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Abstract

Given a tuple &4, ..., Xi) of irreducible characters of GIF,) we define a star-shaped quivier
together with a dimension vector Assume thatXs, ..., Xy) is generic Our first result is a formula
which expresses the multiplicity of the trivial charactetthe tensor product; ® - - - ® X, as the trace
of the action of some Weyl group on the intersection cohomlaf some (non-@ine) quiver varieties
associated tol{,v). The existence of such a quiver variety is subject to someition. Assuming that
this condition is satisfied, we prove our second result: Thetiplicity (X; ® --- ® Xk, 1) is non-zero
if and only if v is a root of the Kac-Moody algebra associated WithWe conjecture that this remains
true independently from the existence of the quiver varigtyis is somehow similar to the connection
between Horn'’s problem and the representation theory Q(@L[E, Section 8].
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1 Introduction

1.1 Decomposing tensor products of irreducible characters
One problem is to study the decomposition

X1®Xp = Z<X1 ® X2, X)X
X

of the tensor produck; ® X of two irreducible complex characters of (Ey) as a sum of irreducible
characters. This reduces to the study of the multiplicités® X, ® X3, 1) of the trivial character 1 in the
tensor products of three irreducible characters.

Although the character table of G(Fg) is known since 1955 by the work of Gredﬂ[lZ], the compu-
tation of these multiplicities remains an open problem Wwhdoes not seem to have been studied much in
the literature.

WhenX,, X2, X3 are unipotent characters, the multiplicitieé; ® X, ® X3, 1) were computed inm6]
using CHEVIE forn < 8 and appeared to be polynomialsjmith positive codficients.

Let y : GLn(Fg) — C be the character of the conjugation action of,(&#g) on the group algebra
Clal,(Fg)]. Fix a non-negative integeg and putA := y®9 (A = 1 wheng = 0). In this paper we study
the multiplicities(A ® X1 ® - - - ® Xk, 1) where {3, ..., Xk) is agenerictuple of irreducible characters of
GLn(Fy), see§E.

We now explain how to construct a comet-shaped quivesgether with a dimension vecterof I'
from a tuple of irreducible characters.

We first show how to define a typequiver together with a dimension vector from a single irredle
characteiX.

Consider the lexicographic orderirgon the setP of partitions and define a total ordering denoted
again by> on the seZ.ox (P — {0}) as follows. Ifu # Athen @, ) > (d',2) if u > 4, and @, 2) > (d', 2) i
d > d’. Denote byT,, the set of non-increasing sequences (d, w?) - - - (dr, w") such thaty); diw'] = n.

In §E’, we associate to the irreducible charagiem element = (di, w') - - - (dr, w") € T,, called the
type ofX. Thed’s are called the degrees &t If the degreesl’s are all equal to 1 we say thatis split.

Consider the non-increasing sequence of partitions

(’Z)': wl...wlwz...wz...wr...wr‘
——— e —— —_—

dy d dr
From this sequence we draw the Young diagrams of theseipastiby, . .., w, from the left to the right
with diagram ofw' repeated; times. Letl be the total number of columns and tetbe the length of the
i-th column. We obtain a striclty decreasing sequamce (Vo = n > vi > Vp > --- > Vi_1) by putting
Vi := N—ny, Vi ;= Vi_1 — n;. We obtain then a typA-quiver with dimension vectar. For instance ifX = 1,
thenw = (1,(1,1,...,1)) and s6A; = A; andu = n. If X is the Steinberg character then= (1, (n)) and
SOA = Ayandu = (n,n—-1,n-2,...,1). If Xis of type (11)(1,1)---(1, 1), then we still havéy = A,
andu=(nn-1n-2,...,1).

Fix now a tuple X3, ..., Xx) of irreducible characters. As just explained we obtatype A quivers
equipped with dimension vectous, . . ., Uux. Gluing together the first vertices of thdsquivers and adding
g loops we get a comet-shaped quitéefsee picture in§@) together with a dimension vectarwith
coordinaten at the central vertex and whose other coordinates are giyehebother coordinates of the
u;’s.

Let ®(I") be the root system associated witlisee ]).

Assume now that the tupl&y, . . . Xi) is generic.

In § we give a formula for the multiplicityA ® X1 ® - - - ® Xk, 1) in terms of Hall-Littlewood
symmetric functions. This formula shows in particular ttras multiplicity depends only on the types of
/\’1, ey Xk.



Conjecture 1.1.1. We have:

(&) The multiplicity(A ® X1 ® --- ® Xk, 1) is a polynomial in q with integer cggcients. If moreover
X1, ..., X are split, then the cggcients are positive.

(b) The cogicient of the highest power of g {A ® X1 ® - - - ® Xk, 1) equalsl.

) A®X1®---® Xk, 1) # 0if and only if ve ®(I'). If g = 0 thenv is a real root in®(T') if and only if
(X190 X, 1) =1.

We will prove (see Corollar.8) thatdgf> 1, thenv is always an imaginary root and so the second
part of the assertion of (c) is relevant only wheg 0.

If X1,...,Xk are splitsemisimpléarreducible characters, that is the type of eaGhis of the form
(L, (1™)) - (1,(1™)), then by [I}#] the multiplicity(A ® X1 ® - - - ® Xk, 1) coincides withAr,(q) which
counts the number of absolutely indecomposable repragamggup to isomorphism) df of dimensionv
overF.

It is well-known ] thatAry(q) is a polynomial ing with integer cofficients and that it is non-zero
if and only if v is a root (withAr,(q) = 1 if and only ifv is a real root). It is also conjectured by Kac that
Ar.v(q) has positive cocients. This later conjecture is proved [h [6] whers indivisible(i.e., the gcd of
the coordinates of equals 1).

Hence, in the split semisimple case the assertion (c) of dingecture is true and the assertion (a) is
equivalent to Kac’s conjecture for comet shaped quiverssarfablds for indivisibley.

Examplel.1.2 We review in details the statements (a), (b) and (c) of thésmure in the case of characters
of unipotent type (i.e., characters of type £l with 1 € £) wheng = 0 andn =k = 3.

For a partition1, we denote byR, the associated unipotent character ofs;GRecall that according
to our parameterization (see beginning of this sectior®,ttivial character corresponds to the partition
(1,1,1) and the Steinberg character to the partition (3).

For alinear character : Fy — C* we putR] := (@ o de) - R;. This is again an irreducible character of
type (1 4).

We say thatRy, Rf R}) is genericif the subgrougegy) of Hom(F;, C*) is of size 3.

Assume now thatR¢, I{f R)) is generic. As mentioned earlier, the muItipIic(tRj ® % o R, 1> de-
pends only om, i, v and not ony, 3, y.

Put

R/l,p,v = Rj ® % ® R?,/
We can easily verify that the only non zero multiplicitiestfwunipotent type characters) are
(Ra@.@-1) =0, (1.1.1)

(Ray@.@n. 1) =1 (1.1.2)

In the first case the underlying graphbfis Eg andv is the indivisible positive imaginary root. In the
second case the underlying graphak the Dynkin diagranig andv is the positive real roat; + a2 +
2a3 + 3aa + 2a5 + g in the notation ofml, PLANCHE V]. Finally we can verify thdiere is no other pair
(T, v) arising from @, u, v) with v € ®(I).

1.2 Quiver varieties

We now introduce the quiver varieties which provide a geoiratinterpretation ofA ® X1 ® - - - ® Xk, 1)
for a large class of generic tupleXy, . . ., Xx) which we calladmissible

Let P be a parabolic subgroup of G(C), L a Levi factor ofP and letz = o+ C whereC is a nilpotent
orbit of the Lie algebraof L and wherer is an element of the centarof 1. Put

Xips = {(X.gP) € gly X (GLn/P)|g7*Xg € = + up}



whereup is the Lie algebra of the unipotent radicalfafWe then denote by} ;. the open subset of pairs
(X, gP) which verifyg™tXge X + up.

It is known (cf. §Q for more details) that the image of the projectidnes — gl on the first
coordinate is the Zariski closure of an adjoint orbit.

We assume without loss of generality thais of the form[]; GL, and thatP is the unique parabolic
subgroup of Gk containing the upper triangular matrices and hauirgs a Levi factor (such a choice is
only for convenience).

Pix - xP,X=X1x---xXandC ;= C; X - - - X Cy.

Let (O1,...,Ok) be the tuple of adjoint orbits aff,(C) such that the image &, p, 5, — gl iS O..

We say that the pairl( X) is genericif the tuple O1,...,0k) is generic The existence of generic
tuples of adjoint orbits with prescribed multiplicities @fenvalues is subject to some restriction @
for more details).

We assume now thak (X) is generic.

Fix a non-negative integgy, putOL px = (3l))* X X px, O 5y = (817)%9 x X 1, and define

Vipr = {(Al, Bl,...,Ag, Bg, (Xl,...,Xk, 91P1,.-.,ngk)) €©L,P,Z| E [Aj,Bj] + E Xi = 0}
j i
PutO := (g1)2 x O1 X - - - X O, O° := (g1,)% X O1 X - - - X O and define

Vo = {(Al,Bl,...,Ag,Bg,Xl,...,Xk)€O’ Z[Aj,Bj]+ZXi 20},
i i

Letp : VL px — Vo be the projection on the firsg2+ k coordinates.

The group Gl, acts onV|_ py (resp. onVp) diagonally by conjugating the firsg2 k coordinates and
by left multiplication of the lask-coordinates (resp. diagonally by conjugating tlge+2k coordinates).
Since the tuple@;, . . ., Ok) is generic, this action induces a set-theoritically freoam of PGL, on both
VL px andVo. The PGly-orbits of these two spaces are then all closed. Considefiine GIT quotient

Qo = Vo//PGLy = SpedC[Vo]™®!).
The varietyQo can be identified with the orbit spadé, /PGL,. We will see that we can identify
QLpx :=VLpx/PGL,

with some GIT quotienk//,G. In Nakajima’s notation, the varietie§//G andX//,G are quiver varieties
Me(v) andMg g(v) associated to some comet-shaped quivigether with some dimension vectoof T
(cf. §B). The pair[, v) is obtained froml(, C, g) as follows: Associate to each;(C;) a non-increasing
sequence of partitions; as in§@ and definel{, v) from (@1, . . ., @k) as explained for instance ﬂE

The varietyQo is isomorphic to the image(Wiz ¢(v)) of 7 : Mg o(v) — Nig(v). By [E] it can also be
identified with an #ine quiver varietyiz(u) so that the imag&J of

g =%VYonN o°
in Qo corresponds to the subsmg(u) C Mg (u) of simple representations. The ima@gp,Z of
Ve =VipsNOlpy

in QL px corresponds to the sub%@o(v) C Mg (V) of B-stable representations.
The quiver varietiego andQ, p x will be the main focus of this paper.



Theorem 1.2.1.Assume tha/o # 0. Then:

(1) The varietieQﬁ’F,yE andQg are both nonempty irreducible nonsingular dense open salig&) px
andQo respectively.

(2) The map/paL, : QLpx — Qo is apartial resolutionnamely, it is proper and birational.

(3) The restriction (pull back) of the intersection cohootyt compleX' Cg, ,, to Vi pxisICY, ..

Note that ifV_ px # 0 if and only if Vo # 0.

Recall thatd(I") denotes the set of roots attached to the quivand denote byV(I') the Weyl group,
see [1f]. Using Crawley-Boevey’s results (§B.2.] andsp.3 for more details) we have a criterion for the
non-emptyness dbiz(u) in terms of roots of". This criterion reads as follows: the varigly = Mig(u)
(and soQ. px) is not empty if and only il € ®(I') which condition is equivalent te € (') asu is in the
W(I')-orbit of v. Moreovery is a real root if and only i (and soQy px) is reduced to a point.

For a pair (, X) as above, we put

W(L,Z) := {ne Ng (L) [n=n~t = Z}/L.

Then it is known that the grou@/(L, X) acts on the complep*(ﬁgw) wherep : X, ps — g, is the
projection on the first coordinate, a@;gmZ is the simple perverse sheaf with ¢dgient in the constant
local systent.

From this, we find an action of

W(L,X) := W(L1,%1) X -+ - x W(Li, Z)

on the compleXp/pcL,), (@@ Pz) and so on the hypercohomoloﬁ[y (QLP,Z,IC@LRX) which we take as
a definition for the compactly supported intersection coblmgy IH: (Q_ px, C).
From the theory of quiver varieties, we hale. (Q_px,C) = O for oddi. Let us then consider the

polynomials

P (Quex.)i= ) Tr (W |IHZ (Quex.©))d,

withw e W(L, X).
As mentioned above, to each pdit C) with L = [;_, GL, c GL, andC a nilpotent orbit ofﬂair:1 aly,
corresponds a unique sequence of partitions

(’Z):wl...wlwz...wz...wl...wl
———t— - N——

a1 Y a
with w! > w? > -+ > o' andw! # WSif | #s.
The groupW(L, C) is then isomorphic tq‘['j:l Sa, WhereSy denotes the symmetric groupdiietters.

The decomposition of the coordinates of an elemverst W(L,C) =~ H'Fl Sa, as a product of disjoint
cycles provides a partitiordi, djz, ..., d0) of a; for eachj, and so defines a unique type

w = (d}, o) (], W) (A, w?) - (A2, 0?) - (dE ') - (d] ') € Th

We thus have a surjective map from the set of triple€c( w) with w € W(L, C) to the sefT .

Note thatw(L,X) c W(L, C).

Letw € W(L,X). The datumI(,C, w) defines thus a multi-type = (ws, ..., wy) € (Tn)*. We call
admissiblehe multi-types arising in this way from generic paits E).

Let (Xy,...,Xk) be a generic tuple of irreducible characters of @) of type w (generic tuples of
irreducible characters of a given type always exist assgrtiiat the characteristic @, andq are large
enough).



Theorem 1.2.2.We have:
PY (Qupy. Q) = @29MArr (A @ X1 ® -+ ® X, 1).

If w =1 and if the adjoint orbit®;, ..., Ok are semisimple in which casg py ~ Qo, the theorem is
proved in [13].

One of the consequence of Theor.2.2 is an explicit farfad PY (QL px,q) in terms of Hall-
Littlewood symmetric functions (cﬁﬂ).

Note that if for eacH = 1,...,k, we haveCg, (0i) = L;, then the projectiorX,, p s, — O; is an
isomorphism and so is the magpcL, : QLpx — Qo. Hence our main results will give in particular
explicit formulas for the Poincaré polynomidd (Qo, ) where we writeP. instead ofPY whenw = 1.

Let Ay c) be the set ofr = (o1,...,0%) €z, X - - X 7, such that the paill(, o + C) is generic.

It follows from Theorenf 1.2]2 tha (Q_ px, q) depends only onl(, C) and not onr € Ay c).

We say that a generic tuplXy, ..., Xk) of irreducible characters iadmissibleif it is of admissible
type.

From Theorenh 1.2]2 and the discussion after Thedrem| 1.2 prowe that Conjectufe 1.1.1 is true for
admissible tuplesXs, ..., Xk), namely:

Theorem 1.2.3.Let(X4, ..., Xx) be an admissible generic tuple of irreducible character&bf(F).

(a) The multiplicit A ® X1 ® - - - ® Xk, 1) is a polynomial in g with integer cgfcients. If moreovew = 1,
then it has positive cggcients.

(b) The cogicient of the highest power of g {A ® X1 ® - - - ® Xk, 1) equalsl.

(c) We haveA® X1 ® --- ® Xk, 1) # Oif and only ifv € ®(T). If g = O thenv is a real root if and only if
(X190 X, 1) =1.

Now let us see some examples of generic tup?s (. . , Xk) of irreducible characters which are not
admissible. This is equivalent of giving examples of triple, C, w) for which there is n@r € Ay ) such
thatw € W(L, o + C).

The condition for the existence of suchrais subject to some restrictions which can be worked out
explicitely usingsp.J. Let us see the explicit situations (i), (ii) and (iii)low.

(i) Assume that is a maximal torus (in which cag&is the trivial nilpotent orbit) and that the coordi-
nates ofw are alln-cycles. Therw belongs to a subgrolyy/(L, o + C) of W(L, C) = W(L) if and only if
the coordinates aof = (o1, ..., o) are all scalar matrices. But suclraloes not belong tA ¢).

(i) When the dimension vector of the comet-shaped quiveris divisible (i.e., the gcd of its coordi-
nates is greater than 1), thefy c) = 0.

(iii)) If L = (GLp)X, then we also havél c) = 0.

WhenC = {0}, thenAy ¢y # 0 if and only if v is indivisible. This implies that a generic tuple of split
semisimple irreducible characters is admissible if ang d@n¥ is indivisible.

1.3 Character varieties: A conjecture

Now we propose a conjectural geometrical interpretatiothof X1 ® - - - ® Xk, 1) for any generic tuple
(X1,..., XK.

Let P be a parabolic subgroup of G(C), L a Levi factor ofP and letE = C whereC is a unipotent
conjugacy class df and wherer is an element of the cent&r of L. Put

Y1 ps = {(x gP) € GLa x (GLn/P) |g™*xg € Z.Up )

whereUp is the unipotent radical d®. The varietyY| px is the multiplicative analogue &f, ps.
We choose a tupled, ..., Ok) of conjugacy classes of G(C) and for each = 1,...,k we let O;
be the conjugacy class of the semisimple part of an elemeft.iWe say that the tupleds, ..., O) is



genericif ]‘1!‘:l det(©)) = 1 and ifV is a subspace @f" which is stable by somg € O (for eachi) such
that

k
[ [detean) =1
i=1

then eithel = 0 orV = C". Unlike the additive case, generic tuples of conjugacysdaslways exist (the
multiplicities of the eigenvalues being prescribed). Fatéance, while we can not form generic tuples of
adjoint orbits of nilpotent type, we can always form genéujles of conjugacy classes of unipotent type
as follows. Let/ be a primitiven-th root of unity, andD; = {Cy, D, = Cy,..., Ok = Cx whereCy, ..., Ck
are unipotent conjugacy classes, then,( .., O) is generic.

Foreach =1,...,Kk, let (Li, P, %) be such that the image of the projectidn p, 5, — al, iS O;. Asin
§@, we defind_, P, £, C and we say thatl(, X) is genericif the tuple ©;, ..., Ok) is generic which we
now assume. We define the multiplicative analogu¥of » as

ULpx =

{(al, bi,...,ag,bg, (X1 .., X, 91P1, . .-,ngk)) € (GLn)P x Y px| (a1,b1) - - - (g, bg)Xq - - X¢ = 1}

where @, b) denotes the commutataba *b~. As in the quiver case, the genericity condition ensure that
the group PG}, acts freely orilU, px. Then consider the quotieM, py = U, px/PGL,. The projection
ULpsy — (GLn)Zg+k on the 3 + k first coordinates induces a morphism fréfi) px onto the &ine GIT
guotient

Mo = {(al,bl,...,ag,bg,xl,...,xk)e(GLn)29><51><~-><5k H_[(ai,bi)l_[x,- =1 }/PGLn.

Remarkl.3.1 If Syis a compact Riemann surface of gelgusith punctures = {p1,..., p} € Sg, then
Mg can be identified (hence the name of character varietieh)tht dfine GIT quotient

{p < Hom (x:(S5\p). GLs) |00 € T | PG,
wherey; is the class of a simple loop aroupdwith orientation compatible with that &,.

Unlike quiver varieties, the mixed Hodge structurel 6t (My_px, C) is not pure (see for instance [13]
in the case where the conjugacy clas®eare semisimple).
We letW, be the weight filtration onHX (M px, C) and put

H (M px) := WIHE (M px, C) /Wi_1IHE (M, pg,C).

The action ofW(L, X) preserves the weight filtration and so, fore W(L, X), we may consider the mixed
Poincaré polynomial

He (ML px;q.t) = ZTr (W |H (ML,P,Z))qitk
K
and itspure part
PHY (M px,1) := > Tr (w [H (ML py))t.
Recall tha& = ¢C with C a unipotent conjulgacy class bfando € 7, .

Letw € W(L,X). As above Theorerh 1.2.2, we can define a types T, from (L,C,w). Let
(X1,...,Xk) be a generic tuple of irreducible characters of,&y) of typew.



10

Conjecture 1.3.2. We have

PHY (ML px.q) = q29MH4es (A@ X1 ® -+ ® Xi 1). (1.3.1)

If w = 1 and if the conjugacy classé€y are semisimple, in which cadd, pyx ~ My, then this
conjecture is already irm.3].

Now puté = (£-1,1,...,1) € (ZGLn)k where( is a primitiven-th root of unity. Then for any triple
(L,C,w) with w € W(L, C) the pair (,£C) is always generic andr € W(L,¢C) = W(L,C). Hence
Conjectur2 implies that for any generic tupla,( .., Xx) of irreducible characters there exists a
triple (L, C,w) with w € W(L, C) such that if we puk := £C, then Formula@ 1) holds.

Using the results oi[[5] we can prove that Conjec.3;2|iim Conjectureﬂ.l.

PutC’ := C - 1 and assume that there exists € A ¢y such thatCg (o) = CgL,(c’). Then
Conjecturd 1.3]2 together with Theorfm 1.2.2 implies tiieviong conjecture.

Conjecture 1.3.3. We have
PHY (M px,0) = P{ (Qupx, Q).

In the case where the adjoint orbdds, . . ., Ox and the conjugacy classgs. .., Ok are semisimple and
w = 1, then this conjecture is due to T. Hauselg i 0, he actually conjectured that the identity between
the two polynomials is realized by the Hilbert monodromy nizp— Mog.

In [[L3] we gave a conjectural formula for the mixed Poingawé/nomial of My in terms of Macdonald
polynomials wherD;, .. ., Ok are semisimple. We will discuss the generalization of thigjecture for the
twisted mixed Poincaré polynomidll! (M px; g, t) in a forthcoming paper.

Acknowledgements. This work started during the special semester entitled éhlgic Lie Theory” at
the Newton Institute (Cambridge, 2009). | would like to thdahe organisers for the invitation and the
institute’s st# for their kindness. This work is supported by ANR-09-JCIO®-01.

2 Preliminaries

In this sectionK is an algebraically closed field of arbitrary charactecisti

2.1 Preliminaries on geometric invariant theory

Let X be an #ine algebraic variety ovek and letG be a reductive group over the same field acting
(morphically) onX (we say thatX is a G-variety). Given a charactgr : G — KX, i.e., a morphism of
algebraic groups, Mumfor@S] defined a quoti&ft,G as follows. The groufs acts on the line bundle
XxAbyg-(x2 = (9- % x(9)*2 and consider the subalgebifX x A']€ of the regular functions on

X x At which areG-invariant. A polynomialf = 1, fi - 2 € K[X][Z =~ K[X x A'] is G-invariant if and
only if for eachi, the functionf; is ay'-semi-invariantthat is

fi(g- %) = x(9)' fi(¥
for all x € X. Let K[X]®" c K[X] be the subspace gf"-semi-invariant functions. Then we have a
decomposition
K[X x A1® = (B K[X]®".
n>0
ThenX//,G is defined as the projective spectrum of the graded algépxa< A€ (the geometric points
of this scheme corresponds to the maximal homogeneousidééth do not contain the irrelevant ideal
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D0 KIX]®X"). The first projectiorX x A — X induces an embedding of algebigX]® c K[X x A']®
and therefore a projective morphism

7x : X//,G = X//G = Spec(K[X]®). (2.1.1)

Note that ify = 1, thenry is an isomorphism.

ForJ c K[X], putX; := {x € X| f(x) # Oforall f € J}. We say that a point € X is y-semistablef
x € Xs for somef e K[X]®" with n > 0. If moreover thez-action mapG x X; — X; is closed and if
the stabiliser ok in G is finite, we say thak is y-stable We denote byX® and X5sthe open subsets &
respectively of stable and semistable pointXoff y = 1 thenX3s= X.

Letq : X% — X//,G be the morphism that maps a point X°%to the maximal homogeneous ideal
(of K[X x AY]®) of functions that vanish at. If y = 1, then this is the ma — X//G induced by the
inclusionK[X]® c K[X].

We recall the following well-known properties of the GIT diemtq.

Proposition 2.1.1. (1) The quotient q is a categorical quotient (in the categufrglgebraic varieties).

(2) If X,y € X35, we have ) = q(y) if and only ifG - xN G -y # 0.

(3) If U is an g-saturated (i.e. gq(U) = U) G-stable open subset ofXthen qU) is an open subset of
X//,,G and the restriction U- q(U) is a categorical quotient.

(4) If F is a closed G-stable subset of X, thet? E F n X*$and F*®9) is closed in X/, G. If moreover
K = C, then the restriction map ¥ — g(F*9 is the quotient map ¥ — F//,G.

Since the Zariski closure of@-orbit contains always a closed orbit, the assertion (2sttbatX//,G
parameterizes the closed orbitsX6®. If we identify X//,G with the set of closed orbits ofss, the mapy
sends an orbi® of X*%to the unique closed orbit containeddn

2.2 Generalities on quiver varieties

We introduce the so-called quiver varietiis o(v) anddi, ¢(v, w) overK which were considered by many
authors including Kronheimer, Lusztig, Nakajima and CeyBoevey. The second one, due to Nakajima
and calledramedquiver varieties, can be realized as the first one by an oasendue to Crawley-Boevey
[@, introduction]. For our application we found more conie to introduce them separatly. Here we recall
the basic results we need.

From now we will only consider quotients by (finite) direcogucts of Gly’s. If G = GLp, X - - -xGLy,

use the notatioX//¢G instead ofX//,G.

2.2.1 Quiver varieties

LetI" be a quiver and leit denote the set of its vertices. We assume thaffinite. A dimension vectofor
I is a collection of non-negative integars= {Vvilic| € leo and a representation bfof dimensionv overk
is a collection ofK-linear maps; j : K — K", for each arrow — j of T, that we identify with matrices
(using the canonical basis &f). We define a morphism between two representations (pgssidifferent
dimension) in the obvious way. Subrepresentatioof ¢ is a representatiop’ together with an injective
morphismy’ — ¢. LetQ be a set indexing the edgeslofFory € Q, leth(y), t(y) € | denote respectively
the head and the tail of. The algebraic group GL:= [];, GLy,(K) acts on the space

M (F, V) = @ Mat\lh(y),vt(y) (K)

yeQ

of representations of dimensierin the obvious way, i.e., fog = (g))ia € GLy andB = (X,),eq, We have
g-B:= (g\,h(y)xyg\;(ly)). As the diagonal centet = {(1.1dy)ie | A € K*} € GLy acts trivially, the action of
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GL, induces an action of
G, =GL,/Z

Clearly two elements d¥1 (', v) are isomorphic if and only if they are,&onjugate.
We define a bilinear form o’ by a.b = 3, ab. Letd € Z' be such tha#.v = 0. This defines a
charactey : G, — K* given by )i — []; det @)*.

Theorem 2.2.1. [E] A pointV e M(T, v) is y-semistable if and only if
0.dimwW <0

for every subrepresentation W of V. Itjsstable if and only if it is semistable and the inequalitytiscs
unlessW=0orW=V.

We will use the terminology #-semistable” instead ofy-semistable”. We denote respectively by
MZXT, v) andM3(T, v) the 8-semistable and-stable representations.

Let T be thedouble quiverof T i.e. T has the same vertices Bsbut the edges are given l§y :=
{y,v*ly € Q) whereh(y*) = t(y) andt(y*) = h(y). Then via the trace pairing we may ident¥/(T, v) with
the cotangent bundle'™ (T, v). Putgl, = Lie (GL,) = &, dl,,(K) andg, := Lie (G,). Define themoment
map

wy s M(T,v) — M(v)° (2.2.1)

(%) = 1% %],

yeQ

where

M(v)° = {(fi)iel € gly

> (fi)=0}.

iel
Note that we can identify M(° with (g,)* via the trace pairing. The moment mapis G,-equivariant.
Leté = (&)i € K' be suchthag . v = 0. Then

(&.1d); € gl,

is in fact in M(v)°. By abuse of notation we denote Eythe element.Id,,)i € M(v)°. The dfine variety

uy (&) is G,-stable.
Define

Mg o(V) = 11,4 (€)//eGv.
We defines ,(v) as the image gf,(£)°in Mg 4(v). By Propositior] 2.1]1, it is an open subsetify(v).
Since stabilizers in @of quiver representations are connected, the action @iGhe spactvl;(l:, V) is
set-theoritically free and so the restrictiopt(£)S — *Jﬁ;o(v) of ¢ is the set theoritical quotiept;*(£)S —
17t (€)%/Gy. By [B1, Lemma 6.5], the ma@;1(£)° — u,1(£)%/G, is actually a principal G-bundle in the
étale topology.
Let C = (cij)i,j be the Cartan matrix of the quivEr namely

|2 -2(the number of edges joinindo itself) ifi = j
v —(the number of edges joinirigo j) otherwise

We say that a variet) is of pure dimension df its irreducible components are all of same dimension
d. We have the following well-known theorem.

Theorem 2.2.2.Letd € Z' be suchtha®.v = 0. If ‘Jﬁ;o(v) # 0, then it is of pure dimensio2— 'vCv. If
img(v) is not empty, themgﬁ(v) is also not empty antliz ¢(v) is irreducible.
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Proof. First a simple representation is necessatitable, henc@iz(v) # 0 impliesI; ,(v) # 0. By 12]
Theorem 1.2] the existence of simple representatiops'i) implies the irreducibility of; 1 (£) and so the
irreducibility of‘Jtho(v) andig »(v). Note that a poink € u;1(£) is nonsingular ifs, is smooth aty, that is

if the stabilizer ofa in G, is trivial. From this we deduce that the spage(£)s of 6-stable representations
is a nonsingular space of dimension d¥(l’, v) — dim G,, and so thaﬁgﬁ(v) is nonsingular of dimension

2-Cv = dimM(T,v) - 2dim G,.
o

If 8 =0, we puthiz(v) := Mgo(v). Itis the dfine GIT quotieniy;(€)//Gy = Spe€K[u1(£)]1%). The
setMig(v) parameterizes the set of conjugacy classes of the senfésiepresentations gf,*(¢). Under
this parameterization, the open sutﬁ@(v) of 0-stable points coincides with the set of conjugacys#as
of simple representations.

The natural projective morphism : Mige(v) — M(v) of §E takes a representation to its semi-
simplification.

We put an order ofZ' as follows: we say that < v if we havew; < v; for eachi € |. We denote by
&(v) the set ofw such that < w < v, &€ . w = 0 anduz}(€) # 0.

Forw e Z.,, we denote byH, the hyperplangr € Q' |@. w = 0} of Q'. PutHy := Hy N Hy, and

Dv:=H,— ] Hw.
we&(v)

We say that is indivisibleif the gcd of{vi}i¢; is 1. Note thaD, is not empty if and only i is indivisible
Whenv is indivisible, the spaced,,, are hyperplanes ¢, and so defines a systemfates[ﬂ, Chapter
181].

Definition 2.2.3. We say tha# is genericwith respect to/ if 8 € D,,.

If is generic them-semistability coincides with-stability, and so
‘JJI;(,(V) = iUtg:yg(V).

The variety)iz ¢(v) is thus nonsingular for generfc

We have [3p][39§2.5]:

Proposition 2.2.4. Assume thafl is generic and thallt3(v) # 0. Then the mapr : Mg (V) — NMg(v) is a
resolution of singularities.

Definition 2.2.5. Let X be an algebraic variety ov&. We say thaiX = [],¢ X, is astratificationof X if
the sefa € | | X, # 0} is finite, for eachr € | such thalX, # 0, the subseX, is a locally closed nonsingular
subvariety ofX, and for eachw, 8 € |, if C, is a connected component ¥f such thaC, n Yﬁ # 0, then
Ca, C Xﬁ.

We now define a stratification of the varié¥j,(v) as in , page 526]. Leét be a closed subgroup of
Gy and letM (T, V)) be the set of all points i (T, v) whose stabilizer in Gis conjugate tdH. A G,-orbit
in M (T, v) is said to be of typeH) if it lives in M (T, v)). Let(M(T, v)//G\,)(H) denotes the set of closed

Gy-orbits of type H). Itis proved in [IP, Theorem 5.1] thad (T, v)//Gy = [1 () (M(T. v)//G\,)(H), where
the union if over all conjugacy classes of subgroups @fi&a stratification. This is was first proved in
[24, 111, 2][R2] when the characteristic & is zero.

Then we denote byt (v)H) C M(v) the subset of closed@rbits of type H).

We have the following theorenfi [25] (in characteristic zeze {89, Section 3]):
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Theorem 2.2.6. The decomposition
Me(v) = ]_[ Mg (V) (2.2.2)
(H)
is a stratification. If H is a subgroup @&,, then the restrictiom=1(Miz(v))) — Mg (V) of the morphism
7 Meg(v) — Me(v) is locally trivial in the &tale topology.

We now give a criterion for the non-emptynessib(v). This criterion is due to Crawley-Boeve}) [2,
Theorem 1.2]. Fore | lete € Z' be the vector with 1 at the vertéand zero elsewhere and t&(I') c Z'
be the root system associated tdefined as in|ﬁ|7]. We denote lay*(I') the set of positive roots. Let ()
be the symmetric bilinear form on the root lattige given by €, €j) = c;j. Note that vertices of may
support loops.

Fora € Z', we putp(e) = 1- %(a, a). If ais areal root we havp(a) = 0 and ifa is an imaginary root
thenp(a) > 0.

Theorem 2.2.7. (i) The spacelis(v) is non-empty if and only ¥ = 81 + 82 + ... with g € ®*(I') and
Bi . & =0foralli.

(i) The spacem;(v) is non-empty if and only if € ®*(T') and {v) > p(B1) + p(B2) +. .. for any nontrivial
decomposition of as a sunv = B, + B> + ... with 3, € ®*(I') andg; . £ = O for all i.

2.2.2 Nakajima’s framed quiver varieties

The construction of the so-called framed quiver variet@ois the above one’s except that we have an
additional graded vector spa¢e

Let I andv be as in§R.2.]. Letw € Z, be an other dimension vector. Then we fyty =
P, Maty,  (K) =~ P, Hom(EKY, K™), Lwy = B, Mat, w (K), and

M(T,v,w) := M(T,V) & Lyw @ Lyw.

An element ofM (f, v, w) is then denoted by, a, b) with B € M(f, v),a € Lywandb € Lyy. The group
GL, acts onM (T, v, w) by
9-(B.ab)=(9-Ba-g™.g-b) (2.2.3)
whereg - Bis the action defined i§p.2.].
Consider the moment map
Hvw - M(F» vV, W) = gl = (al,)"

that maps B, a, b) to u,(B) + ba. For¢ € Z' we denote byli.(v,w) the dfine framed quiver variety
1y5,(&)//GLy as in [37]. Note that unlike i§R.2.1, we do not assume thgtv = 0.

Definition 2.2.8. Let@ € Z'. A point (B, a, b) € M(T, v, w) is #-semistabléf the two following conditions
are satisfied:
(i) For anyB-invariant subspacs of V such thatS; is contained in Kerg) for alli € I, the inequality
6.dimS < 0 holds.
(i) For any B-invariant subspace of V such thafl; contains Imfy) for all i € |, the inequality
6.dimT < 6.v holds.
The point B, a, b) is calledd-stableif strict inequalities hold in (i), (i) unlesS = 0, T = V respectively.

We denote respectively b|y|35(ﬁ v, W) andM;(f, v, w) the set off-semistable and-stable points.
ThenMg(f, V, W) is an open subset M;S(f, v, w) on which the group Gl.acts set-theoritically freely.

Remark2.2.9 (i) If 6 > 0 for alli € I, then the condition (ii) of Definitiofi 2.2.8 is always satisfiand so
a representation g&semistable if and only if the condition (i) is satisfied.

(i) Let 0,6 € leo andletdy :={ie 1|6 =0landJy :={i 1|6 =0}. If Jy C Jp, thenMjS(I_“, V,W) C
MZXT, v, w).
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Lety : GL, — KX, (g) ~ []ijdet@)% be the character associatedftoThen a representation in
M (T, v, w) is y-semistable if and only if it i®-semistable. The framed quiver variély (v, w) is defined
as
Me o(V, W) = 1173/(€)//6GL.

Define aIso‘llt;e(v, w) as the image op;ﬁv(f)s in Mg (v, w). If not empty, the varietym;e(v, w) is a
nonsingular open subset ¥z o(v, w).

Note that®igo(v, w) is the dfine framed quiver varietis(v,w) as all points ofM (T, v, w) are O-
semistable. We thus have a natural projective morphisiiiz o(v, w) — Dig(v, w).

It was observed by Crawley-BoeveM [2, Introduction] thay dmmed quiver variety can be in fact
realized as an “unframed” quiver variety $.2.1. This is done as follows.

FromI" andW we construct a new quivér by adding td" a new vertexc and and for each verteof
I, we addw; arrows starting ato towardi. Putl* = | U{co}. We then definév*, ) € Z, x Z"" as follows.
We put

() vy =viifielandvy, =1,

(i) or =6 ifielandd;, =-6-v.

We have a natural group embedding G GL,- that sends an elemegt= (g)ic to the element
g = (g)ier- With g := @i if i € | andg}, := 1. This induces an isomorphism Gk G,. = GL,./K*. We
have a Gh-equivariantisomorphisml (T*, v*) — M (T, v, w). Under this isomorphism, tiesemistability
(resp. stability) of Definitiof 2.2]8 coincides with tie-semistability (resp. stability) i§p.2.].

In the context of framed quiver, we say tlkils genericif 8* is generic with respect to* in the sense
of Definition[2.2.. In this case we have

MSST, v, w) = M5(T, v, w)

We have [3p]:

Proposition 2.2.10. Assume thafl is generic and thaimg(v, w) # 0. Thenigo(v,w) = ﬁ)t;e(v, w) and
the mapr : Mg o(v, W) — NMig(v, w) is a resolution of singularities.

Remark2.2.11 If 6, > O for all i, then@* is always generic with respect .

3 Intersection cohomology

3.1 Generalities and notation

Let X be an algebraic variety over the algebraically closed field et £ be a prime which does not divide
the characteristic d&. The letter denotes the field,.

We denote byD(X) the bounded “derived category” ef(constructible) sheaves ot ForK € D2(X)
we denote byH'K thei-th cohomology sheaf oK. If mis an integer, then we denote b§fm] the m-
th shift of K; we haveH'K[m] = H"*™K. For a morphismf : X — Y, we have the usual functors
f., fi 1 DY(X) — DO(Y) andf*, f' : DE(Y) — DE(X). If i : Y — Xiis a closed immersion, the restriction
i“K of K € DB(X) is denoted byK|y. We denote byDy : D2(X) — DY(X) the Verdier dual operator.

Let nowY be an irreducible open smooth subsea$uch thatY = X. Then for a local systeri on
Y, we let7Cy; € DE(X) be the intersection cohomology complex defined by GorégkPherson and
Deligne. The perverse shef= Q;’f := IC%[dim X] is characterized by the following properties:

HK =0 if i <-dimX,

HAMXK ]y = &,

dim(Supp@'K)) < —i if i > —dimX,
dim(SuppH'DxK)) < —i if i > —dimX.
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If U is another open smooth subsetofind if £ is any local system okl such that|yny = &luny, then
IC%; = ICx,- This is why we omitt the open s&tfrom the notationCy .. We will simply denote by
ICy the complexfc;(@ .

Nl

Remark3.1.1 Note thatifU is a locally closed subvariety o such that) ¢ X thenH-9mUK|, = 0.

We define the compactly supporteth intersection conomology groupsl’(X, &) with coefficient in
the local systeng as the compactly supportedh ¢-adic hypercohomology grou.(X, ICY,). If fisthe
unigue morphisnX — {pt}, thenlHy(X, ¢) = H'(FIC%,).

If X is nonsingular, theld Cy is the constant sheaf concentrated in degree 0 and Bo (X x) =
HL(X, «).

Definition 3.1.2. A proper surjective morphisrh: Z — Xis semi-smallf and only if one of the following
equivalent conditions is satisfied:

(i) dim{x e X|dim f=}(x) > i} < dimX - 2i for all i € Zso.

(ii) There exists a filtratiorX := Fo > F1 > --- > F, = @ of X by closed subsets such that, for all
i €{0,...,r — 1} andx € F; — Fi,1, we have 2 dinf1(x) < dimX — dimF;.

We will need the following decomposition theorem of Beitins Bernstein, Deligne and Gabber.

Theorem 3.1.3.Suppose thap : X — X’ is a proper map with X irreducible. Then

0(1C3) = P Vzer @ IC3,I1]
ZEx

whereé is an irreducible local system on some open subset of a ciosehlicible subvariety Z of Xand
where by abuse of notation we still denote/ity; .. its extension by zero on' X Z. If moreover.(ZC5) is
a perverse sheaf, then
(1C3) = P Vze 0 IC3, (3.1.1)
Z§
Remark3.1.4 LetY be a closed irreducible subvariety ¥f and letU be a non-empty nonsingular open
subset ofY. Note that

“‘“"”[@vlfwzg - Pwcoc
z¢ u ¢

where the direct sum on the right hand side is over the iriétiitocal systems oN.

Corollary 3.1.5. If ¢ : X — X’ is a semi-small resolution of singularities ardhe constant sheaf on X
concentrated in degreedim X then [3.1]1) becomes

#.(0) = IG5, @[@ sz®£§,§) (3.1.2)
z¢
with Z ¢ X’. In particular
HL(X, k) = THY(X', k) @ {@ Vze ® IHF9270%(Z, g)] ) (3.1.3)
z¢

where & the dimension of Z.

The isomorphism[(3.1].3) is obtained frop (3}1.2) by apgiytine functorfy with f : X’ — {pt}.
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Corollary 3.1.6. Assume thap : X — X’ is a semi-small resolution. If'X= |, X/, where | is a finite
set and where the/Xare locally closed irreducible subvarieties of uch that the restriction off'(¢.(«))
to X/ is a locally constant sheaf for all i and all € 1, then

p.() = IC}, ® {@ Vos, ®IC, ,
@&y

where the direct sum is over thesuch thatX’ ¢ Y.

a =

Proof. Let Z be an irreducible closed subvariety ¥f such tha‘t&%f is a direct summand af.(x). We
havezZ = | J,(X, N Z). SinceZ is irreducible, there exists ansuch thaiX, N Z is dense irZ. By Remark
B.1.4, we haveH9MZ . (k)|,, , # 0. SinceH 9MZ ¢, (k)|,, is locally constant and non-zero, we have

X! c Supp(?{*dimch*(g)). Hence

dimX;, < dim (Supp(H ¢, (x))) < dimZ

The right inequality holds becauge(x) is a perverse sheaf. Since diX,(N Z) = dimZ, we deduce that
the inclusionX’, N Z c X/, is an equality, i.e.X/, ¢ Z, and so thaX/, = Z.
m]

Assume thakK is an algebraic closure of a finite fiely and thatX is an irreducible algebraic variety
defined oveFy, i.e., there is a schem¥ overFg such thaX is the set offg-points ofX,®=, Fq. We denote
by F : X — X the corresponding Frobenius endomorphism. Ket D?(X) and assume that there exists
an isomorphisnp : F*(K) ~ K. Thecharacteristic functiorXk ., : X7 — « of (K, ¢) is defined by

Xip(¥) = D (~1) Trace(gh, H;K).

If r € Z, we denote b¥K(r) ther-th Tate twist ofK. ThenXk), ¢¢) = 97" Xk, e-
We have the following relation between the trace on the litatsection cohomology and the trace on
the hypercohomology df

D Xig() = > (1) Trace(Fy, Hy(X, K))

xeXF i
whereF, is the Frobenius on the hypercohomology inducedebyAssume that the locally closed irre-
ducible subvarietyr of X is also defined ovefF, i.e., it is F-stable. LetF*(x) ~ x be the isomorphism
(in the category of sheaves o which induces the identity on the stalkxat YF. Itinduces a canonical
isomorphismp : F*(K) = K with K = 7C%. We then puiXk () := Xk, ,(X). Hence:

D Xzey (9 = D (-1) Trace(F, IHY(X, ). (3.1.4)
xeXF i

In particular, ifX is nonsingular then we recover the usual Grothendieck fraceula as the left hand side
of the above identity i§{X(Fg)}.

3.2 Restriction

Assume thak is irreducible. LetZ be an irreducible closed subvarietyXfet leti : Z — X denotes the
inclusion. We give a condition fat(7CY) = IC5 to be true.

Proposition 3.2.1. Assume that there is a decompositios X J; X, of X where | is a finite set and where
the X, are locally closed irreducible subvarieties such that
() if Z, := X, N Z is not empty, then it is equidimensional asatlinmy X, = codiny Z,.
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Assume moreover that there exists a Cartesian diagram

X X
1,
7I——2Z
such that the conditions (ii) and (iii) below are satisfied.
(ii) f and g are semi-small resolutions of singularities.
(iii) The restriction of the sheaf('(f.(x)) to X, is a locally constant sheaf for all i.
Then i(ZC%) = IC3.

f
B —
i

Proof. If Y is a variety, ledy denote its dimension. Let, € | be such thakX,, is the open stratum of.
To avoid any confusion we will use the notatié@3[d;] instead ofZC5. By Corollary[3.1.5, we have

f.({dx]) = 7Cx[dx] @

P Vee ®Icm[dy\,]]. (3.2.1)

a#Eo.n

By (iii) and i*f.(k) = g.(x) we see that the restriction @'(g.(x)) to Z, is locally constant. Hence by

Corollary[3.1.p, we have

9.({dz]) =ICE[dz]®{ P Wepe, ®IC

z(01,3).(
a#o,BEl 0 lap i

[dz,]] (3.2.2)

where{Z, s s, is the set of irreducible componentshf. Using again* f.(x) = g.(«) we see froml)
and ) that the compléX(ZCy)[dz] is a direct summand of the semisimple perverse sbgafd;]).
It is therefore a semisimple perverse subsheaf.¢fdz]). Since the open stratui),, of Z is contained in
the open stratum oX, the restriction of*(7C%)[d] to Z,, is the constant sheafd;]. Hencei*(7C¥)[dz]
contains/ C%[dz] as a direct summand, i.e.,

i"(ICY)[dz] = 7C3[d7] @[ &b ('(,,ﬁ),(aﬁ®Jc%wﬂ[dzr]]

aiaoaﬁdm{aﬂ

for some subspacely(’aﬁ)w C Wep).2.s- It remains to see tha/j, =0 foralla # ao.

(Q»,B)»fnﬂ
PutK :=i*(ZCY)[dz]. Then fora # a, we have

H ™% Klz, = HZ % 1CYz,
= H* % 7C5 |7,
= H % 1Cx[dx]lz,
- 0.

The last equality follows from Remafk 3.1.1. Heria&, , = 0 by Remar{3.1]4 and we proved the
proposition. O

3.3 E-polynomial

Recall that a mixed Hodge structure on a rational vectoresphconsist of a finite increasing filtration
W, (the weight filtration) onH, and a finite decreasing filtratioR® (the Hodge filtration) on the com-
plexification Hc, which induces a pure Hodge structure of weighdn the complexified graded pieces
GrVHc = (WkH/Wi_1H)c, i.e.,
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Gr\kNHC = @ (Gr\livH(c)p’q
p+a=k
with

(GM¥H)™ = FPGRYHe N FIGHHc.

p+q’ 'C
Recall (see|E3],|E0, Chapter 14]) that for any complex big& varietyX, the intersection coho-
mology grouplHX(X, C) is endowed with a mixed Hodge structure Xfis nonsingular, it coincides with
Deligne’s mixed Hodge structure a.(X, C) which is defined in|]|7].
We then denote byih?#(X)},q the mixed Hodge numbers oHX(X, C) and we define the mixed
Hodge polynomial o as

We call the integerhPd := dim (Gr},H )p’q}pq themixed Hodge numbers

IH(X: %, y,2) = > ihRH(X)xPyaZ:
P.ak
The compactly supported Poincaré polynomiakaé thenlH¢(X; 1, 1, t).
In this paper we will say thaX is pureif the mixed Hodge structure dmHX(X, C) is pure for allk, i.e.,
if ih?%(X) = 0 whenp + q # k.
The E-polynomial of X is defined as

EC(X%y) = IHo(X; x.y.~1) = ) [Z(—l)kihé"‘**m] XPyl.
pa \ k
Let R be a subring o which is finitely generated asZalgebra and leX be a separate®-scheme
of finite type. According to|E5, Appendix], we say thdtis strongly polynomial courif there exists a
polynomial P(T) € C[T] such that for any finite field; and any ring homomorphisg : R — Fg, the
Fg-schemeX¥ obtained fromX by base change is polynomial count with counting polynorjdle., for
every finite extensioy /Fq, we have
#X? (Fep)} = P(A).

According to Katz terminology (cf. [Appendb{E.S]), we dal separate®-schemeX which gives back
X after extension of scalars froRito C a spreading oubf X.

The complex varietyX is said to bepolynomial countf there exists a spreading out &f which is
strongly polynomial count.

Let us now denote bmic’j;k(X)}i,,- the mixed Hodge numbers f§(X, C) and put

EQXxY) = ) [Z(—l)kht“k(X)) Xy,
k

in]
We recall the result of Katz in the appendix [15].

Theorem 3.3.1. Assume that X is polynomial count with counting polynomial®T]. Then

E(X; %, y) = P(xy).

LetX = [, X, be a stratification and Ie&¢,, be the open stratum, i.&,= X,O. Pute < Bif X, C Yﬁ,
andr, := (dimX —dimX,)/2.

We say thalX satisfies the propertys) with respect to this stratification and the riRgf there exist a
spreading ouk of X, a stratificationrX = [[, X,, and a morphisnv : X — X of R-schemes such that:
(1) X and the closed strat¥, are strongly polynomial count,
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(2) for eacha, the stratumX, is a spreading out oX,, the morphisnt : X — X obtained fromV after
extension of scalars froR to C yields an isomorphism of mixed Hodge structures

Hi(X, Q) ~ IH(X, Q) ® [@ W, ® (IHEZ(X,.Q) ® Q(ra))] : (3.3.1)
aFay

(3) for any ring homomorphism : R — Fq, the morphisn¥v¢ : X¢ — X¢ obtained fronv by base change

yields an isomorphism

(V). () = ICy. @ [EB W, © E%i(ra)] (33.2)
atao
of perverse sheaves.
Assume now that all complex varieti®s (in particularX) satisfy the propertyH) with respect to the
stratificationX,, = [s<o Xs @nd the ringR,. Since there is only a finite number of strata we may assume
without loss of generalities that the rinBs are all equal to the same ririgy

Theorem 3.3.2. With the above assumption, there exists a polynom({@) B Z[T] such that for any ring
homomorphismp : R — Fg, we have

D, Xie, (9 =P (3.3.3)
XEX?(Fq) !
and
E°(X; x.y) = P(xy).

Proof. If there is only one stratum, i.e., X is nonsingular, then the theorem is true by Thedrem|3.3.&. Th
theorem is now easy to prove by induction@rc . Assume that the theorem is true for alk ao. By

Formula [3.3]1), we have

EGGxY) = ECQGx )+ > (dimW,) B (Xo; X,y ™).

a<ao

By induction hypothesis and siné&is polynomial count, this formula shows tH&E (X; x, y) depends only
on the producky, i.e., that there exists a unique polynoniauch thaE°(X; x, y) = P(xy), more precisely
Pis defined a$ = P— o<y (AIMW,) Py (xTey ") whereP is the counting polynomial ok andP, (with
@ # ao) is the polynomial which satifies the theorem & X,,. It remains to see thd satisfies Formula
€33

By Formula [3.3]), we have

X@).00 = X1cz, + Z (dimW,) 7" X s (3.3.4)
d<ar
By Grothendieck trace formula we have
> X = & (F) = P(a).
XeX?(Fq)
Now integrating Formula[(3.3.4) ové#(Fy) proves Formula[(3.3.3). o

Remarl3.3.3 Assume thaX satifies the assumptions of Theor.3.2 andXhatpure. SinceX is pure
we haveE"®(X; x,y) = 3, q(~1)P*Gh2%P*9(X)xPya. By Theoren] 3.3]2, the polynomiBi°®(X; x, y) depends
only on the producky, henceh2%P*9(X) = 0 if p # g. The mixed Hodge numbers ¥fare thus all of the
formih2P?P(X) and SOE™ (X; X, y) = Pe(X; Xy) whereP(X;t) := 3, (dimIHgi(X, (C))ti.
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4 Quiver varieties of type A

We review known result§ [21{ [B7] [B8[][3{I5][42] and give fight generalization of some of them.

4.1 Partitions and types

We denote byP the set of all partitions including the unique partition 00yfby £* the set of non-zero
partitions and byP, the set of partitions afi. Partitionst are denoted by = (11, 12,...), whered; > A, >
-+- >0, orby (I,2™,...) wheren; denotes the number of parts 4fequal toi. We put|1] := 3; 4; for
the size oft. The length oft is the maximumni with 4; > 0 and we denote by the dual partition oft. For
two partitionsd = (A1, ..., 4;) andu = (ug, . .., us) we define the partitiod + u as @1 + pa, A2 + uo,...),
and ford = (1™,2%,...), u = (1™,2™,...), we define the uniol U u as (I*™, 2%*™ ). For a
partition = (14,..., 1s) and a positive integeat, we denote by - A the partition @14, ...,dAs). Recall
that @ + u)’ = 2 U u’. We denote byl < u the lexicographic ordering oR and by < u the dominance
partial ordering or?, namelyd < pif A3 + Ao+ -+ + A < pg + o + - -+ + w; for all i.

We denote byl the set of non-increasing sequences: w'w?- - - ' with o' € P and letT, be the
subset of sequencessuch thaty); [w'| = n. We will see in§@ that the set,, parametrizes the types of
the adjoint orbits iyl (K).

We choose a total order on the sef{(d,4)|d € Z;,1 € £} as follows. Ifu # A, we say that
(d,2) = (d',u) if 2 > u, and we say thatd( 1) > (d’,2) if d > d’. We denote byl the set of all non-
increasing sequences = (di, A)(dz, 4?) - - - (dr, 2") and byT, the subset of of these sequences which
satisfy|w| := 3); di|A'| = n. The first coordinate of a paid(.) is called thedegree We will see in§@ that
T, parametrizes both the types of the adjoint orbitsljiiF,) and the types of the irreducible characters of
GLn(Fg).

Since the terminology “type” has two meanings in this paperuse the lettefw, 7, . . . } to denote the
elements off and the symbol&o, 7, .. .} for the elements of.

Given a typew = (di, w') - - - (dr, w") € T, we assign the type

d d dr

(:):wl...wlwz...wz...wr...wr

of T. We thus have a surjective mgp: T - T, w  &.
Let

with o' # ! if i # j and put

Note that the elements in the fibgri(o) are parametrized bf,, x --- X P, and so by the conjugacy
classes oW;,.

4.2 Zariski closure of adjoint orbits as quiver varieties

Let A € gI,(K) we denote byr, resp.v, the semisimple part, resp. the nilpotent partAofe assume for
simplicity thato is diagonal matrix so that its centralizein GL, is exactly a product of Gk 's. We have
A = o +vwith [o,V] = 0 where k,y] = xy—yx We putC,_(A) := {X € gl,|[A, X] = 0} = Lie(L). LetC
be theL-orbit of v. Then the Gl-conjugacy class of the pait(C) is called thetypeof O. The types of
the adjoint orbits ofjl, are parameterized by the St as follows.
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Let my, ..., m be the multiplicities of the distinct eigenvaluesy, ..., ar of A. We may assume that

o is the diagonal matrix
my m my

——— ——
d1ye..,d1,Q2,...02,...,0r,...,0r|.

The Jordan form of the elemewnte Cy (o) = gly, @ aly, @ - -+ @ gl defines a unique partition' of my

for eachi € {1,2,...,r}. Re-indexing if necessary we may assume thiat w? > --- > w' in which case
we havew'= w!---w" € Tn. Conversely, any element @, arises as the type of some adjoint orbitof
Types of semisimple orbits are of the forni()L: - - (1™) and types of nilpotent orbits are just partitions of
n.

Lemma 4.2.1. The dimension o is

r
- wl ) (4.2.1)
=1
where for a partitiond = (11, A2, ... ), we put{d, 1) = 2n(2) + |4 with n(2) = Yi=1( — 1)4;.

We now explain how to construct a quivieand pairs £, v) from O such thatis(v, w) =~ O.
We draw the Young diagrams respectivelydt . . ., " from the left to the right and we label the columns
from the left to the right. We define a pai#,{) € K' x Z' as follows. Letn; be the length of thé-th-
column with respect to this labeling. We define the dimens&xiorv = (v, ..., V4-1) by v; := n—n; and
Vv, := Vi1 — N fori > 1 and the parametdr = ({1,...,q) as follows. If thei-th column belongs to the
Young diagram ofv! then we put; = a;.

We then have

(A=4ild)--- (A= ggld) = 0.

Example4.2.2 Assume thaD is of type (2 2)(2 1) with eigenvaluea; anda, respectively of multiplicity
4 and 3. The corrresponding Young diagrams are

1 2 3 4

Then the vector dimensionis= (5,3, 1) and¢ = (a1, a1, a2, @2).

We have

Lemma 4.2.3. For i > 0, the integer vis the rank of the partial product

(A—=41ld) -+ (A= gild).

LetT be the quiver

ol 2 e od-1

whose underlying graph is the Dynkin diagram of tye; and putl := {1, ...,d-1}. Putw := (n,0,...,0)
and defing = (¢1, ..., &u-1) by &j 1= {ju1 = ¢j.

Proposition 4.2.4. The map g y;ﬁv(g‘) — O given by(B, a,b) — ab+ ¢11d is well-defined. It induces a
bijective morghismﬁ D Me(v, W) — O. If K = C, then q is a categorical quotient l§L,, i.e., the map
Mie(v, w) — O is an isomorphism. The bijective morphi§imestricts to‘llt?(v, w) — O.
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Proof. The first assertion follows fronf][5, Theorem 2.1]. The secassertion can be proved using the
“First Fundamental Theorem of Invariant Theory” as [g?_]. The third assertion follows from the
second one using the assertion (4) of Proposjtion]|2.1.12@f§2][#, Lemma 9.1]. For an arrow af with

tail i and head, we denote byg; ; the corresponding coordinate Bf By [E, §3], we havef(B,a,b) € O if
and only if theBi,1;'s anda are all injective and if the mag; j.1's andb are all surjective, i.e. g, a b) is

a O-stable representation. O

Remark4.2.5 From Propositior) 4.2]4 it follows that @ is the GL,-orbit of any representatiorB(a, b)
Uy L&) thena’’ = abfor any B, &, b') € C.

We says thatr{y, ..., Ng-1) € (Z>o)d‘l is monotonéf n; > --- > Ng_1.
Remarkd4.2.6 Letv = (vi,...,Vy-1) be a monotone sequence with- vi, and leté = (¢1,...,&4-1). Then

(¢,v) arises from an adjoint orbit as above if and only if the fafilog condition is satisfied, seE [62].
(*) For anyj € | with ¢; = 0 we havevj_1 — vj > vj — vj.1 With v == n.

4.3 Partial resolutions of Zariski closure of adjoint orbits

Let(L,P,%,0,C)beas in§@. The aim of this section is to see the varieligs s as quiver varieties of the
form Mig (v, w) whenK = C (in positive characteristic we only have a bijective mogohiiz o(v, w) —
XL px)-
Note that the varietieX| py are irreducible of dimension dim Gl= dimL + dimZX.
Taking a Gls-conjugate oL if necessary, we may assume that GLs,,, X GLs, X - -+ x GLg,. Since
o is in the center of, we may writeo- as the diagonal matrix
Sp+1 Sp St

—l—— ——
6p+1,...,6p+1,6p,...,Ep,...,f]_,...,fl .

The nilpotent orbiC of I decomposes as
C=Cpux--xC

with C; a nilpotent orbit ofsls. Fori = 1,..., p+ 1, lety; be the partition o which gives the size of the
blocks of the Jordan form a;. Re-ordering if necessary, we may assume ghat 2 > --- > uP*. Let
ai,...,ax be the distinct eigenvalues ofwith respective multiplicitiesn, ..., mx. Foreach =1,...,k,
we define a partitionm; of m; as the sum of the partitiong wherer runs over the sefr | = «;}. The
partitions Ay, . .., A defines a unique nilpotent orbits of the Lie algebraof M := Cg (o). Letv be
an element in this orbit and |€ be the unique adjoint orbit afl, that containg- + v. The following
proposition is well-known.

Proposition 4.3.1. The image of the projection 5X, py — gln is 0. Moreover it induces an isomorphism
p1(0) = 0. If M = L, the map p is an isomorphisK) py ~ O.

We have din0 = dimX,_ps and so

dimO = dimG - dimL + dim= (4.3.1)

We now denote by the variety of partial flag$0} = EP*! ¢ EP c --- ¢ E! ¢ E® = K" with
dimE""1/E" = s. For an elemenX ¢ gl, that leaves stable a partial flag

({0}:Ep+1cEpc---cE1cE0=K”)e(F

we denote by, r = 1,..., p+ 1, the induced endomorphism&f~1/E" ~ K.
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We denote by, px (resp.Z; ;) the subvariety ofil, x & of pairs X, f) such thaX - f = f and such
thatforallr = 1,...,p+ 1, we haveX; € ld + C; (resp.X; € ld + C;).

Note thatF ~ GL,/P and so the two varieti€g_ps andX, py are isomorphic.

There exist a unigue positive integra monotone sequence of positive integees (vi, ..., V4-1) €
(Z-0)% 4, andp elementd; < --- <ipin{l,...,d - 1} such that if we puip := 0, Vg := n, ipr1 = d, and
Vg := 0, thenforeach =1,...,p+1, we haves,_, —vi, = &, and(Vi_, — Vi,_,+1,...,Vi,—1 — Vi) is the dual
partition of ;.

This defines a typéy_; quiverT as in §@. We keep the same as in §@ and we defing =
(41,....La) by dj = guifir <j<iawithr=0,...,p.

Asin §@, this defines a unique paramefer K' such that; = /.1 — . We now choose a stability
parameted € (Zso)' with the requirement thatj # 0 exactly whenj € {iy,...,ip).

Example4.3.2 Assume thak = GLoxGLy xGLgz, C = C(1,1)xC2)x C(2,1) whereC, denotes the nilpotent
orbit corresponding to the partitiqn and thato is the diagonal matrixd, a, @, @, 8,8, 8) with a # B.
We havee; = B ande; = 3 = @. Clearlyo is in the center of andM = GL4 x GLz. The underlying
graph ofl" is Ay andw = (7,0,0,0),v = (5,4,2,1),0 = (0,0,,0,04) with 62,04 > 0,¢ = (8,5, a, @, @),
&=(0,0-p,0,0).

The aim of the section is to show that there is a bijective misrm 9tz (v, w) — Z, ps Which is an
isomorphism wheik = C.

Given B,a,b) € p;ﬁv({;‘) and an arrow of with tail i and head, we denote byB; ; the corresponding
coordinate oB.

For a parametex € K', putJy = {i € | | x, = 0}. We will need the following lemma:

Lemma 4.3.3. Let(B,a,b) € ,u;,%v(f). Then(B, a, b) is #-semistable if and only if for all € | — Jy the map
aoBpjo---0Bjji1: KY - K"is injective.

Proof. PutV := €5, K". We first construct for each € | a B-invariant graded subspaté = &, L?
of V. PutL} := Ker(a), foralli € {2,...,s} putL} := Ker(@ao Bz o---0 Bjj_1), and fori > s put
L¥:=Bi_1ioBi_2j-10---0Bsi1s20 Bgsi1 (LY). Let us see thdt® is aB-invariant subspace of. Fori < s
we need to see thd;,1(L7) c L7 ;. We first prove it when = 1. We haveba - B;1Bi > = £11d, hence
(ao B21)(Byr2(Ker (@) = ao (ba- & ld)(Ker (@) = 0 and soBz1(L3) € LS. Assume that this is true for all
j <i. Atthe vertex, we have the relatioB;_1;B; ;-1 — Bi,;1;Bij;1 = é21d. Forx € L we have

aoBpjo---0Bjji_1 0By (Biir1(X)) =aoByio---0Bjj1 0 (Bi—1iBii-1 — &1d)(X)
=aoByio---0Bjji_10(Bi—1iBii-1(X)).

We need to see that the RHS is 0. By definitiorLéfit is clear thatB;;_; (L7) c L, henceB;;_1(x) €
L? ,. By induction hypothesis we then ha® 1; (B;;-1(x)) ¢ L°. By definition of L?> we thus have
aoByjo---0Bi_1(Bi-1j o Bij_1(X)) = 0. To see thaL® is a B-invariant subspace of it remains to see
that for alli > swe haveB;,1; (L’ ;) c L° which again can be proved by induction using the relations at
the vertices.

Assume thatB, a, b) is #-semistable. Assume thate | — Jy. If the mapas := ao Byjo0---0Bgs1
is not injective therlL® is a non-trivial B-invariant subspace of such thatd . dimLs > 0 (asfs # 0)
which contradicts the stability condition (i) of Definitigh2.§. Hence the mags must be injective for all
sel —J.

Let us prove the converse. Assume tNatis a B-invariant subspace of such thatv; c ker ().
Hence for alli andx € V/ we haveB;; o --- 0 Bjj_1(X) € Ker(a), i.e.,a0 By 0--- 0 Bjj_1(X) = 0, and so
V] c Ker(aoByi0---0B;;_1). Hence foii € | - Jy we haveV; = 0 by assumption. TherefosedimV’ =0
and so the condition (i) of Definitioh 2.2.8 is satisfied. o
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For (B, a b) € M, (v, W), we denote byfgap) the partial flag0} = &Pt c EP c -+ c EL c 2 = K"
with & := Im (@0 Byyo---o By j,_1). By Lemmd4.3]3, we havgap) € 7.

Proposition 4.3.4. The mam;,%v(.f $$ — Zips, (B,a,b) = (ab+ {11, fgap) is well-defined and induces
a canonical bijective morphisiitzg(v,w) — Z_ps which restricts to‘Jth’o(v, w) — Zp 5y and which
makes the following diagram commutative

Mg o(V,W) ———— Z px

\Ln lph
Me(v, W) — 2 o g1,

wherep maps a semisimple representati@ a, b) to ab+ £;1d. If K = C this bijective map is an isomor-
phismig ¢(v, W) — Z( ps.

If 6 > 0 for alli and if¢ = 0, then this is|E6, Theorem 7.3], see aIE [42] for more tetai

Proof. The fact that the diagram is commutative follows from a gefieation of Remarlf 4.25 to any
monotoner (see , Proposition 3.4]). Let us see that the map

h: 1y 3(€)% - Zips, (B,a,b) = (ab+ &l1d, fean)

is well-defined. LetB, a,b) € uy %, (€)% and putX := ab+ {11d and&” := Im (a0 Byg0--- 0 Bj j-1). The
fact thatX leaves stable the partial flefgs o) is straightforward from the preprojective relations

Bi_1iBii-1 — Bi+1iBij+1 = &ld

with Bg1 := bandBjo := a.

To alleviate the notation, for ail< j we denote byf;; the mapB;,qj o --- o Bjj_1 : KYi — K",

Fixr € {1,...,p+ 1} and defineH = @iew{o; Hi by Hi = K¥if i > i, and byH; = Im(f; ;) if not.
From the preprojective relations we see thaitg, b) leavesH stable and so we can consider the restriction
(By, ay, byy) of (B, a, b) to H and the quotient®, 3, b) of (B, a, b) by (By, ay, by). PutU; := KY/H;. Then
Ui ~ KY~Vr if i < i, andU; = {0} otherwise. From the preprojective relations we seeXpat&' /& —
&1/&" coincides, with the may, : U; , — U; _, induced byB; ,,1i ,Bi i ,+1+. ,+11d. In other words
the diagram

i o/Hi,_
gtg Uy
x,l \LY,
fi,_p.0/Hi,_
gljg Uy,

is commutative.
We want to see that the map € EndU;,_,) ~ EndK%) leaves in;,_,.1ld + C.
Consider thesubquived™

oir-1tl —= -+ — i1
of . Putd :=i,w = (v_, —Vi,0,...,0), V' := (Vi ;41 — Vi,, Vi, 412 — Vi,, ..., Vi—1 — Vi,), andZ’ =
(G515 Giyy42s - o o5 G yrar)- We hgvefi’ =0foralli=i_1+1,...,ir—1,i.e,4,_s1 =& 2= =G, +d-

Consider the projection oB( 3, b) on

(P HomUiU.pe (P Hom(U.Ui)|=M(T.v.w)

i€{ir_1,..ir —2} i€fir_1+1,...,i =1}
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and denote by R, a,b) the corresponding element M (I”,v/,w’). Note thata’ andb’ come from
Bi,_,+1i,_, andB;_,; _,+1 respectively. The mal, : U;_, — U; _, is thusa’b’ + &, _,,1ld.

The sequencen — V;,V; — V,,V, — V3, ...,V ;) is the partitior;. Now apply Propositio.4 to
(r",v',w’, &). Then we see tha'b’ belongs to the Zariski closure of nilpotent or@it proving thus that
Y, €4, 41+ Cr. o

By Propositior{4.3]4 and Propositipn 4]3.1 we have

Corollary 4.3.5. The image of the compositi®iz ¢(v, w) 5 Me(v, w) 4 gln is O. Moreover if § = Je,
thenr o p is a bijective morphism onto its image Kf= C, it is an isomorphism).

Remark4.3.6 Assume thatl = C. The condition in Remark 4.2.6 to ha¥&¢(v,w) ~ O may not be
satisfied here. For instance in the exam@ [42, Examplewihgfev = (4,1),w = (5,0), ¢ = (0,0),
0 = (1, 1), the adjoint orbiD is the nilpotent orbit with partition (3L, 1) while Mis(v, w) is isomorphic to
the Zariski closure of the nilpotent orbit with partition &.

Recall thatL = GLs,,, X --- X GLs, € GL, and assume for simplicity tha& contains the upper
triangular matrices. Recall also thatis a partition ofs. For each = 1,...,p + 1, the dual partition
W= (... 4,,) Of pi defines a Levi subgroup = [1; GL”{J c Glg. Let P: be a parabolic subgroup
of GLg havingL; as a Levi subgroup and containing the upper triangular pegriTherP := []; P; is a
parabolic subgroup df havingL := ]’Iipjl1 [; as a Levi factor. PuP := P.Up. It is the unique parabolic
subgroup of Gk havingL as a Levi factor and contained ih
Consider the following maps

# f
Xi poy Xips (4.3.2)

Ql

wherer(X, gP) = (X, gP).

Note that the variet¥; s ,,, is nonsingular and thatis surjective.

The decompositiof = [], C, as a disjoint union of-orbits provides a stratification = [ [, £, with
¥, = 0 + C, and therefore a stratification &f ps = [, XCL’,R;, where

X0 py = {(X.gP) € g x (GLa/P) g *Xg € X, + 1p}

is the smooth locus of, ps,,.
The following proposition is a particular case of a result.ofztig ] (cf. , proof of Proposition
5.1.19] for more details).

Proposition 4.3.7. For x € O, put f(x), := f™(x) N X{ ;. . Then

dim {x € 5| dim f1(x), > 12 - %(dimz - dimZ(,)} <dimo -i
foralli € Zso.

In particular if we apply the proposition t&.(P, {o-}) instead of [, P, =) we find thatf o7 is semi-small.

Proposition 4.3.8. The morphisni is a semi-small with respect & px = [ [, X‘E,Rzn.

DefineX; g, 1= {(X.gP) € Ix(L/P)|g7*Xg € o+up}, Yipsx = {(X. 0) € gl x GLn|g71Xg € T+ up},
and letY be the variety{(y,zg) € P x gl, X GL,|g™'zg € o + 1z} modulo the action oP given by
p-(v,29) :=(yp.zgp ).

Consider the following Cartesian diagram which was considéy Lusztig Eb§4] to prove the tran-
sitivity of parabolic induction.
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a1 ay

Xl:,ls,((r] Y Xl:,ﬁ’,(r (433)

by b,

S<~—Yips——=Xips
lf
19)

whereay(y, z g) = (m(yg'zgy™?). 7p(y)P), a2(y. 2 9) = (2. gP), ¢y, 2 9) = (z gy™%), ba(X, 9) = 7(g72X ),
ba(X,g) = (X,gP). Hererr, : p=1&up — landnp : L < Up — L are the canonical projections.

By Propositio7 applied td (P, {o}) instead of [, P,%) we find that the projection (on the first
coordinatep : X; g, — T is semi-small with respect to the stratificatibr ][, Z,. On the other hand

codimg(Z,) = codimy, .Y\ ps, = codim, .. X| ps,.
Hence Propositioh 4.3.8 follows from the fact that the twoasgs of the diagrarh (4.3.3) are Cartesian.
Proposition 4.3.9. The restriction of the sheavé$' (7(x)) to X‘E,P,Zn are locally constant for all i ana.

Proof. By the above diagrafn 4.3.3, it is enough to prove that theictish of H' (0:(x)) to £, are locally
constant for all anda. The map is semi-small andl-equivariantif we let. acts oriX; g ., by v-(X, mP) =
(vXv't,vmP). The complex () is thus a semisimplé-equivariant perverse sheaf. Sintéas only a
finite number ofL-orbits, the simple constituents pf(x) are of the form&%ﬂ. O

5 Comet-shaped quiver varieties

5.1 Generic tuples of adjoint orbits

Let O, ..., Ok bek-orbits of gl (K) and letw; be the type ol);, thenw = (&1, ..., &) is called the type
of (01, ...,0k).

Definition 5.1.1. A k-tuple s, . .., Cx) of semisimple adjoint orbits is said to genericif Z!‘zl TrCi=0
and the following holds. IV c K" is a subspace stable by soi§ec C; for eachi such that

k
D T (Xiv) =0,
i=1

then eithelV =0 orV = K".
Let C; be the adjoint orbit of the semisimple part of an eleme@®,0fThen we say thatdy, ..., O) is
genericif the tuple Cx, . .., Ck) of semisimple orbits is generic.

By [L3, Lemma 2.2.2] we have:

Lemma 5.1.2. Fori = 1,...,k, putd = wlw?-- o with w € P* such thaty;lw!| = n. Put D =

minimaxj|wij| and let d= gcd{lw![}. Assume that
char() ¢ D!

Ifd > 1, generic k-tuples of adjoint orbits @f,, of type(as, . . ., @) do not exist. If d= 1, they do.

Remarks.1.3 The tuple O, ..., Ox) is generic if and only if it is generic in the sense Bf§3,].



28

5.2 Affine comet-shaped quiver varieties

Assume that@s, ..., Ok) is a generik-tuple of adjoint orbits ofil,, of typew = (@1, ..., k). Letg > 0 be
aninteger. We denote b2 the locally closed subvariety gfﬁg+k oftuples @1, By, ..., Ag, Bg, Xq, ..., Xi)
such that

[A,By] + -+ [Ag, Bg]l + Xy +---+ X =0 (5.2.2)

with X in O;.
Let PGLy(K) acts orfV2 by simultaneoulsy conjugating thg 2 k matrices.

Proposition 5.2.1. The groupPGL, acts set-theoritically freely oft’ and for an element
(A]_, B]_,...,Ag, Bg,Xl,...,Xk) E(Vg,
there is no non-zero proper subspacé&dfwhich is stable by A B, ..., Ag, Bg, X1, ..., Xk.

Proof. The proof is similar to the case of semisimple adjoint or@ Proposition 2.2.3]. O

Let V; be the #ine closed subvariety @ﬂn(K)zgik of matrices A, By, ..., Ag, Bg, X1, ..., Xi) which
satisfy Equation[(5.9.1) witl; in the Zariski closure; of O;. Define

Qs = V5//PGL, = SpedK[V;]Ch).

We denote by2? the quotientVg //PGL, (itis defined as the image 6f2 by the quotient mag/; —
Q).
We have the following theorem (se|§|[13, Theorem 2.2.4] irctiee of semisimple orbits):

Theorem 5.2.2.1f not empty the varietied’? and@?, are both nonsingular respectively of pure dimension
(g+k-1)n*+1- 3, (w!,w) and

dg = g+ k=2 +2- > (0], 0}).
ij

Proof. Similar to [13, Theorem 2.1.5].
]

Let 7 be a multi-type. We say thatd @ if there exists &-tuple Cu, ..., Ck) of adjoint orbits ofgl,, of
type such that B
Ci Cc O (5.2.2)

foralli=1,...,k Ifsuch atupleCs,...,Cy) exists, it is unique.
For7 < & we denote byV? the corresponding subvariety (possibly empty)af.
Note that if Cy, ..., Cy) satisfies 2) then it is necessarily generic (as thergty condition is a
condition on eigenvalues only) and so the subvarigliésire all nonsingular by Theore.2.
Obviously we have
Vo =] [ve

4w

We deduce that:

Proposition 5.2.3. The grouPGL, acts freely orV; and for an elemer(y, By, ..., Ag, Bg, X1,..., Xk) €
V&, there is no non-zero proper subspacekdf which is stable by ABa, ..., Ay, Bg, Xq,..., X The
quotientr;;, : Vs — Qg is a principalPGLs-bundle in the étale topology.
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Now we follow [3] to identifyQz with (V) for somer’, £ andv.
Now letT be the following quivefjwith g loops at the central vertex 0:

[1,1] [1,2] [1,s]
& . . .
[2,2] [2, ]
O . . .
O e ©
[k 1] [k 2] [k, sd

Now we define a dimension vectarof I" as follows. We putyp = n and for each, we define the
sequence; = Vi1 > Vjig > -+ > Vji.g] &S the dimension vector 6, seesli.

We also defingg € K' as follows. For each, let & = ({i1,....4is+1) and& = (i - - - &is))
be the two sequences defined frai see§E. We also puty = — Z!il{fi,l- This defines an element
£ = {& U {giphj € K' such that . v = 0. For a representatiap of T, denote byyyi 4 the linear map
associated to the arrow whose tail isl]], by ¢, .. ., ¢g the matrices associated to the loopgirand by
97, -, ¢y the ones associated to the loopLin- Q. We have the following consequence of Proposition
(see alsd [132.2] for the semisimple case).

Proposition 5.2.4. The map;t(€) — (al,)?** defined byp — (A, By, ..., Ag, Bg, X4, . . ., Xk), with
A =i, Bi= ¢, Xi = ¢iygq + diald, (5.2.3)

induces a bijective morphism
Enff(V) — Qa)
which mapshiz(v) to Q. If K = C, this bijective map is an isomorphism.
Remark5.2.5 Note that the dimension vectordepends only on the type. “"The condition in Lemma
for the existence of generic tupl@,(. .., Ok) of semisimple adjoint orbits reads as follows. There

exists a generic tupleX, . . ., Ok) of a given typeaw’if and only if v is indivisible, i.e.,v can not be written
asr.u for some dimension vectarand some integar> 1.

5.3 General comet-shaped quiver varieties

Let (O,...,0k) be the generic tuple of adjoint orbits_of typednd foreach=1,...,k let(L;, P;, X)) bea
triple as in§f8.3 such that the image &, p, 5, — al, isO;. As in the introduction we ptR = Py x - - - x P,

L=Lyx---XLg andX = 21 X X Zk. PUtOL,p,Z = (gIn)29 X XL,p,Z, O = (gIn)29 x XP and

(0]
L.PX L.P.X

Vips = {(Al, Bi,..., Ay By, (X1, .., Xio 01P1, .., 6PW) € Oupx | Y (A, B+ ) Xi = o}.
j i

Because of the genericity condition, the diagonal actiotmefgroup PGl is free. Put

QLpz =V ps/PGL,.

1The picture is from5].
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WhenK = C, we show in this section th&_px can be identified with a quiver variettz o(v) for
appropriate choices @t 6, v.

By §B, foreach = 1,...,k, we can define a typA quiverT; together with paramete, 6;, v; such
that there is a canonical bijective morphidin p, 5, — iz 6, (vi, W) which is an isomorphism wheli = C.

We now define a comet shaped quiVeas in§@ in such that each leg with vertices 11, .. ., [1, s]
is exactly the quiver;. l.e., if we delete the central vert¢f} from I', we recover th& type A quivers
I'1,....Tk. We denote by the set of vertices df, and we define a dimension vectoas follows. We put
Vo = nand for each = 1,...,k, we define {1, ..., Vis)) := Vi. Multiplying the vector®; by a strictly
positive integer if necessary, there is a dimension vettoZ' of I' such that its projection oF; is ; for
eachi and such tha. v = 0. There is a uniqué& € K' whose projection ofi; is & for all i and& . v = 0.
Note thatdy must be negative.

Note that the quiver is completely determined by the triple (C, g). The dimension vectar, as well
as the position of the non-zero coordinate®pfs determined byl(, C), and the complex parametér
depends on the choice of the's.

Remark5.3.1 The quiverl and the parametef are the same as the ones obtained fram (.., Ox) as
in §@. However in general the dimension vector obtained frém.(. ., Ok) in §@ differs fromv. They
agree if and only ifv satisfies the condition (*) in Rema.6. For instancehim dituation of Remark
k3.6, this condition (*) is not satisfied.

LetT" be the quiver obtained frof by deleting the central vertex (i.e., it is the unionlaf . . ., Ty).
We denote by ™ = {[i, j]}i,; the set of vertices df’. For a parameter € K', we denote by its projection
onk!.

We put

Z(T", v, w) = (g1,)% x M(TF, v’ w).

We let GL,+ acts onZ (T, v’, w) by the trivial action on{l,)?? and by the usual action on the second
coordinate. PUZSYT, vi,w) := (gl,)*? x M3XT, v', w) and define

3o (VW) = ((aln) X 11,1 (D) g GLyr = (1) X Mg e (v, W).

There is a canonical bijective maR o (vi,w) — OLps.

We identify in the obvious wa (T, v) with Z(T'", v’, w) so that we can regayg '(¢) as a Gl,:-stable
closed subvariety of(,)* x 4, (£7). From the definition of semistability (se@.2.] andsp.2.2) it is
clear that @-semistable point gf;(£) is #"-semistable. Since the tupl@y, . . ., Ox) is generic we actually
have:

Proposition 5.3.2. An element ofi;1(£) is §-semistable (respé-stable) if and only if it is#*-semistable
(resp.6'-stable).

Proof. Assume thaty € u;1(£) is 6'-semistable. Let be a subrepresentation of It is an element in
u,t(€) for somev’ < v. We need to verify thal . v/ < 0. If Vy = Vo, then we must havé. v’ < 6.v =0
sinced’ e Z!b- If vi = 0, then the subspac@%y” are contained in Keg) for alli = 1,...,k and so
0.v' = 6. (V) <0sincey is 7-semistable. For eadhe {1,...,kl, let X¥ be given by Formuld (5.3.3).
The preprojective relation at the central vertex regéisi X? = 0. Because is a subrepresentation of
we also have

k
dxr=o (5.3.1)
i=1

Since the tuple@;, . .., O) is generic, the equatio.l) holds if and onlygf= 0 orvy = n. O

Remark5.3.3 Assume that th@’s, i = 1,...,k, have striclty positive coordinates. Thap(¢£)S =

u;(€)S. This identity also happens whehis generic. We want to notice that in this situation we can



31

actually choose ous; (taking larger values of the coordinates if necessary) suat9 is generic. Indeed
the sefu;*(£)SSdepends only on the position of the non-zero coordinatesasf, s and not on their values
(cf. RemarK2.2]9 (ii)).

By the above proposition we can use the same notatjbfF)ssto denote the open subsetgf (£) of
#-semistable and that @f -semistable points. Define

Re g (VI W) 1= 11, (€) /]Gl

Since the quotient map;(£)SS — M 4(V) is constant on Gi:-orbits, we have a canonical map:
Nep (v, W) — Mg g(v) which is a categorical quotient with respect to GJthe action of G, induces a
free action of PGk on % 4:(v', w)).

By the assertion (4) of Propositil.l, we have a canbmiogphisma : 9 g: (v, w) — e o (v, w)
which is an immersion wheli = C.

PutO; = (g1,)% X O1 X - - - X Ox. We have the following commutative diagram

f1 m

3eror (v, w) OLpx Os - (5.3.2)

o

2

Ne g (vf,w) Vips Vs
l ql
Mg p(V) 4 Q;

wherei, i are the canonical inclusions, and whgris the factorization morphism (&g 72 o f5 is constant
on GL,-orbits).

Remark5.3.4 WhenK = C, the mapsf;, f, are isomorphisms and the squaresr( o f1, 7 o f,,i) and
(9,7 o f2, p, Q) are Cartesian.

WhenK = C we identify the orbit spac@, px with the quiver varietyi o(v).
Recall that; = o + Cj. PutC = C; x - - - x Ck. Then the decomposition & = [], C,, as a union of
L -orbits provides a stratificatioB = [ [, Z,. We thus a have a decomposition

0
Vipr = U VL,P,ZH
a

whereVp o = Vipr, N 0Py . By Proposition 4.3]4, the Subsef . C Vi px corresponds to the
stable points, i.e VP oy = sJt;m(vj',w) = ;1 (€)%/GL,:. The image ofV| px, by the projective morphism

p:Vips — V5
is of the formV;z, for somer}, < &.

Theorem 5.3.5.1f V| py, is not empty, then the piecé’ ., is also not empty and is an irreducible
nonsingular dense open subsetfpy, of dimension

(2g+k—-1)n? + 1 —dimL +dimX,.

We need an intermediate result.
Letu be the dimension vector éfobtained from the tupled;, . . ., Ok) as in§@. We now explain the
relation betweem andv. For each € I, we lets : Z' — Z' be the reflection defined by

s(¥) = x-(x e)e,
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where (, ) is the form defined byg, e)) = c;j, cf. §@.2.].

We look for the verticesi]j] of I'" which satisfyg[i,j] =0 andv[i,j_l] = Vi,il < Vil — Vi,j+1] with
the convention thatjj o) = n andvji s+ = 0. If there are not such vertices, than= v. If such a
vertex [, j] does exist, then applg; j to v and we get a dimension vectet € (Z.o)' which satifies
Vii.ji-13 ~ Vi) = Vi — Vii.j+1y- Reiterating the process as many times as needed, we endhup éimension
vectoru which satisfiesy; ;1) — Ui.jj = Ui.jj — Ui, j+1) Wheneveg j = 0. We denote byv the composition
S, o --- o §, of the various reflections we used to g&t) = u. From Propositio.4 there is a bijective
morphismiz(u) — Q.

Proposition 5.3.6. The following three assertions are equivalent.
(i) The setV; is not empty.
(ii) The set'Vg is not empty.
(iii) u € ®*(I).
(iv) v e @*(T).
If g = Othenv is a real root if and only ifV2 consists of a singleGLy-orbit.

Recall that'V; (resp. V2) is not empty if and only ifu;'(£€) is not empty, (respy;*(£) contains a
simple representation).

Proof. The last assertion is proved iﬂ [3]. We already proved thevatpnce between (iii) and (iv). The
equivalence between (ii) and (iii) is proved ﬂ kB]. We prove the equivalence between (i) and (iii). By
Theore7 only one implication needs to be proved. A]imv[e say that a dimension vect®of I is
strict if for any legi of I we haven > g1 > --- > Bji.5]. Assume thafV; is not empty. We first prove
thatu is a sumBy + B2 + ... of strict positive roots witlf . 81 = ¢ .82 =--- = 0. By [E, Proof of Theorem
2.1] we see that we can choose a represent&ien*(£¢) such that the coordinat@ with h € Q are all
injective (recall that the arrows @f are oriented towards the central vertex). ketu;'(£€) — Rep() be
the projectionA - {An}neq. Write 7(B) as a direct suny @ 1, & - - - @ |, of indecomposables and |8} be
the dimension vector df,,. Thenu = 3; + --- + B, and by Kac's theorenﬁlt?] the dimension vectBks
are positive roots. Since the linear mdhsare all injective, the maps ), are also injective and g8, is a
strict dimension vector df. Finally by [E Theorem 3.3], we hawg. B, = 0 for all m. Now, using the fact
that¢ arises from a generic tuple of adjoint orbits, we proceed#as in [13,§6] to see that = 1. O

Proof of Theorerfi 5.3 5We prove it forE = X, as the proof will be the same for aily,. Assume that
Vi px is not empty. TherV;; is not empty and so by Propositi3.6 the$8tis also not empty. Since
the inverse image aVg, by the mapo : Vi px — V is contained invy , ., the open subsefy ,  of
Vi px is not empty.

ConsiderY? oy = {(X,0) € gly X GLa| g™1Xg € T + up}. Then the canonical mapy oy — Xl py,
(X,9) — (X, gP) is a locally trivial principalP-bundle (for the Zariski topology). Note that} ,; =
G x (2 + up). Now consider the set? . of (2g + K)-tuples(Aq, By. ..., Ag, By, (31, 071). . ... (G ) in
(81?9 X (G X (Z1 + up)) X - - - x (G x (X + up)) such that

E [Aj, Bj] + E gioigit = 0.
7 i
o

The natural map. ., D py isthen alocally trivial principalP-bundle. Hence we are reduced to prove
thatL? , ;. is nonsingular. A poink € LY ; . is nonsingular when the fierentiald,u of the map
i (a1)% % (G x (21 + up)) X - - - X (G x (Zk + up) —> Sl

given by(Al, Bi,...,Ag By, (91, 01), .. ., (Ok, o-k)) - YA}, Bjl + Xi gioigrt is surjective.
Let o be the coordinate of in £y + up. Consider the restriction of u to the closed subsefl[)? x
(G x{o1}) x --- x (Gx{ok}). Itis enough to prove that theftiérentialdsA is surjective. But this what
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we prove to see that the variety? is nonsingular£™being the type of the adjoint orbits ofy, ..., o),

see Theorerp 5.3.2. The variefy . is thus nonsingular and its irreducible components arefalame
dimension. To compute the dimensionVﬁ,P’Z we may use what we just said or use the fact that there is a
bijective morphism]t;m(v"',w) - V‘E,P’Z and use Theore.2 (a straightforward calculation sltloats
WCv = 2n? — dimO;).

Let us see now tha¥, py is irreducible. The canonical map; oy — Vipx deduced from the
diagram [4.3]2) being surjective it is enough to show thap ., is irreducible. We are thus reduced to
prove the irreducibility ofy,_ p» whenX is reduced to a poirftr} which we now assume. Hendg p ) =
VE,P,[()’) and the parametérsatisfies, > O foralli € 17, By Remar3, we may assume th& generic
with respect tor. We now need to prove the irreducibility & 4:(v, w). Sincedig gi (v, W) — Migg(V) is a
principal PGls,-bundle, we are reduced to prove thgg o(v) is irreducible.

Assume first thakk = C. It is known (see[[13, Proof of Theorem 2.2.6]) tha} (Wigo(v).C) =~
HL (Mg e(v), C). Recall that the dimension ¢428(X, C) wheree is the dimension oX equals the num-
ber of irreducible components of of dimensione. The varietiesi ¢(v) andig ¢(v) are both of pure
dimension by Theore.2. Hence we are reduced to seBith#t) is irreducible. The representations
in u;1(8) are all simple becausgkis generic, henc®iy(v) is irreducible and nonsingular. The canonical map
Ng.a(V) — My(V) being a resolution of singularities is thus an isomorphésrd salig ¢(v) is irreducible.

Assume thak = Fqand thath, 4+ (v, w) is defined oveF, with ¢ large enough (the characteristic being
fixed). Then by Nakajima’s appendﬂ [6] a@l& Theorem?.&e have}{M, o(V)(Fq)} = #{Mgo(v)(Fq)}.

As the canonical mapig ¢(v) — My(v) is an isomorphism we actually have

#{Me o (V)(Fo)} = #{Mo(V)(Fo)}. (5.3.3)

Note that the dimension of the compactly suppottediic cohomology grouplZe(X, Q,) with ¢ invertible
in K ande = dim X also equals the number of irreducible components of of dimensione. Moreover
if X is defined oveffy, then the FrobeniuB* acts onHZ(X, Q) as multiplication byoe. Therefore, the
codficient ofg® in §{X(Fy)} equalam. From the identity3) we deduce tHag ¢(v) is irreducible if and
only if My(V) is irreducible. But as above the variely(v) is irreducible a® is generic. O

Until the end of thisswe assume thdf = C.
Letr : Mg o(v) — Mg(v) be the canonical map. B3, the image of is isomorphic taQs.
Under the identificatio; = 7 (Wig6(v)) c Me(v) the stratification

Q@=UQ$

=
is a refinement of (2.212). Hence by Theorem 2.2.6 we have:

Theorem 5.3.7.The restrictiont1(Q2) — Q2 of r : Mg 4(V) — Qs is locally trivial in the étale topology.

5.4 Arestriction property

We keep the notation @E and we assume that; is not empty. Note that? ; , is then also not empty
by Theoren{ 5.3]5.

The aim of this section is to prove the following theorem.

Theorem 5.4.1.Let i be the natural inclusiol¥ px — O px. Then

i"(rcs, ,,) = ICY, ...
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By §5.3, we have a stratification

(o}
OLpx = U OL,P,ZH
a

with 0P oy 1= (al,)® x X? . It satisfies the conditions (i) of Propositipn 3]2.1.
We consider the semi-small resolution O; ¢ ., — O px, See the end ofe.3.

Proposition 5.4.2. The morphisng : V5 ,, — Vi px is a semi-small resolution. Moreover the diagram

Ot pigy ———OLpsx
5 T
Vi pior Vips

is Cartesian (the vertical arrows being the canonical irgins) and the restriction of the shedf (7. ())
to each piec@y  , is alocally constant sheaf.

Proof. The diagramis Cartesian by definition of the varieligs x. The varietyV; 5, is also nonsingular
by Theorenf 5.3]5. Hengeis a resolution of singularities.

By Propositior] 4.3]8 the mapis semi-small with respect 0, px = [, Of ;. . By Theoren{5.3]5
we see that the codimension®f ., in V,_px equals the codimension &f .. in OLpx, hencep’is
also semi-small. The last assertion of the propositiom¥ed from Propositiof 4.3.9. O

Theoren] 5.4]1 is now a consequence of Proposjtion|5.4.2 amb8ition[3.2.]1.
We have the following particular case of Theorem 5.4.1.

Proposition 5.4.3. Let i denotes the inclusioW; < Oa. Then (ICp, ) = 1C5,,.

6 Characters and Fourier transforms

HereK is an algebraic closure of a finite fielgy. In this section we puB = GL,(K) andg := gl,(K).
We denote byF the standard Frobenius endomorphism g that maps a matrix|); j to (a?j)i,,- so that
GF = GLn(Fq) andg™ = gln(Fq).

6.1 Preliminaries on finite groups

Let x be an algbraically closed field of characteristic 0. £eb Z be an involution ok that maps roots of
unity to their inverses. For a finite sef we defing(, )e on the space of all functior’s — « by

1 S
(L.9e =15 ZE F()903).

Now let H be a subgroup of a finite groug and letH be a subgroup ok (H) containingH. Let
Pt H — GL(VY) andp? : H — GL(V?) be two representations ¢i in the finite dimensionak-
vector space¥?, V2. We denote by! andy? their associated characters. The grélipcts on the space
Hom (V1,V?) as follows. Forf € Hom (V1,V?), we definer - f : VI — V2 by (r- f)(v) = r- f(r™1-v).
Moreover we see that the subspace H¢W, V2) of fixed points of HomY?, V2) by H is clearlyH-stable
(it is therefore an[H/H]-module).

Proposition 6.1.1. For any r € H, we have

Tr (r | Hom (V4 V2)) = (X3,



35

Proof. It follows from a straightforward calculation. Namely, waentify Hom /1, V?) with matrices
with respect to some fixed bases and we calculate the trabe ¢éft hand side in the badig;;}i; where
Eij = (0pidqj)pq (hered, s = Lif r = sandé, s = 0 otherwise).

m]

Forse H, we denote by, the restriction of' to the coseHs:= {hs|h € H}.

Proposition 6.1.2. Let se H. We have

Tr (s|Homy(V4,Vv?)) = é,)é)Hs.

Proof. PutE := Hom(V%,V?) andEy := Homy(V3,V?) and denotep : E — Ey the mapp(x) =
ﬁ Shen h- X. ThenE’ := Ker pis anH-stable subspace & andE = Ey @ E’. Since

[Fi2d

heH

=0
E/

we deduce that

1
Tr(s|Epn) = i Z Tr (hs| E).
heH

g . . . . 5
By Propositio] 6.1]1, the right hand side of this equatlo@/is)(S)Hs. O

We now lety andy be the characters d¢f andK associated respectively two representatifins>
GL(V) andK — GL(W). The grougH acts on th&-module Ingf, (V) := «[K]®11V by (x@v)-t = xtot-v.
Its restriction toH being trivial, it factorizes through an action bf/H on Indj(V). Under the natural
isomorphism (Frobenius reciprocity)

Hom(V, W) = Hom (Indf§(V), W) (6.1.1)

the action of4/H on Hom, (V, W) described earlier corresponds to the actiodipF on thex-vector space
Homk (Indf(V), W) given by ¢- f)(x®V) = f(t™*- (x@V)). For a subseE of K and a functiorf : E — «,
we define Ing(f) : K — « by

ndf(Hl == > (g kg

1
El —
(geK | g TkgeE)

Then we have the following generalization of Frobeniuspemiity for functions:
Lemma 6.1.3. Let h: K — « be a function. Then
(Indg(f), h), = (f,Res(h),_ .
Proof. It follows from a straightforward calculation. O
By Proposition{ 6.1]2[(6.1].1) and the above lemma, we havéaifowing proposition:
Proposition 6.1.4. Letve H/H and letv € H be a representative of v. Then
Tr (v ‘ Homk (Indﬁ (V),W)) = <Indﬁ\-,(<p\,), l//>K

whereg, denotes the restriction gf to Hv.
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6.2 Littlewood-Richardson codficients

For a positive integem, we denote by, the symmetric group im letters.
Notation6.2.1 For a subgroupd of a groupK, we denote byVk (H) the quotientNk (H)/H.

Fix a sequence, = (ag, m)(az, mp) - - - (as, ms) with &, my € Z.o such tha; aim = nandm # m; if
i # j. Put

S = (Sml)a:l XX (Sm)as C Sn

where 6)¢ stands folSy,x - - - x Sy, (d times). Then the action of an element\ (S) on each component
(Sm)® writes uniquely in the formvyw; wherev; : (Sm)* — (Sm)? is a permutation of the coordinates
(i.e., an element iB,) and wheraw; € (Sy,)® acts on §,) by z— wizw . In other words

W, (S) ~ ﬁ Sa.
i=1

The groupNs, (S) acts on the category afS]-modules in the natural way, i.e., if : S — GL(V) and
n € Ns, (S), we denote by (p) the representatigno n™ : S — GL(V).
For a representatign: S — GL(V), we denote by\Vs (S, p) the quotienNs, (S, p)/S where

Ns,(S,p) = {n € Ns (S)In*(p) = p}.
The groupWs, (S, p) acts (on the right) on th8,-module In@”(V) and so acts on
Homs, (Indg"(V). W)

for any«[Sp]-moduleW, seesp.1.
We now explain how to compute

Tr (v ‘ Homs, (Indg”(V),W))

forve Ws, (S, p).
Fix v e Ws (S) ~ []; S5 and decomposes each coordinate af S, as a product of disjoint cycles.
Then decomposs as
(Sny)™ X -+ x (S )™

such that the action afon S is given by circular permutation on each compon&ae, i.e.,

V-(91,...,04) = (92,03 --,9q,01)-

For eachi = 1,...,r, we denote by the automorphism ofS,)% given byvi - (g1,....04) =
(92,03...,0q,01), SO thaty = (vq,..., ).

LetV; be anS,, -module with charactey;. For each, the group(sni)“Ii (Vi) acts orT4(V)) = Vi®- - -®V;
as, s)- (X1®- - ®Xg) = (W1 Xg1)®- - - ®Wq, - X)) This defines an action &= S=(v)on ®ir:1 T4(V)
and we denote by ©S — « the corresponding character.

Lemma 6.2.2. Letw = (W1, Wi2,...,Wig) € (Sn)* and putw= (wy,...,w;) € S. We have
r
J(w,v) = l_l)(i(Wi,lwi,Z s Wig).
i=1

Assume now that € Ws (S, p), i.e., that our spac¥ afforded by the representatignis of the form
&), T%(V}), or more generally a direct sum of modules of this form. Bysition[6.114 we have:
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Proposition 6.2.3. For any«[S,]-module W with charactey, we have

Tr (v ‘ Homs, (Indg”(V),W)) = (Indi”&}),z{z}sn )

We now show that this trace is also a Littlewood-Richardsmefficient (or more precisely a twisted
version of it). We will use this result later on.

Let x = {X3,X,...} be an infinite set of variables and l&(x) be the corresponding ring of sym-
metric functions. For a partition, let s;(X) be the associated Schur symmetric function. For a type
w = (A1, 1) -+ (dr, ") € T, we definelc),}ep by

Su(0) = 8 05,2 (%2) -5 () = > ()

wherex? := {xd,xd,...}. We call the cofficientsc], the twisted Littlewood-Richardson cgieients If

d; =d, =---=d, =1, these are the usual Littlewood-Richardsonoients.
Fora = (1M,2™,...) e P, put
Z, = H imm!.

i>1
It is also the cardinality of the centralizer 8), of an element of typa (i.e. whose decomposition as a
product of disjoint cycles is given by). We denote by the irreducible character correspondingltsee
for instance [34, 1§7]) and byy! its value at an element of type

Proposition 6.2.4. We have

C = ;X’Z > [ﬁ Zmlei'ii]

@ i=1
where the second sum runs over the (o, ...,a") € Pl X -+ - X Plor) SUCh thatu;d; -a = p.

Proof. We haves,(x%) = > z;l)(gpp(xd) wherep, is the power symmetric function (seE[34]). On the
other handp,:(x%) - - - pyr (x*) = pu,4.4i(X). Hence

S0 =) (Z [ Z;ilxﬁ) Po(x)

P a

where the second sum runs over the: (a?,...,a") € Py X - -+ X Py SUCh thatid| -a' = p. We now
decompos@, in the basigs;}, and we get the result. O

For A € P, we denote by, an irreducibleqS;,]-module with corresponding characet.

Proposition 6.2.5. Assume that)' is a partition of n and put \, = ®::1Tdivwi. Then
Tr (v ’ Hom, (Indi”(Vw),Vﬂ)) =

Proof. This is a consequence of Propositfon §.2.3 and Propo§it®#4.6
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6.3 Rational Levi subgroups and Weyl groups

By alLevi subgroumf G, we shall mean a Levi subgroup of a parabolic subgroup,dfe., a subgroup of
G which is GL,-conjugate to some subgroup of the fofiil; GLy, with 3}, nj = n. A maximal torus ofG

is a Levi subgroup which is isomorphic t&¥)". LetL be anF-stable Levi subgroup d&. An F-stable
subtorus ofS of L of rankr is said to besplit if there is an isomorphisr8 ~ (K*)" which is defined over
Fq, i.e., ST =~ (F;)". TheFq-rank ofL is defined as the maximal value of the ranks of the split siibfor
L. Since the maximal torus of diagonal matrices is split, Brstable Levi subgroup that contains diagonal
matrices is offg-rankn.

If T is anF-stable maximal torus df of sameF,-rank asL, in which case we say thadtis anL-split
maximal torus olL. In this case we denote b , instead ol (T) (see Notatio.l), the Weyl group
of L with respect tar .

If fis a group automorphism d€, we say that two elementsandh of K are f-conjugateif there
existsg € K such thak = ghf(g)™.

The identification of the symmetric growsy, with the monomial matrices in GlLwith entries in{0, 1}
gives an isomorphisrs, ~ Wg. Fix a sequence of integens = (my, ..., m) such thaty; m = n and
consider the Levi subgroup, = GLy := []l_; GLym. ThenW,, = Sy := []_; Sm. TheGF-conjugacy
classes of thé&-stable Levi subgroups @ that areG-conjugate td_, are parametrized by the conjugacy
classes ofiNg(Lo) = Ws, (Sm) [E, Proposition 4.3]. Fov € Ng (Sm), we denote by, a representative
of the GF-conjugacy class (of-stable Levi subgroups) which corresponds to the conjugkass ofv in
Ws, (Sm). Then (,F) =~ (Lo, VF), i.e., the action of the Frobenils on L, corresponds to the action
of VF on L, given byvF(g) := vF(g)v! for anyg € L,. SinceF acts trivially onWg =~ S;,, we have
(WL,, F) = (Sm, V). By §@, there exists a decomposition

Sm = (Sn)™ X -+ - X (Sp,)*

for some sequencel{, n;)(dz, ny) - - - (dr, ny) and a specific choice of an elemenin the cosevS,, which
acts on each componer&4{)® by circular permutation of the coordinates. Taking @feconjugateL, of
L, if necessary we may assume thiat o~. We also have

r r
Lo=[ [(GLy)", and ()7 = (Lo)" = [ | GLn (Fyp).
i=1 i=1

Now letL be anyF-stable Levi subgroup d&. Consider the semi-direct produst = (F) where(F) is
the cyclic group generated by the Frobenius automorphiswvorif  is a character ofv_ < (F), then for
all a € W, we havey(F(a)) = ¢(a) since E(a),1) € W = (F) is the conguate ofg{ 1) by (1, F). Hence
the restriction ofy to W, is anF-stable character af.. Conversely, given aR-stable charactey of W,
we now define an extensignof y to Wi = (F) as follows. We havé = L, for somem andv € Ng, (Sm)
by the above discussion so that we may idenfify= (F) with S, < (v). For anv-stable character of Sy,
we define the extensigndf Sy, = (v) as in§@.

The LF-conjugacy classes of the-stable maximal tori oL are parametrized by thE-conjugacy
classes oM, [E, Proposition 4.3]. Ifv € W, we denote by, anF-stable maximal torus df which is in
the LF-conjugacy class associated to fheonjugacy class of. We putt,, := Lie (Ty).

6.4 Springer correspondence for relative Weyl groups

Let P be a parabolic subgroup &fandL a Levi factor ofP. LetI be the Lie algebra df and letz denotes
its center. Recall that the classical Springer correspocelgives a bijection

€ : Irr W_ — {nilpotent orbits off}



39

which maps the trivial character to the regular nilpotehitoMoreover ifL is F-stable ther€ restricts to
a bijection between thE-stable irreducible characters 0 and theF-stable nilpotent orbits af Recall

that if L = G anda € Py, then the size of the Jordan blocks of the nilpotent débjt') are given by the
partition A.

Let € € Irr W_ be the sign character. Fgr e IrrW_ puty’ = y ® e. Then let€, : Irr W_ 5
{nilpotent orbits ofl} be the map which sendsto €(y’). The bijectiont, was actually the first correspon-
dence to be discoveref [44].

Let C be a nilpotent orbit of and putt = o~ + C with o~ € z. Consider the relative Weyl group

Ws(L,2) := {ne Ng(L) |n=nt = 2}/L.

Recall thatX is of the formo + C with C a nilpotent orbit ofl ando € z. PutM := Cg(o), then
Ws(L,Z) = Wu(L,C). LetO be the orbit ofgl, whose Zariski closure is the image of the projection
f : X_psy — g on the first coordinate.

Let g, be the set of elementse g whose semisimple part {S-conjugate tar. Note that the image
of f is contained iny,. The setg, has a finite number dB-orbits which are indexed by the irreducible
characters o¥Vy by €. If y is an irreducible character ¥y we denote by), the corresponding adjoint
orbiting,. Fory € Irr Wy, put

A, = Homy, (Indy (Vc), V)

wherep : W — GL(Vc) is an irreducible representation\®f (unique up to isomorphism) corresponding
to the nilpotent orbi€C under€.

In the notation of§p.2, the groupMu(L, C) is isomorphic toWy, (WL, p) and so the spaces, are
W (L, C)-modules. We have the following theoreE][Sl, 2.5].

Theorem 6.4.1.We have
f(1¢;,,.)~ D AsIc

XEIT Wy

where A = 0if O, is notincluded irO.

In this correspondence we hatle= 04 andAy is the trivial character ofVy (L, C). If O is regular
nilpotent,L = T and ifX = {0}, then this is the classical Springer correspondence.

To alleviate the notation put := f, (I_C;ME) andK, = A, ® IC3 . Assume now that\l, Q, L, P, %)
is F-stable and leF : X, px — X_ps be the Frobenius given bly(g(,gP) = (F(X), F(9)P). Then the
morphismf commutes with the Frobenius endomorphisms. ¢etF*(x) ~ « be the isomorphism (in

the category of sheaves X‘E,RZ) which induces the identity on stalksBj-points. It induces a canonical
isomorphismF*(Q;w) ~ Q;gm which in turns induces a canonical isomorphigm F*(K) =~ K.
Note that the orbit®, areF-stable and- acts trivially onWy. HenceF*(K,) ~ K, and sog'induces an
isomorphismpy : F*(K,) =~ K, for eachy. Now we define an isomorphist : F*(I_C(l)x) ~ I_C;_)X with
the requirement that its tensor product with the identity’\pmivesy, .

We then have

1 .
Xre . = qa(dmo-dimo)y
1G5, o q 1c;

Since theA, areWy (L, C)-modules, eaclr € Wiy(L, C) induces an isomorphisi, ~ K, and so an
isomorphismd, : K ~ K such that

P
XK g0 = Z Tr (v|A,) gi@mo-dmo) Xics
X
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6.5 Characters of finite general linear groups

The character table @ was first computed by GreeE|12]. Here we recall how to cossitdrom the
point of view of Deligne-Lusztig theor;[I:]B].

Recall that for anyF-stable Levi subgroup of G we have the Lusztig inductio®® : C(L") — C(GF)
whereC(LF) denotes th&,-vector space of class functioh§ — Q, (see for instanceﬂ[dmiB]).

Let L be anF-stable Levi subgroup d& and lety be anF-stable irreducible character 9. The
functionXt : LF — Q, defined by

Xo=WU™ > WR)RE, (Idr,) (6.5.1)

weW

is an irreducible character af (hereg'is the extension ap defined in§@). The characterx'q; are called
theunipotent charactersf L.

Forg € G andé e Irr(LF), let 99 € Irr(gL g™%) be defined byd(glg™t) = 6(1). We say that a linear
charactet : LF — Q, isregularif for n € Ngr (L), we have'd = g only if n € LF. We denote by Igg(LF)
the set of regular linear charactersidf. Pute. = (=1) %V Then forg- € Irreg(LF), the virtual
character

X = e RO - X)) = egeal W™ Z §(WF)RE (6™) (6.5.2)
weW
whereg™ := 6'|r,, is an irreducible true character 6f and any irreducible character 6f is obtained
in this way ]. An irreducible character G is thus completely determined by tf -conjugacy class
of a datum [, 6-, ¢) with L anF-stable Levi subgroup dB, 6" € Irre(LF) ande € Irr(Wi)". Characters
associated to triples of the forrh,@", 1) are calledsemisimple
The charactereGeTWR$w(0) are calledDeligne-Lusztig characters

6.6 Fourier transforms

We fix once for all a non-trivial additive charactér : Fy — @; and we denote by, 1 g xg - K
the trace mapg,b) — Trace@b). It is a non-degenerat8-invariant symmetric bilinear form defined
overFg. Let FungF) be theQ,-vector space of all functions — Q,. We define the Fourier transform
¥ : Fun@F) — Fun@F) with respect to'p, x) by

FAO = ) Puxy) F).

yegF

We have also the Deligne-Fourier transfofih : D8(g) — D2(g). Itis defined as follows.

We denote byA! the dfine line overkK. Leth : A — A? be the Artin-Shreier covering defined
by h(t) = t9 —t. Then, sinceh is a Galois covering oA with Galois groupFy , the sheah,(Q,) is a
local system om! on whichF, acts. We denote byy the subsheaf d.(Q,) on whichFq acts asp1.
There exists an isomorphisgy : F*(Ly) — Ly such that for any integdar > 1, we haveXngl) =

¥ o Trace, /z, : Fg — Q; (see [1B, 3.5.4]). Then for a compléxe D2(s) we define

F(K) = (po)i((P2)"(K) ® " (L))[dim g]

whereps, p2 : g X g — g are the two projections. 5 : F*(K) — K is an isomorphism, then it induces a
natural ismorphisnF (¢) : F*(F9(K)) — F3(K). Moreover,

Xrowyr ) = (-1 MF(Xk )-

We will need to compute the characteristic functions of thevprse sheavés‘g(gé), whereOQ anF-
stable adjoint orbit of. It is known that these perverse sheaves are closely refatad character sheaves
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on G [B3] and that the characteristic functions of characteasbe onG give the irreducible characters
of GF [R7]. We thus expect to have a tight connection between theadheristic functions of the sheaves
7'“(@('_)) ong and the irreducible characters®F.

More precisely, letx € OF,and leto andn be the semisimple part and the nilpotent parofPut
L = Cs(xs), and lety be theF-stable irreducible character @, that corresponds to the nilpotent orbi
of [ = Lie (L) via the Springer corresponden&e

Theorem 6.6.1.We have

F(Xres) = e @ MWL ) GWRIR? (6) (6.6.1)

weW
whereR! is the Deligne-Lusztig inductiof [4] ard! : tf, — Q is the character 2> ¥(u(c, 2)).

Remark6.6.2 Note that Formula[(6.5.2) is similar to Formufa (6]6.1).Hows thatF (X ¢;) arises from

the GF-conjugacy class of a tripleL(7', ¢) with ' : 7 — @?,z — Y(u(o, 2) exactly as in the group
setting.

Proof of Theore.lLet x € OF and leto, n be respectively the semisimple part and the nilpotent part
of x. LetL = Cg(c) and letO" be theL-orbit of xin I := Lie (L). ThenO" decomposes as + O\ where

O denotes thé-orbitof nin I. Let 1, : IF — Q, be the characteristic function of i.e., it is the function
that takes the value 1 anand zero elsewhere. Then

X e = k X .
ey = 1o cy

wherex is the usual convolution product on functions, i.é.40)(x) = X, f(y)h(x-y). By @ Proposition
7.1.8], we have

XIC.E = R?(XIC%L) (662)
Hence from the commutation formula of Fourier transformniieligne-Lusztig inductior{[24, Corollary
6.2.17] we have

F(Xrc:) = e @MU RE o F(X ez )
= ege g2@MmE-dmL) R (7_'(10) : 7’ﬁl()(.rc'ak))

We also have:
Xrcs, = QMWL Y F(WPR),(10) (6.6.3)
weW
wheres = %(dim CL(n) —dimT) and % denotes the characteristic function of 0. Note tﬁa‘(lo) is a
Green function in the sense of DeIigne-Luszﬂg [8]. Let usverthe formula3).

Letw : Lyni — Ihi be theL-equivariantisomorphism — u — 1 from the variety of unipotent elements
of L onto the variety of nilpotent elements bfPutCt = w™(Of). By [R7], we haveX, |, = o X1cx,
WhereXSLa, is the unipotent character &f* associated tg’. Hence Formula.3) is obtained from
Formula [6.5]1) via the isomorphism

We now deduce from Formulf (6.5.3) and the commutation ftarja4, Corollary 6.2.17] that

F'Xre ) = ML ) @ (WF)eLer, @2 @M TIR (1di,)

weW

Sinceo is central inl, we deduce that

Fl(Le) - F'(Krez, ) =AML D @ (WF)eper, g2 @MmEIm TR (1),

weW
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From the transitivity property of Deligne-Lusztig indumti [@] and the fact tha&@g(x) = C_(n) we deduce
that:
F(Xrcy) = ece G2 W Z @ (WF)eLer, R} (67)-
weW

The mapW_ — {1, -1}, w > € e, is the sign characterof W,. O

Lemma 6.6.3. The function?g(xjc-a) are G™-invariant (i.e. constant on adjoint orbits) characterstbé
finite abelian grougg®, +).

Proof. The functionsfg(XIC:_)) are clearlyGF-invariant. For an adjoint orbi® of gF, let 1y denotes the
characteristic function a®, i.e., 1o(X) = 1 if x € O and b(x) = O otherwise. Ther?%(1y) is a sum of
linear characters @f and therefore is charactergf. We thus need to see that if we Wr}{e% = Ychcle

as a sum over the adjoint orbits @, thennc € Zso. Let us use the notation introduced in the proof of

Theoren] 6.6]1. Write

Xrey = Lo # Xpepy = 1o % [Z Nc 10) = Z Nc loscr
" c c

where the sum runs over the nilpotéftorbits of (™ (note thatr+C’ is anL"-orbit of IF sinceo is central).
By [P4, Proposition 3.2.24], for a nilpotent adjoint orbfti6, the functionR} (1s.c') is the characteristic
function of theGF -orbit of an element i + C’. By Formula ) we are reduced to see thate Z.o.
We havelL" =~ [];GL, (Fq) for somen;, di € Zo, and SOXIC'aL is a product of functions of the form

XIc'a on gl (Fy ) whereQ; is a nilpotent orbit ofl, (Fq). By [@], the values of the function)SIC-a are
non-negative integers. O

6.7 Generic characters and generic orbits

Let (L, 6", ¢) be a triple as ir§f6.§ with L an F-stable Levi subgroupl € Irreg(LF) andg € Irr (W, )" and
let X be the associated irreducible characteGbf Then we say that th&F-conjugacy class of the pair
(L, ¢) is thetypeof X. Similarly we define théypeof an adjoint orbiO" of g™ as follows. Letx € OF and
let M = Cg(xs) and letCM be theM-orbit of x, € m. Then theGF-conjugacy class of the paiM, CM) is
called the type oDF.

From the pair [, ¢) we definew = (d, w?)(d2, w?) - - - (dr, w") € T, as follows. There exist positive
integersd;, n; such that. ~ []{_; GLy, (Fq)di andLF ~ 1., GLn, (Fg)- TheF-stable irreducible characters
of Wi correspond then to Ir,,) x --- x Irr (S, ) and the later set is in bijection with,, x --- x Py via
Springer corresponden e that sends the trivial character 8, to the partition (T). If g > n, the set of
types of irreducible characters Gf is thus parametrized b,. Under this parameterisation, semisimple
irreducible characters correspond to types of the fatm(L™)) - - - (dr, (1™)) and unipotent characters to
types of the form ().

From the pair 1, CM) we definer = (di, 74)(dp, 72) - - - (d, 7") € T, as follows. There exist positive
integersd;, n such thatM = [1{_; GL, (Fq)® andMF = []{_; GLy(Fg). The Jordan form o€ defines
partitions7?,...,7" of ny,...,n, respectively. Ifq > n, the set of types of adjoint orbits @f is thus
parametrized byl .

Remark6.7.1 Note that ifOF is an orbit ofgF of typew = (di, w?) - - - (d, "), then in the sense ¢f the
G-orbitO is of type

In particular, the two notions coincide if the eigenvalué®are inF.
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Definition 6.7.2. LetOY, ..., Of bekadjoint orbits ofs". We say that the tupleX:, ..., OF) is genericif
(O1,...,0k) is generic in the sense of Definitipn 5]1.1.

Assume that is anF-stable Levi subgroup d& and letz denotes the center of its Lie algebiralVe
say that a linear additive characterzbfis genericif its restriction toZ; is trivial and its restriction taf is
non-trivial for any propef-stable Levi subgrou of G which containd..

Lemma 6.7.3. Let (OF,...,Of) be a generic tuple of adjoint orbits @f . Let (Li, i, ¢;) be a datum
defining the characteTg(XIC ), see Remark 6.8.2. Them'_, (%7, is a generic character oftzfor

any F-stable Levi subgroup M of G which satisfies the follgngéondition: For all i € {1,...,k}, there
exists g GF such that its center ¢ is contained in gLig; .

Proof. We may writer; = F'(1,,) wherec; € z, is the semisimple part of an element@f. Note that
gioig t is in the center ofjlig~* and so it commutes with the elementszf c gilig?, i.e., gioig™* €
Cy(zn) = m. Letze Z,. Then

k k k k
[TEm@ =7 @)e'29) = | | ¥, g'29)) = [ | ¥u@oig ™ 2) = ‘P(u( D goigh, z)].
i=1 i=1 i=1 i=1 i

If z= Ald € z, thenu( Y, gicigt,2) = ATr(3;igioigrt) = 0 by the first genericity condition (see
Definition). Let be anF-stable Levi subgroup such thit ¢ L ¢ G, i.e., such that, ¢ z ¢ z, and
assume thaf[X; (97)l is trivial. There is a decompositidf = V1@ V,a- - -®V, such that ~ P, si(Vh).
Then any elemert € z is a of the form 44.1d, ..., A;.1d) for someAy, ..., A, € K. Sincegioigt € m c |
for all i, we may write}; gio-ig;1 =(Xg, ..., %) €gl(V1)®---dgl(Vy). Since]’[ik=l (%ni)l, is trivial we have
Y ATr(x) =0forallAs,..., 4 € K. Hence Trg) = O foralli = 1,...,r. This contradicts the second
genericity assumption. O

Assume thal is anF-stable Levi subgroup @ and letZ, denotes its center. LEtbe a linear character
of Z. Itis said to begenericif its restriction toZf is trivial and its restriction t&f, is non-trivial for any
F-stable proper Levi subgroud of G such thal. ¢ M. We have the following definition§ [1.3]:

Definition 6.7.4. Let X1, ..., Xx bek-irreducible characters @". For each, let (L;,6;, ¢;) be a datum
definingX;. We say that the tupleXy, . . ., Xk) is genericif [T<, (%6))|z, iS a generic character af, for

any F-stable Levi subgroup of G which satisfies the following condition: For alle {1,...,k}, there
existsg; € G™ such thaZy c giLig™.

Example6.7.5 Letyl,... % bek partitions ofn and denote bR, .. ., R the corresponding unipotent
characters 06" (see beginning of this section). Considdinear charactersy, ..., ayx of Fy. For each,
putX; := (@ o det)- R,. ThenX; is an irreducible character & of same type aR,. Then according to
Definition[6.7.%, the tupleXs, . . ., Xi) is generic if and only if the size of the subgroup offifrgenerated
byp:=a;i---ax equalm.

Assume that chaff;) andq are large enough. Then for anay e (Tn)k, we can always find a generic
tuple (X1, ..., Xk) of irreducible characters @" of typew. The proof of this is similar to the proof of the
existence of generic tuples of conjugacy classes of Gla given type, seﬂ?»].

Definition 6.7.6. We say that an adjoint orbit @f (or an irreducible character &) is splitif the degrees
of its type are all equal to 1.
6.8 Multiplicities in tensor products

Let (X1, ..., Xk) be a generic tuple of irreducible charactersshfof type w and assume that there exists
a generic tuple@?, ..., OF) of adjoint orbits ofg" of same typav = (wi, ..., wk) € (Tn)* (cf, §B.3). For
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i=12....k writew = (d, ) - (dr, ). By Lemma[4.2]1 we have di®} = n? - 3, dj((/.)ij,(/.)ij). As
in Theoren{5.2]2, we pu,, = (2g - 2)n? + 2 + 3, dimO,.

Let® : gF — Q, be given byx — q@7+99mCs( and letA : GF — Q, be given byx > qdmCe(  |f
g = 1, note thatA is the character of the representatiorGif in the group algebr@,[¢"] whereGF acts
ong" by conjugation.

Theorem 6.8.1.We have

q%*q-1)

A o Der =
< ®Xl® ®Xk7 >G |GF|

(007 (Xrey ) ® - 0 F(Xc: ) 1) .
01 Ok Na
Proof. Foreach =1,...,k, let (Li, 6, ¢;) be a datum defining;. Then

GFlABX1® - @ Xy, Der = . ¢PImE0 H[EGEL W™ D @(wF)R?W(ei)(x)]

xeGF weW,;

k

k
(ecer W) D gedmCe) > [ [awFRE, (0)(®)

i=1 xeGF (W, W )EWL, XX W, =1
k k
= > [H eaer, WL |2 (wi F)] D7 qeimC O TTRE (6)(%).
(wy,..., wk)eWle W, \i=1 xeGF i=1

The type of0; is theGF-conjugacy class oﬂ_ﬁ,()iLi) Where()iLi is anF-stable nilpotent orbit of; that
corresponds t@; via Springer’s correspondence. Using Theo.6.1 we magepd as above to get

<® ®F Xz )® - @ F (Xzee ), 1>
o1 O« oF

k
_ |gF|—l Z [1_[ EGELiq%dimOi |WLi|l<,~0i(WiF)] Z qgrhgdlmcs(x) 1_[ Rt (11)(X)

(Wi, Wi )WL, X XW, \i=1 xegF

k
_@rizeno Y [H cce WL 715 (w F)] 2, e l_l R (M.
i=1

(Wi, Wi )EWL X XW, \i=1 xegF

Sinced,,/2 = gr* = n? + 1+ 1 ¥, dimO;, we need to see that:

k

(- 1)Zq9d'mCG<X>HR?(n)(x)—qugd'm°G<x>H e (6)(%).

1
xegF xeGF i=1

Since the functlonﬁzG (&) anng (n.) are constant respectively on conjugacy classes and adjdiits,
we need to verify that fora glven typee Ty

k k

@) [ R mx=a) [ R @X. (6.8.1)

X~w i=1 X~w i=1

wherex ~ w means that th&-conjugacy class ok is of typew. Let (M, C) with M an F-stable Levi
subgroup an€ anF-stable nilpotent orbit ofit such that th&F -conjugacy class of\(, C) corresponds to
w as in§@. Recall thak € g™ is of type (M, C) if there existsy in theGF -orbit of x such thatVl = Cg(ys)
andy, € CF. Similarly, an elemenx € GF is of type (M, C) if there existsy in the GF-orbit of x such that
M = Cg(ys) andy, — 1 € CF whereys, resp.y,, is the semisimple part, resp. the unipotent pary;,. dfut
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(ZM)reg ={Xxe MF |CG(y) =M
(Zm)reg = {X € mF |CG(X) = M}
Then the proof of Formuld (6.8.1) reduces to the proof of dileviing identity:

k
@-1) ) [[R,me+v=0a ﬂ ' (6)(29)

ZE(Zm)reg =1 ZE(ZM)reg i=1

wherev is a fixed element i€F andu = v + 1. By [B][B4] we have:

R, 1)@+ V) = M X heee e, bty Qff, (W mith” 'zh),

RG ()Y = IMFI™ Einecr |zeh, bty QhTwhfl(u) 6 (h~'zh),
WhereQ¥' denotes the Green function of beligne-Luszﬁb [8]. Simkg2) = M, we havelh € GF |z ¢
hty,h™} = {h € GF |hT,,h™t ¢ M}. We thus have:

> ]_[R? (m)(z+V) = Z l_llM 5 QhTWhl(w) > ]_[n.(h zh)

ZE(Zm)reg =L e, hk ZE(Zm)reg i=1

where the first sum runs over the ﬁkzl{h € GF |hT,,h~t c M}. Similarly we have

>, ﬂ  (6)(24) = Z {]‘[m |1th1(u)] >, ]‘[a.(h zh).

ZE(ZM)reg = e, hk ZE(ZM)reg i=1

The inclusionh Ty, h~* ¢ M implies thatZy c hTy,h™* c hLiht. By Lemma[6.7]3, the character

(H!‘:l“i ni)lz, IS & generic character af, and so by the Lie algebra version [13, Proposition 4.Zé¢
proof of , Lemma 6.2.3] we have

k
2, | [mttzh) =axe
26(Zn)feg =1

for some constart® which depends only on tH8"-conjugacy class of1. Similarly, by , Proposition

4.2.1] we have
k
> H&(hflzh) = (4 - 1K,

ZE(ZM )reg -

6.9 Multiplicities and symmetric functions
6.9.1 Definitions

Considerk separate sets;, Xo, . . ., Xk Of infinitely many variables and denote By:= Q(q) ®z A(X1) ®z

-+ ®z A(Xk) the ring of functions separately symmetric in eachxgeko, . . ., Xk with codficients inQ(q)
whereq is an indeterminate. ONA(X;) consider the Hall pairing, ) that makes the sét,(Xi)}cp Of
monomial symmetric functions and the $et(x;)},cp Of complete symmetric functions dual bases. n
put(, ) = [1i({, ). For an infinite set of variable, the transformed Hall-Littlewood symmetric function
Ha(x, a) € A(X) ® Q(q) is defined as

a6 0) = > Roa(@)s/(x)
A

whereK,,(q) = g"WK,,(q71) is the transformed Kostka polynomim34, (7.11)].



46

For a partition, put

q
H, =
wherea, (g) denotes the cardinality of the centralizer of a unipotégnent of Gl,(Fg) with Jordan form

of type [E, IV, (2.7)]. Define theék-points Cauchy function

Q(q) := Z (1_[ Ha(x, CI)]WA(CI)-

AeP \i=1

Given a family of symmetric functions(x, ) € A(x)®zQ(q) indexed by partitions, we extend its definition
to a typew = (dy, w?) - (dr, ") € Tn by Uy(X, Q) := TT[_; U,i(x%, g%) wherex? := {x¢,x,...}. Fora
multitypew = (wq, ..., wk) € (Tn)k, PUtU, := Ug, (X1, 0) - - - Uy (XK, 0) € A.

Recall that’” denotes the dual partition af For a typew = (di, A1) - - - (dr, A;), we denote byy’ the
type @, ) -~ (ck. 4)).

Letw = (w, . .., we) € (Tn) With w; = (d,w!)- - (di,w) and define

Ho(9) := (-1)“X(q - 1)(sw. Log(Q(a))) (6.9.1)

wherer(w) := kn+ 3 | lw!|, and where Log is as if [15[ L3, 2.3].
Note that if the degrea# are all equal to 1, thenw) = 2kn.
We rewrite Formula[(6.9}1) in some special cases:

6.9.2 The split semisimple case

We say thatw € T, is asemisimple typ# it is the type of a semisimple adjoint orbit @f (or equivalently
the type of a semisimple character®f). It is then of the formdy, (1™)) - - - (d;, (1™)). If moreoverw is
split, i.e.,d; = 1 for all i, thena = (ny,...,n;) is a partition ofn and any partition ofi is obtained in this
way from a unigue split semisimple type Bf. Note that for a split semisimple typgewith corresponding
partition A, we haves,, (X) = hy(x).

For a multipartitiond = (A4,..., A) € (Pn)* with corresponding split semisimple multitypee (T,)
we putHsq) := H,(q). Then Formula[(6.9]1) reads

H3X0) = (9 - 1)¢{ha, Log(©(9))) -

Since{h,} and{m,} are dual bases with respect to the Hall pairing, we may recayg) from H3Y0q)
by the formula

Q) = Exp[ Z Ii‘s(i) mA] (6.9.2)

APk T
where Exp is the plethystic exponential which is the inverfseog (see [1p] [1B] for more details).

6.9.3 The nilpotent case

We say that a type € T, is nilpotent if it is the type of a nilpotent adjoint orbit gf (or the type of
a unipotent character @) in which case it is of the fornm = (1, 1) for some partition® of n, and
Su(X) = su(X).
For a multipartitiom = (A1, ..., ) € (Pn)*, we putH’(q) := H,(q), wherew = ((1, 11), . .., (1, A)).
Since the basgs)}.p is auto-dual, we recove(q) from theH'(q) by the formula

Q(q) = Exp[ Z Ii"(i) Si (6.9.3)

Ae(P)k
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6.9.4 The regular semisimple case

We say that a type» € T, is semisimple regular if it is the type of a semisimple regaldjoint orbit
of GF (or the type of an irreducible Deligne-Lusztig charactee @). Then it is of the formw =
(dg,1)---(d;, 1) and sod = (ds, ..., d;) is a partition ofn. In this case, the fonctiog,(x) is the power
symmetric functiorp,(x).

For a multipartitiond with corresponding regular semisimple multitypewe use the notatioH'>%(q)
andr(2) instead oft,,(q) andr(w).

Recall that for any two partitiond i, we have(p(X), p.(X)) = Zidau.

Then we recove2(q) from H'?¥(q) by the formula

-1 r(/l)Hrss
Q(g) = EXF{ Z %m]. (6.9.4)
A(P)k

6.9.5 Multiplicities

Let (X1, ..., X)) be a generic tuple of irreducible characterssdf of typew = (w1, ..., wx) € (Tn)< and
put
Ry, =X1® - ® Xk

Theorem 6.9.1.We have
(A® Ry, Der = Hou(9).

If the irreducible characterXs, . .., Xk are all split semisimple with corresponding multipartitjg <
(Pn)%, thenH,,(q) = (q - 1)h,, Log(Q(q))) by §. Hence in the split semisimple case, this theorem is
exactly [13, Theorem 7.1.1].

Since the main ingredienﬂlli§,4.3] in the proof of , Theorem 7.1.1] is available for apyé
w € Ty, we may follow line by line the proof of [}3, Theorem 7.1.1} farbitrary types (not necessarily
split semisimple) to obtain the formula of Theorgm 6.9.1.

Remark6.9.2 The theorem shows that the multiplicities of generic ir@ble characters depend only on
the types and not on the choices of irreducible characteagydfen type.

7 Poincaré polynomials of quiver varieties and multiplicities

Unless specifie is an arbitrary algebraically closed field.

7.1 Decomposition theorem and Weyl group action

We keep the notation and assumption§feR.
Letn: VL px — V; andf : O px — Op be the canonical projective maps.
By §6.4, we have

(LG,) = 1G5, [ D Af&]
T4 DI+0
for some explicit representatiorify:}: of the relative Weyl groupMu(L,C) = W, (L1,C1) X --- X
W, (Lk, Ci).
With this notation we have

A: = Homy, (|ndw[ﬂ (vc),vX;)
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whereVc = ®i Vc, andy™ is the irreducible character offy associated ta Via the correspondence
At

Theorem 7.1.1.We have

m.(Icy, ) :Q:V&@{ A:® IC:, |. (7.1.1)
o T90,120
fK=C,letp:Qpx — Qz, then
p(IC3,,,) = 1y, @[ D A w] (712)
T4 DI+0

By the above theorem we thus have an actiof\gf(L, C) on the complex. (E@LPZ). This action
induces an action on the hypercohomoltﬁﬁ;\(QL,p,z,]Cémz) = |HL(QL,P,2, k). Forv e Wy (L,C), we
denote by, : p. (ZC3, | ) = p. (ZC3, ) the corresponding automorphism.

;)

Proof. By applying the proper base change to the top square of tigeatia{5.3.2) and Theorepn 5.4.1 we
find that

T, (I_C'

VL,P)_') = I—C. 59

TA0T#0
Assume thalk = C. Since the quotient map; : Vi pyx — QLpx andpz : Vi — @; are smooth

(they are principal PG)-bundle), we haveg,)* (ICFQ;) = ICs,, and (p1)" (ICE@L ox ) = ZCY - Applying
Theore7 and the base change theorem to the bottorresofudiagram 2) we find the required
decomposition fop. O

Recall thatd; denotes the dimension &:. Letr; = (d; — d;)/2. By §@ we have:
Proposition 7.1.2.If K = Fq and if (L, P, £) is defined oveF, , then

Tl (E:VL,P_Z) = E;/;, ® @ A”? ® E&/; (r‘?)]

T40T+0

is defined oveF,. In particular for ve Wiy (L, C), we have

=Xr, + Y, TIA)G Xpg;, (7.1.3)

~(zc ),9 0@
(—’LP»X Y F0 740

wherep : F* (71* (E;,LPX)) =~ 7, (@Q,LP ) is the canonical isomorphism induced by the unique isomor-

)

phisme : F* (I_CV) ~ IC7, .. which induces the identity o, % (I_C%,LP ) with x € V2 . (Fg).

)
We can proceed as iﬂll] to prove the following propositiamf the mixed Hodge module version of
the isomorphismg (7.7.1) and (7]1.2).
Proposition 7.1.3. Assum& = C. Then

IH(VLps, Q) = IHL(%,Q)@[ o, A;®(IHL*Z’*((V;,Q)QOQ(M))], (7.1.4)
140,70

IH(QLps, Q) = IH(Qs. Q) 8| D Ao (IH?(@s Q)®Q(r;))) (7.1.5)
T4, 7#0

are isomorphisms of mixed Hodge structures.
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7.2 Alemma

Assume thak = F,.

Let(©OF,..., OE) be a generic tuple of adjoint orbits of, of typew € (Ty)X. The tuple Q1,...,0k) is
of type o (see Remar.l). However, the eigenvalueS;ahay not be infy. To record this we prefer
the notationV,, rather tharV;. We denote again bly the Frobenius endomorphism 61,.

Lemma 7.2.1. We have

IPGLn(Fq)l - Z Xrcy, (X) = Z Xrcy, (X) = <® ® 7:“'”()([6‘51) ®- - ®7’~gl”(xfc’5k), 1>

s
xeQl, xeVE o

Proof. Let f : V, — @, be the quotient map. Since PRE,) acts freely orV,, it induces an injective
mapVF /PGLy(Fy) — QF,. Since PGL,(Fq) is connected, an¥-stable orbit ofV,, has a rational point.
Hence the above map is also surjective. fAis a principal PGh-bundle we have*(ZCq ) = IC5, and
S0Xrcy, (X) = Xzeo (y) wheneverf (X) = y. We thus deduce the first equality.

By Theore3 we haveCl, =i*ICp =i"(k"®® IG5 m---m ICj ) wherex is the constant
sheaf on Gl and«®% := x® - - - ® « (2g times). Hence fox = (ay, by, ..., ag, by, X1, ..., %) € VI, we
have

X1cs, (%) = Xreg (1) - Xreg (X)-

Forze glf, put
22 = ﬁ{(al, ba,.... ag,bg) € (a1F)%| > [a. bi] = Z}-
i
Hence

Z Xrcs, (X) = Z E(=(X1 + -+ X)) XI(%I(Xl) e XIc;_)k(Xk)

xeV§ (Xer X )EO1 XX O

= (Ex Xrgy #0e% XI(%k)(O)'
By [E, Proposition 3.2.1], we have

lalhl- £(0) = > Fo(F)()

xeglh

for any f € Fun@lf). Since for any two function$, g € Fun@lf,), we havef o (f x g) = F9n(f) - Fn(f),
we deduce that

D Xaes, (9 = Il 3 FHENX) F(Xre )09+ F (X, )(X).
xeVE xegF

B <? PE T (X )@ ®F " (Xrcy ), 1>

oty
We conclude by noticing that (=) = ©, see [1B, Proposition 3.2.2]. O
Proposition 7.2.2. Assume thaX is a reduced to a point and thlt, P, X) is defined oveFy. The variety

Vi px is polynomial count. Moreover, the number of F-staB{®L,-orbits of V| py equals

Vi px(Fg)l
HVL px(Fq)/PGLA(Fq)} = PGLyFq)l
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Proof. The second assertion follows from the fact that R@&.connected and acts freely & px, see
beginning of the proof of Lemma 7.2.1. The variéty px is nonsingular by Theorefn 5.8.5. By Formula
({7.1.3) applied witlv = 1, we have

Xe = Xzcy, + . ([diMA) " X, . (7.2.1)

T4, 7#0
By Grothendieck trace formula we have

D X = HVLp(Fe)).

F
XeVg

By Lemma[7.2]1, Theorefn 6.8.1 and Theoffem $.9.1, we seehibrat exists a rational functic@ € Q(T)
such that for any € Z.q

D Xrey, (9 = Q).

Er
XeVz

By integrating Formulg[(7.3.1) overt, we deduce that
HVLpx(Fq)) = P(d)

for someP € Q(T). SinceP(q") is an integer for alt € Z.o, the rational functior® must be a polynomial
with rational codficients. O

7.3 The split case

Here we assume th&t = C. Let (O, ...,0Ok) be a generic tuple of adjoint orbits gf,(C) of typew. As

in [L3, Appendix 7.1], we may define a finitely generated rirgeasionR of Z and ak-tuple ofR-schemes
(D1, ..., D) such thatd; is a spreading out ad; and such that for any ring homomorphigm R — F
into a finite fieldF,, the tuple(Df(Fq), e DQ"(R)) is a generic tuple of adjoint orbits of,(F,) of typed.

We denote byQ? theFq-schemes obtained fro@; by base change. We first prove the following theorem.

Theorem 7.3.1. The cohomology group 14Q;, C) vanishes if i is odd. For any ring homomorphism
¢ : R— Fqwe have

Pc(Qz.0) = Z Xre

x€Q (Fq) . v
where R(X,q) := 3, dim(IHgi(X, (C)) q.
By RemarK 3.3]3, Theore[n 7.B.1 is a consequence of the fiitptwo results.
Theorem 7.3.2. The varietyQ;; is pure.

Proof. Let £ andv be as in Propositio.4 and letbe generic with respect to. Since the natural
projective mapliz 4(v) — Q; is a resolution of singularities, the grolild.(Qz, C) is a direct sumand of
HL(Mig 4(v), C) as a mixed Hodge structure. It is thus enough to provelihalv) is pure. But the proof of
the purity ofliz ¢(v) is completely similar to the proof 0E|l3, Proposition BP. O

Theorem 7.3.3. There exists a polynomial(®) € Z[t] such that for any ring homomorphispt R — Fq

D, Xicy,, (09 =P@.

xeQ (Fq)

Moreover,

E®(Qa; %, Y) = P(xy).
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Proof. By §[.] and Propositioh 7.2.2, the variet; satisfies the condition of Theordm 3]3.2. Hence

E(Vai VB VD = ), Xic

2 (Fq)
XeB £ (Fq) ©

(X) (7.3.1)

whereB? is theFy-scheme obtained fror;, by base change.

If the adjoint orbitsOs, ..., Ok are semisimple, then the right hand side ref@¥ (Fq)} and so'V; is
polynomial count. Henc&;, is also polynomial count and so we apply Theo.3.1 tolselheorem
holds wheids, . . ., Oy are semisimple.

By Proposition] 7.2]2, the variety, p is also polynomial count whed is reduced to a point.

Hence using the decompositi1.5), we can easily seeduction onr'< @ that the E-polynomial
E(Qa; . ) depends only on the produxy (see proof of Theoreth 3:3.2), i.e., there exists a polynbmia
P € Z[T] such thatE’*(Q;; X, y) = P(xy).

It remains to prove tha®(q) = E(Qs; /G, /0) satisfies the first assertion of Theor.3.3.

By the first equality of Lemmf 7.2.1 anfd (7]3.1), we are reduogorove that

ic(H. - _ 1 ic .
E*(Qa; VO, VO) = —IPGLn(]Fq)|E (Va: v, VA). (7.3.2)

If O1,...,0x are semisimple then bot; and<V; are nonsingular and so by Theorfm 3.3.1 this identity

reads 1
QY (F) = ————H{BE(F
HELED) = oar i e )

and so it is true in this case. By the same argument we also have

E@mxv@V@=ﬁﬁﬁﬁmﬂmaﬁﬁkﬁ)

whenZX is reduced to a point by Theoregm 3]3.1 and Propostion] 7 ehce the identity[(7.3.2) can be

proved by induction orr % & using both [7.1]4) and (7.1.5).
o

We now have the following relation between multiplicitiesdghe betti numbers of quiver varieties.

Theorem 7.3.4.We have
Pc (Qa.0) = ¢/*A ®R;, 1)

where in the notation Rwe readi = w'---w" € T as(l, wl)--- (L ") € T.
Proof. This is a consequence of Theorfm 7.3.1, Lerhmal7.2.1 and @in§®B.]L. m]

By Theoren(6.9]1 we have:

Corollary 7.3.5.
Pe (Qa, O) = d%/?Hj(0).

7.4 The general case
We keep the notation @.3 andsf7.3.
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7.4.1 Preliminaries

We use the notation ¢f-.J.

Let P be a parabolic subgroup of GLL a Levi factor of P and letX = o + C whereC is a
nilpotent orbit of the Lie algebr& of L and whereo is in the centerz. We may assume thdt =
M1 (GLn,, X - X GLy, ) 50 thatM := Ce1,(0) = [Ti_; GLm and Gly, X -+- X GLy, C Gl Then
the nilpotent orbiC may be written as

r
C=[](Cax---xCys)
=1

with Cj; a nilpotent orbit ofl,,. Let7} be the partition ohj; given by the size of the Jordan blocks@f.
Re-ordering if necessary, we may assume that 7'+ for all j,1. Then putrj := t+i7}2...7bs e T,
foreachj=1,...,r.

Consider the mag; : T, x---xTm — TnWhered (71, ..., %) is defined by re-ordering the partitions
in the concatenation of the typeg ”. ., 7,. Similarly we defineg, : Ty, X -+ - X T, — Th.

We denote bys : T — # the map which assigns to a type="r--- 7" € T the partitions* = ST

Consider the following commutative diagram

Ty XX Ty Lr>'T',T\1><---><'T'm —Z > Py X X Py
T > i
where$ is defined as irgfg.q.

LetO be the image of the projectiafy_ps — gl,,. The adjoint orbiO is then of typeff;r oS'(T1,...,7r).
We have (cf§B.1)

r
Wi(L, C) ~ ]_[ W, (7.4.1)
j=1

The fiber ©)~X(71,...,7%) is canonically in bijection with the conjugacy classesj(L,C). Forv €
(9") Y71, ..., %), we denote byr, € Wy (L, C) a representative of the corresponding conjugacy class.

7.4.2 Relations between multiplicities

Let (L, P, X) be given by &-tuple((Ly, P1,X1), ..., (Lk, Pk, Zk)) of triples as irﬁg with%; = o5 + G;, and
let M; = Cg, (7). Put

k
Wh (L, C) := | | Wi (Li, C).
i=1

As in Formula[7:4]1), for eadh= 1,.. .,k there existi1, ..., %i;, € T (defined fromC;) such that
fi
Wiy (Li, C1) = [ | W,
j=1

Then foreachi = 1,....k, (... %, ) € Tnis the typews of O1.

Foreach =1,...,k, pickv; € ($")7* (Fis.. .- Tir) C Th letr; = (i) and putr := (11,72,...,7k) €
(To)kandy := (v1, ..., ).

Puto, = (oy,,...,0,) € Wu(L,C).
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Proposition 7.4.1. Assume that botbhar Fy) and g are large enough such that generic k-tuples of irre-
ducible characters oBLn(Fg) exist in the types which occur below. We have
(A®R.,1)= > Tr (0| Az) (A @ Rs, 1)
12
with
A = Homy, (Indg (Vc), Vya).
In the notation R, we readi = u*u?---u" € T as(L ) --- (L) e T.
a1 a
—— ——— . . .

Proof. LetF =717t oot oot e Ty (with 7 % 7 fori # j), v € §71(F).

By Propositior] 6.2]5, we have

S() = > Tr(oy [Av) 509

pTt
where foru € P,
A = Homs, (Indgn(V,). V,.)
With S := (Sm,)® X - - - X (Sm,)® andmy = |7'|. Sinceo, is in the same conjugacy classWf = W aso,,
we have

s 0= > Tr(oy |Av) .9

paTr

= > Tr(oy [Avy) 80 (0)

uaTr

= (10 Tr(oy |Aw) 809

paTr

wherer(v) is as in Formula[(6.9.1).
Fixi=1,....kandletj := $7}(7i;) so thati = (i, ..., vir)- Thens;(x) = [T, S,;(x;) and so

S/ (xi) = (_1)r(Ti) Z Tr (O-Vi |Avi,1,/11 ® - ® AVLri ’”ri) Sy, CORE Sy, (%))
(1, p) S(T7 -7
=L 3T (o | A) 5009
AL @

We thus have

He(Q) = ) Tr (o | An) Ha ().

jry?)

The result follows from Theorefn 6.9.1.

7.4.3 The main theorem

Consider the quiver variet@, py overC. Letn : Q_pyx — Q; be the canonical map. Fer e Wy (L, C)
put _ _
PY(Qupxia) = Y Tr(w|IHZ(Qpx O)d.
i

We assume that the characteristidigfandq are large enough so that the resultss[gf3 andsfz.4.2
apply.
Consider the notation df7.4.2.
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Theorem 7.4.2.We have
PJ (Qupxd) = 0%/ 2A @R, 1).

Proof. By (7.1.5) we have

PS (@Qupsid) = ) Tr (01 A) PP (@ 0). (7.4.2)
The result follows from Propositidn 7.%.1 and Theotfem §.3.4 o

Corollary 7.4.3. (a) The multiplicit A ® R;, 1) is a polynomial in g with integer cggcients. If moreover
the degrees of the types, . . ., 7« are all equal tol, then the cogcients are positive.
(b) The cogicient of the highest power of g (A ® R;, 1) equalsl.

Proof. From Formula2) we see thRf* (QL px; g) is a polynomial ing which satisfies the properties
mentioned in (a) and (b). Indeed B (| A;) = 1 and if the degrees of thg¢'s are all equal to 1 thes, = 1.
The assertions (a) and (b) are now consequences of Th¢ofehn 7.

m]

Corollary 7.4.4. We have
P (QuLpx; ) = 0%/%He(q).

Fori = 1,...,k letC! be an adjoint orbit ofl,(C) of type i = &, (Fi1,...,7ir,) € Tn such that
the tuple C%,. ..,Cﬁ) is generic. Since the tupl@y, ..., Ok) is assumed to be generic, such a choice is
always possible. Indeed, with the notation§ft4.1, the integersy, ..., m- are the multiplicities of the
eigenvalues of the semisimple parbf an element irO while {n; ;} are the multiplicities of the eigenvalues
of the semisimple part, say of an element of an orb@&* of type f(;r(%l, ...,Tr). Then eachm is a sum
of njwith j = 1,...,s. Lett; € [; be the semisimple part of an elemen'ﬂh It is then easy to see that
if d divides all the multiplicities of the eigenvalues of this for all i = 1,...,k, thend will divide the
multiplicities of all the eigenvalues of the, foralli = 1,...,k.

Putt = (71,...,7«). We have

Corollary 7.4.5.
Pc(QLpx,0) = Pc(Qz,0).

Proof. Follows from Theorerfi 7.3.4 and Theorém 7.4.2.
o

Remark7.4.6 Identify Q_ px with Mtz ¢(v). Then@s is of the formMig(v) = Mye(v). Then it is known
[E] that the two quiver varietie®iz (v) andig ¢(v) are fibres of the same locally trivial fibration (for the
complex topology)t — C, hence have isomorphic intersection cohomology. This mspatible with the
above corollary.

Corollary 7.4.7. We havé A ® R;, 1) # Oif and only ifv € ®(T).

Proof. It follows from Theoren] 7.4]2 thatA ® R, 1) # 0 if and only if @, px iS not empty. BulQ pyx. is
not empty if and only ifV; is not empty. Hence the corollary follows from Proposi. ]

Corollary 7.4.8. If g = 0, thenv is a real root if and only iR, 1) = 1. If g > 1, thenv is always an
imaginary root (in particular the inner produgiA ® R;, 1) never vanishes).
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Proof. Assume thag = 0. By Propositi06, the variety 3. px is reduced to a point (namely
P (QLpx,q) = Tr(o, | Az) = 1) if and only ifv is a real root. The first assertion of the corollary is now
a direct consequence of Theor.4.2. Assumeghatl. Fori = 1,...,k,;andj = 1,...,5,5+1
definemij = Vii,j-11 — Vii,j) (with the convention thatjig) = nandvjis.1 = 0). Then; mij = nand so
the multiset{m'j}jzl ,,,,, s+1 defines a unique partitiod = (1}, ... ,,u'$+1) of n. We now define a dimension
vectorf of I' by the requirement thefy = n, fj j = n— Zlepir. Then &, f) = (2-2g)n - Z!‘zl fiy <0,
and §; j.f) = pij+1 —pil- < 0. Hencéf is in the fundamental set of imaginary r0[17]. Sificean be
obtained fromv by an element in the Weyl group bf(see above Propositi.6), we conclude thiat
always an imaginary root df.

O
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