation of this paper is the study of the decompasitio

X1® X = Z(Xl ® Xa, X)X
X

of the tensor produck’; ® X> of two irreducible complex characters of €XEq) as a sum of irreducible
characters. This is equivalent to the study of the multifidis (X; ® X> ® X3, 1) of the trivial character 1
iNX1®X>® Xs.

Although the character table of G(Fy) is known since 1955 by the work of Green [17], the compu-
tation of these multiplicities remains an open problem Wwtdoes not seem to have been studied much in
the literature.

When X3, X2, X3 are unipotent characters, the multipliciti®$; ® X> ® X3, 1) are computed by Hiss
and Lubeck [21] using CHEVIE fon < 8 and appeared to be polynomialsjmith positive codficients.

Let y : GLn(Fgq) — C be the character of the conjugation action of,(#g) on the group algebra
Claln(Fq)]. Fix a non-negative integeyand putA := x®9 (with A = 1if g = 0).

In this paper we describe the multipliciti€d ® X; ® --- ® X, 1) for generictuples 3, ..., Xk)
of irreducible characters of GIF;) in terms of representations of a certain quiVefsee§6.8 for the
definition of generic tuple). Although the occurencefofioes not seem to be very interesting from the
perspective of the representation theory of,(&g) it will appear to be more interesting for the theory of
quiver representations.

Let us now explain how to construct the quiver together wittiraension vector from any tuple of
irreducible characters (not necessarily generic).

We first define a typé quiver together with a dimension vector from a single ireiile characteX.

Consider a total ordering on the sefP of partitions and define a total ordering denoted agair loy
the setZ.o x (P — {0}) as follows. Ifu # Athen @,u) > (d',2) if u > 2, and @,2) > (d',2) if d > d'.
Denote byT , the set of non-increasing sequencaes (dy, w') - - - (dr, ") such thaty; dijw'| = n.

In §6.8, we associate to the irreducible charagiem element = (di, w') - - - (dr, ") € T,, called the
type of X. Thed;'s are called the degrees &f If the degreesl;’s are all equal to 1 we say thatis split.

Let us now draw the Young diagrams of these partitions . ., w, from the left to the right with diagram

of ' repeated}; times (partitions being represented by the rows of the Yaliagram). Lel be the total
number of columns and let be the length of théth column. We obtain a striclty decreasing sequence
U, ;= (Mo =n>vVvy >V, >--- > V1) by puttingvy := n—nyg, v, := vi_1 — nj. We obtain then a type
A-quiver with dimension vectan,,. For instance ifX = 1, thenw = (1,(1,1,...,1)) and soA = A; and

u, = n. If X is the Steinberg character thern= (1, (n)) and scA = A andu, = (n,n—1,n-2,...,1). If
Xisoftype (11)(L 1)---(1,1), then we still havéy = A, andu, = (n,n—1,n-2,...,1).

Givenw = (ws, ..., wy) € (Tn)X, we obtain (as just explaine)type A quivers equipped with dimen-
sion vectorsy,,, ..., U,,. Gluing together the vertices labelled by 0 of thksgiivers and adding loops
at the central vertex of this new quiver we get a so-calledeteshaped quivdr,, with k legs (see picture
in §5.2) together with a dimension vectay which is determined in the obvious way by, .. ., U,,.

Letd(T',,) be the root system associated with (see Kac [22]). LeC be the Cartan matrix df,, and
putd, = 2 -'v,Cv,.

In $6.10.6 we show that for every multi-type € (T,), there exists a polynomial,,(T) € Q[T] such
that for any finite fieldfy and any generic tupleX(, .. ., Xi) of irreducible characters of GlIIFg) of type
w, we have

(A®X1®- ® Xk, 1) = H,(q).



In §1.2 (see above Theorem 1.2.2) we define the noticedofissiblemulti-type. This notion arises
naturally in the theory of quiver varieties.

In this paper we use the geometry of quiver varieties to ptbedollowing theorem (see next section
for more details).

Theorem 1.1.1. Assume thab € (T,)* is admissible.

(a) H,(T) # 0if and only ifv,, € ®(T',,). MoreoverH,(T) = 1if and only ifv,, is a real root.

(b) If non-zeroH,,(T) is a monic polynomial of degreg, @2 with integer cogicients. If moreovew is
split, then the cofficients ofH,,(T) are non-negative.

We will prove (see Proposition 5.2.9) thatgf> 1, thenv,, is always an imaginary root and so the
second part of the assertion of (a) is relevant only winer0.

The discussion and conjecture§t.3 together with the results of Crawley-Boevey [8] implatlthe
assertions (a) and (b) of the above theorem remain true fppdks (not necessarily admissible).

In a future publication, we will investigate this assert{@a) by analyzing combinatorially the polyno-
mial H,,(T) which is defined in terms of Hall-Littlewood symmetric fuimns (see§6.10.2).

Examplel.1.2 We give examples of generic tuples of irreducible charaotdrich are not of admissible
types and which satisfy (a) and (b) of the above theorem.

Assume thag = 0 andn = k = 3.

For a partitiond, we denote byR, the associated unipotent character ofsGRecall that according
to our parameterization (see beginning of this sectior®,ttivial character corresponds to the partition
(1,1, 1) and the Steinberg character to the partition (3).

For a linear character : Fg — C* we putR] := (a o de) - R;. This is again an irreducible character of
type (1 4).

The triple R, % RY) is generic if the subgroufBy) of Hom(Fg, C*) is of size 3.

Assume now thatR¢, % R?) is generic (it is not admissible, see (i) below Theore@.3). As men-
tioned earlier, the multiplicit){Rj ® Rf ®R, 1> depends only on, i, v and not ony, 8, y.

Put

R/l,p,v = Rj ® % ® R?,/
We can easily verify that the only non zero multiplicitiestfwunipotent type characters) are
(Ra)@ne): 1) =0, (1.1.1)

(Ren@.- D) = (Repeuer D) = (Rajeuen. 1 =1 (1.1.2)
In the first case the underlying graph 8f is E¢ andv,, is the indivisible positive imaginary root. In
the second case the underlying grapHgfis the Dynkin diagramEs andv,, is the positive real root
a1 + az + 2a3 + 3a4 + 2a5 + @ in the notation of [4, PLANCHE V]. Finally we can verify thdtdre is no
other pair [, V,,) arising fromw = ((1, 2), (1, 1), (1, v)) with v,, € O(T,,).

1.2 Quiver varieties

We now introduce the quiver varieties which provide a geoiratinterpretation ofA ® X1 ® - - - ® Xk, 1)
for generic tuplesXs, . .., Xk) of admissible type.

Let P be a parabolic subgroup of G(C), L a Levi factor ofP and let = o+ C whereC is a nilpotent
orbit of the Lie algebraof L and wherer is an element of the centarof 1. Put

Xips = {(X,gP) € gl, x (GLn/P) |g"1Xg e = + up}

whereup is the Lie algebra of the unipotent radicalfWe then denote bxﬂp’z the open subset of pairs
(X, gP) which verifyg™tXge X + up.



It is known (cf. §4.3.2 for more details) that the image of the projectiines — gl, on the first
coordinate is the Zariski closue@ of an adjoint orbit.

We assume without loss of generality thais of the form[]; GL, and thatP is the unique parabolic
subgroup of Gk containing the upper triangular matrices and hawirgs a Levi factor (such a choice is
only for convenience).

WhenQ is nilpotent regular, the varietié§_px appears in Borho and MacPherson [3]. These varieties
were also considered by Lusztig in the framework of his galiwation of Springer correspondence [37].
Pix - xP,X=X1x---xXandC ;= C; X - - - X Cy.

Let (O1,...,Ok) be the tuple of adjoint orbits aff,(C) such that the image &, p, 5, — gl iS O..

We say that the pairl( X) is genericif the tuple O1,...,0k) is generic The existence of generic
tuples of adjoint orbits with prescribed multiplicities @fenvalues is subject to some restriction §¢.1
for more details).

We assume now thak (X) is generic.

Fix a non-negative integgy, putOL px = (3l))* X X px, O 5y = (817)%9 x X 1, and define

Vipr = {(Al, B,..., Ay By, (X1, Xio 01P1, ..., 6PW) € Oupx | Y (A, Bl + ) Xi = o}.
j i
PutO := (g1,)2 x O1 X - - - X O, O° := (g1,)% X O1 X - - - X O and define

Vo i= {(Al,Bl,...,Ag,Bg,Xl,...,Xk)eO| Z[A,—,B,—]ﬁLZxi =o}.
i i

Letp : VL px — Vo be the projection on the firsg2+ k coordinates.

The group Gl, acts onV|_ py (resp. onVp) diagonally by conjugating the firsg2 k coordinates and
by left multiplication of the lask-coordinates (resp. diagonally by conjugating tlge+2k coordinates).
Since the tuple@;, . . ., Ok) is generic, this action induces a set-theoritically freca of PGL, on both
VL px andVo. The PGly-orbits of these two spaces are then all closed. Considesfiine GIT quotient

Qo := Vo/PGL, = Sped C[Vo] ™).

The quotient mapVo — Qo is actually a principal PGl-bundle in the étale topology. Siné& py is
projective overVo, by a result of Mumford [43] the categorical quotiéht px of V| px by PGL, exists
and the quotient may,_ py» — Q. px is also a principal PGl-bundle.

We will see that we can identifo andQ px with quiver varietiedi(vo) andMigo(v px) made
out of the same comet-shaped quiVerx = I'o equipped with (possibly étierent) dimension vectarg
andv, px (here we use Nakajima’s notation, ¢f4.1). The varietyQo is also isomorphic to the image
T (ﬁnff,g(VL,p,z)) of : irﬁ{:,g(VL,p,Z) - ﬁnff(VL,p,z).

The identification 0fQo with the quiver varietyi.(vo) is due to Crawley-Boevey [6] and is also
available in the non-generic case ($8e2). Although it may not be in the literature, the identifioa of
Qv px with Mz o(ve px) is then quite natural to consider.

Under the identificatio®o ~ M¢(vo), the open subs@§ c Qo defined as the image of

% =%VYonN o°
in Qo corresponds to the subsmg(vo) C M¢(vo) of simple representations. The ima@g ;. of

0 . (0}
Vipr =VipeNOlpy



in QL px corresponds to the subseif ,(vi p.x) € M p(vL px) Of 6-stable representations.

The generic quiver variet®, px (which does not seem to have been considered in the literb&fore)
and@o will be one of the main focus of this paper.

If Vo # 0, the varietieQ‘E,P’Z and@g are both non-empty irreducible nonsingular dense operessibs
of QL pxr and@o respectively. The irreducibility afo follows from a more general result due to Crawley-
Boevey (see Theorem 4.1.2). The irreducibility@f py (see Theorem 5.3.7) seems to be new and our
proof uses Theorem 4.1.5 and Crawley-Boevey's result irofdma 4.1.2. The equivalence between the
non-emptyness o and that of@Q is not stated explicitely in Crawley-Boevey’s paper but puoof
follows very closely various arguments which are due to Hore precisely we have the following result
which is important for this paper.

Theorem 1.2.1. The following assertions are equivalent.
(i) The varietyQy is not empty.
(ii) The varietyQo is not empty.
(iii) vo € ().

Let us discuss this theorem. Say that an elerxeintV2 is irreducibleif there is no non-zero proper
subspace of£" which is preserved by all the coordinatesXf The existence of irreducible elements
in Vg was studied by Kostov [29] who calls it the (additive) Dekg8impson problem (in [29] the tuple
(O1,...,0) is not necessarily generic). Later on, Crawley-Boevey¢rmulated Kostov’s answer to the
Deligne-Simpson problem in terms of rootsIof This reformulation involves general results of Crawley-
Boevey on quiver varieties (s§d.1 for more details) and his identification@g with 9iz(vo). Our proof
of Theorem 1.2.1 consists of working out in the generic casawWey-Boevey's results on the Deligne-
Simpson problem.

For a pair (, X) as above, we put

W(L,Z) := {ne Ng (L) [n=n~! = Z}/L.

The groupW(L, ¥) acts on the complep*(ﬁggm) wherep : X ps — gl, is the projection on the first
coordinate, and_C;gL o is the simple perverse sheaf with ¢beient in the constant local syste
From this, we find an action of

W(L,X) := W(L1,Z1) X -+ - x W(Li, Zi)

on the complexp/at, ). (ZC5, ) and so on the hypercohomolog (Qu px, 7CY, . ) which we take as
a definition for the compactly Supported intersection coblmgy IHL (Q px, C).
From the theory of quiver varieties, we hale! (Qpx,C) = 0 for oddi. Let us then consider the

polynomials

P (Qupzr.0) = Z Tr (w [IHZ (Qups.C))d,

with w e W(L, X).
As explained in§4.3.2 to each pairl({C) with L = []i_, GL, c GL, andC a nilpotent orbit of
@{:1 gl corresponds a unique sequence of partitions

(’Z):wl...wlwz...wz...wl...wl
———t— N——

a a a

with w! > w? > -+ > o' andw! # WSif j # s.
The groupW(L, C) is then isomorphic tq‘['j:l Sa, WhereSy denotes the symmetric groupdiietters.



The decomposition of the coordinates of an elemert W(L, C) =~ H'j:1 Sa, as a product of disjoint
cycles provides a partitiordf, djz, ey d;j) of a; for eachj, and so defines a unique type

w=(d} o) (A, ), w?) - ([dR, 0?) - (d W) - (d, ') € Th

We thus have a surjective map from the set of triple<c( w) with w € W(L, C) to the sefT .

Note thatwW(L, X) c W(L, C).

Letw € W(L,X). The datumI(,C,w) defines thus a multi-type = (ws, ..., w ) € (Tn)*. We call
admissiblehe multi-types arising in this way from generic paits E).

Let (X1,...,Xk) be a generic tuple of irreducible characters of,(#g) of type w (generic tuples of
irreducible characters of a given type always exist assgrtiiat the characteristic @y andq are large
enough). The pair{,, Vv,,) defined in§1.1 is the same as the palf (px, VL px) defined from [, P, X),
moreover the integed,, equals dinQ_ px.

Theorem 1.2.2.We have:
PY(QLpy. q) = q29MAPr(A® X1 ® - ® X, 1).

If w = 1 and if the adjoint orbit®;, . .., Ok are semisimple in which cagg py» ~ Qo, the theorem is
proved in [18].

One of the consequence of Theorem 1.2.2 is an explicit farfad PY (Q_ px, ) in terms of Hall-
Littlewood symmetric functions (c§6.10).

Note that if for eacH = 1,...,k, we haveCg, (0i) = L;, then the projectiorX,, p s, — O; is an
isomorphism and so is the magpc, : QL px — Qo. Hence our main results will give in particular
explicit formulas for the Poincaré polynomidd (Qo, ) where we writeP. instead ofPY whenw = 1.

Let Ay c) be the set ofr = (o1,...,0%) €z, X - - - X 7, such that the paill(, o + C) is generic.

It follows from Theorem 1.2.2 th&. (QL px, q) depends only orl(, C) and not oro- € A c).

We say that a generic tuplXy, ..., Xk) of irreducible characters iadmissibleif it is of admissible
type.

From Theorem 1.2.2 and Theorem 1.2.1, we prove Theorem, hdmiely:

Theorem 1.2.3.Let(Xy,...,Xk) be an admissible generic tuple of irreducible character&af,(Fy) of
typew.

(8) We havéA @ X1 ® - -- ® X, 1) # 0if and only ifv,, € ®(T,,). MoreoverkA® X1 ® --- ® Xk, 1) = 1if
and only ifv,, is real.

(b) If v, € ®(T,), the multiplicity(A ® X1 ® - - - ® Xk, 1) is a monic polynomial in g of degreg, 2 with
integer cogficients. If moreovew = 1, then it has positive cggcients.

Now let us see some examples of generic tup?s (. ., Xk) of irreducible characters which are not
admissible. This is equivalent of giving examples of triple, C, w) for which there is n@r € Ay ) such
thatw € W(L, o + C).

The condition for the existence of suchrais subject to some restrictions which can be worked out
explicitely using§5.1. Let us see the explicit situations (i), (i) and (iii)lbe.

(i) Assume that is a maximal torus (in which cag&is the trivial nilpotent orbit) and that the coordi-
nates ofw are alln-cycles. Therw belongs to a subgroly¥/(L, o + C) of W(L, C) = W(L) if and only if
the coordinates of = (o1, ..., o) are all scalar matrices. But suclraloes not belong tA ¢).

(i) When the dimension vector of the comet-shaped quivEris divisible (i.e., the gcd of its coordi-
nates is greater than 1), thefy c) = 0.

(iii)) If L = (GLn)X, then we also havél c) = 0.

WhenC = {0}, thenA c) # 0 if and only if v,, is indivisible. This implies that a generic tuple of split
semisimple irreducible characters is admissible if ang d@n¥,, is indivisible.



1.3 Character varieties: A conjecture

Now we propose a conjectural geometrical interpretatiotdof X; ® - - - ® Xk, 1) for any generic tuple
(X1,..., XK.

Let P be a parabolic subgroup of G(C), L a Levi factor ofP and letE = C whereC is a unipotent
conjugacy class df and wherer is an element of the cent&r of L. Put

Y1 ps = {(x gP) € GLa x (GLn/P) |g™*xg € Z.Up )

whereUp is the unipotent radical d?. The varietyY py is the multiplicative analogue f, ps.

We choose a tupled, ..., Ok) of conjugacy classes of G(C) and for each = 1,...,k we let O
be the conjugacy class of the semisimple part of an elemeft.iWe say that the tupleds, ..., D) is
genericif H!‘zl det(©;) = 1 and ifV is a subspace a@f" which is stable by somg € O; (for eachi) such
that

k
[ [detean) =1
i=1

then eitheV = 0 orV = C". Unlike the additive case, generic tuples of conjugacysdaslways exist (the
multiplicities of the eigenvalues being prescribed). Fmtance, while we can not form generic tuples of
adjoint orbits of nilpotent type, we can always form genéujles of conjugacy classes of unipotent type
as follows. Let/ be a primitiven-th root of unity, andD; = {Cy, O, = Cy,..., Ok = Cx whereCy, ..., Ck
are unipotent conjugacy classes, then,( .., O) is generic.

Foreach =1,...,Kk, let (Li, P, %) be such that the image of the projectidn p, 5, — al, IS O;. Asin
§1.2, we defind_, P, X, C and we say thatl(, X) is genericif the tuple ©4, ..., Ok) is generic which we
now assume. We define the multiplicative analogu¥of » as

ULpy =

{( ag, by, ...,ag,0g, (X1, ..., X% 01P1, ..., ngk)) € (GL)® X Yipx| (a1, b1) - (g, bg)Xa - - X« = 1}

where @, b) denotes the commutataba'b~'. As in the quiver case, the genericity condition ensuress tha
the group PG}, acts freely orilJ, px. Then consider the quotieM, pyx = U px/PGL,. The projection
ULps — (GLn)%** on the 3 + Kk first coordinates induces a morphism fravia p» onto the &ine GIT
guotient

Mo = {(al,bl,...,ag,bg,xl,...,xk)e(GLn)ngﬁlx---xﬁk H_[(a-,bi)l_[xi =1 }/PGLn~

Remarkl.3.1 If Syis a compact Riemann surface of gegusith punctures = {py,..., p} C Sy, then
Mg can be identified (hence the name of character varietieh)tht dfine GIT quotient

{p € Hom (x1(Sq\P). GLy) [o(n) € T | PGL,

wherey; is the class of a simple loop aroupdwith orientation compatible with that &,.

Unlike quiver varieties, the mixed Hodge structurel btf (M, px, C) is not pure (see for instance [18]
in the case where the conjugacy clasSgare semisimple).
We letW, be the weight filtration omHX (M px, C) and put

H (M px) := WIHK (M px, C) /Wi_1IHX (M, px,C).

The action ofW(L, X) preserves the weight filtration and so, fore W(L, X), we may consider the mixed
Poincaré polynomial
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HY (M py;Q,t) := ZTr (w [H™* (ML px) ) o't
K
and itspure part
PHY (M px.t) = ZTr (w [H" (ML)t
i

Recall tha = o-C with C a unipotent conjugacy class bfando € Z, .
Letw € W(L,X). As above Theorem 1.2.2, we can define a type (T,)* from (L,C,w). Let
(X4, ..., Xk) be ageneric tuple of irreducible characters of,(#) of typew.

Conjecture 1.3.2. We have

PHY (ML px.q) = q29MH4rs (A@ X1 ® - ® Xi 1). (1.3.1)

If w = 1 and if the conjugacy classé€y are semisimple, in which cadd, pyx ~ My, then this
conjecture is already in [18].

Now puté = (£-1,1,...,1) € (ZGLn)k where( is a primitiven-th root of unity. Then for any triple
(L,C,w) with w € W(L, C) the pair (,£C) is always generic andr € W(L,¢C) = W(L,C). Hence
Conjecture 1.3.2 implies that for any generic tupl&,( .., Xx) of irreducible characters there exists a
triple (L, C, w) with w € W(L, C) such that if we pul := £C, then Formula (1.3.1) holds.

PutC’ := C — 1 and assume that there exists € A ) such thatCg,(0) = CgL,(c’). Then
Conjecture 1.3.2 together with Theorem 1.2.2 implies ttieviong conjecture.

Conjecture 1.3.3. We have
PHY (M px, @) = P{ (Qupyx, ).

In the case where the adjoint orbdds, . . ., Ox and the conjugacy classgs. .., Ok are semisimple and
w = 1, then this conjecture is due to T. Hauselg i 0, he actually conjectured that the identity between
the two polynomials is realized by the Riemann-Hilbert memoony mapQo — Mo.

In [18] we gave a conjectural formula for the mixed Poinqasg/nomial of My in terms of Macdonald
polynomials wherD;, .. ., Ok are semisimple. We will discuss the generalization of thigjecture for the
twisted mixed Poincaré polynomidly (M, px; g, t) in a forthcoming paper.

Acknowledgements. | am very grateful to P. Satgé for helpful discussions on eqarts of this paper
and to the referee for his very careful reading and his sugessto improve the writing of this paper.
This work started during the special semester entitled élgic Lie Theory” at the Newton Institute
(Cambridge, 2009). | would like to thank the organisers far invitation and the institute’s stdor their
kindness. This work is supported by ANR-09-JCJC-0102-01.

2 Preliminaries on geometric invariant theory

In this sectionK is an algebraically closed field of arbitrary characteristi
In the following the lettelG denotes a connected reductive algebraic groupsiver
We review the construction by Mumford [43] of GIT quotients.
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2.1 GIT quotients

For an algebraic variet over K we denote byK[X] := HO(X, Ox) the K-algebra of regular functions
on X. LetG acts onX and leto : G x X — X, pry : G x X — X denote respectively th&-action and
the projection, then &-linearization of a line bundl& over X is an isomorphisn® : o*(L) = pr;(L)
satisfying a certain co-cycle condition (see Mumford [43]he isomorphisn® defines a linear action of
G on the space of sectio$°(X,L) as @ - 5)(X) = g- S(g™* - X). We denote byH°(X, L)€ the space of
G-invariant sections.

Fix a G-linearization® of L and for an integen, putL(n) := L®". A pointx € X is semistablgwith
respect tab) if there existsm > 0 ands € HO(X, L(m))® such thatXs := {y € X|s(y) # 0} is affine and
containsx. If moreoever thé&-orbits of Xg are closed irKs and the stabilize€¢(x) of x in G is finite, then
x is said to bestable

We denote byXsY(®@) (resp.X3(®)) the operG-invariant subset of semistable (resp. stable) poinds. of

Letq: X3Y®) — X//¢G denote the GIT quotient map defined by Mumford [43, Theorelf]l.It is
defined by glueing together théiae quotient mapXs — Xs//G := Spec(K[XS]G) wheresruns over the
set of section$1°(X, L(m))©, with m > 0, such thak; is afine.

We will use the following well-known properties of

Theorem 2.1.1.(1) The quotient q is a categorical quotient (in the categuirglgebraic varieties).

(2) If X,y € X3Y®), we have ¢x) = q(y) if and only ifG - xN G -y # 0.

(3) If U is an g-saturated (i.e. dq(U) = U) G-stable open subset of%®), then U) is an open subset
of X//G and the restriction U- q(U) is a categorical quotient.

(4) Let F be a closed G-stable subset 6f(®) then o(F) is closed in X/ ¢G.

(5) There is an ample line bundle M on/¥G such that ¢(M) =~ L(n) for some n.

The theorem can be found for instance in Mumford [43] or ind2ahev [13, Theorem 8.1, 6.5].

Since the Zariski closure of@-orbit contains always a closed orbit, the assertion (2stithatX// G
parameterizes the closed orbitsX6T(®). If we identify X//¢G with the set of closed orbits 03 ®), the
mapq sends an orbif of X5{®) to the unique closed orbit containedan

Let G’ be another connected reductive algebraic group @vearcting onX. Assume that the two
actions ofG andG’ on X commutes. PuG” = G x G’ and assume that there iS4 -linearization®”
of L extending®. Denote byd’ the G’-linearization onL obtained by restrictingd” to G’ x X. Let
7 X3HD”) — X//o»G” andn’ : X3Y®’) — X//-G’ be the quotient maps. Since the actionSandG’
commute, the grouf® acts on the spacé4’(X, L(n))® and so the quotient mag is G-equivariant. Also
the ample line bundI® on X//¢ G’ constructed in [13, Proof of Theorem 8.1] such tha}*(M) =~ L(n)
is G-equivariant and there is@-linearization? of M such that£’)*(¥) = ®(n).

Proposition 2.1.2. Assume that the inclusionr*X®"’) c X5Y®’) is an equality and put Z X//¢G’. Then
there is a canonical isomorphismy2% G” ~ Z//4G.

Proof. If Xis affine clearlyX//G” = Spedk[X]¢" ~ Spec(K[X]G’)G = (X//G’)//G. Hence the proposition
follows from the construction of GIT quotients by glueingfime quotients. O

Lety : Gx X = Xx X, (0,X) = (g- X X). According to Mumford (see [43, Definition 0.6] or [13,
§6]) we say that a morphism : X — Y of algebraic varieties is geometric quotienfof X by G) if the
following conditions are satisfied:

(i) ¢ is surjective and constant @orbits,

(i) the image ofiy is X xy X,

(i) U c Y is open if and only iip~1(U) is open,

(iv) for any open subsdd of Y, the natural homomorphisi®(U, Oy) — H%(¢~(U), Ox) is an iso-
morphism onto the subring®(¢~1(U), Ox)® of G-invariant sections.
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A geometric quotient is a categorical quotient, hence it it is unique. The condition (ii) says that
Y parameterizes th@-orbits of X and so we will sometimes use the notat¥fG to denote the geometric
guotient ofX by G.

Recall that the restrictioKS(®) — q(X5(®)) of g is a geometric quotierk3(®) — X3(D)/G.

Unless specified, the princip@tbundles we will consider in throughout this paper will behwiespect
to the étale topology.

Lemma 2.1.3. A geometric quotient : X — Y is a principal G-bundle if and only i is flat and
Y Gx X — XxyX(g,X) — (g- X X)is an isomorphism.

Proposition 2.1.4.1f X — P is a principal G-bundle with P quasi-projective, then thexists a line bundle
L on X together with a G-linearizatio® of L such that X(®) = X. In particular P~ X//¢G.

Proof. Follows from Mumford [43§4, Converse 1.12] and the fact that the morphksm» P is an dfine
morphism (a5 is affine). O

We say that the action @& on X is freeif ¢ : G x X —» X x X is a closed immersion. Recall that a
geometric quotienX — X/G by a free action o6 on X is a principalG-bundle [43, Proposition 0.9]. In the
case wher& is afine then the quotient map — X//G is a principalG-bundle if and only if the stabilizers
Cs(X), with x € X, are all trivial and thé&-orbits of X are all separable (see Bardsley and Richardson [1,
Proposition 8.2]).

We have the following proposition (see Mumford [43, Profiosi7.1]).

Proposition 2.1.5. Let G act on the algebraic varieties X and Y and let X — Y be a G-equivariant
morphism. Assume that ¥> Z is a principal G-bundle with Z quasi-projective. Assumsoahat there
exists a G-equivariant line bundle L over X which is relayvample for f. Then there exists a quasi-
projective variety P and a principal G-bundle% P. Moreover the commutative diagram

f
_—

Y
o
/ i

—_—

T<——X

is Cartesian.
If K = Fq and if all our data are defined ovéty then P, X— P and X~ P xz Y are also defined over
Pq.

Assume thaf is a finitely generateti-algebra. The projectivespace oveA is the algebraic variety
P, := ProjA[xo, ..., %] = SpecA x P,. We denote bya(1) the twisting sheaf oR),.

We now assume th#& acts on the algebraic varieties SgeandP!, and so orP,. The ample line
bundleOa(n) admits aG-linearization for some suficiently large (as the twisting she@(1) onP}, does
by Dolgachev [13, Corollary 7.2]). For such anthe restrictiorL of Oa(n) to a closeds-stable subvariety
X of P, admits then &-linearizationd. In this case, th&s, with s € HO(X, L(n))®, are always fiine.

Corollary 2.1.6. Let f: X — Y be a projective G-equivariant morphism with jfiree. Assume moreover
that Cs(y) = 1for ally € Y and that the G-orbits of Y are all separable. Then the gedmegtiotients
Y — Y/G and X— X/G exists (and are principal G-bundles) and=XX/G xvy,c Y. IfK = Fq and if X,Y,
G and f are defined ovéiy, then Y— Y/G, X = X/G and X= X/G xy,g Y are also defined ové.

2.2 Particular case: Afine varieties

Assume now thakK is an dfine algebraic variety. Leg : G — K* be a linear character @&. Then the
action ofG on L° = X x A! given byg - (x,t) = (g- X, x(g)~'t) defines &G-linearization® of L°. The
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spaceH(X, L°(n))® with n > 0 can be then identified with the spa&pX]®*" of functionsf e K[X] which
satisfy f(g- X) = x"(9)f(X) for all g € G andx € X. Such a functiorf € K[X] is called gy"-semi-invariant
function
Apolynomialf = 3[_, fi-Z € K[X][Z4 = K[Xx Al]is G-invariant if and only if for each, the function

f is ay'-semi-invariant, that is

K[X x AY]® = (P KX

n>0

and so

X//oG = Proj (K[X x A']®).

The canonical projective morphism
7x - X/[oG — X//G := Spec(K[X]®). (2.2.1)

is induced by the inclusion of algebr&X]® c K[X x Al]®. Of course if® is trivial thenzy is an
isomorphism.

We will use the following important property. Lgt: XSY(®) — X//¢G be the quotient with respect to
(LC, @).

Proposition 2.2.1. If F is closed subvariety of X, then*§®) = X5{®) N F and the canonical morphism
F//oG — q(FSY{(®)) is bijective. IfK = C, it is an isomorphism.

Remark2.2.2 Note that for anyG-equivariant morphism : X — Y of affine algebraic varieties, then the
co-morphismp? : K[Y] — K[X] preserveg-semi-invariants, hence we always havé(Ys{®)) c X5Y{®).

If moreoverg is a finite morphism them (XSY®)) c Y*®) and so we recover the first assertion of the
proposition.

3 Intersection cohomology

3.1 Generalities and notation

Let X be an algebraic variety over the algebraically closed field et £ be a prime which does not divide
the characteristic d&. The letterx denotes the fiel@,.
We denote byD2(X) the bounded “derived category” ef(constructible) sheaves ot ForkK e DE(X)
we denote byH'K thei-th cohomology sheaf oK. If mis an integer, then we denote b§{m] the m-
th shift of K; we haveH'K[m] = H"*™K. For a morphismf : X — Y, we have the usual functors
f., fi 1 DY(X) — DO(Y) andf*, f' : DE(Y) — DE(X). If i : Y — Xiis a closed immersion, the restriction
i“K of K € DE(X) is denoted byK|y. We denote byDy : DE(X) — DY(X) the Verdier dual operator.
Recall (see Beilinson-Bernstein-Deligne [2]) that a peseesheaf oiX is an objecK in DE(X) which
satisfies the following two conditions:

dim(Supp®'K)) < —i,
dim(Supp(H'DxK)) < —i forall i € Z.

The full subcategory ofD?(X) of perverse sheaves ot forms an abelian category (see BBD |2,
Théoreme 1.3.6]) and its objects are all of finite leng#e(BBD [2, Théoreme 4.3.1 (i)]).

Let nowY be an irreducible open nonsingular subseXafuch thaty = X. Then for a local system
onY, we let7Cy, € DE(X) be the intersection cohomology complex defined by GorddkiPherson and
Deligne. The perverse sheéf= &;(’f := IC% [dim X] is characterized by the following properties:

HK =0 if i <-dimX,
.7.{—dimXK|Y — f,
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dim(Supp@'K)) < —i if i > —dimX,
dim(SuppH'DxK)) < —i if i > —dimX.

If U is another open nonsingular subset#énd if £ is any local system ot such thatlyny = &luny,
thenZC5, = IC%,. This is why we omitt the open s&tfrom the notationZ C5 .. We will simply denote
by 7Cy the complexfc;@ .

Nl

Remark3.1.1 Note thatifU is a locally closed subvariety & such that) ¢ X thenH-9mUYK|, = 0

We have the following description of simple perverse sheake to Beilinson, Bernstein and Deligne.
If Z is an irreducible closed subvariety ¥fand¢é an irreducible local system on some open subsét of
then the extension by zero ﬁt" on X — Zis a simple perverse sheaf &rand any simple perverse sheaf
on X arises in this way from some paiZ,¢) (see BBD [2, 4.3.1]).

It will be convenient to continue to denote By, and@zg their extension by zero oX — Z.

Note that if X is nonsingular therT_C;(’f =: ¢ is the complexK* concentrated in degreedim X with
deimX — §

We define the compactly supporteth intersection cohomology groupslL(X, &) with coefficient in
the local systeng as the compactly supportedh ¢-adic hypercohomology grou.(X, IC,). If fisthe
unique morphisnX — {pt}, thenlH{(X, &) = H'(fi IC%,).

If X is nonsingular, thed Cy is the constant sheaf concentrated in degree 0 and He.(X,x) =
HL(X, «).

We will need the following decomposition theorem of Beitins Bernstein, Deligne and Gabber.

Theorem 3.1.2.Suppose thap : X — X’ is a proper map with X irreducible. Then

eu(IC3) ~ (P Vzer ® IC3,I1]
ZEx

whereé is an irreducible local system on some open subset of a cliosetlicible subvariety Z of X If
moreoverp. (ZC5) is a perverse sheaf, then

¢.(1C3) = (D Vze ® IC;, (3.1.1)
a3

The theorem remains true if we replab€y by a semisimple object of “geometrical origin” [2, 6.2.4].

Remark3.1.3 LetY be a closed irreducible subvariety ¥f and letU be a non-empty nonsingular open
subset ofY. Note that

Wfdle

(DVecoIC, | ~(PWeos
2¢ v ¢

where the direct sum on the right hand side is over the iriétiitocal systems oN.

Definition 3.1.4. A proper surjective morphisrh: Z — X is semi-smallf and only if one of the following
equivalent conditions is satisfied:

(i) dim{x e X|dim f=}(x) > i} < dimX - 2i for all i € Zso.

(ii) There exists a filtratiorX := Fo > F1 > --- > F, = @ of X by closed subsets such that, for all
i€{0,...,r —1}andx € F; — Fi,1, we have 2 dinf1(x) < dimX — dimF;.

We will use the following easy fact.
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Lemma 3.1.5. Let f : Z —» X be a proper surjective map and let%X Fo > F; > --- > F, = 0 be
a filtration of X by closed subsets. Let X’ — X be a surjective map and put = h=}(F;). Assume
thatdimX — dimF; = dimX’ — dimF/. Then the projection on the second coordinatg,/X’ — X’ is
semi-small with respect to the filtratiorf X= F; > F] > --- > F{ = 0 if and only if the map f is semi-small
with respectto X=Fg>F1>--- D> F = 0.

Definition 3.1.6. Let X be an algebraic variety ové. We say thaiX = [],¢ X, is astratification of
X if the set{a € || X, # 0} is finite, for eache € | such thatX, # 0, the subsek, is a locally closed
nonsingular equidimensional subvarietyXgfand for eachw, 8 € I, if X, N Yﬁ # 0, thenX, c Yﬁ.

It is well-known that iff : Z — X is a semi-small map witl nonsingular and irreducible, then the
complexf.(¢) is a perverse sheaf for any local systéion Z.
We can actually generalize this result as follows.

Proposition 3.1.7. Let f : Z — X be a proper surjective map with Z irreducible and let4 [, Z, be a
stratification of Z. For xe X, put f1(x), := f~(x) N Z,. Assume that

dim{x e X ‘dim fH(X)o > 12 - %codimz(za)} <dimX-—i

holds for alla € | and all i € Z>o wherecodiny(Z,) := dimZ — dimZ,. Then for any perverse sheaf K on
Z, the complex.K is a perverse sheaf on X.

This proposition is used and proved (without being stataalieiy) in Lusztig's generalisation of
Springer correspondence [37, proof of Proposition 4.5].

Proof. We need to prove that

(i) dim (SuppH' f.K)) < —i,

(ii) dim (Supp(H'Dx f.K)) < —i forall i € Z.

Since f is proper, the Verdier dual commutes withand so we only prove (i) as the proof of (ii)
will be similar. The stalkH.f.K is the hypercohomolog§ (f‘(x),K|f71(X)). If for x € X we have
H (f*(x), K|f_1(x)) # 0 this means that there exisis | such that the compactly supported hypercohomol-

ogy Hg(f‘(x)(,, K|f71(x)w) does not vanish. Hence to prove (i) we are reduced to seedhali fr € | and
i1

dim {x & X | B (12000 Klr-ip, ) # o} < -i. (3.1.2)

If HL (f‘l(x)(,, K|f71(x)n) # 0 then from the hypercohomology spectral sequence we magivasis +i»
with iy < 2dim f~3(x), and 2 (K|s-1(q, ) # 0. The last condition implies tha2K|z, # 0. SinceK is
a perverse sheaf, we must hayer dimX < codimz(Z,). We thus have + dimX < 2dimf~-1(x), +
codimy(Z,). Hence the inequality (3.1.2) is a consequence of theViatig one

dim {x e X |i +dimX < 2dimf~(x), + codimZ(ZQ)} < —i.

Hence we are reduced to see that

dim {x e X ’dim (%), > %(i - codimZ(ZQ))} <dimX—i

for all i. O



16

Corollary 3.1.8. Lety : X — X’ be a morphism which satifies the condition in Proposition3.then
(3.1.1) becomes

¢.(LC5) = ICS, @ @ Vze® E},g) (3.1.3)
Z£
with Z ¢ X’. In particular
IHL(X, k) =~ IHL(X', k) ® @ Vze® IHE 9% (2, g)]. (3.1.4)
£

where & the dimension of Z.
The isomorphism (3.1.4) is obtained from (3.1.3) by appiytime functorf; with f : X" — {pt}.

Corollary 3.1.9. Assume thap : X — X’ satisfies the condition in Proposition 3.1.7. If X |J, X
where | is a finite set and where thé€ 4re locally closed irreducible subvarieties of Xuch that the
restriction of ' (¢. (ZCy)) to X; is a locally constant sheaf for all i and ail € 1, then

¢.(ICy) = ICy, @ {@ Vos, ®ICy,
&y

where the direct sum is over taesuch thatX, ¢ Y.

Proof. Let Z be an irreducible closed subvariety Xf such thatZ C>, |s a direct summand a#. (IC )
We haveZ = | J,(X/, N Z). SinceZ is irreducible, there exists ansuch thatX!, N Z is dense inZ. We

have H~9MZ o, (ICX) # 0. SinceH9MZ o, (ICX) is locally constant and non-zero, we have
— IXnZ — I

X! Supp(?{*dim%* (E;)) Hence

dimX;, < dim (Supp(H 9™Z¢, (£C}))) < dimZ.

The right inequality holds becau&e(g;) is a perverse sheaf. Since diXj,(N Z) = dimZ, we deduce
that the inclusiorX, N Z c X!, is an equality, i.e.X/, c Z, and so thakX, = Z. ]

Assume thakK is an algebraic closure of a finite fiel§ and thatX is an irreducible algebraic variety
defined ovefify. We denote by : X — X the corresponding Frobenius endomorphism. We will usegith
the notationX™ or X(Fq) to denote the fixed points &€ by F. LetK € D2(X) and assume that there exists
an isomorphisng : F*(K) ~ K. Thecharacteristic functiorXx, : XF — « of (K, ¢) is defined by

Xko(¥) = ) (~1) Trace(p), HiK).

If r € Z, we denote b¥K(r) ther-th Tate twist ofK. ThenXk) ¢¢) = 07" Xk, -

LetY be an open nonsingul&rstable subset of. We will simply denote by 7¢; the functionX z¢; ,
whereg : F*(ICy) — ICY is the unique isomorphism which induces the identity/dfi(Z7Cy) for all
x e YF.

3.2 Restriction

Assume thaK is irreducible. LetZ be an irreducible closed subvarietyXfet leti : Z — X denotes the
inclusion. We give a condition faf(ZC%) = IC5 to be true.
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Proposition 3.2.1. Assume that there is a decompositios X ).« X, of X where | is a finite set and where
the X, are locally closed irreducible subvarieties such that

(i) if Z, := X, N Z is not empty, then it is equidimensional amatlimy X, = codiny Z,.
Assume moreover that there exists a Cartesian diagram

X
1
z
such that the conditions (ii) and (iii) below are satisfied.
(i) f and g are semi-small resolutions of singularities.

(iii) The restriction of the sheaf{'(f.(x)) to X, is a locally constant sheaf for all i.
Then1(ZCY) = IC3.

T o
i

% .z

Proof. If Y is a variety, ledy denote its dimension. Let, € | be such thakX,, is the open stratum of.
To avoid any confusion we will use the notatid@[dz] instead ofZC3. By Corollary 3.1.9, we have

f.(k[dx]) = ZCx[dx] EB[ P Ve ®fC';m§a[dx(,]]- (3.2.1)

a#Eo.€n

By (iii) and i*f.(k) = g.(x) we see that the restriction @f'(g.(x)) to Z, is locally constant. Hence by
Corollary 3.1.9, we have

g*(K[dz])=ICE[dz]€B{ D Weps, ®IC [dz,]] (3.2.2)

Z(a,B) Lo
o B
Q¢Qo,ﬁ€|g,é aB

where{Z, s s, is the set of irreducible componentshf. Using again* f.(x) = g.(«x) we see from (3.2.1)
and (3.2.2) that the compléX(7C%)[dz] is a direct summand of the semisimple perverse sggafdz]).
It is therefore a semisimple perverse subsheaf 6dz]). Since the open stratui),, of Z is contained in
the open stratum oX, the restriction of*(ZC%)[dz] to Z,, is the constant sheafd;]. Hencei*(7C¥)[dz]
contains/ C%[dz] as a direct summand, i.e.,

i*(fc;ndz]:fcz[dz]ea[ D Wone,®IC [dqu]

Zaps,
@£l 0 lap i

for some subspace¥(, ;. < Wap)(,,- It remains to see thal/, =0forall @ # a.

(avﬁ)v(nﬁ
PutK :=i*(FCY)[dz]. Then fora # a, we have

H ™% Klz, = HZ % 1CYz,
= H* % ICY,
= HH IC [N,
=0.

The last equality follows from Remark 3.1.1. Hem%mm = 0 by Remark 3.1.3 and we proved the

proposition. O
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3.3 E-polynomial

Recall that a mixed Hodge structure on a rational vectoresphconsist of a finite increasing filtration

W, (the weight filtration) onH, and a finite decreasing filtratioR* (the Hodge filtration) on the com-

plexification He, which induces a pure Hodge structure of weighin the complexified graded pieces
Gr'He = (WkH/Wi_1H)c, i.e.,

Gr\kNHC = @ (GFXVH(c)p’q
p+a=k
with

(GHc)™ = FPGRYH: N FIGRHe.

p+q
Recall (Saito [51], see also [48, Chapter 14]) that for anyglex algebraic variet¥, the intersection
cohomology groupHX(X, C) is endowed with a mixed Hodge structure Xifis nonsingular, it coincides
with Deligne’s mixed Hodge structure di.(X, C) which is defined in [10].
We then denote bj/ihg’q;k(X)}p,q the mixed Hodge numbers oHX(X,C) and we define the mixed
Hodge polynomial o as

We call the integer#ﬂ”q :=dim (GrW Hc)p’q}pq themixed Hodge numbers

IHe(X; X, Y, 2) = Z ih2(X)xPyaZ.
p.ok
The compactly supported Poincaré polynomiakas thenlH¢(X; 1, 1, t).
In this paper we will say thaX is pureif the mixed Hodge structure dmHX(X, C) is pure for allk, i.e.,
if ih?%(X) = 0 whenp + q # k.
The E-polynomial of X is defined as

EC(X%y) = IHo(X; x.y.~1) = ) [Z(—l)kihé”q*m) XPyl.
pa \ K
Let R be a subring of which is finitely generated asZalgebra and leX be a separate®-scheme
of finite type. According to [20, Appendix], we say thatis strongly polynomial counif there exists a
polynomial P(T) € C[T] such that for any finite field; and any ring homomorphisg : R — Fg, the
Fg-schemeX¥ obtained fromX by base change is polynomial count with counting polynorjdle., for
every finite extensioy /Fq, we have
#X? (Fep)} = P(A).
According to Katz terminology (cf. [Appendix][20]), we d¢a@ separate®-schemeX which gives back
X after extension of scalars froRito C a spreading oubf X.
The complex varietyX is said to bepolynomial countf there exists a spreading out &f which is
strongly polynomial count.
Let us now denote bmic’j;k(x)}i’j the mixed Hodge numbers &f¢(X, C) and put

EQXxY) = ) [Z(—l)kht“k(X)) Xy,
i \ k

We recall the result of Katz in the appendix of [20] (see alssirKand Lehrer [27] for closely related
results).

Theorem 3.3.1. Assume that X is polynomial count with counting polynomial®T]. Then

E(X; x,y) = P(xy).
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LetX = [, X, be a stratification and Ie¢,, be the open stratum, i.e,= X,O. Pute < Bif X, C Yﬁ,
andr, := (dimX, — dimX)/2.

We say thak satisfies the propertye( with respect to this stratification and the riRdf there exists a
spreading ouk of X, a stratificatiorX = [[, X,, and a morphisnv : X — X of R-schemes such that:
(1) X and the closed strat¥, are strongly polynomial count,

(2) for eacha, the stratumX, is a spreading out oX,, the morphisnt : X — X obtained fromV after
extension of scalars froR to C yields an isomorphism of mixed Hodge structures

Hi(X, Q) ~ IHL(X, Q) ® [@ W, ® (IHEZ(X,.Q) ® Q(ra))] : (3.3.1)
aFay

whereQ(-d) is the pure mixed Hodge structure @nof weight 21 and with Hodge filtratiorF¢ = C and

F*l=0.

(3) for any ring homomorphism : R — Fq, the morphisnv¥ : X — X¢ obtained fron¥ by base change

yields an isomorphism

(V9). (¥) = IC}, @ [@ W, & IC (ra)) (3.3.2)

atay
of perverse sheaves.
Assume now that all complex varieti®s (in particularX) satisfy the propertyH) with respect to the
stratificationX,, = [1s<o Xs @and the ringR,. Since there is only a finite number of strata we may assume
without loss of generalities that the rinBs are all equal to the same ririgy

Theorem 3.3.2. With the above assumption, there exists a polynon{i@) B Z[T] such that for any ring
homomorphismp : R — Fy, we have

>, Xre,. (=P (3.3.3)
xeX?(Fq) ¢
and _
E“(X; x.y) = P(xy).

Proof. If there is only one stratum, i.e., X is nonsingular, then the theorem is true by Theorem 3.3.&. Th
theorem is now easy to prove by induction@rc . Assume that the theorem is true for alk ay. By
Formula (3.3.1), we have
E(X; xy) = EC(X; x,y) + Z (dimW,) X"y E® (Xa: X, y).
a<ag
By induction hypothesis and siné&is polynomial count, this formula shows tH&E (X; x, y) depends only
on the producky, i.e., that there exists a unique polynoniauch thaE°(X; x, y) = P(xy), more precisely
P is defined a® = P - Ya<a, ([AIMW,) Xy~ Py (Xy) whereP is the counting polynomial oX and P,
(with a # ao) is the polynomial which satifies the theorem %r= X,. It remains to see tha® satisfies
Formula (3.3.3).
By Formula (3.3.2), we have

Xwe).00 = X1z, + Z (dimW,) 7" X s, (3.3.4)

a<ao

By Grothendieck trace formula we have

Z X(vey.0 () = HX*(Fq)} = P(9).

xeX¥¢(Fq)

Now integrating Formula (3.3.4) ovef*(F,) proves Formula (3.3.3). O
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Proposition 3.3.3. Assume that X satifies the assumptions of Theorem 3.3.2 an¥ ik pure. Then for
any ring homomorphism : R — Fy we have

D Xic,. (9 =Pu(X;0)

X#(Fq)
XeX?(Fq)
where R(X;t) := 3 (dimIHgi(X, C)) t'.

Proof. SinceX is pure we havE(X; x,y) = ¥, 4(-1)P*hE*P(X)xPyd. By Theorem 3.3.2, the poly-
nomial E°(X; x,y) depends only on the produky, henceih®*P*9(X) = 0 if p # g. The mixed Hodge
numbers ofX are thus all of the fornh?P?P(X) and SOE™ (X; X, y) = P¢(X; xy). O

4 Preliminaries on quiver varieties

We introduce the so-called quiver varietiis o(v) anddi; ¢(v, w) overK which were considered by many
authors including Kronheimer, Lusztig, Nakajima and CeysBoevey. The second one, due to Nakajima
and calledramedquiver varieties, can be realized as the first one by an ohsendue to Crawley-Boevey
[5, introduction]. For our application we found more coniett to introduce them separatly. Here we recall
the basic results we need.

In this section we will only consider quotients dfiae varieties by (finite) direct products of G&.
If G = GLp, X --- X GLp, is such a group and j§ : G — K*, (gi) — [];(detg;)) is the character given

X5Y(®) when the context is clear.

4.1 Generalities on quiver varieties

LetI" be a quiver and lelt denote the set of its vertices. We assume thaffinite. A dimension vectofor
I is a collection of non-negative integers= {vilic| € leo and a representation bfof dimensionv overkK
is a collection ofK-linear mapsp; j : K — K", for each arrow — j of T, that we identify with matrices
(using the canonical basis Ef ). We define a morphism between two representations (pgssilifferent
dimension) in the obvious way. Subrepresentatioof ¢ is a representatiop’ together with an injective
morphismy’ — ¢. LetQ be a set indexing the edgeslofFory € Q, leth(y), t(y) € | denote respectively
the head and the tail of. The algebraic group GL:= [];, GLy,(K) acts on the space

M (F, V) = @ Mat\lh(y),vt(y) (K)

yeQ

of representations of dimensierin the obvious way, i.e., fog = (g))ia € GLy andB = (X,),eq, We have
g-B:= (gvh(y)xyg;t(ly)). As the diagonal centét = {(1.1dy)ie |4 € K*} ¢ GL, acts trivially, the action of

GL, induces an action of
G, =GL,/Z

Clearly two elements d¥1 (', v) are isomorphic if and only if they are,&onjugate.
We define a bilinear form o’ by a.b = 3, ab. Letd € Z' be such tha#.v = 0. This defines a
charactey : G, — K* given by )i — []; det @)*.

Theorem 4.1.1.[26] A point Be M (T, v) is y-semistable if and only if
6.dimB <0

for every subrepresentation’ Bf B. It is y-stable if and only if it is semistable and the inequalitytiscs
unless B=0or B ~ B.



21

We will use the terminology #-semistable” instead ofy-semistable”. We denote respectively by
MZXT, v) andMg(T, v) the §-semistable and-stable representations.

Let I" be thedouble quiverof T i.e. T has the same vertices &sbut the edges are given lfy :=
{y,7*ly € Q) whereh(y*) = t(y) andt(y*) = h(y). Then via the trace pairing we may ident¥/(T’, v) with
the cotangent bundle'M (T, v). Putgl, = Lie (GL,) = &, al,,(K) andg, := Lie (G,). Define themoment
map

wy - M(T,v) = M(v)° (4.1.1)
%)y = D D %],
yeQ
where

M(V)O = {(fi)iel € gly

ZTr (fi)=0}.

i€l
Note that we can identify M(° with (g,)* via the trace pairing. The moment mapis G,-equivariant.
Leté = (&)i € K' be suchthag.v = 0. Then

(&-1d)i € aly

is in fact in M(v)°. By abuse of notation we denote Eythe element.Id,,)i € M(v)°. The dfine variety
uy(€) is G,-stable.

Define

W o(V) = 11, (€)//eGv.
We definemg’o(v) as the image qfi;1(£)S in Mg (v). By Theorem 2.1.1, it is an open subsetldf o(v).

Since stabilizers in @of quiver representations are connected, the action @iGhe spactvl;(l:, V) is
set-theoritically free and so the restrictiopt(£)S — *Jﬁ;o(v) of ¢ is the set theoritical quotiept;!(£)S —
ut(€)8/Gy. By [49, Lemma 6.5], the mag,1(£)S — u,1(€)S/Gy is actually a principal Gbundle (in the
étale topology).

We puts(v) = Meo(v). Itis the dfine GIT quotientu;X(£)//Gy = Spe€K[uy(€)]®). The set
M,(v) parameterizes the set of conjugacy classes of the senésieyresentations gf,*(£). Under this
parameterization, the open sub%?(v) of O-stable points coincides with the set of conjugacyss#asof
simple representations.

The natural projective morphism: Mi ¢(v) — Mi(v) takes a representation to its semi-simplification.

Let C = (cij)i,j be the Cartan matrix of the quivEr namely

|2 -2(the number of edges joinindo itself) ifi = j
v —(the number of edges joinirigo j) otherwise

We say that a varietX is of pure dimension df its irreducible components are all of same dimension
d. We have the following well-known theorem (the irredudtlyils an important result of Crawley-Boevey

[5))-

Theorem 4.1.2.Let# € Z' be suchtha®.v = 0. If mt;ye(v) # 0, then it is nonsingular of pure dimension
2-WCv. If img(v) is not empty, theﬁnge(v) is also not empty antliz ¢(v) is irreducible.

Proof. First a simple representation is necessafilstable, hencéltg(v) 0 implies*JJt;o(v) 0. Itisa
result of Crawley-Boevey [5, Theorem 1.2] that the exiseeatsimple representations jj(£) implies
the irreducibility ofuy*(£) and so the irreducibility oi)t;e(v) andMi ¢(v). Note that a point € p;(€) is
nonsingular ifu, is smooth aty, that is if the stabilizer of in G, is trivial. From this we deduce that the
spaceu,(£€)S of #-stable representations is a nonsingular space of dimedgioM (T, v) — dim G,, and so
that‘JJt;o(v) is nonsingular of dimension

2-'WCv = dimM(T,v) - 2dim G,.
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O

We put an order ofZ' as follows: we say that < v if we havew; < v; for eachi € |. We denote by
&(v) the set ofw such that O< w < v, €. w = 0 anduz}(€) # 0.

Forw € Z.,, we denote by, the hyperplanér € Q' |@.w = 0} of Q'. PutH,y := Hy N H,, and

Dv:=H, - | ] Hw.
we&(v)
We say that is indivisibleif the gcd of{vi}i¢; is 1. Note thaD, is not empty if and only i is indivisible

Whenv is indivisible, the spacad,,, are hyperplanes ¢, and so defines a systemfateq4, Chapter
181].

Definition 4.1.3. We say tha®t is genericwith respect tos if 8 € D,,.
If 8 is generic them-semistability coincides with-stability, and so
‘J‘R;G(V) = iUtg:yg(V).

The variety)ig ¢(v) is thus nonsingular for generéc
We have [44][47§2.5]:

Proposition 4.1.4. Assume thal is generic and thaimz(v) # (. Then the map : Mg (V) — Me(v) is a
resolution of singularities.

The following proposition is proved in [18, Proof of Proptimn 2.2.6].

Theorem 4.1.5. Assume thaK = C and thate is generic. Then for any parameigrthe varieties)iz o(v)
andip¢(v) have isomorphic cohomology supporting pure mixed Hodgegire.

We also have the following result of Nakajima [9, Appendix B]

Theorem 4.1.6. Assume thaK = Fq and that@ is generic. Then there exists € Zq such that for all
I > ro the varietieslig o(v) and¥ig(v) have the same number of points ofFgr.

We now give a criterion due to Crawley-Boevey for the non-gmess oﬁmg(v). Fori el letg € Z!
be the vector with 1 at the vertéand zero elsewhere and t{I') c Z' be the root system associated to
defined as in [22]. We denote ldy" (') the set of positive roots. Let () be the symmetric bilinear form on
the root latticeZ' given by @, ;) = c;;. Note that vertices df may support loops.

Fora € Z', we putp(e) = 1- %(a, a). If ais areal root we havp(a) = 0 and ifa is an imaginary root
thenp(a) > 0.

The following theorem is due to Crawley-Boevey [5, Theore@].1

Theorem 4.1.7. (i) The spaceéli.(v) is non-empty if and only ¥ = 81 + 82 + ... with 8 € ®*(I') and
Bi . &€ =0foralli.

(ii) The spacéﬁ?(v) is non-empty if and only if € ®*(I') and gv) > p(B1) + p(82) + . .. for any nontrivial
decomposition of as a sunv = By + B> + ... with 3, € ®*(I') andg; . £ = O for all i.

4.2 Nakajima’s framed quiver varieties

The construction of the so-called framed quiver variet@ows the above one’s except that we have an
additional graded vector spadé

LetT andv be as in§4.1. Letw € leo be an other dimension vector. Aut, = P
P, HomEK", K"), Lwy = P, Mat, v, (K), and

M(T,v,w) := M(T, V) @ Lyw & Lyw.

Maty, v, (K) =

i€l
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An element oM (T, v, w) is then denoted byR; a, b) with B € M(T',v), a € Ly, andb € Ly,. The group
GL, acts onM (T, v, w) by
g-(B,ab)=(g-B,a-gt,g-b) (4.2.1)

whereg - Bis the action defined i§4.1.
Consider the moment map
:uV,W : M(r» V7 W) - gIV = (gIv)*

that maps B, a, b) to —ba + p,(B). For¢ € Z' we denote bylig(v, w) the dfine framed quiver variety
p;ﬁv({;‘)//GLv as in [45]. Note that unlike i§4.1, we do not assume thfat v = 0.

Definition 4.2.1. Let# € Z'. A point (B, a, b) € M(T, v, w) is #-semistabléf the two following conditions
are satisfied:
(i) For anyB-invariant subspac® of V such thatS; is contained in Kerg) for all i € |, the inequality
6.dimS < 0 holds.
(i) For any B-invariant subspace of V such thafl; contains Imfy;) for all i € I, the inequality
6.dimT < 6.v holds.
The point B, a, b) is calledd-stableif strict inequalities hold in (i), (i) unlesS = 0, T = V respectively.

We denote respectively blylgs(l_“, v, W) andMg(f, v,w) the set off-semistable and-stable points.
Thenmg(ﬁ V,W) is an open subset M;S(ﬁ v, w) on which the group Gl.acts set-theoritically freely.

Remark4.2.2 (i) If 6 > O foralli € I, then the condition (ii) of Definition 4.2.1 is always satsfiand so
a representation g&-semistable if and only if the condition (i) is satisfied.
(i) Let 0,0 € leo andletdy :={i e 116 =0landJy :={i € 1|6/ = 0}. If Jy C Jp, thenMgs(l_", V,W) C
MSAT, v, w).

Lety : GL, — KX, (g) ~ []jdet@)% be the character associatedftoThen a representation in
M (T, v, w) is y-semistable if and only if it i®-semistable. The framed quiver variély (v, w) is defined
as

Me o(V, W) = 1173,/(€)//6GL.

Define alsoimze(v, w) as the image ofi,3,(£€)° in Mg (v, w). If not empty, the varietylli;ﬂ(v, w) is a
nonsingular open subset ¥z o(v, w).

Note thatdigo(v, w) is the dfine framed quiver varietis(v,w) as all points ofM (T, v, w) are O-
semistable. We thus have a natural projective morphisiiiz o(v, w) — Dig(v, w).

It was observed by Crawley-Boevey [5, Introduction] thay &rmamed quiver variety can be in fact
realized as an “unframed” quiver variety $.1. This is done as follows.

FromI" andW we construct a new quivér by adding td" a new vertexc and and for each verteof
I, we addw; arrows starting ato towardi. Putl* = | U{co}. We then definév*, ) € Z! x Z"" as follows.
We put

() vy =viifielandvy, =1,

(i) 6 =6 ifiel anddy, = -6 -v.

We have a natural group embedding G GL,- that sends an elemegt= (g)ic to the element
g* = (g)ie- With @' := g; if i € | andgy, := 1. This induces an isomorphism Gk G- = GL,./K*. We
have a Gh-equivariantisomorphismil (T*, v*) — M (T, v, w). Under this isomorphism, tiesemistability
(resp. stability) of Definition 4.2.1 coincides with th&semistability (resp. stability) i§4.1.

In the context of framed quiver, we say tlkils genericif 8* is generic with respect to* in the sense
of Definition 4.1.3. In this case we have

MSST, v, w) = M5(T, v, w)

We have (see Nakajima [44]):
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Proposition 4.2.3. Assume thaft is generic and thalltZ(v,w) # 0. Thendi o(v, w) = Mz ,(v, w) and the
mapn : Mg o(v, W) — Me(v, w) is a resolution of singularities.

Remarkd.2.4 If 6 > 0 for alli, theng* is always generic with respect .

4.3 Quiver varieties of typeA

We review known results by Kraft-Procesi [30], Nakajima][{5], Crawley-Boevey [6] [8] and Shmelkin
[50] and give a slight generalization of some of them.

4.3.1 Partitions and types

We denote byP the set of all partitions including the unique partition 00yfby £* the set of non-zero
partitions and byP, the set of partitions afi. Partitionst are denoted by = (11, A2, ...), whered; > A, >
.-+ >0, orby (I,2™,...) wheren; denotes the number of parts 4fequal toi. We put|1] := 3; 4; for
the size ofi. The length ofl is the maximum with 4; > 0 and we denote by the dual partition oft. For
two partitionsd = (A1, ..., 4;) andu = (ug, . .., us) we define the partitiod + u as @1 + pa, A2 + uz,...),
and ford = (1™,2%,...), u = (1™,2™,...), we define the uniol U u as (I*™, 2%*™ ). For a
partition = (14,..., ds) and a positive integeat, we denote by - A the partition @14,...,dAs). Recall
thatQ + ) = A Uy,

Given a total ordering; on®, we denote byl the set of non-increasing sequences ww?- - o'
with ' € P and Iet'T'}1 be the subset of sequeneestich thafy; [w'] = n. We will see in§4.3.2 that the set
'T'}] parameterizes the types of the adjoint orbitgljjtK). Although the choice of a particular total ordering
will be sometimes convenient it will not be essential for thsults of this paper. We will actually often use
the notationl andT, instead ofTt andT!, when the reference to the orderiggis not necessary.

We extend the ordering; to a total ordering on the séfd, 4) |d € 22, 1 € £*} which we continue to
denote byx; as follows. Ifu # A, we say thatd, u) <; (d’, 2) if 4 < 4, and we say thai( 1) <; (d’, 2) if
d’ < d. We denote byl'* the set of all non-increasing sequenges (dy, A1)(dz, 42) - - - (dr, A") and by T},
the subset oT'! of these sequences which satigfy := 3, di|A'| = n. The first coordinate of a paid(1)
is called thedegree We will see in§6.8 thatT}, parametrizes both the types of the adjoint orbitsljiFg)
and the types of the irreducible characters of,(&). As for T and T, we will often use the notatiof
andT, instead ofTt and T,

Since the terminology “type” has two meanings in this paperuse the letterg, 7, . . . } to denote the
elements off and the symbol&o, 7, . . .} for the elements of.

Given a typeaw = (di, w?) - - - (dr, ") € T, we assign the type

t d dr
o=t W W

of Tt. We thus have a surjective m&p: T' > T%, w - .
Let

with o' # ! if i # j and put

Note that the elements in the fibgrl(®) are parametrized b, x --- x P, and so by the conjugacy
classes oW;,.
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4.3.2 Zariski closure of adjoint orbits as quiver varieties

Let A e gl(K) with semisimple partAs and nilpotent parh,. We assume for simplicity thads is a
diagonal matrix so that its centralizerin GL,, is exactly a product of Gi's. We haveA = As + A, with
[As, An] = 0 where K, y] = xy — yx We putCy, (A) := {X € gl| [A, X] = 0} = Lie(L). LetC be theL-orbit
of An. Then the Gk-conjugacy class of the paik(C) is called thelypeof the GL,-orbit O of A.

Fix a total orderings; onP. The types of the adjoint orbits af,, are parameterized by the §~E$; as
follows.

Letmy, ..., m be the multiplicities of the distinct eigenvaluesy, ..., a; of A. We may assume that

As is the diagonal matrix
m m me

———
a1,...,A1,A2,...A2,...,,...,0(|.

The Jordan form of the elemeA} € Cy (o) = alm, @ glm, @ - - - @ gl defines a unique partitioaai of m

for eachi € {1,2,...,r}. Re-indexing if necessary we may assume thlag; ' <; - - <; w? in which
case we have = w!--- " € Tt. Conversely, any element 8, arises as the type of some adjoint orbit of
al,. Types of semisimple orbits are of the fornf{)L - - (1") and types of nilpotent orbits are just partitions
of n.

Lemma 4.3.1. The dimension a is
r

= (wl, wh) (4.3.1)
j=1
where for a partitionl = (11, Az, ... ), we put(4, 1) = 2n(2) + |4 with n(2) = Yis1( — DA

We now explain how to construct a quivEs and a pair £o, Vo) from O such thathig,(vo, w) = O.
While the quivelp andw will be independent from the choice gf, the parameter&y, vp will depend
on the choice ok;.
We draw the Young diagrams respectivelydt . . ., " from the left to the right and we label the columns
from the left to the right (with the convention that partit®are represented by the rows of the Young
diagrams). Letl be the total number of columns and fete the length of théth-column with respect to
this labeling. We define the dimension vectgr = (v1,...,V4-1) by vi := n—n; andy; := vi_; — n; for
i > 1 and the parametép = ({1, ...,qy) as follows. If thei-th column belongs to the Young diagram of
o' then we put; = a;.

We then have

(A=4ild)--- (A= ggld) = 0.

Example4.3.2 Take the lexicographic ordering fgx and assume thal is of type (2 2)(1, 1) with eigen-
valuesa; anda; respectively of multiplicity 4 and 2. The corrrespondinguvig diagrams are

1 2 3

.

Then the vector dimensionig = (4, 2) and{p = (a1, a1, @2).

We have

Lemma 4.3.3. For i > 0, the integer vis the rank of the partial product

(A= 41ld)--- (A= gild).
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The following result is due to Crawley-Boevey [8] (in chaextstic zero withO nilpotent it is due to
Kraft and Procesi [30]).

Theorem 4.3.4.Let Be gl,. The following assertions are equivalent.

(1) Be O.

(2) There is a flag of subspacl8 = Vo > V1 D V2 D -+ D Vg1 D Vg4 = OwithdimV; = v; and such that
(B-¢gld)(Vi-)) cViforall1<i < d.

(3) There are vector spaces ¥nd linear maps a, hp;, 5,

V=V0<_V1<_V2<_...(_Vd=0
a [0 [ $d-1

where Vf has dimension vy and satisfying

B =ab+ ld,
$ip; — ¢j_1dji-1 = ((j - ¢w)ld, (1< j<d).
whereg; = b andgo = a.
Remark4.3.5 We obtain (3) from (2) by putting := (B - ¢.1ld)ly, and by lettingg; be the inclusion
Visi C Vi

LetIp be the quiver

1 2 d-1

whose underlying graph is the Dynkin diagram of tyee; and putl := {1, ...,d-1}. Putw := (n,0,...,0)
and defin&o = (£1,.. ., &a-1) by &) 1= §j = {jua.

Theorem 4.3.6. The map q ugol,w(.fo) — O given by(B, a, b) — ab+/;1d is well-defined and surjective. It
induces a bijective morphistn: M, (vo, w) — 0. If K = C, then q is a categorical quotient I&§L,, i.e.,
the ma@li,, (vo, w) — O is an isomorphism. The bijective morphi§mestricts toﬂﬁgo(vo,w) — 0.

Proof. The first assertion follows from Theorem 4.3.4. The secosdréisn can be proved using the “First
Fundamental Theorem of Invariant Theory” as in Kraft andcesd [30,§2]. The third assertion follows
from the second one using Proposition 2.2.1 (this assegiantually stated in Kraft and Procesi [32]
for nilpotent orbits and in Crawley-Boevey [7, Lemma 9.1 &y orbits). For an arrow dfy with tail

i and head, we denote byB; j the corresponding coordinate Bf By Crawley-Boevey [6§3], we have
f(B,a b) € Oifand only if theB;,1;'s anda are all injective and if the may®; j.1's andb are all surjective,
i.e., (B, a,b)is a 0-stable representation. Hence the last assertion. O

Remark4.3.7. If C is the GL,-orbit of any representatiorB(a, b) € ugol,w(.fo) thena’b’ = ab for any
(B,a,b)eC.
We says thatr{y, ..., Ng-1) € (Z>o)d‘l is decreasingf ny > - -+ > ng_;.

Remark4.3.8 Letv = (vi,...,Vy4-1) be a decreasing sequence with- vy, and leté = (¢1,...,&4-1).
Then there is a total ordering on % and an adjoint orbi© such that£, v) = (£o, Vo) if and only if the
following condition is satisfied, see Crawley-Boevey§8].

(*) For anyj € | with ¢ = 0 we havevj_; — vj > Vj — Vj.1 With v == n.

4.3.3 Partial resolutions of Zariski closure of adjoint orhits as quiver varieties

Let P be a parabolic subgroup of G(K) (which for simplicity is assumed to contain the upper tgafar
matrices)L a Levi subgroup oP and letE = o+ C whereo is in the centeg, of the Lie algebra of L and
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whereC is a nilpotent orbit of. We denote byJp the unipotent radical d® and byup the Lie algebra of
Up. The aim of this section is to identify the variety

X px = {(X.gP) € aly X (GLn/P) |g'Xg € T + up}

with a quiver variety of the formii; (v, w) whenK = C (in positive characteristic we have a bijective
morphismig (v, w) — X px).
Note that
dimX py = dimGL, — dimL + dimX. (4.3.2)

Taking a Gls-conjugate oL if necessary, we may assume that GLs,,, X GLs, X -+ x GLg,. Since
o is in the center of, we may writeo- as the diagonal matrix
Sp+1 Sp S

—l—— ——
6p+1,...,6p+1,6p,...,ep,...,fl,...,fl .

The nilpotent orbiC of l decomposes as
CZCerlX---XCl

with C; a nilpotent orbit ofslg. Fori =1,...,p+1, letu' be the partition o which gives the size of the
blocks of the Jordan form @;.

We choose a total ordering on® such that, re-ordering if necessary, we ha¥&" <; uP <; --- <¢ ut
and the following condition is satisfied

(**)if & = ¢j then foranyi <k < j we haveg = €.

This choice of<; is only for convenience (see above Example 4.3.10).

Letay,...,ax be the distinct eigenvalues of with respective multiplicitiesn, ..., m. For each =
1,...,k, we define a partition; of m as the sum of the partitiong wherer runs over the sdr | & = «;}.
The partitionsts, . .., Ax defines a unique nilpotent orbits of the Lie algebraf M := Cg (o). Letv
be an element in this orbit and létbe the unique adjoint orbit afi,, that containsgr + v. The following
proposition is well-known.

Proposition 4.3.9. The image of the projection pX px — gly is O. Moreover it induces an isomorphism
p~1(0) = 0. If M = L, the map p is an isomorphisK) ps ~ O.

We have din0 = dimX,_py and so

dimO = dimG - dimL + dim= (4.3.3)

We now denote by the variety of partial flagg0} = EP*! ¢ EP c --- ¢ E! ¢ E® = K" with
dimE'1/E" = s. For an elemenX € g, that leaves stable a partial flag

({0}:Ep+1cEpc---cE1cE0=K”)e(F

we denote by, r = 1,..., p+ 1, the induced endomorphismBf1/E" ~ K.

We denote by, px (resp.Zﬁ’P’z) the subvariety ofl, x ¥ of pairs (X, f) such thaiX - f = f and such
thatforallr =1,...,p+ 1, we haveX; € ¢ld + C (resp.X; € ld + C;).

Note thatF ~ GL,/P and so the two varietie€g_ps andX, ps are isomorphic.

There exist a unique positive integiira decreasing sequence of positive integers

Vips = (Vi,...,Va1) € (Zog)d 2,

andp elements; < --- < ipin{1,...,d - 1} such that if we puip := 0,V = n, ips1 := d, andvy := 0,
thenforeachh =1,...,p+1,wehaves,_, —vi = &, and(vi,_, — Vi_,+1,---,Vi,—1 — Vi, ) iS the dual partition
of u'.
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This defines a typéy_1 quiverT'| px as in§4.3.2. We keep the sanve as in§4.3.2 and we define
fips = ({1, da) by = g if iy < | <ippgwithr =0,...,p. Asin §4.3.2, this defines a unique
parameteé ps = (¢1,...,&-1) € K' such thatg; = ¢4 - &,1. We now choose a stability parameter
0 € (Zso)' with the requirement that; # 0 exactly whenj € {iy, ..., ip}.

The quiverl' py defined above is the same as the quivgrassociated with the adjoint orb@ in
§4.3.2. Denote by, £0) the datum arising fron® as in§4.3.2 with respect t&;. The dimension vector
Vo might differ fromv_py as shown in the example below. However siggeespect the condition (**) on
theg’s, we always havé ps = &o.

Example4.3.10 Assume that. = GL; xGL, xGL, x GL3 x GL3, C = C(l) X C(l,l) X C(z) X C(2,1) X C(g)
whereC, denotes the nilpotent orbit corresponding to the partitioaind thatr is the diagonal matrix

(Q', a,a,a, a’IB’ﬂ’IB’ﬂ’IB’ﬂ)

5 6

with @ # B. Clearlyo is in the center of andM = GLs x GLg. The underlying graph df_px is Ag and
w = (110,0,0).

Assume thak; is the lexicographic ordering. The type 6fis (5 1)(4,1) 'T"ll. Note that (1)<;
(1,1) < (2) <t (2,1) < (3). We thus havey = ¢ = Bandes = &4 = & = . Hencev py =
(10,9,8,6,5,4,3,1), (i1,....ip) = (3,5,7,8),60 = (0,0,6s,0,65,0, 67, 0g) with 63,05,67,08 > 0, {Lps =
B.B.B,8.8,a,a,a, @), éLps = (0,0,0,0,8-a,0,0,0). Finally note thavy = (9,8,7,6,5,3,2,1) # V_ps.

The aim of the section is to show that there is a bijective mismp iz, ., (VL Pz, W) — Zips Which
is an isomorphism whel = C.

Given (B,a,b) € /JJI}RZ’W(fL,p,Z) and an arrow o[_“L,p,z with tail i and headj, we denote byB; ; the
corresponding coordinate &

For a parametex € K', putJs = {i € | |x = 0} wherel denotes the set of vertices Bf px. We will
need the following lemma:

Lemma 4.3.11.Let(B, a,b) € i, w(€Lrs). Then(B, a,b) is §-semistable if and only if for all & | - J
themap & By10---0Bjj_1 : K% — K" is injective.

Proof. PutV := €5, K". We first construct for each € | a B-invariant graded subspaté = &, L?
of V. PutL] := Ker(a), for alli € {2,...,s} putL’ := Ker(@ao Bz 0---0 Bjj_1), and fori > s put
L? = Bj_1joBi_2j_10---0 Bgi1s:20 Bssi1 (LY). Let us see that® is aB-invariant subspace of. Fori < s
we need to see thd;;,1(L7) c L7 ;. We first prove it when = 1. We haveba - B;1B;» = £11d, hence

(a0 Bz1)(By2(Ker (@) = ao (ba- ¢1ld)(Ker (a)) = 0 and soB,1(L) c L3. Assume that this is true for all
j <i. Atthe vertex, we have the relatioB;_1B;;_1 — Bi;1,B; 1 = ¢é21d. Forx € L we have

aoByjo---0Bjji_10Bi1i(Biji;1(X) =aoByio---0Bjj_10(Bi_1iBii-1 — &Id)(X)
=aoByjo---0Bjj_1 0 (Bi—1iBii-1(X)).

We need to see that the RHS is 0. By definitiorLéfit is clear thatB;;_; (L7) c L, henceB;;_1(x) €
L? ,. By induction hypothesis we then ha® 1; (B;;-1(x)) ¢ L°. By definition of L> we thus have
aoByjo---0Bi_1(Bi-1 o Bij_1(X)) = 0. To see thaL® is a B-invariant subspace of it remains to see
that for alli > swe haveB,1; (L7 ;) ¢ L which again can be proved by induction using the relations at
the vertices.

Assume thatB, a, b) is #-semistable. Assume thate | — Jy. If the mapas := ao Byj0---0Bgs1
is not injective therL® is a non-trivial B-invariant subspace of such thatd . dimLS > 0 (asfs # 0)
which contradicts the stability condition (i) of Definiti@gh2.1. Hence the mag, must be injective for all

sel —J.
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Let us prove the converse. Assume tNatis a B-invariant subspace of such thatv; c ker ().
Hence for alli andx € V/ we haveByq 0 --- 0 Bjj_1(X) € Ker (a), i.e.,a0 Byj0--- 0 Bjj_1(X) = 0, and so
V! c Ker(aoByi0---0B;;_1). Hence foii € | - Jy we haveV! = 0 by assumption. TherefosedimV’ =0
and so the condition (i) of Definition 4.2.1 is satisfied. O

For (B,a,b) € Mg, ., o(VLpx, W), we denote byfgar) the partial flagi0} = EP*t c P c --- c & ¢
EY=K"with & :=Im (@ao Byyo---0Bj j_1). By Lemma4.3.11, we haviggap) € F.

Proposition 4.3.12. The mam;&pz,w(ﬁ,p;)ss — ZLps, (B,a b) = (ab+ {1ld, fgap) is well-defined and
induces a canonical bijective morphisiy, ., ¢(Vipx, W) — Zi px Which restricts talt; _ ,(viLpz, W) —
Z} 5 and which makes the following diagram commutative '

9ﬁ§L,RZs0(VLsP,2’ W) —— Z| ps

l” l pri
P
Mg ps (VLps, W) ———— gl

wherep maps a semisimple representati@ a, b) to ab+ £;1d. If K = C this bijective map is an isomor-
phismgﬁfLTRz,o(vL,RZ» W) - ZL,F’,E-

If 6 > O for alli and if¢_px = 0, then this is a result of Nakajima [44, Theorem 7.3], see [8] for
more details.

Proof. The fact that the diagram is commutative follows from a galigation of Remark 4.3.7 to any
decreasing dimension vector (see Kraft and Procesi [3Qpd3ition 3.4]). To alleviate the notation we
omitt L, P, X from the notatior€, px, Vi ps, {Lps, [Lps. Let us see that the map

h: 3, (€)% > Zips, (B,a,b) - (ab+ &1ld, fgan)

is well-defined. LetB, a, b) € uy % (€)% and putX := ab+ {1ld and&" := Im (@0 Byg0--- 0 Bj j,—1). The
fact thatX leaves stable the partial flefgs a1 iS straightforward from the preprojective relations

Bi_1,iBii-1 — Bi+1iBij+1 = &ld

with Bg1 := bandBjo := a.

To alleviate the notation, for ail< j we denote byf;; the mapBi,qj o --- o Bjj_1 : KV — K.

Fixr e {l,...,p+ 1} and defineH = @ielum) Hi by Hi = KY if i > i, and byH; = Im(f; ;) if not.
From the preprojective relations we see thaitg, b) leavesH stable and so we can consider the restriction
(Bu, ay, by) of (B,a,b) to H and the quotientE,é,B) of (B, a,b) by (Bu, ay, by). PutU; := KY/H;. Then
Ui = K¥~Vr if i <i, andU; = {0} otherwise. From the preprojective relations we see Xhat&'*/&" —
&1/&" coincides, with the ma), : U; , — U, _, induced byB;_,.1; ,Bi_,i_,+1+&, ,+1ld. In other words
the diagram

fir—1=O/Hir—1

ar—l/ar Uir_1
Xr \L l/Yr
ar_l/ar ,,1\0/ r-1 Uir_l

is commutative.
We want to see that the map € EndU;,_,) ~ End(K¥) leaves ing, _.1ld + C;.
Consider the subquivét

.ir—lJr:L -~ ~— .ir*l
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of . Putd =i, w = (vi_, —V,0,...,0), V' = (Vi ;41 — Vi, Vi, 412 — Vi,» ..., Vi—1 — Vi,), andZ’ =
(G g+15 Giyy42s - o G grr)- We hgvefi’ =0foralli=i_1+1,...,ir—1,i.e,4,_s1 =& 2= =G, _ +d-
Consider the projection o8, a, b) on

(P HomUiU.pe (P Hom(U.Uiy|=M(T.v.w)

i€{ir_1,0.0ir—2} i€fip_1+1,...,i =1}

and denote byR,a,b) the corresponding element M (I”,v/,w’). Note thata’ andb’ come from
Bi,_,+1i,_, andB;_, _,+1 respectively. The may, : U;_, — U; _, is thusa’b’ + &, _,,1ld.

The sequenceny — Vv;,V; — V,,V, =V, ...,V ) is the partitionu;. Now apply Proposition 4.3.6 to
(r",v',w’, &). Then we see tha'b’ belongs to the Zariski closure of nilpotent or@it proving thus that
Y €4, ,+11d +Cy. m]

By Proposition 4.3.12 and Proposition 4.3.9 we have

Corollary 4.3.13. The image of the compositidfig, ., ¢(Vi,z, W) 5 Mg, s (VLPE, W) 4 al, is 0. More-
overif J = Jg, thenz o p is a bijective morphism onto its image ¥f= C, it is an isomorphism).

Remark4.3.14 Assume thaK = C. The condition in Remark 4.3.8 to haW;, ., (Vi ps, W) = O may not
be satisfied here. For instance in the example given by Shm(éB, Example 4.3] we havg ps = (4,1),
w = (5,0),<Lpx = (0,0),0 = (1, 1), the adjoint orbiO is the nilpotent orbit with partition (3, 1) while
Mg, o, (VL px, W) is isomorphic to the Zariski closure of the nilpotent osith partition (3 2).

4.3.4 Geometry of resolutions and parabolic induction

We review well-known results on the geometry of resolutiohgariski closure of adjoint orbits (Propo-
sition 4.3.18 and Proposition 4.3.19). In the case wheredtheint orbit is regular nilpotent the results
are contained in Borho-Macpherson’s paper [3]. In ordefddify the picture we also find appropriate to
review Lusztig’s parabolic induction of perverse shead8.|

LetL,P.%,0,C,Obe asing4.3.3withL = GLs, x --- X GLg C GLy. Recall also that; is a partition
of 5 defined by the coordinate @fin gls. For each = 1,..., p+ 1, the dual partition = («/,, . .. M i)
of i defines a Levi subgroup = [1;GLy . C Glg. Let Pi be a parabolic subgroup of (glhavmgL. asa
Levi subgroup and containing the upper trlangular matrigéenP := []; P, is a parabolic subgroup &f
havingL := Hp “1{; as a Levi factor. PuP := P.Up. Itis the unique parabolic subgroup of GhavingL
as a Levi factor and containedh

Consider the following maps

N

Xﬁ,ﬁ,{ga

(4.3.4)

Ql

X ps

wherer(X, gP) = (X, gP) andp(X, gP) =
Note that the variet¥; s, is nonsingular and thatis surjective.
The decompositiof = [[, C, as a disjoint union of-orbits provides a stratification = [, =, with

¥, = 0 + C, and therefore a stratification &f px = ]_IQX‘E’P’Z” where

X ps, = 1{(X.gP) € g X (GLq/P)| g 'Xge =, + up}

is the smooth locus of, ps,,.
The following proposition is a particular case of a result.o§ztig [37] (cf. [33, proof of Proposition
5.1.19] for more details).
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Proposition 4.3.15.For x € O, put p*(x), := p~1(X) N X{ oy . Then

dim {x € 5] dimp™(x)q > 12 - %(dimz - dimZ(,)} <dimo -i
foralli € Zso.

Hence the mayp satifies the condition of Proposition 3.1.7 and M&;&PE) is a perverse sheaf
by Proposition 3.1.7. If we apply the proposition fa P, {}) instead of [, P,E) we find thatp o 7 is
semi-small.

We now recall briefly Lusztig’s parabolic induction of perse sheaves [3%4]. It will help to clarify
the picture and also some references to the literatugé.uh.

PutV; := {(X, 9) € gl, X GLy | g1Xg € p} andV5 := {(X, gP) € gl, x (GLn/P)|g~*Xg € p} and consider
the diagram

0"

e
Va

<2

aly

wherep(X, g) = np(g~1Xg) with 7, : p = [® up — [ the natural projectiony’ (X, g) = (X, gP), p” (X,gP) =
X. The parabolic induction functor Iﬁq is a functor from the category, (1) of L-equivariant perverse
sheaves onto DE(gl,). Recall that a perverse sheéfon 1 is said to beL-equivariant if prz) K ~ m'K
wherem: L x [ — [, (I, X) — IXI"tandpr; : L x [ — [is the projection. The categow!, (1) is then a full
subcategory oD2(1) (see [33, 4.2] for a detailed discussion on this). The misrp is P-equivariant if we
let P acts orV; asg-(X, h) = (X, hg™) and onl asg-X = 7p(g)Xnp(g)~* wherernp is the canonical projection
P = LxUp — L. Itis also a smooth morphism with connected fibers of dinmmsi = dim GL, + dimUp.
Hence ifK € M () thenp*K[m] is a P-equivariant perverse sheaf ¥a. Sincep’ is a locally trivial (for
Zariski topology) principaP-bundle, the functord’)*[dim P] induces an equivalence of categories from
the category of perverse sheaves\brto the category oP-equivariant perverse sheaves\wn Hence for
anyK € M, (1), there exists a unique (up to isomorphism) perverse skeafV, such that

P K[m] = (o')*K[dimP].

We define indf? (K) := (0”).K.
The following result is due to Lusztig [394].

Proposition 4.3.16.Let Q= MUq be another Levi decomposition@L, with corresponding Lie algebra
decomposition = m & uq. Assume that lc M and Pc Q. Let Ke M. (I) and assume thdhd ., (K)
is a perverse sheaf (it is then automatically M-equivarnamhen

0ln
IndICp

(K) = Indjz, (Ind,,,(K)).

The following result is easy to prove from the following esian diagram:

"
P

[ V1 Vo g

| |, ]

i b _
y<~—Yips —= X ps —=0

o

whereY | ps = {(X,0) € gl, X GLj| gXge T + up}, and where the vertical arrows are inclusions and
by, by, p are the restrictions af, o', p”.
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Lemma 4.3.17. TheGLy-equivariant perverse sheaf ()E%L PZ) is isomorphic tdnd?;"p (E%) Similarly
the GLy-equivariant perverse sheébr).(x) is isomorphic tdnd,f;"ﬁ(ga) where _is the constant sheaf on
{o} extended by zero dn- {o}.

DefineX; g, := {(X,gP) € Ix (L/P)|g"1Xg € o + up} and letY be the variety(y, z g) € P x gl, X
GLn|g'zge o + us) modulo the action oP given byp - (y,z @) := (yp L.z gp ™).

Consider the following Cartesian diagram (see Borho andMiacson [3§2.10] in the case wher@
is regular nilpotent).

a1 a

Xipio) Y Xipo (4.3.5)

Lk

!
F<~——Yipy ——> Xips
lp

o

whereay(y,z g) = (m,(ygzgy®), 7e(¥)P), a2y, 2. 9) = (z 9P), c(¥, 2. 9) = (z gy™?), r(X,gP) = X where
np : L=< Up — L is the canonical projection.
We now use this diagram to prove the following proposition.

Proposition 4.3.18. The morphisnx is semi-small with respect &, ps = [, Xﬁ’P’ZH.

Proof. By Proposition 4.3.15 applied td_(P, {c'}) instead of [, P.X) we find thatr : X; 5, — X is
semi-small with respect to the stratificatibr= [ [, Z,. On the other hand we see from the identity (4.3.2)
that

codim(Z,) = codimy, . Y| ps, = codimg ., X py, . (4.3.6)

From the first equality and Lemma 3.1.5 we deduceclissemi-small with respect @ px = [ [, YiLps, -
Then applying Lemma 3.1.5 to the right square of the diagria®%) we deduce the proposition. O

Proposition 4.3.19. The restriction of the sheavé$' (7. («)) to XP px, are locally constant for all i and.

Proof. From the above diagram (4.3.5) we see that

(b)" (7.(0) [dim P] = (by)" (r- (). (4.3.7)

Sinceb, is a locally trivial principalP-bundle for the Zariski topology it is enough to prove tha thstric-
tion of H' (r.(x)) to =, is locally constant for all anda. The mapr is semi-small and.-equivariant if we
let L acts onX; s, by v+ (X, mP) = (vXv%,vmP). The complex. (k) is thus a semisimple-equivariant
perverse sheaf. Singehas only a finite number df-orbits, the simple constituents nfx) are of the form
ICs . m]

@

Remark4.3.2Q0 Diagrams similar to (4.3.5) are used by Lusztig to prove Bsitjpn 4.3.16. In our situ-
ation this works as follows. As in Lemma 4.3.17 we havg) = Indr:cﬁ(g(r). Hence it follows from the
isomorphism (4.3.7) that
ln ~ In
Indi (Ind%d)(ga)) = Ind™ (x,)

which is a particular case of Proposition 4.3.16.
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5 Comet-shaped quiver varieties

5.1 Generic tuples of adjoint orbits

Let Oy, ..., Ok bek-orbits ofgl,(K) and letw; be the type oD);, thend := (@1, ..., @) is called the type
of (Oy,...,0).

Definition 5.1.1. A k-tuple (Cx, . .., Ck) of semisimple adjoint orbits is said to lgenericif 2!;1 TrCi=0
and the following holds. IV c K" is a subspace stable by sopies C; for eachi such that

k
D Tr(Xilv) =0
i=1

then eithelV =0 orV = K".
LetCi be the adjoint orbit of the semisimple part of an elemer@0fThen we say thally, ..., O) is
genericif the tuple Cx, . .., Ck) of semisimple orbits is generic.

We have [18, Lemma 2.2.2]:
Lemma 5.1.2. Fori = 1,....k, put& = w'w?--- " with wij € P* such thaty; |wij| =n. PutD=
m|n.max,|w | and let d= gcd{|w [}. Assume that
char(K) t D!
Ifd > 1, generic k-tuples of adjoint orbits @f,, of type(as, . . ., @) do not exist. If d= 1, they do.

Remark5.1.3 Our definition of generic tuple is equivalent to that givenKastov [29, §1.2] and in
Crawley-Boevey [6§6]. Let us recall that definition as we will need it. To do tHat,eachi = 1,2,...,k,
we letai1, i, ..., @ip be the distinct eigenvalues 6k with respective multiplicitiesn 1, m, ..., m p.
Then Q4, ...,0) is generic if we have

Pi

>3 mm; -0

i=1 j=1

which corresponds to our conditioﬁik:l Tr(0;) = 0, and if for any integers & m, < m such that
Z?Ll ny ; does not depend drthe equality

el

k
Z ny;aij=0

i=1 ]

1
-

holds if and only ifn"(’j =m; foralli, j orny; = 0 for alli, j.

5.2 Affine comet-shaped quiver varieties

Let (Os,...,0k) be ak-tuple of adjoint orbits ofi[,(K) and letg > 0 be an integer. Put

0:= ()2 x 01 X - -- X O,

0°:=(gl)Z x O X - X O.

Consider the fline variety

g K
Vo = {(Al» Bi,...,Ag Bg, X1,...,X) €O Z[Ai’Bi] +in = 0},
=) =)
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and let'Vg denote the open subsgl N O° of Vo.
We assume thgtk ; Tr (01) = 0 since otherwisé/q is clearly empty.
If (0],...,0,) is an othek-tuple of adjoint orbits ofil,, then we writeO’ < O ifforall i = 1,2,...,k
we havel; c O;. Note thatis Q4, . ..,0\) is generic and®’ < O, then O:.....0,) is also generic.
Note that we have the finite partition
Vo =[] Ve

0«0

Let PGLy(K) acts oV by simultaneoulsy conjugating thg 2 k matrices and define
Qo = Vo //PGL, = SpedK[Vo]"®").
We denote by the image ofV3 in Qo. By Theorem 2.1.1(3) it an open subsetd.

Definition 5.2.1. An element Ay, By, ..., Ag, Bg, Xy,..., Xi) € Vg is said to berreducibleif there is no
non-zero proper subspacekt which is preserved by all matricés, By, ..., Ag, Bg, X1, ..., Xk.

Wheng = 0, the problem of describing thetuples Q:,...,Ok) for which Vg admits irreducible
elements is stated and studied by Kostov (see [29] for a ghwigo calls it the (additive) Deligne-Simpson
problem.

In [6], Crawley-Boevey reformulates this problem and Keg@nswer in terms of preprojective alge-
bras and the moment map for representations of quivers.

Let us now review Crawley-Boevey's work as we will need ietatMore precisely we define a quiver
I'o and parameterso, W, &o such that there is a bijective morphist, (vo,w) — Qo which is an
isomorphism wheik = C.

Consider the following quiveFo 'with g loops at the central vertex 0 and with set of vertites

{0} U{[i, [D1<isk1<j<s

[1,1] [1,2] (1, s]
& . o e
[2,2] [2, ]
O . o e

[k, 1] (k. 2] [k, sd

The dimension vectovg of I'o with coordinatev; ati € | is defined as follows. We choosetotal
orderings<; on® and for each = 1,2,...,k, we define the sequenegy > Vjiz > -+ > Vjis] as the
dimension vectowr,, associated with the orb@®; with respect to<; as in§4.3. Note that the vectorg
depends only on the type of the adjoint orlgits . . ., Ok.

We also defingo € K' as follows. For each, let o, = (it ..., dis+1) andéo, = (&igs- - - &is))
be the two sequences defined frémas in§4.3. We also puty = — Zik:1 4. This defines an element
o = (&} U &l € K' such thato . vo = 0. For a representatiap of To, denote bypri 1 the linear
map associated to the arrow whose tailjd], by ¢, . .., ¢g the matrices associated to the loopSliand
by ¢3. . ... ¢y the ones associated to the loop$ir Q. We have the following consequence of Proposition
4.3.6 (see Crawley-Boevey [6][7]).

1The picture is from [54].



35

Proposition 5.2.2. The mam;j(fo) — Vo given byp — (A1, By, ..., Ag, Bg, Xa, ..., Xi), with
A =i, Bi = ¢, Xi = ¢iagepig + Giald, (5.2.1)

is well-defined and maps simple representations onto thsed;(rbfg)i" of irreducible elements. This map
induces a bijective morphism
5JJE§O (Vo) —> Qo

which mapémgo (vo) onto(Qg)i". If K = C, this bijective map is an isomorphism.

The above proposition together with Theorem 4.1.7 impliesitarion in terms of roots for the non-
emptyness ofV’3)" solving thus the additive Deligne-Simpson problem.
From Proposition 5.2.2 and Theorem 4.1.2 we have the fofigwésult:

Corollary 5.2.3. If ((VOO)irr # 0 then bothVo and Qo are irreducible respectively of dimensidimO —
n?+1and
do = 2 -'oCoVo = dimO — 2n? + 2 (5.2.2)

whereCg is the Cartan matrix of o.

We now state a result in the generic case. The proof is onasets an easy generalisation of the case
of semisimple orbits [18, Proposition 2.2.3].

Proposition 5.2.4. Assume thaO;, . ..,0x) is generic. Ther(V3)" = V2 and the mapVo — Qo
is a principal PGL,-bundle for the étale topology (and so it is a geometric grd}. In particular the
PGL,-orbits of Vo are all closed of same dimensidim PGL,. Finally the two varietiesVg andQy are
nonsingular.

The following result is a consequence of Proposition 5.2dt@orollary 5.2.3.

Corollary 5.2.5. Assume thafO;, ..., O) is generic. Then the partitions

Vo=|]V3. and@o= ||} (5.2.3)

0O’<0 0’<0
are stratifications.

Crawley-Boevey’s criterion for the non-emptyness'dh and V3 simplifies in the generic case as
follows.

Theorem 5.2.6. Assume thafOs,...,Ox) is a generic tuple. Then the following three assertions are
equivalent.

(i) The setVg is not empty.

(ii) The set'Vg is not empty.

(i) vo € *(T'o).

Although this theorem is not stated in Crawley-Boevey'sgrapthe main ingredients for its proof are
there. For the convenience of the reader we give the prodtaild (repeating if necessary some arguments
of Crawley-Boevey).

We start with an intermediate result.

Following Crawley-Boevey’s terminology [8], we say that iménsion vectof = {Bi}ic) of I'o with
Bo = nisstrictif foranyi =1,2,...,kwe haven > gji1 > --- > Bji 5]

We have the following proposition.

Proposition 5.2.7. Assume thal/o is not empty. Then the dimension veatgris a sumpt + g2 +-- - + g
of strict positive roots such thgb . 8 = Oforalli = 1,2,...,r. If moreover(Os, . . .,Ox) is generic, then
r=1,i.e., Vo is a positive root.
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Proof. By Theorem 4.3.4 and Remark 4.3.5, we can choose an elﬁem;j(.fo) whose coordinates
By, whereh describes the set of arrows B§ which are not loops, are injective. Letbe the canonical
projectionM (fo,vo) — M ([o, Vo). Write z(B) as a direct suni; & I, & --- & |, of indecomposable
representations dfp and letB™ be the dimension vector df,. We havevo = g + --- + 8" and since
the mapsBy, are injective, the mapd{), are also injective and s8" is a strict dimension vector for all
m=1,...,r. Itis a well-known theorem of Kac [22] that the dimension teecf an indecomposable
representation is a positive root. Hence fle...,B" are positive strict roots. It remains to see that
BM.éc=0forallm=1,...,r. Butg™is the dimension vector of a direct summand of a representafi
I'o that lifts to a representation ptc}(fo), hence by Crawley-Boevey's theorem [5, Theorem 3.3] wetmus
have™. &0 =0
Assume now that@, . .., Ok) is generic. To prove that= 1 we repeat Crawley-Boevey’s argumentin

[6, §3]. Foreach =1,2,...,k we letai1, aia, ..., @p be the distinct eigenvalues 6% with respective
multiplicitiesm 1, m»,...,m . Letse{1,...,r}. Forgiven1<i <k 1< f < p;, define

s+1

o= D (Bhiu A
j=1

dij=ait

where for convenlenqgS 1) = = 0 and [, 0] denotes also the vertex 0. Singgis strict, the integem?, is
positive. Moreover

Pi
D=5 (5.2.4)
f=1
is independent af Now

r 5+1

Z”f.ff = Z (Vi -1 = Vi) = mis (5.2.5)

wherevi s.41) = 0. Hence O< m®; < m ¢ and

Kk

0=f0.p°= Zi(&, Gijra) ﬁ[.,]) [Za ] A

i=1 j=1
i

1

K%

45 (Bfi-u — )

3l

@i My

=1

M= 1= E

=
_..

which contradicts the genericity condition (see Remarl@b.llnlessmff =m; foralli, f, or mﬂ = 0 for
all'i, f. But sinceB® is a strict root we must haye§ > 0 and so by (5.2.4) we can not havg, = 0 for all
i, f. Hence we must havqff =m; for alli, f and so from the identity (5.2.5) we must have 1. O

Proof of Theorem 5.2.6(ii) implies (i) is trivial and by Proposition 5.2.7 (i) imjgs (iii). Hence it remains
to see that (iii) implies (ii). But this is exactly what is mexd in Crawley-Boevey [6§6]. O

For each € | — {0}, we lets : Z' — Z' be the reflection defined by
s(¥) = x-(x &),

where (, ) is the form defined byg, g;) = ¢jj, cf. §4.1.
ForueZ' andi = 1,2,...,kdenote byufi the unordered collection of numbers
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N = Ugi,a), Upiap = U2 - - -5 Uis-11 = Ufis)> Uis]-
Since the action of the reflexian j; has the &ect of exchanging thih and (+1)th terms in this collection
we have the following lemma.

Lemma 5.2.8.If u,v € Z satisfiesn(v)’ii = (u)iﬁ foralli = 1,...,k, then there exists an element w in the
subgroup of the Weyl group bfgenerated by the reflexiong j$ such thatu = w(v).

Proposition 5.2.9.1f g > 1, thenvp is always an imaginary root.

Proof. Sincevp is a decreasing dimension vector, for each 1,2,...,k, it defines a unique partition
i = (4l,...,u) of nwhose parts are of the formgi j — Vi js15, j = O,....s (with the convention that
Viiop = nandyjs.1y = 0). Define a dimension vectdrof I'o with the requirement thaf, = n and
f[iyj] =n- Llﬂir- Note thatf = v if and only if Vil — Viij+1] 2 Vii,j+1] — Vi,j+2] for alli, j. We have
(e0.f) = (2-2g)n - XK, friy) < 0, and & jp,f) = #,,1 — H < 0. Hencef is in the fundamental set of
imaginary roots by definition (see Kac [22, Chapter 1]). Byrrea 5.2.8, the vectdrcan be obtained from
Vo by an element in the Weyl group 66, we conclude thato is always an imaginary root @f. |

Theorem 5.2.6 and Proposition 5.2.9 have the following eqoence.
Corollary 5.2.10. If (Os, ..., 0O) is generic and g 1, thenVg is not empty.
The following proposition is due to Crawley-Boevey [6].

Proposition 5.2.11.1f (O4,...,Ok) is generic and g= 0, thenvo is a real root if and only ifV2 consists
of a singlePGLy-orbit (in which caseVg = Vo).

Examples.2.12 Here we assume thgt= 0,k = 3 = n. LetO be the regular nilpotent orbits gf; and letS
be the regular semisimple adjoint orbit with eigenvalugz 3. The tuple Q1, 02, 03) = (0, O, S) is then
generic, the underlying graph of the associated quives Es andv is the indivisible positive imaginary
root. HenceVo is not empty by Theorem 5.2.6. Moreover we can use again €hebér2.6 to verify that
the only non-empty strata o¥o areV3 and the two stratsvg)1 andfvg)2 corresponding respectively to
(0.C,S8) and C, O, S) whereC is the nilpotent subregular adjoint orbit. Note that, i = 1,2, is the real
roota; + az + 2a3 + 3aa + 2as5 + o Of Eg (in the notation of [4, PLANCHE V]) and s@/q, is a single
PGL,-orbit by Proposition 5.2.11.

Remarks.2.13 If Vo is not empty then for an@ such thatd’ < O the variety'Vo will be also not empty.
We may use this together with the equivalence between thassertions (i) and (iii) of Theorem 5.2.6 to
construct new roots of quivers from known ones.

5.3 General comet-shaped quiver varieties

Let (O1,...,0k) be a tuple of adjoint orbits afl,(K), and for each = lk let (L, P, o, Ci) be as in
§4.3.3 such that the image of the first projectign: X, p, 5, — ¢l is O; whereX; = oy + C;i. As in the
introductionwe puP = Py x--- x P, L =Ly x--- x LgandX = %3 X --- x Xk, C := Cy x --- X Cy. Put

OLpx = (@2 x XL px, O py = (aln)?9 x XP pyand

VL,pyz = {(Al, Bl, Cee Ag, Bg, (Xl, Cee Xk, glPl, Cee ngk)) € ©L,P,E ’ Z[Aj, Bj] + Z Xi = 0} .
j i

Letp= (i) x pyx---Xpx: O px — Oandletp : V. py — Vo be its restriction. The map
is clearly projective. Let Gh.act onV_ px diagonally by conjugation on the firsg2- k coordinates and
by left multiplication on the lask coordinates. These actions of (5&n V| px andVg induces actions of
PGL, for which the morphismp is PGL,-equivariant.
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Proposition 5.3.1. Assume that the tupl@s, ..., Ok) is generic. Then the geometric quotiéhtpy —
QL px exists and is a principdPGL,-bundle. Moreover the diagram

P
Vipg ———Vo

| |

QLpsx Qo

P/PGLA

is Cartesian. IfK = Fq and if our data(L, P, X) is defined oveF, then the above diagram is also defined
overFy.

Proof. Since the tuple@, ..., Ox) is generic, the quotierVo — Qo is a principal PGk-bundle in the
étale topology (see Proposition 5.2.4) and so the resiigiiie from Corollary 2.1.6. O

In general (i.e. when the tupl@y, ..., O) is not necessarily generic) we can always define the GIT
guotient
Vi pzs//vGln

with respect to some Gtlinearization¥ of some ample line bundlél on'V|_ py. IndeedV| py is projec-
tive overVo and so such a paiM, ¥) always exists (see above Corollary 2.1.6).

Assuming that@;, . . ., Ok) is generic, we show in this section that the quoti®p x//¢+GL, can be
identified (at least wheK = C) with a quiver varietyli. ¢(v) for appropriate choices &t 6, v.

Foreach =1,...,k, we can define a typ& quiverl', p, 5, together with paramete&, p, 5, 61, Vi, p. 5,
as in§4.3.3 such that there is a canonical bijective morphi§m, s, — Mg, . .. 6, (VL p, 5, W) Which is an
isomorphism wheik = C.

We now define a comet shaped quiVelr » as in§5.2 such that each leg with vertices 11, .. ., [1, ]
is exactly the quivel', p,5,. l.e., if we delete the central vert¢®} from I px, We recover th& type A
quiversl'., p,s,,---,[L.p.x. We denote by the set of vertices df._ px, and we define a dimension vector
VLps = {Vilia by puttingv := nand, for each = 1,...,k, (Vi1,...,Vis)) := Vu.p.x. Multiplying the
vectors#; by a strictly positive integer if necessary, ther@is Z' such that its projection of, p, 5, is 6;
for eachi and such tha . v px = 0. There is a uniqué_px € K' whose projection o, p, 5, is £, p, 5,
foralli andé, px . vi px = 0. Note thaty must be negative.

The quiverl'_ px and the parametdfi py are the same abp and&p obtained from @4, ..., Ok),
see above Example 4.3.10. However in general the dimensicionw, py differs fromvg as shown in
Example 4.3.10.

To alleviate the notation we will udg &, v instead ofl px, &L px andvy p3s.

LetT" be the quiver obtained froii by deleting the central vertex (i.e., it is the union of thevequs
Tl pusis-- > DLopes)- We denote by™ = {[i, j]}i j the set of vertices dff. For a parametex € K', we
denote byx" its projection ork!".

We put

z (I_“"',v"',w) = (gl)2 x M (I_“"',v"',w).

We let GL,+ acts onZ (I:T,VT,W) by the trivial action on{l,)? and by the usual action on the second
coordinate.

We identify in the obvious waiyl (f, v) with Z (f"', v, W) and we regarg;(¢) as a Gl,:-stable closed
subvariety of §[,)%9 x u\}l’w(.fT). To avoid any confusion, for a closed (zktable subseX of M (l:, v) =
z (ﬁ, vi, W) we denote byXsY®) the set oB-semistable points of and byXsY®T) the set oB-semistable
points. ClearlyXsY®) c XSY®).

Define

e (VW) = () x4, (€)M Ly = () x Mg g1 (v, W).
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There is a canonical bijective mdp : 3¢ 4+(v', W) — O px (which is an isomorphism wheli = C).
Letq : ((gln)zg Xp;,{w(f"'))ss(d)"') - 3o (v"',w) denote the quotient map. By Proposition 2.2.1 the
map f; restricts to a bijective morphisnn( gl(g-‘)ss(d)"')) — V_px and there is a canonical bijective map
W (€)//e:GLy: — q(ﬂgl(.f)ss(clﬂ)). Composing the two bijective morphisms we end up with a kijec
morphismf; : u;(€)//¢:GLy+ — VL px Which is an isomorphism whefi = C.

Proposition 5.3.2. Assume that tupléOy, ..., Oy) is generic, then an element pf*(£) is #-semistable
(resp.@-stable) if and only if it i® -semistable (resp’-stable).

Proof. Assume thaty € u;1(£) is 6'-semistable. Let be a subrepresentation @f It is an element in
ut(€) for somev’ < v. We need to verify thad . v/ < 0. If Vy = Vo, then we must havé . v’ <
0.v = 0sinced’ e Z';O. If vij = 0, then the subspac&%yll are contained in Ke&) foralli = 1,...,k
and sof . v = 6" . (V)" < 0 sincey is §"-semistable. LetAf,BY,..., A, B, X!,...,X}) be given
by Formula (5.2.1). Since is a subrepresentation qf the subspac®| c Vo = K% is preserved
by all matricesA?, BY,..., A, BE X{,...,X{. Recall also that any tuple,...,0;) < (01,...,0) is
generic. Hence by Proposition 5.2.4, the tup¥, B4, ..., Ay, B, X7, ..., X), which belongs to some
(01,....0)) 2(04,...,0), is irreducible. Hencey = 0 orv = n. O

Proposition 5.3.3. Assume thaO1, ..., Ok) is generic. Then the morphism ihduces a bijective mor-
phismMig ¢(v) — QL px (Which is an isomorphism whéf = C).

Proof. The proposition follows from Proposition 5.3.2 and Profiosi2.1.2 applied tX = u;%(£), G” =
GL, = GL, x GL,:. O

Remark5.3.4 If (O4,...,0x) is not generic, a-priori we only have a bijective morphiigs(v) onto an
open subset of a quotieli px//wGLn.

We now assume until the end of this section that the tuplé0;, ..., Ok) is generic

Thanks to Proposition 5.3.2 we can now onditand®" from the notation;*(£)SY®) or uy(£)S(®")
and write simplyu;1(£)sS.
Remark5.3.5 Assume that thé’s, i = 1,...,k, have striclty positive coordinates. Thap(£)ss =
uyt(€)S. This identity also happens whehis generic. We want to notice that in this situation we can
actually choose out;’s (taking larger values of the coordinates if necessargh¢haté is generic. Indeed
the sefu;1(£)SSdepends only on the position of the non-zero coordinatesesf, s and not on their values
(cf. Remark 4.2.2 (ii)).

Put
Re g (VI W) 1= 11, (€) /)Gl

We summarize what we said with the following commutativegdian

f
Beror(vi,w) —— OLpy — o . (5.3.1)
] ]
Ne g1 (vF, W) ’ Vipx £ Vo
S l fs l plrain l
Me (V) Qupx Qo

whereQ_ px is defined as in Proposition 5.3.1 and whéyés the factorization morphism (apgo 72 o f2
is constant on Gj-orbits). The top vertical arrows are the canonical indasiand the bottom vertical
arrows are the canonical quotient maps.
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Remarks.3.6 WhenK = C, the mapdf, f, f3 are isomorphisms and the diagram is Cartesian.

Recall that; = o + Cj. PutC = C; x - - - X Cy. Then the decomposition = 11, C. as a union of
L -orbits provides a stratification = [, X,. We thus a have a decomposition

Vipr=][VPpy, (5.3.2)

whereVp s = Vi py, N O}, . By Proposition 4.3.12, the subséf ,, ¢ V_px corresponds to the
stable points, i.e VP oy = %;m(vf,w) = 131 (€)%/GL,:. The image ofy| pyx, by the projective morphism

p:Vips— Vo
is of the formVg, for someO, < O.

Theorem 5.3.7. The varietyV, py, is not empty if and only ¥, p 3y, is a root of[ py . In this case the

pieceV} . is also not empty and is an irreducible nonsingular densencuibset o/ p 5, of dimension

(2g+k—-1)n? + 1 —dimL +dimX,.
In particular the partition (5.3.2) is a stratification.
SinceV py — QL px is a principal PGk-bundle we have the following result.

Corollary 5.3.8. The stratun®Q) is irreducible and the decomposition

(o]
LPE,
QLpx = U Qpy,
(07

is a stratification.

Recall thatvo be the dimension vector éfobtained from the tupleds, . .., Ok) as in§5.2. LetwW(I'")
denote the Weyl group df'.

Lemma 5.3.9. The two vectors andvg are in the same \(I'")-orbit.

Proof. It follows from Lemma 5.2.8 as for each= 1, ..., k, we have Vo)? = v?.
O

Proof of Theorem 5.3.7We prove it forX = X, as the proof will be the same for ay;,. Note thatV, py
is not empty if and only iV is not empty. Hence the first assertion follows from Lemma%ehd
Proposition 5.2.6.

Assume thal/| px is not empty. TherVo is not empty and so by Proposition 5.2.6 the ¥ is also
not empty. Since the inverse image®g by the mapp : Vi px — Vo is contained irWE,P,):’ the open

subsetVP , ;. of V| px is not empty.
ConsiderY? oy := {(X.0) € al, X GLn|g™'Xg € £ + up}. Then the canonical map) ., — X,

(X,9) — (X, gP) is a locally trivial principalP-bundle (for the Zariski topology). Note that} ,; =

G x (T + up). Now consider the sét? . of (29 + k)-tuples(As, By, ..., Ag, By, (@1, Y1), - - - (k. Y&)) in
(81?9 X (G X (Z1 + up)) X - - - X (G x (X + up)) such that

DUIALBL+ D gvigt =0.
] !

The natural mapLﬁ’P,Z - V‘E,P’Z is then a locally trivial principaP-bundle. Hence we are reduced to

prove thatLy  ; is nonsingular. A sfiicient condition for a poink € L? , ;. to be nonsingular is that the

differentiald,u of the map
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i (@)% X (G x (Z1 + 1p)) X - - - X (G X (Zk + up)) —> sl

given by(Al, Bi,...,Ag By, (91, 01), . . ., (Ok, o-k)) = 2ilA} Bj] + % giyig* is surjective.

Lety; be the coordinate of in I; + up. Consider the restriction of u to the closed subseglf)® x
(G x{y1}) x--- x (Gx{y}). Itis enough to prove that theftikrentialds1 is surjective. But this what
we prove to see that the variety2 is nonsingular$ being 6129 X S; % - -- X S whereS; c O is the
adjoint orbit ofyy), see Theorem 5.2.4 and references therein. The véfﬂ?;}é is thus nonsingular and its
irreducible components are all of same dimension. To coanhe dimension OVE’P’Z we may use what
we just said or use the fact that there is a bijective morplfﬁ?m(v*, w) — VP 5 and then use Theorem
4.1.2 (a straightforward calculation shows thetv = 2n? — dimO).

Let us see now thaf, py is irreducible. Let’, P be defined as i§4.3.4 and putr := (o1,..., o).
The canonical mapy; s ,; — Vi px defined by K, gP) — (X, gP) being surjective it is enough to show
thatVLﬁ,’m is irreducible. We are thus reduced to prove the irredutylof V, py whenX is reduced to
a point{c} which we now assume. Henég p, = V‘E,P’m and the parametér satisfiess; > 0 for all
i € I". By Remark 5.3.5, we may assume thds generic with respect te. We now need to prove the
irreducibility of N (v, W). SinceM (v, W) — Mg (V) is a principal PGk-bundle, we are reduced to
prove thatiz ¢(v) is irreducible.

Assume firstthak = C. Then by Theorem 4.1.5we hab'éc‘(irﬁg,g(V),C) ~ Hi (Mg4(v), C). Recall that
the dimension oHZ(X, C) wheree is the dimension oK equals the number of irreducible components
of X of dimensione. The varietiedlig ¢(v) and My ¢(v) are both of pure dimension by Theorem 4.1.2.
Hence we are reduced to see thij,(v) is irreducible. The representations /ig'(6) are all simple
becausd is generic, henc®iy(v) is irreducible and nonsingular (see Theorem 4.1.2). Thewgigal map
Ng.a(v) — My(v) being a resolution of singularities is thus an isomorphésrd saiy ¢(v) is irreducible.

Assume thaK = Fq. By Theorem 4.1.6 there existgsuch that for alt > ro we havel{i; o(v)(Fy)} =
#{Mo.0(V)(Fq)}. As the canonical maiyg(v) — NMg(V) is an isomorphism we actually have

B0 o(V)(Fy )} = B{Mig(v) (Fqr))- (5.3.3)

Note that the dimension of the compactly suppoitexiic cohomology groupi2®(X, ) with ¢ invertible
in K ande = dim X also equals the number of irreducible components of of dimensione. Moreover
if X is defined ovelfq, then the FrobeniuB* acts onHZ®(X, x) as multiplication byg®. Therefore, the
codficient ofg® in §{X(Fy)} equalam. From the identity (5.3.3) we deduce tB8g ¢(v) is irreducible if and
only if My(V) is irreducible. But as above the variely(v) is irreducible a® is generic. O

5.4 Arestriction property

We keep the notation df5.3 and we assume thad{, ..., O) is generic and thal/o is not empty. Note

thatVy , . is then also not empty by Theorem 5.3.7.

The aim of this section is to prove the following theorem.

Theorem 5.4.1.Let i be the natural inclusioi¥ px < O px. Then

i"(zcs,,.) = ICY, ...

By §5.3, we have a stratification

0o
OLpr = U Olpx,
a

with O o5 1= (a1,)%9 x XP py, - It satisfies the conditions (i) of Proposition 3.2.1.

We consider the semi-small resolutian: 0 i) — OLpx considered ir§4.3.4 and its restriction
p: Vl:,ﬁ’,lo—) - VLpsz.
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Proposition 5.4.2. The morphisnp is a semi-small resolution. Moreover the diagram

Vs
(O)E,ﬁ,:a} ————>0Lpsx

]

P
Vliﬁ,gfr} ——> Vi px

is Cartesian (the vertical arrows being the canonical irsins) and the restriction of the shefff (7. («))

. o .
to each piec®? oy isa locally constant sheaf.

Proof. The diagramis Cartesian by definition of the varieligs z. The varietyV; 5, is also nonsingular
by Theorem 5.3.7. Hengei$ a resolution of singularities.

By Proposition 4.3.18 the mapiS semi-small with respect O, px = [ [, @E’P,Zn. By Theorem 5.3.7
we see that the codimension Vﬁ,P,Zn in V_px equals the codimension (OI‘EP,ZH in OL px, hencep’is
also semi-small. The last assertion of the propositioro¥edl from Proposition 4.3.19. O

Theorem 5.4.1 is now a consequence of Proposition 5.4.2 eopb8ition 3.2.1.
We have the following particular case of Theorem 5.4.1.

Proposition 5.4.3. Let i denotes the inclusioWo < O. Thent (ZCp) = IC5,, .

6 Characters and Fourier transforms

HereK is an algebraic closure of a finite fielgy. In this section we puB = GL,(K) andg := gl,(K).
We denote byF the standard Frobenius endomorphism» g that maps a matrix|); j to (aﬂ)i,j so that
GF = GLn(Fq) andg™ = gln(Fq).

6.1 Preliminaries on finite groups

Let x be an algbraically closed field of characteristic 0. £eb z be an involution ok that maps roots of
unity to their inverses. For a finite sef we defing(, )e on the space of all functior’s — « by

1 __
(L9 =5 ), f(9909).

xeE

Now let H be a subgroup of a finite group and letH be a subgroup ok (H) containingH. Let
pr T H - GL(VY andp? : H — GL(V? be two representations i in the finite dimensionak-
vector space¥?, V2. We denote by! andy? their associated characters. The grélipcts on the space
Hom (V1,V?) as follows. Forf € Hom (V1,V?), we definer - f : V1 — V2 by (r- f)(v) = r- f(r™1-v).
Moreover we see that the subspace H¢W, V2) of fixed points of HomY?, V2) by H is clearlyH-stable
(it is therefore an[H/H]-module).

For anyr € H, we have

Tr (r[Hom (v, V2)) =} (r) x*(r ™). (6.1.1)
Forse H, we denote b){/is the restriction of' to the coset s := {hs|h € H}.

Proposition 6.1.1. Let se H. We have

Tr (s|Homy(V4,V?)) = é,)é)Hs.
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Proof. PutE := Hom(V%,V?) andEy := Homy(V3,V?) and denotep : E — Ey the mapp(x) =
ﬁ Shen h- X. ThenE’ := Ker pis anH-stable subspace & andE = Ey @ E’. Since

e

heH

=0
E/

we deduce that

1
Tr(s|Ep) = i Z Tr (hs| E).
heH

By Formula (6.1.1), the right hand side of this equatio()\i§X§>Hs. o

We now lety andy be the characters ¢f andK associated respectively to representatins GL(V)
andK — GL(W). The groupH acts on the<-module Indﬁ(V) = k[K] @ V byt (x@V) =xtiet-v.
Its restriction toH being trivial, it factorizes through an action bf/H on Ind§(V). Under the natural
isomorphism (Frobenius reciprocity)

Hom(V, W) = Hom (Indf§(V), W) (6.1.2)

the action o /H on Homy (V, W) described earlier corresponds to the actiokipF on thex-vector space
Homk (Indf(V), W) given by ¢- f)(x®V) = f(t™*- (x@V)). For a subseE of K and a functiorf : E — «,
we define Ing(f) : K — « by
1 _
Ind{ (== > gk

1= —
{geK |g-tkgeE)
Then we have the following generalization of Frobeniuspegity for functions:

Lemma 6.1.2. Let h: K — « be a function. Then

<IndE(f),h>K =(f, Reﬁ(h»E.
Proof. It follows from a straightforward calculation. O
By Proposition 6.1.1, (6.1.2) and the above lemma, we havéaltowing proposition:

Proposition 6.1.3. Let ve H/H and letv € H be a representative of v. Then

Tr (v ‘ Homk (Indﬁ (V),W)) = <Indﬁ\-,(¢p\,), z,b}K

whereg, denotes the restriction gf to Hv.

6.2 Littlewood-Richardson codficients

For a positive integem, we denote bys,, the symmetric group im letters.
Notation6.2.1 For a subgroupd of a groupK, we denote byVk (H) the quotientNk (H)/H.
Fix a sequence, = (a, m)(az, mp) - - - (as, Ms) with &, my € Z.o such tha; aim = nandm # m; if
i # j. Put
S:=(Sm)*® x -+ X (Sm)® C Sy
where 6mn)¢ stands forSy, x --- x Sy, (d times). Then we may writds, (S) as the semidirect product

S > (]‘1?=l Sa) where eacls; acts on §,) by permutation of the coordinates.
Hence

Ws, (S) = [ [ Sa- (6.2.1)
i=1
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The groupNs, (S) acts on the category afS]-modules in the natural way, i.e., if : S — GL(V) and
n e Ns, (S), thenn*(p) is the representatigno n™ : S — GL(V).
For a representatign: S — GL(V), we denote by\Vs, (S, p) the quotienNg, (S, p)/S where

Ns,(S.p) = (n € Ns,(S) [n"(p) ~ p}.

Letp : S — GL(V) be anirreducible representation. Then for egehl, .. ., s, there exists a partition
(dia,...,dy,) of & and non-isomorphic irreducibl¢Sy, ]-modulesV; 4, . . ., Vi, such that

V=&)T% (Vi)
]

where for a-vector spac&, we putTIE := E®- - - ® E with E repeated times.
Then the isomorphism (6.2.1) restricts to an isomorphism

Ws, (S, p) = l_l Sdi\j'
i

For eachi( j), the group $)%i = Sy, acts onT%i(V; ) = Vij®---® Vi as
(W, 8) - (X1 ® - ®Xg;) = (W1 Xsy(1) ® - ® Wy | - Xs1(d,))-

This defines an action dfis, (S,p) =~ [Ti; ((Sm)dii = Sdi\,») ~ S (Hi’j Sdi\j) onV. We denote by ™
Ns, (S, p) — « the corresponding character, andVar [; ; Sq; we denote by its restriction to the coset
Sv

By Proposition 6.1.3 we have:

Proposition 6.2.2. For any«[Sp]-module W with characteg and any ve Ws, (S, p) we have

r (v [Homs, (IndS(v), W)) = (IndSyti. v), -

Lemma 6.2.3. Let y; ; be the character associated with tkESy ]-modules Y. Assume that v acts on
each(Sy, )% by circular permutation of the coordinates, namelygy, . . ., Oa;) = (92,03, ---,0q,;>01). Let
Wij = (Wi Wij2, ..., Wijd,) € (Sm)% and letwe S = []; j(Sm)® be the element with coordinates;w
We have
X (W, V) = I_IXi,j(Wi,j,lWi,j,Z cWijd)-
i

We now show that this trace is also a Littlewood-Richardsmefficient (or more precisely a twisted
version of it). We will use this result later on.

Letx = {Xg, Xz, ...} be an infinite set of variables and l&{x) be the corresponding ring of symmet-
ric functions. For a partitiont, let s;(x) be the associated Schur symmetric function. fiatenote the
dominance ordering on the set of partitidfs For a typew = (di, w?) - - - (dr, w") € Ty, definew* as the
partitiony[_; d; - .

For a typew = (di, ') - - - (dr, ") € Ty, we definelc),}ep, Dy

5,00 1= 8,40M)820%) - 5,7 = ) chsux)

pudw*
wherex? := {x{,x3,...}. We call the cofficientsc], the twisted Littlewood-Richardson cfieients  If
d; =d, =---=d, =1, these are the usual Littlewood-Richardsonoients.

Fora=(1m,2™ . ..) e P, put

Z :=Hi”‘.m!.

i>1
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It is also the cardinality of the centralizer 8), of an element of typa (i.e. whose decomposition as a
product of disjoint cycles is given by). We denote by the irreducible character &, associated tad
as in Macdonald [42, I§7] and by/\/ﬁ its value at an element of type

Proposition 6.2.4. We have

A=y [l:l Zmlel'ii]

P a

where the second sum runs over the (ot,...,a") € P X - - - X Py SUCh thatuid; - a =p.

Proof. We haves;(x%) = > z;l)(g pp(xd) wherep, is the power symmetric function (see [42]). On the
other handp,:(x%) - - - pyr (x*) = pu,q4.4i(X). Hence

S,00 =) (Z [ Z;ilxﬁ) Po(x)

where the second sum runs over the: (o?,...,a") € Py X -+ - X Piory such that;d; a = p. We now
decompos@, in the basigs,}, and we get the result. O

For A € P, we denote by, an irreducibleqS;,]-module with corresponding characet.

Proposition 6.2.5. Put \, := @._, T4V,; and S := [];(S)® and letp be the representation S-»
GL(V,,). Letve Ws, (S, p) be the element which acts on ea@),)® by circular permutation of the
coordinates. For any € P, we have

Tr (v ’ Hom, (Indgn(vw),vﬂ)) =c.

Proof. This is a consequence of Proposition 6.2.2 and PropositiA.6

6.3 Rational Levi subgroups and Weyl groups

By alLevi subgroumf G, we shall mean a Levi subgroup of a parabolic subgroup,dfe., a subgroup of
G which is GL,-conjugate to some subgroup of the fofifl; GLy, with >}, nj = n. A maximal torus ofG

is a Levi subgroup which is isomorphic t&¥)". LetL be anF-stable Levi subgroup d&. An F-stable
subtorus ofS of L of rankr is said to besplit if there is an isomorphisr8 ~ (K*)" which is defined over
Fq, i.e.,SF =~ (Fj)". TheFq-rank ofL is defined as the maximal value of the ranks of the split siibfor
L. Since the maximal torus of diagonal matrices is split, Brstable Levi subgroup that contains diagonal
matrices is offg-rankn.

If T is anF-stable maximal torus df of sameFy-rank asL, in which case we say thdtis anL-split
maximal torus olL. In this case we denote b , instead oMW, (T) (see Notation 6.2.1), the Weyl group
of L with respect tor .

If fis a group automorphism d€, we say that two elementsandh of K are f-conjugateif there
existsg € K such thak = ghf(g)™.

The identification of the symmetric grosy, with the monomial matrices in GlLwith entries in{0, 1}
gives an isomorphisr8, ~ Wg. Fix a sequence of integens = (my,...,m) such thaty; m = nand
consider the Levi subgroup, = GLp := []l_; GLm. ThenW,, = Sy := [1_; Sm. TheGF-conjugacy
classes of thé&-stable Levi subgroups @ that areG-conjugate td_, are parametrized by the conjugacy
classes ofNVs(Lo) = Ws,(Sm) [12, Proposition 4.3]. Fov € Ns (Sm), we denote by, a representative
of the GF-conjugacy class (of-stable Levi subgroups) which corresponds to the conjugkass ofv in
Ws, (Sm). Then (,F) =~ (Lo, VF), i.e., the action of the Frobenius on L, corresponds to the action
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of VF on L, given byvF(g) := vF(g)vt for anyg € L,. SinceF acts trivially onWg =~ S,,, we have
(WL,, F) = (Sm, V). By §6.2, there exists a decomposition

Sm = (Sn)™ X -+ - X (Sp,)*

for some sequencel{, n;)(dz, ny) - - - (dr, n;) and a specific choice of an elemenin the cosevS,, which
acts on each componer&{)® by circular permutation of the coordinates. Taking @feconjugatel, of
L, if necessary we may assume that o-. We also have

Lo = ﬁ (GLy)Y . and ()F = (Lo)F = ﬁ GLn (Fge)-
i=1 i=1

Now letL be anyF-stable Levi subgroup @&. Consider the semi-direct produtt = (F) where(F) is
the cyclic group generated by the Frobenius automorphiswvorif  is a character ofv_ < (F), then for
all a € W, we havey(F(a)) = ¢(a) since F(a), 1) € W = (F) is the conguate ofg( 1) by (1, F). Hence
the restriction ofy to W, is anF-stable character af.. Conversely, given aR-stable charactey of W,
we now define an extensigndf y to W, < (F) as follows. We havé = L, for somem andv € Ns, (Sm)
by the above discussion so that we may idenfify= (F) with Sy, = (v). For anv-stable character of S,
we define the extensigndf Sy, = (v) as in§6.2.

The LF-conjugacy classes of thie-stable maximal tori oL are parametrized by thE-conjugacy
classes of\_ [12, Proposition 4.3]. Ifv € W, we denote byl, an F-stable maximal torus df which is
in the LF-conjugacy class associated to faeonjugacy class of. We putt,, := Lie (Ty).

6.4 Springer correspondence for relative Weyl groups

Let P be a parabolic subgroup 6&fandL a Levi factor ofP. LetI be the Lie algebra df and letz denotes
its center. Recall that the classical Springer correspocglgives a bijection

€ = ¢, : Ir W_ — {nilpotent orbits ofl}

which maps the trivial character to the regular nilpotehitoiMoreover ifL is F-stable ther€ restricts to
a bijection between thE-stable irreducible characters Wf_ and theF-stable nilpotent orbits af Recall

that if L = G andA € Py, then the size of the Jordan blocks of the nilpotent dikjt!) are given by the
partitionA.

Let € € Irr W_ be the sign character. Fgr e IrrW_ puty’ = y ® e. Then let€, : Irr W_ >
{nilpotent orbits ofl} be the map which sendsto €(y’). The bijectiont, was actually the first correspon-
dence to be discovered [52].

Let C be a nilpotent orbit of and putE = o + C with o € z. Consider the relative Weyl group

Ws(L,Z) := {ne Ng(L) Inznt = Z}/L.

Recall thatX is of the formo + C with C a nilpotent orbit ofl ando € z. PutM := Cg(o), then
Ws(L,Z) = Wu(L,C). LetO be the orbit ofgl, whose Zariski closure is the image of the projection
p: X px — g on the first coordinate.

Let g, be the set of elementse g whose semisimple part {S-conjugate tar. Note that the image
of p is contained imy,. The setg, has a finite number dB-orbits which are indexed by the irreducible
characters ofVy by €. If x is an irreducible character ¥y we denote by), the corresponding adjoint
orbiting,. Fory € Irr Wy, put

A, = Homy, (Indy (Ve), V)
whereV is the irreducibléM_ -module corresponding to the nilpotent orBiunder€.

We have the following result due to Springer in the case whki®nilpotent regular (see Borho and

MacPherson [3, 3.1] for the regular nilpotent case and Ligi$29, 2.5] for the general case).
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Proposition 6.4.1. We have

Ind?Cv( ) p*( XLPZ) = @ AX®£.5X

XeElrr Wiy

and A = 0if O, is notincluded ir0. The multiplicity A, corresponding t@ = O, is the trivial character
of Wu(L,C).

If O is regular nilpotentl. = T and ifZ = {0}, then this is the classical Springer correspondence.
The groupMu(L, C) is naturally isomorphic t&\iy, (W, o). As shown in§6.2, the action o¥M_ onV¢
can be extended to an action My, (W, 0) on V. By §6.1 it gives a structure divy (L, C)-module on
eachA, and so by Proposition 6.4.1 we have an actioV(L, C) on p. (ICXL Pz)

Remark6.4.2 It is also possible to define an action Wy (L, C) on p. (EXLPZ) using the approach in
Bohro and MacPherson [3] by considering partial simultaiseesolutions.

To alleviate the notation pit := p, (ZC;, ) andK, = A, ® IC5; . Assume now thatNl. Q. L. P. )
is F-stable and leF : X, py — X py be the Frobenius given bly(x gP) = (F(X), F(g)P). Then the
morphismf commutes with the Frobenius endomorphisms. ¢etF*(x) ~ « be the isomorphism (in
the category of sheaves &} f px) which induces the identity on stalksIaf-points. It induces a canonical

isomorphismF* (IC Z) ICs - which in turns induces a canonical isomorphigm F*(K) ~ K.
Note that the orbit®), areF- stable and- acts trivially onWy. HenceF*(K,) =~ K, and sog"induces an
isomorphismpy : F*(K,) =~ K, for eachy. Now we define an isomorphiss : F* (&(_)X) ~ I—C@ with
the requirement that its tensor product with the identity\pmivesy, .

We then have
L o
X1c, o, = MO e

Since theA, areWy (L, C)-modules, eaclr € Wiy(L, C) induces an isomorphisi, ~ K, and so an
isomorphismd, : K ~ K such that

XK o3 = Z Tr (v| A)() g (@mo-dimo,) Xre:

X

6.5 Deligne-Lusztig induction and Fourier transforms

Here we recall the definition of Deligne-Lusztig inductiooth in the group setting (which is now stan-
dard [11]) and in the Lie algebra setting [32]. We then rettadl commutation formula between Fourier
transforms and Deligne-Lusztig induction (in the Lie algebase) which is the main result of [33]. This
commutation formula is an essential ingredient in the paddtie main theorem of the paper. Although the
theory is available for any connected reductive algebreiags we keep our assumptiGn= GLn(Fq).

For any subseY of X, we denote byl the functionX — « that takes the value 1 ohand the value O
elsewhere.

6.5.1 Generalized induction

Let H andK be two finite groups and lé¥l be a finite dimensiond-vector space. We say thit is an
H-module-Kif it is a left x§[H]-module and a righk[K]-module such thatg- x) - b = a- (x - b) for any
a € «[H], b € k(K] andx € M. ThenM defines a functor from the category of finite dimensional left
k[K]-modules to the category of finite dimensional lefti]-modules byV — M ®,k; V. This functor
induces an obviouslinear mapR{ : C(K) — C(H) on«-vector spaces of class functions.

The approach of generalized induction with bi-modules stBroué. We have the following formula
[12, 4.5].
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Proposition 6.5.1. Let f € C(K) and ge H, then

RN = IKI™ ) Trace((g.k )| M) (k.

keK

6.5.2 The group setting: Deligne-Lusztig induction

Let L be anF-stable Levi subgroup of a parabolic subgrdtpf G and letV be the unipotent radical ¢.
Consider the Lang mafic : G — G, x — x F(X). In [36], Lusztig considers the varier&gl(V) which is
endowed with an action @" by left multiplication and with an action & by right multiplication. These
actions commutes and so deé(Lél(V), K) into aG™-moduleLF. Consider the virtuaB"™-moduleL”

H; (£6'(V) = D (~1'H (L6'(W).«).

The k-linear mapR® : C(LF) — C(GF) associated with this virtual bi-module is call®eligne-Lusztig
induction
Let us put

S¢(g,h) = Trace((g, h’l) ‘ H: (Lgl(V))).

By Proposition 6.5.1 we have for arfye C(LF)

RE(F)(@) = ILFI* ) SB(a. h(h). (6.5.1)
heLF
If M is anF-stable Levi subgroup d& containingL, we defineRM exaclty as above replacing the let@r
by the letterM.
Let Lyni be the subvariety of unipotent elementlof We now list some properties of this induction
which are standard.

Proposition 6.5.2. (i) Rf does not depend on the choice of the parabolic subgroup Phbdvias a Levi
subgroup.

(i) If L ¢ M is an inclusion of Levi subgroups, thef R RM = RC.

(i) Re€ oR® = R® o Reg whereReg : C(LF) — C(LF) maps a function f to the unipotently
supported function that takes the same values as fﬁgn L

Forw € W we put
Qr, = Ry, (L)

where } denotes the function with value 1 at 1 and with value 0 elsegihé/e call the functiorQ#W the
Green functionsf LF. They are defined by Deligne and Lusztig in [11].

WhenL = G in which caseM_ = S;, the Green functions are related to the well-known Greeg-pol
nomials as follows. The decompositionwfas product of disjoint cycles gives a partition sayThen the
value 0fQ$W at the unipotent conjugacy class associated with the jparfitis the Green polynomia, in
the notation of [42, IlI, 7].

Because of Proposition 6.5.2 (iii), we may also write thection Q#W as Re'g,uni o R#W(lTW).

We have the following important formula [11] due to Deligmedd_usztig.

Theorem 6.5.3.Let f € C(T!) and let le LF. Then

R, (NN =1C)T > Qe anyfhish). (6.5.2)
{heLF |l1sehTyh-1}

where I= 14 is the Jordan decomposition of | withthe semisimple part ang the unipotent part.
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6.5.3 The Lie algebra setting: Fourier transforms

Fourier transforms of functions on reductive Lie algebrasrdinite fields were first investigated by
Springer in the study of the geometry of nilpotent orbits][5thteresting applications in the represen-
tation theory of connected reductive groups over finite fielére then found by many authors including
Kawanaka (e.g. [24]), Lusztig (e.g. [40]), Lehrer (e.g.]}3Waldspurger [53] and the author himself (e.qg.
[33)).

Let us recall the definition and basic properties of Fouri@ntforms. The most important property of
Fourier transforms will be stated in the next sect§én5.4.

We fix once for all a non-trivial additive charactér: F; — «* and we denote by : ¢ x g - K
the trace mapg,b) — Trace@b). It is a non-degenerat8-invariant symmetric bilinear form defined
overFq. Let Fung™) be thek-vector space of all functions — «. We define the Fourier transform
¥ : Fun@F) — Fun@F) with respect to'p, u) by

FHH) = D (% y)) Fy)-
yegh
A detailed review on properties of Fourier transforms caridumd in [31]. Here we just recall what we
will need.
Define the convolution produston Fun F) as

(F+0)() = > f(yax-Y)

yeg®

for all x € gF. Then for allf, g € Fun g7), we have [18, Proposition 3.2.1]
FFxg) =F(Ff) - 79(9).
For anyf e Fun @F) it is straightforward to check that

1a%1- £(0) = D 7O (6.5.3)

xegF

6.5.4 The Lie algebra setting: Deligne-Lusztig induction

We now review Deligne-Lusztig induction in the Lie algebedtg. Details and proofs can be found in
[32] [33].

ConsiderL, P,V as in§6.5.2 and let, p, n be their respective Lie algebras. We denotedfy") the
k-vector space of functiong — « which are constant on adjoint orbits.

Itis not clear wether there is a Lie algebra analogue of tInielsxaﬁél(V). The naive guesﬁgl(n) with
L, g — g, X F(X) — xdoes not give anything interesting.

However we have the following formula [12, Lemma 12.3] ob&al independently by Digne-Michel
and Lusztig.

SPEN =L > ICLU9TICS()TITISES (htguh, ).
{heGF [hish-1=l)
This formula reduces the computation$ff(g, I) to its computation at unipotent elements.
We define ouS}(x,y) using the Lie algebra analogue of this formula as followet gy be the variety
of nilpotent elements af and letw : gnij — Guni be the isomorphism given by— x+1. For (x,y) € g7 xIF,
we put

SIGY) =1L T ICLY)TIICG(YS) IS (htw(xah, wiyn))
{heGF | hysh—1=xg}
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wherex = Xs + X, is the Jordan decomposition »fvith xs the semisimple part ang, the nilpotent part.
We define our Lie algebra version of Deligne-Lusztig indoet; : C(F) = C(sF) as

R = 1L " St y) Fy).

yelF

This definition ofR’ works also if we replace the isomorphismby anyG-equivariant isomorphism
anil = Guni defined oveify (e.g. the exponential map when the characteristic is langaigh). We ac-
tually prove in [33, Remark 5.5.17] that the definition Rf does not depend on the choice of such an
isomorphism.

Itis also easy to prove that our inductiBi satisfies the analogous properties in Proposition 6.5¢2, se
[32] for details.

The Lie algebra analogue of Theorem 6.5.3 is by definitioﬁivgflf f e C(tf) andx € t7, then

R, (DO =ICOT™ > Qb9 (w(x)) f(hxsh). (6.5.4)

{heLF | xsehty,h™1}

We will also use the following properties [33, Propositia@.24, Proposition 7.1.8].

Proposition 6.5.4. Let C be an F-stable nilpotent orbit dfand leto € (z)F be such that (o) = L.
Denote byO* the adjoint orbito- + C of L and byO the unique orbit of which containg". Then we have:
() R (10) = 1o,
(||) ng (XIC:L) B X]C:_).

o

Our definition ofR? is not natural and is thus a little bit frustrating espegiédr other reductive groups
where we do not always have an isomorphism between the ailpetements and the unipotent ones in
small characteristics. However the following theorem [@8yollary 6.2.17] shows that our definition of
R’ behaves well with Fourier transforms (which are not welisuisd in the group setting).

Theorem 6.5.5.Pute. = (—1)% "0 We have

Flo R? — EGEquimVR? o 7_-1.

This formula suggests that a more conceptual definitioR’afhould exist. In [34] we investigate this
problem in greater details and bring a partial answer in seofrthe geometry of the semi-direct product
Gxg.

Itis proved by Lehrer [31] that Fourier transforms commuithwarish-Chandra induction. Moreover
when the paraboli® is F-stable the inductiofr’ coincides with Harish-Chandra induction (see [32]).
Hence Lehrer’s result is a particular case of the theorem.

We also mention that whem € tf, is regular (i.e.Cg(c) = Ty) then it follows from Kazhdan and
Springer’s results [25][52] thak* o R} (1,) = eger, 0™ R} oF*(1,) whereU is the unipotent radical of
a Borel subgroup ob.

6.6 Characters of finite general linear groups

The character table @™ was first computed by Green [17]. In [41], Lusztig and Srismadescribe it in
terms of Deligne-Lusztig theory [41]. This is done as folow

Let L be anF-stable Levi subgroup d& and lety be anF-stable irreducible character ¥f.. The
functionX? : LF — « defined by

X5 =W ) GWRRE (1r,) (6.6.1)

weW
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is an irreducible character of (hereg'is the extension op defined in§6.3). The character&"q; are called
theunipotent charactersf L.

Forg € G" andd < Irr (LF), let9% e Irr (gL"g™') be defined byd(glg™™) = 6(l). We say that a linear
charactep : LF — «* isregularif for n € Ngr (L), we have'd = 6 only if n € LF. We denote by lIrgg(LF)
the set of regular linear charactersléf. For6" € Irreo(L7), the virtual character

X = e RE(0" - X5) = el LI ), G (WF)RE, (6™) (6.6.2)
weW
whereg™ := b1, , is an irreducible true character 6F and any irreducible character Gf is obtained
in this way [41]. An irreducible character G is thus completely determined by t&& -conjugacy class
of a datum [, 6, ¢) with L anF-stable Levi subgroup dB, 6" € Irre(LF) ande € Irr (W.)". Characters
associated to triples of the forrh,@", 1) are calledsemisimple
The character&;aTWR‘T-"w(G) are calledDeligne-Lusztig characters

6.7 Fourier transforms of orbital simple perverse sheaves

We have the Deligne-Fourier transfosfid : D2(g) — D2(a) which is defined as follows.

We denote byA?! the dfine line overk. Leth : A — A be the Artin-Shreier covering defined by
h(t) = t9—t. Then, sincéis a Galois covering of! with Galois groufF, , the sheah, (k) is a local system
on Al on whichF, acts. We denote byy the subsheaf df..(x) on whichFq acts asP~. There exists an
isomorphismpy : F*(Ly) — Ly such that for any integér> 1, we haveXLWg) = YoTrace, /r, : Fq —
(see Katz [23, 3.5.4]). Then for a compléxe D?(q) we define

FIK) = (po)1((p2)"(K) ® u*(Ly))[dim g]

whereps, p2 : g X g — g are the two projections. 5 : F*(K) — K is an isomorphism, then it induces a
natural ismorphisni (¢) : F*(7%(K)) — 79(K). Moreover,

Xrswyr ) = (1) MIFI(Xk ).

We will need to compute the characteristic functions of teevprse sheaveﬁg(ﬁ'a), whereOQ an
F-stable adjoint orbit of;. It is known by results of Lusztig that these perverse sheave closely related
to the character sheaves @Gr{40] and that the characteristic functions of charactengls orG give the
irreducible characters @&F [35]. We thus expect to have a tight connection between tlagacteristic
functions of the sheaVGS‘g(I_Cé) ong and the irreducible characters®f.

More precisely, lei € O and putL = Cg(xs). Letp be theF-stable irreducible character @f, that
corresponds to the nilpotent orb)t;ﬂ of [ = Lie (L) via the Springer correspondenEg

Theorem 6.7.1.We have

F(Xrer) = e MWL Y GWRRY (') (6.7.1)

weW
wheren'™ : t — «is the character z» ¥(u(xs, 2)).

Remark6.7.2 Note that Formula (6.6.2) is similar to Formula (6.7.1).How's thatF“(XIc-a) arises from
theGF-conjugacy class of a triplé, ', ¢) with ' : IF — ¥,z P(u(xs, 2)) exactly as in the group setting.

Proof of Theorem 6.7.1Let O be theL-orbit of xin I := Lie (L). ThenO" decomposes as + O% where
05, denotes thé-orbit of x, in I. Then

XIC.EL = 1Xs * X](%)'zn .
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By Proposition 6.5.4, we have
Xrey = Ri(Xzey,) (6.7.2)

Hence from the commutation formula in Theorem 6.5.5 we have
F(Xrcz) = e @MY RY 0 F(X ez )
= ege g2 @MmE-dmL) R (7_1(1&) : TI(XICE_)L ))
xn

We also have:
Xres, = 'WLI™ ) @ WF)R| (o) (6.7.3)
" weW_

wheres = 2(dimC(x,) — dimT).

Indeed, by Formula (6.5.4) the functi(ﬁ}]w(lo) corresponds to the Green functiQ#W via the isomor-
phismw : Iy = Lyn. Moreover if we putCt = w(0O% ), then by Lusztig [35], we have F\,"punsi (X;,) =
o Xrer, WhereXSLa, is the unipotent character &f associated t@’. Hence Formula (6.7.3) is obtained
from Formula (6.6.1) via the isomorphism

We now deduce from Formula (6.7.3) and Theorem 6.5.5 that

F'(Xrey, ) = 0 ML ) 3 (WR)eer, g @M TIR (1)

weW

Sincexs is central inl, we deduce that

F'(1x,) - TI(XJC'EL ) =g W™ Z @'(WF)GLGTWQ%(dimL_dimTW)Riw(g‘le)-

weW

From the transitivity property of Deligne-Lusztig indumti and the fact thaCg(x) = CL(xn) we deduce
that:

Tg(xfc'a) = EGELq%dimO|WL|_l Z @’(WF)ELETWREW(G‘QIS)-

weW

The mapM. — {1, -1}, w — €_er,, is the sign characterof W,.. |

Lemma 6.7.3. The functions"g(xfc-a) are G -invariant (i.e. constant on adjoint orbits) characterstbé
finite abelian grouga™, +).

Proof. The functions}‘“(xl—%) are clearlyG -invariant. The functiorF (1) is a sum of linear characters
of gF and therefore is character gf. We thus need to see that if we WFXQC:_) = Y cNclc as a sum over

the adjoint orbits ofiF, thennc € Z.o. Let us use the notation introduced in the proof of Theoremil6.
Write

Xres, = I # Xpeg, = Lo [Z Nc 10’] = Z Nc 1xqcr
a c c

where the sum runs over the nilpotéAtorbits ofl™ (note thaixs+C’ is anL"-orbit of I sincexs is central).

By Proposition 6.5.4(i), for a nilpotent adjoint orbit &f, the functionR(1y..c) is the characteristic

function of theGF -orbit of an element ixs + C’. By Formula (6.7.2) we are reduced to see tigate Zso.

We havelL" =~ []; GL, (Fq) for somen;, d; € Zo, and SOXICgL is a product of functions of the form
xn

XI% on gl (Fqa) whereQ; is a nilpotent orbit ofgl, (Fq). By Lusztig [35], the values of the functions
X IC.Bf are non-negative integers. O
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6.8 Generic characters and generic orbits

Let (L, 6", ¢) be a triple as ir§6.6 with L anF-stable Levi subgrou® € Irreg(L7) andy € Irr (W)F and
let X be the associated irreducible characteGbf Then we say that th&F-conjugacy class of the pair
(L, ¢) is thetypeof X. Similarly we define théypeof an adjoint orbitO" of g™ as follows. Letx € OF and
let M = Cg(xs) and letCM be theM-orbit of x, € m. Then theG"-conjugacy class of the paiM, CV) is
called the type oDF.

From the pair [, ¢) we definew = (d1, w?)(d2, w?) - - - (dr, ") € T, as follows. There exist positive
integersd;, n; such that. ~ []{_; GLy, (Fq)‘lIi andLF ~ i GLy, (Fq)- TheF-stable irreducible characters
of W_ correspond then to Ir§,,) x - -- x Irr (S, ) and the later set is in bijection with,, x --- Xy, via
Springer correspondengg that sends the trivial character 8f, to the partition (I"). If g > n, the set of
types of irreducible characters 6f is thus parametrized by,. Under this parameterisation, semisimple
irreducible characters correspond to types of the fam({™)) - - - (d, (1™)) and unipotent characters to
types of the form ().

From the pair 1, CM) we definer = (di, 71)(dp, 72) - - - (d, 7") € T, as follows. There exist positive
integersd;, n; such thatM = []{_; GL, (Fg)* andM" = []{_; GLy, (Fe). The Jordan form o€ defines
partitionst?,...,7" of ny,...,n, respectively. Ifq > n, the set of types of adjoint orbits @f is thus
parametrized by ,.

Remark6.8.1 Note that ifO is an orbit ofg™ of typew = (di, w?) - - - (dr, "), then in the sense ¢#4.3
theG-orbitO is of type

In particular, the two notions coincide if the eigenvalué®are inFj.

Definition 6.8.2. LetO¥,...,Of bekadjoint orbits ofs". We say that the tupleX., ..., Of) is genericif
(O1,...,0) is generic in the sense of Definition 5.1.1.

Assume that is anF-stable Levi subgroup d&. We say that a linear additive charactezdfs generic
if its restriction toz_'; is trivial and its restriction ta, is non-trivial for any propeF-stable Levi subgroup
M of G which containd..

Put

(Z)reg := {x € z| Ca(X) = L}.

.....

Define
KO — {(—1)f1d’1y(d)(r -1 ifdi=d foralli.
0=

0 otherwise.

wherey is the ordinary Mobius function.
The proof of the following proposition is completely simit® that of Proposition 4.2.1 in [18].

Proposition 6.8.3. LetT" be a generic character ofz Then
Z I'(2 = gK?.
ZE(ZI)rFeg
For a groupH, we denote by its center.

Lemma 6.8.4. Let (OF,...,OF) be a generic tuple of adjoint orbits af . Let (Li, 7, i) be a datum
defining the characteyﬁg(xjcz_)‘), see Remark 6.7.2. ThéiiX, (97)l,, is a generic character offzfor

any F-stable Levi subgroup M of G which satisfies the follgndondition: For all i € {1,...,k}, there
exists g€ GF such that % is contained in g.ig ™.
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Proof. We may writen; = ' (1,,) Wwhereo; € z, is the semisimple part of an element@'f. Note that
gioig ! is in the center ofjlig~! and so it commutes with the elementszf c gilig?, i.e., gioig ! €
Cy(zn) = m. Letze Z,. Then

k k k k
[1em@=]]7" Q)0 "29) = [ | ¥uloi,0729)) = | | ¥(u(gioig ", 2) = ‘P(u( D grigh z)].
i=1 i=1 i=1 i=1 i

If z = ald € z, thenu( giaigi‘l, 2) = ATr( Y gio-igi‘l) = 0 by the first genericity condition (see
Definition 5.1.1). Let. be anF-stable Levi subgroup such thst ¢ L ¢ G, i.e., such that, ¢ z ¢ z, and
assume tha[X; (97)l is trivial. There is a decompositidf = V1@V, --®V, such that ~ P si(Vh).
Then any elemert € z is a of the form 41.1d, . . ., A;.1d) for someay, ..., 4, € K. Sincegio-ig;1 emcl
for all i, we may write}; gio-igfl =(Xg, ..., %) €gl(V1)®---dgl(Vy). Since]’[!‘=l (%ni)l, is trivial we have
Y AiTr(x) =0forallAs,...,4 € K. Hence Trg) = O foralli = 1,...,r. This contradicts the second
genericity assumption. O

A linear character of[ is said to begenericif its restriction toZf is trivial and its restriction t&f, is
non-trivial for anyF-stable proper Levi subgroud of G such that. c M.
Put
(ZU)reg := {x € Z. | Ca(X) = L}.

We have the following proposition [18, Proposition 4.2.1].

Proposition 6.8.5. LetT be a generic character ofZ Then

D T@ = (- 1K

ZE(ZL )rFeg

Definition 6.8.6. Let X1, .., X bek-irreducible characters @. For each, let (L;, 6;, ¢;) be a datum
definingX;. We say that the tupleX(, . .., Xk) is genericif H!‘zl (%6))Iz, is a generic character &, for

any F-stable Levi subgroupM of G which satisfies the following condition: For alle {1,...,k}, there
existsg € G" such thaZy c giLig™.

Example6.8.7. Lety?,...,u¥ bek partitions ofn and denote bR, ..., Rk the corresponding unipotent
characters o6" (see beginning of this section). Considdinear charactersy, . .., ayx of Fg. For each,
putX; := (@ o det)- R,. ThenX; is an irreducible character G of same type ar,. Then according to
Definition 6.8.6, the tupleXs, . .., Xk) is generic if and only if the size of the subgroup offijrgenerated
by a; - - - ax equals.

Givenw = (ws,. .., wy) € (Tn)¥, and assuming that chédf{) does not divide the gcd Qiﬁuijl}i,j and that
qis large enough, we can always find a generic tuplg (.., Xy) of irreducible characters @" of type
w. The proof of this is similar to the proof of the existence ehgric tuples of conjugacy classes of GL
of a given type, see [18].

Definition 6.8.8. We say that an adjoint orbit @f (or an irreducible character &) is splitif the degrees
of its type are all equal to 1.

6.9 Multiplicities in tensor products

Let (X1, ..., Xk) be a generic tuple of irreducible character§bf Assume that there exists a generic tuple
(OF,...,OF) of adjoint orbits ofs" of same type as\s, ..., Xi). We putdo = (2g- 2)n? + 2+ 3;; dimO;
asin Corollary 5.2.3.

Let® : gF — « be given byx > g@7+9dmC(® and letA : GF — « be given byx > q29mCe( |
g = 1, note that\ is the character of the representatiorGbfin the group algebra[g™] whereGF acts on
a© by conjugation.
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Theorem 6.9.1.We have

q%/*q-1)

A Ve =

<®®T“(XIC-_ )® - ®F (X ),1>
01 Ok oF
Proof. Foreach =1,...,k, let (Li, 6, ¢i) be a datum defining;. Then

GFIA®X18+® Xi, s = » qIImEe H{GGEL. WL D EWRRE (9.)(x)]

xeGF i=1 weW,;

k

k
= [T(esamir?) D] geimee %" [ ]awRRS, 6)()

i=1 xeGF (W, Wi)EWL XX W, T=1

k k
- D []‘[ ecey WL ™2 (W F)] D, O TRE (6)().
1

(W, WiJEWL, XX W, \i=1 xeGF i=

The type of0; is theGF-conjugacy class oﬂ_ﬁ,()iL‘) Where()iLi is anF-stable nilpotent orbit of; that
corresponds tg; via Springer’s correspondence.

Fori = 1,...,k, let (Lj, ni, ¢i) be a datum defining»‘g(X]C-a) as explained in Remark 6.7.2. Using
Theorem 6.7.1 we may proceed as above to get '

<@ & F (X yee )@+ & F(Xzee ), 1>
01 Ok oF

k
— |gF|—l 1_[ EGEL.CIZd'mO' |WL |- lcpl(WlF)] Z qganrgdlmCG(x) 1_[ Rf (m)(x)

(Wy,..., wk)eWle-»-xWLk [i 1

K
= o1z Zidimo Z [l_[ eceL WL |43 (W F)] Z gPemees l_[ R?w. (0)()-

(Wy,..., wk)eWle-»-xWLk i=1 xegF

xegF

Sincedo/2 = gr? —n? + 1+ 1 ¥, dimO;, we need to see that:

(- 1)Zq9d'm%<x>1—[awl(n>(x)—qZqu'mCG“)]_[ O]

k
xegF xeGF i=1

Since the functlonﬁtG (&) andRt (mi) are constant respectively on conjugacy classes and adjdiits,
we need to verify that fora glven typee Ty

k

k
@1 [[R,me=a) ][R, 6. (6.9.1)

X~w i=1 X~w i=1

wherex ~ w means that th&-conjugacy class ok is of typew. Let (M, C) with M an F-stable Levi
subgroup an€ anF-stable nilpotent orbit ofit such that th&F -conjugacy class of\(, C) corresponds to
w as in§6.8. Recall thak € gF is of type (M, C) if there existsy in the G -orbit of x such thatM = Cg(ys)
andy, € CF. Similarly, an elemenx € GF is of type (M, C) if there existsy in the GF-orbit of x such that
M = Cg(ys) andy, — 1 € CF.

Then the proof of Formula (6.9.1) reduces to the proof of tileing identity:

k k
@-1 ), [[R,m@E+v=a ) H S (6)(zy

ZE(Z,”)feg i=1 ZE(ZM)reg -
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wherev is a fixed element i€” andu = v + 1. By formulas (6.5.2) and (6.5.4) we have
wa. m)(Z+V) = IMFIE 3 e | zeht,, h-L} Q;;’ITWi hea (U) ni(hzh),
R%, 6)(zv) = IMF[TL D {heGF | zeh Ty 1} Q#TW h—l(u) gi(h~'zh),
SinlceCG(z) =M, we havehe G" |ze h’r\l,\,i h !} = {h e GF |hT,,h™! ¢ M}. We thus have:

k
> TR, tz+v) = Z ]‘[|M |1th1(u>) D ]_[n.(h zh)

ZE(Zm)reg =t ., hk ZE(Zm)reg i=1

where the first sum runs over the ﬁtl{h € GF |hT,,h~t c M}. Similarly we have

> ﬂ (02U = Z {]‘[m |1th1(u)] > ]‘[e.(h 1zh).

ZE(ZM)reg """ P ZE(ZM)reg

The inclusionhTy,h~* ¢ M implies thatZy c hTyht c hLiht. By Lemma 6.8.4, the character
(Hikzlhini)h“ is a generic character af, and so by Proposition 6.8.3 we have

k
> [ [mtizh) = akg,.

ZE(Zm)feg i=1

Similarly, by Proposition 6.8.5 we have

k
2, | Jatizh) = @- DK

ZE(ZM )rFeg i=1
m}

When the tuplesXy, ..., Xi) and OF, ..., OF) are not generic we do not have such a nice relation be-
tween mulitplicities. For instance let us choo&g,(. .., Xx) and OF, .. .,OE) to be respectively unipotent
and nilpotent of same type. With the notation in the proofaf theorem we havg = G for all i and the
linear characterg; andé; are the trivial characters. Then

k
S [ noian = @il

ZE(Zm)rFeg i=1

k
Do T 1007 2h) = @)y -

ZE(ZM)feg i=1

.
Hence, unlike the generic case, the relation between th@stetms invloves the rational functi |(z'“';))’eg ||
reg

which depends oM. The independence & is crucial as we obtain the multiplicities by summing over
M.

6.10 Multiplicities and symmetric functions
6.10.1 Definitions

Considerk separate sets, Xo, . . ., Xk Of infinitely many variables and denote by := Q(q) ®z A(X1) ®z

-- ®z A(Xk) the ring of functions separately symmetric in eachxgexo, . . ., Xk with codticients inQ(q)
whereq is an indeterminate. ONA(X;) consider the Hall pairing, ) that makes the séi,(x;)}cp Of
monomial symmetric functions and the §et(x;)}.cp Of complete symmetric functions dual bases. Qn

put(, ) =[Ti{, »-



57

Consider
Yn s ALTI = AT f(Xas e e X6 0, T) - f(X, .. oxg g T

where we denote by? the set of variablesd, xJ, ... ). They, are called theé\dams operations
Define¥ : TAK[[T]] — TAK[[T]] by

\P(f) — Z lpn(f)‘

n>1 n

Its inverse is given by
n f
v in =Y a0

n>1

wherey is the ordinary Mobius function.
Following Getzler [15] we define Log : £ TAK[[T]] — TAK[T]] and its inverse Exp TAK[[T]] —
1+ A([T]] as

Log(f) = ¥ (log(f))
and

Exp(f) = exp(¥(f)).
6.10.2 Cauchy function

For an infinite set of variablg, the transformed Hall-Littlewood symmetric functiéh(x, q) € A(X) ®z
Q(q) is defined as
Hax.0) = > Ru(@s(x)
P

whereK,,(q) = g"WK,,(q71) is the transformed Kostka polynomial [42, IIl (7.11)].
For a partition1, put

wherea, (g) denotes the cardinality of the centralizer of a unipotégnent of Gl,(Fg) with Jordan form
of type [42, IV, (2.7)]. Define the&k-points Cauchy function

Q(q) = Z [H |:|/1(Xi, CI)] Ha()TH.

AeP \i=1

It leaves in 1+ T Ag[[T]]. These functions were considered by Garsia and Haimah [14

Given a family of symmetric functions,(x, ) indexed by partitions, we extend its definition to a type
w = (dg, ) -+ (0, ") € T by Uy, (X, Q) := TTI_; Uy (X4, g).

For a multi-typew = (ws, ..., wx) € (Tn)k, PUtUy, 1= Ug, (X1, 0) - - - Uy, (XK, ) € Ax.

Recall that?” denotes the dual partition af For a typew = (di, 41) - - - (dr, 4;), we denote byy’ the
type @d, 47) -+ - (dr, 47).

Letw = (w, . .., w) € (Tn) with w; = (d,w!)- - (di , ) and define

Ho(9) := (-1)“(q - 1)(sw. Log(Q(a))) (6.10.1)

wherer(w) = kn+ 3 ; |wij| and wherg(s,y, Log(Q(q))) is the Hall pairing ofs,, with the codficient of
Log(Q(q)) in T

Note that if the degrea#i are all equal to 1, thenw) = 2kn.

We rewrite Formula (6.10.1) in some special cases:
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6.10.3 The split semisimple case

We say thatw € T, is asemisimple typé it is the type of a semisimple adjoint orbit @f (or equivalently
the type of a semisimple character®f). It is then of the formdy, (1)) - - - (d, (1™)). If moreoverw is
split, i.e.,d; = 1 for all i, thena = (ny,...,n;) is a partition ofn and any partition ofi is obtained in this
way from a unigue split semisimple type ©f. Note that for a split semisimple typgewith corresponding
partition A, we haves,, (X) = hy(x).

For a multipartitiond = (11,..., &) € (Pn)k with corresponding split semisimple multitypee (T )k
we putHs¥q) := H,(q). Then Formula (6.10.1) reads

H3Y0) = (- 1)(h1, Log(Q(a))) .

Since{h,} and{m,} are dual bases with respect to the Hall pairing, we may recayg) from HYq)
by the formula

Q(q) = Exp{z Z ls(q) T“]. (6.10.2)

n>1 2e(Py, )k

6.10.4 The nilpotent case

We say that a type € T, is nilpotent if it is the type of a nilpotent adjoint orbit gf (or the type of
a unipotent character &) in which case it is of the fornw = (1, 1) for some partitiont of n, and
Su(X) = su(X).
For a multipartition = (g, ..., &) € (Pn)*, we putH’(q) := H,(0), wherew = ((1, 11), . . ., (1, A)).
Since the basgs; }ep is auto- dual we recove(q) from theH')(q) by the formula

Q(q)_Exp[Z Z L@ T”] (6.10.3)

SN

6.10.5 The regular semisimple case

We say that a type» € T, is semisimple regular if it is the type of a semisimple regaldjoint orbit
of GF (or the type of an irreducible Deligne-Lusztig character $6.6). Then it is of the formw =
(d1,1)---(dr, 1) and sod = (dy,...,d) is a partition ofn. In this case, the fonctios,(x) is the power
symmetric functiorp,(x).

For a multipartitiond with corresponding regular semisimple multitypewe use the notatiod'%(q)
andr(2) instead oft,,(q) andr(w).

Recall that for any two partition i, we have(p(X), p.(X)) = Zidau.

Then we recovef(q) from H'?%(q) by the formula

Q@) =Exp| > >

n>1 Ae(Py)¢

(-1yOHpq)

O T (6.10.4)

6.10.6 Multiplicities

Let (X1,...,Xk) be a generic tuple of irreducible character&bfof typew = (w1, . . ., wk) € (Tn)*.

Theorem 6.10.1.We have
A®X1® -+ ® Xk, L)ogr = Hy(Q).
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If the irreducible characterXs, . .., Xk are all split semisimple with corresponding multipartitjg <
(Pn)%, thenH,,(q) = (g - 1Xh,, Log(©2(0))) by §6.10.3. Hence in the split semisimple case, this theorem is
exactly [18, Theorem 6.1.1].

Since the main ingredient [18, Theorem 4.3.1(2)] in the paid18, Theorem 6.1.1] is available for
any typew € T,, we may follow line by line the proof of [18, Theorem 7.1.1} farbitrary types (not
necessarily split semisimple) to obtain the formula of Tle@06.10.1.

Remark6.10.2 The theorem shows that the multiplicities of generic irrgtle characters depend only
on the types and not on the choices of irreducible charaofaagjiven type. Note thdtl,,(q) is clearly a
rational function ing with rational codficients. On the other hand by Theorem 6.10.1, it is also agénte
for infinitely many values o§. HenceH,(q) is a polynomial ing with rational codicients.

7 Poincaré polynomials of quiver varieties and multiplicities

Unless specifie& is an arbitrary algebraically closed field.
Fori=1,...,kletL;, P, 04, Ci, Zi, O; be as ig5.3. PutM; := Cg, (o) andM = Mg X - - - X My.
We assume that}y, . .., Ok) is generic.

7.1 Decomposition theorem and Weyl group action

Letp : Vipx = Vo and p :0_px — O be the canonical projective maps (see Diagram (5.3.1)). For
an irreducible charactef = y1 ® -+ ® y« of the Weyl groupWy = Wi, X -+ X Wiy, we putO, =
(91)2 x O, x --- x O,, where for each = 1,...,k O, is the unique adjoint orbit contained @
corresponding to the characjgrvia the Springer correspondenEe

By Proposition 6.4.1, we have

p. (EZJLM) ~ICY ea{ @ A, ®&6X] (7.1.1)
xe(lrr Wiy )*

where (Ir\y)* = (Irr Wy) — {vo} and

A, = Homy, (Indyi (Vc), V)
with Ve 1= ), V,.
Proposition 7.1.1. We have

(lean). (ZC3,,,) ~ ICy, @[ D Axwzm]- (7.1.2)
xe(lrr Wy )*

The action ofWu (L, C) on the A,’'s (see§6.4) induces thus an action (L, C) on the com-
plex (o/pau,). (ZC3, ) and so on the hypercohomolog (Qu s, IC3, ,, ) = IHXQUpx.x). Forv e

Wu (L, C), we denote by, : (o/pcL,)- (EE}LH) =~ (p/peL,)« (E‘Qm) the corresponding automorphism.

Proof of Proposition 7.1.1By applying the proper base change to the top right squarbeflitagram
(5.3.1), it follows from the isomorphism (7.1.1) and Theurg.4.1 that

(7.1.3)

P+ (E;/L\P,x) = E:Vo 69[ @ Ay ®£:VOX )

XE(IT Wiy )*
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Since the quotient mapg; : Vipx — QLpx andpz : Vo — Qo are principal PGk-bundles
they are smooth and so we hayg) (1Cg,) = 7C5, and ()" (IC, ,.) = ICY ... Applying the
decomposition theorem to/pg|, (Theorem 3.1.2) and the base change theorem we see thaf j{r]
is a direct summand of{rc, ). (ZC;, ) then (@2)* (7C3,) = ic: is (up to a shift) a direct

x 2H(2).(P2)* (©)
summand op. (Q;,LM) and so we must havé = Qo, for somey and{ = «. It is also clear thafC'QOX
appears ind/pc, ). (ZC;, ) with the same multiplicity agCs, in p. (1C5, _ ). o

Recall thatdo denotes the dimension @o. Putr, = (do, — do)/2.
When (, P, X) is defined oveF, the Proposition 7.1.1 can be made more precise as follows.

Proposition 7.1.2. If K = Fq and if(L, P, X) is defined oveE, , then the isomorphism

(lpeL). (IC3, ) = ICo, ®| (D A®IC, ()]
xe(lrr Wy )*

is defined oveF,. In particular for ve Wiy (L, C), we have

=Xz + Y, TrVIA)A e, (7.1.4)

/ *(IC’ ),9 o " LCay
(e/peta) ez xe(lrr Wiy )*

whered : F*(r.(ZC}, | )) = m.(ZC3, ) is the canonical isomorphism induced by the unique isomor-

)
phisme : F* (Q&L_P;) ~ IC7, . which induces the identity oy % (g@w ) when xe Q7 , , (Fq).

;)

Proof. It follows from the last assertion of Proposition 5.3.1 almel tliscussion at the end $6.4.
O

We can proceed as in Gottsche and Soergel [16] to prove tloevfog proposition from the mixed
Hodge module version of the isomorphism (7.1.2).

Proposition 7.1.3. Assum& = C. Then

IH(QLps, Q) = 1H{(Qo, Q) @L P A e(H (@0, Q) Q) (7.1.5)

e(lrr Wiy )*

is an isomorphism of mixed Hodge structures.

7.2 Alemma

Assume thalk = Fq. Recall thatF : gl, — gl, denotes the standard Frobenius endomorphism so that
(QIn)F = gIn(]Fq)-

Assume that@;, . .., O) is F-stable. We do not assume that the eigenvalues of the adjdiits O;’s
are inFy.

Lemma 7.2.1. We have

IPGLn(Fg)! - Z Xrcy, (X) = Z Xrcy, (X) = <@ ®7’~gl”(xfc;)1) ® -® 7’ﬁmn(x.rcg)k), 1>

XeQo (Fq) xeVo (Fq) aln (Fq)

where® : gl,(Fg) — &, X > o798 Cotn(9,
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Proof. We continue to denote Wy the induced Frobenius endomorphisnt@g. We will use the notation
(VCF, instead ofVo(Fg). Letq : Vo — Qo be the quotient map. Since PQE,) acts freely onVo it
induces an injective ma‘p’S/PGLn(]Fq) - QCF). Since PGIH(Fq) is connected, anf-stable orbit ofVg
has a rational point. Hence the above map is also surjecfigaq is a principal PGL-bundle we have
q'(ICq,) = IC5, and szIC;VO x) = XIC-QO (y) wheneveg(x) = y. We thus deduce the first equality.

If i © Vo = O denotes the inclusion, then by Proposition 5.4.3 we h&@§,_ = i*(ICp) =

i* (KEZQ mICs ®- mICs ) wherex is the constant sheaf on Gland«®*% = k ® --- ® « (29 times).

1 (3
Hence forx = (@, by, . . ., ag, by, X1, . . ., X) € VE, we have

Xrey, () = Xreg (1) -+ Xreg (%)-
Forze glf, put
22 := ﬁ{(al, by, ... ag,bg) € (91| D [a, bi] = z}.
i
Hence
Z Xrey, (9 = Z E(=(X1 + -+ X)) XI(%l(Xl) e XIC'ak(Xk)
xeVg (X1.eeenXk)E (51><»-»><5k)F
= (E= X.rc'51 oo XIc'ak)(O)-

By Formula (6.5.3) we have
lalhl- £(0) = > F()(¥)

xeglh

for any f € Fun@l?). We deduce that
D Xae, (0 =l > FOEN T (K res )X+ F Xz )9,

xeV§ xeglh

= (FH(E@ 07" (Xre;)® 8 FH(Xcy ).1)

alh

It remains to see tha*" (=) = O.
Forx € glf, we have

F(Z)(X) = Z W (u(x, y)) E(y)
y

bk

(81,b1,....39,bg)€ (a1 )20

9
= > [ ]vweian)

(aw,by,....ag,bg)e (alf) 2 i=1

9
= > [ ]vwcia.n)

(81.b1.....ag,bg)e (g15)% =1

9
D W [a b]))]

a,beglf

g
- [Z D ‘P(ﬂ([x,a],b))]

acglf; beglh

= (ICq, (9! - o151)° = ©(X).
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O

Proposition 7.2.2. Assume thaX is a reduced to a point and thét, P, X) is defined oveF,. The varieties
VL px andQ pyx are polynomial count. Moreover,

Vi ps(Fg)l

QL px(Fq)l = m~

Proof. The second assertion follows from the fact that R@&.connected and acts freely & px, see
beginning of the proof of Lemma 7.2.1.

We only prove the first assertion fQi px as the proof foiV| px will be similar.

SinceX is a point we havé) px = Qf ,; and so the variet@, px is nonsingular by Corollary 5.3.8.
HenceICéL_P; is the constant sheafconcentrated in degree 0. By Formula (7.1.4) applied withl, we
thus have

Xplrout) = Xrcy, + »,  (dimA,) q "Xy, - (7.2.1)

xe(lrr Wiy )*

By Grothendieck trace formula we have

Z Xo/per)-0(¥) = 1QL,p.x(Fq)l-

,;
XeQq

By Lemma 7.2.1, Theorem 6.9.1 and Theorem 6.10.1, we sethtivatexists a rational functidd € Q(T)
such that for any € Z.q
D Xray, (9 = Q).

r
XeQf

By integrating Formula (7.2.1) ove]g, we deduce that
QL px(Fq)l = P(q")

for someP € Q(T). SinceP(q") is an integer for alf € Z.o, the rational functior® must be a polynomial
with rational codficients. O

7.3 The split case

In order to use Theorem 4.1.5 we assume fiat C. As in [18, Appendix 7.1], we may define a
finitely generated ring extensidof Z and ak-tuple of R-schemes®y, ..., Ok) such thatd; is a spread-
ing out of O; and such that for any ring homomorphigm: R — Fq into a finite fieldFy, the tuple
(Df(ﬁq), e DQ"(Fq)) is a generic tuple of adjoint orbits gf,(Fy) of same type asdy, ...,0k). Denote
by 8o the R-scheme defined fromt, . .., Ok) asVo was defined fromq@;, . . ., Ok) (in the semisimple
case this is written in details in [18, Appendix A]), and {&} be the #fine quotient3o //PGL,. ThenBo

is a spreading out o¥o. Recall (see for instance Crawley-Boevey and van den B&ghAgpendix B])
that the standard constructions of GIT quotients are coitipatith base change fd& suficiently “large”,
namely in our case we ha, = 87 //PGL, for any ring homomorphism : R — kinto a fieldk.

Theorem 7.3.1. The cohomology group 14Qo, C) vanishes if i is odd. For any ring homomorphism
¢ : R— Fqwe have

Pe@.0) = ) Xrer, (¥

28 Fq)
XeQE(Fq) ©

where R(X, q) := %; dim(IHZ(X,C))d.
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Theorem 7.3.2.If not empty, the variet@do is pure.

Proof. Let 6 be generic with respect tan. SinceQo # 0, by Theorem 5.2.6, we ha@) # 0 and so
ﬂJJt;O(vo) ~ @Q is also not empty. The canonica_l projective Mg, ¢(vo) — Qo is _then a resolution of
singularities by Theorem 4.1.4 and so the grébp(Qo, C) is a direct summand dfi{ (Mg, 6(vo), C) as a
mixed Hodge structure. By Theorem 4.1.5, the var¥#éiy, ¢(vo) is pure, hence so iQo. O

Proof of Theorem 7.3.1By §7.1 and Proposition 7.2.2, the varig®y satisfies the condition of Theorem
3.3.2. Hence the theorem follows from Proposition 3.3.3Emelorem 7.3.2. O

Letm: T, - T, be the map that sends=w!---w" € Thto (L w?)--- (L, ") € Ty, and denote by
themapm,...,m): (Tn)* = (T

Recall (se€$6.8) that a generic tuple of irreducible characters of,(Bl) of a given typew € (Tp)*
always exists assuming that ctij)andq are large enough.

We have the following relation between multiplicities armiri®aré polynomials of quiver varieties.

Theorem 7.3.3. Let & be the type ofO4, ..., Ok) and letF, be a finite field such that there exists a ring
homomorphism R» Fq. Then for any generic tuplgXy, . . ., Xi) of irreducible characters oGL,(Fg) of
type nf(®) we have

Pe(Qo.q) = P2 (A®X1® -+ ® Xk, 1).

Remark7.3.4 In the above theorem the existence of a ring homomorpRismF, guaranty the existence
of a generic tuple of irreducible characters of (GH).

Proof of Theorem 7.3.3Fix a ring homomorphism : R — Fq. To alleviate the notation we usg instead
of D?"(Fq). From Theorem 7.3.1 and Lemma 7.2.1, we have

Pe(Qo.) = m (0o 7™ (Xrce o &7 (Xrer ).1).

Hence Theorem 7.3.3 follows from Theorem 6.9.1 O
From the above theorem and Theorem 6.10.1 we deduce theiiodjoesult.

Corollary 7.3.5. Assume thafOy, . .., 0\) is of type@ € (T,)¥. Then
P (Qo. 0) = 0%/ *Hiyz)(0)-

7.4 The general case
HereK = C. Fixw € Wy (L, C) and put

P (Quexia) = ), Tr(w [IHZ QL. ©))d.

We now explain how to associate a multitype= (ws, . . ., wk) € (To) from the triple (, C, w).
Letw; be the coordinate off in Wy, (Li, C;). In §4.3.2 we showed how to associate kg, C;) a type
& € Tn. Write

dia diz diy;
with a)ij # w?if j # s. The groupNg,(Li, C;) is then isomorphic t&V;, = H’ji:l Sq,; and so the conjugacy
classes oM\ (Li,C;) are in bijection with$ (&) c T, see§4.3.1. Hence taw, € Wiy (Li,Ci) c
WaL, (Li, Ci) corresponds a unique elementin'(a;) which we denote byy;.
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7.4.1 The main theorem

Let Rbe the finitely generated ring extensioriZo€onsidered ir§7.3. The main theorem of the paper is the
following one.

Theorem 7.4.1.LetF, be afinite field such that there exists a ring homomorphim Ry. Let(Xy,. .., Xk)
be a generic tuple of irreducible characters®L(Fq) of typew. Then

PY(QLpr;0) = qP2(ARX1 ®- - ® Xk, 1).

Remark7.4.2 Assume thatv = 1, i.e., the degree of the typeg are all equal to 1. By Theorem 7.3.3, we
have

Pc(Qs; Q) = qu/Z AR®X1® - XK 1).

whereS = (gl,)% x Sy X - -- Sy with (S1, . .., Sk) a generic tuple of adjoint orbits gf, of typed. Hence
by Theorem 7.4.1 we have
Pc (QLpx;9) = Pc(Qs; 0).

From Theorem 6.10.1 we deduce the following identity.

Corollary 7.4.3.
PY (Qupxi0) = 9/ ?H, (0.

7.4.2 Proof of Theorem 7.4.1
By (7.1.5) we have

PY@Qurzid) = Pe@id) + >, TrwlA)g WP(Qo,;0). (7.4.1)
xe(lrr Wiy )*
To alleviate the notation, for eaate (T,)“ we choose a generic tupl&{, . . ., X)) of irreducible characters
of typer and we puR; = X1 ® - - - ® Xi. Forf e (T)¥ we denoteR; instead ORw@).-
Now for each irreducible charactgrof Wy we denote by, the type ofO, and we denote simply by
7 the type ofO. By Theorem 7.3.3 we have

Pe(Qo,;0) = /> (A®R; . 1).

Hence we are thus reduced to prove the following identity

(A®R,)=(A®R)+ > TrwlA)(A&R:,1).

xe(Irr Wiy )*

By Theorem 6.10.1 we need to see that

Ho(@) = He(@+ > Tr(wlA)Hz, (0) (7.4.2)
xe(lrr Wy )

wherelHz(0) := Hpy)(a)-

From the definition ofl,,(q) (cf. Formula (6.10.1)) we are reduced to the following peaibon Schur
functions{s, (X)}wer,:

LetL,C, M, O, A, be as in§6.4. Fory € Irr Wy, denote byr, € T, the type ofO, (with the convention
that7; = 7). Let& € T, be the type associated th,C). Fix w € Wiy(L,C) and letw € $ (&) € T, be
the type corresponding td (C, w). To prove Formula (7.4.2) it is enough to prove the follogvidentity
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(8,09 = s+ ) Tr(wlA) () (74.3)
xe(lrr Wy )*
where forv'= y1y2. " € Tp, s5(X) i= 5,2(X)S,2(X) - - - S, () and where (w) = n + 3 o]
We now explain how to get Formula (7.4.3) from Propositiah 5.
We may assume that= [Tj_, (GLnj\1 RERERN GLnj\Sj)so thatM = [Ti_; GLm and Gly, X --XGLn,, C
GLm,. Then the nilpotent orbi€ may be written as

r
C=[](Cax---xCys)
j=1

with Cj; a nilpotent orbit ofgly . Letw! be the partition oh;; given by the size of the Jordan blocks of
Cji, and foreach = 1,2,....r, let&j € 'T'mj be the type given by the collectign™}i_1 .
Then .
Wi (L, C) = | | W, (7.4.4)
j=1
Consider the maf; : T, x---xTm, — Tnwhere (i, ..., /i;) is defined by re-ordering the partitions
in the concatenation of the typgs, ”. ., [i;.

Example7.4.4 Consider the lexicographic ordering on partitions. Thenithage of(3, 2, 1)(2, 1), (3, 1))
by &2 : ToxTa— T13is (32,1)(31)(21).

Similarly we defineg; : T, X -+ X Ty = Th.

We denote bys : T — 9 the map which assigns to a tygé- - - 1" € T the partitiony]_,; A",

Consider the following commutative diagram

s = _—_
Ty X XTy ——= Ty XX Ty —— Py X X Py .

Tk

Tn Tn

9

Note thatw = fgr(&l,...,&)r). Let w; be the coordinate ofv € Wy (L,C) in W;,. The elementy;
defines a unique elemednt € 35*1(17,-) C Ty Thenw = F (w1, ..., wr) and so

Sw(X) = S, (X) -+ - Sy (X)- (7.4.5)
Foreach =1,2,...,r, putt' = S(&) € #m- Note that the collection of the partitions, ..., " gives

the typerof O.
Now foreachi = 1,2,...,r, we have

5400 =" ¢ si%)

ALt

and so

JOENEDY [H cf,'i]sll(x)---sm(x)
[T Ly =€ N

where @1, ..., 2)<(r%,...7") meansthat' <7 foralli = 1,...,r. Note that the set of sequencas,( .. 1)

suchthat{?, ..., ") (7%, ... 7") is in bijection with the set7, | x € Irr Wy (L, C)}. The bijection associates

to a sequenceit, ... ") the unique type given by the collection of partitions...,A". Moreover if

(A%,...,2") corresponds tg, we have[]; cfji = Tr(w| A,) by Proposition 6.2.5, hence
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(0= Y, TrwlA)s: ()

XElrr Wiy

=5+ ), TrWIA)S, ()

xe(lrr Wy)*

from which we deduce our Formula (7.4.3).

7.4.3 Application to multiplicities in tensor products

Assume thatXs,...,Xx) is a generic tuple of irreducible characters of type Theorem 7.4.1 has the
following consequences.

Theorem 7.4.5.We have:

(&) The multiplicity A® X1 ®- - -® Xk, 1) is a polynomial in g of degreexd 2 with integer cogicients (with
the convention thatgl= — if Qo = 0). If moreover the degrees of the charact&is. . ., Xi are all split,

then the coficients of that polynomial are positive.

(b) The cogficient of d°/2in (A® X1 ® - - - ® Xk, 1) equalsl.

(c) We havéA® X1 ®---® Xk, 1) # Oif and only ifvg € ®(Tp). If g = 0, thenvg is a real root if and only
if(X1®---®X,,1) =1

(d)Ifg>1,wealwayshavéA ® X1 ® - - - ® X, 1) # 0.

Proof. Let us first see that iQo # 0 then dimIHgdo(Qo,(C) = 1. Consider a resolutioQﬁﬁ,’m -
Qo. Itis clear from Formula (7.4.1) applied o, P, {o} instead ofL, P, X that dimHZ®(Q; . C) =
dimIH2%*(Qo, C). ButQy p,,, is irreducible by Theorem 5.3.7 and so ditf°(Q; . C) = 1.

It is thus clear from Formula (7.4.1) thBY (QL px; Q) is a polynomial inq of degreedo with integer
codficients and that the céiicient ofg® is equal to 1. It is also clear thatvf = 1, then the coficients
are positive. Hencg %/2PY (QLpx; q) = (A ® X1 ® - - - ® X, 1) satisfies the assertions (a) and (b) of the
theorem.

From what we just said it is clear theh ® X1 ® --- ® Xk, 1) # 0 if and only if Qo # 0. Hence the
assertion (c) follows from Theorem 5.2.6 and Propositi@.

Finally the assertion (d) follows from the assertion (c) &ndposition 5.2.9.

{o}>

O

Remark7.4.6 Note thatA does not contain all the irreducible characters of,(Fl). For instance it does
not contain the charactero det : GLy(Fq) — «* if @ is a non-trivial charactefy — «*.
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