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GREY SUBSETS OF POLISH SPACES

ITAÏ BEN YAACOV AND JULIEN MELLERAY

Abstract. We develop the basics of an analogue of descriptive set theory for functions on a Polish space
X. We use this to define a version of the small index property in the context of Polish topometric groups,
and show that Polish topometric groups with ample generics have this property. We also extend classical
theorems of Effros and Hausdorff to the topometric context.
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Introduction

Work on this paper initially started as a follow-up to [BBM13], in which we introduced the notion of a
Polish topometric group, and defined a notion of ample generics in that context.

Recall that a Polish metric structure M is a complete, separable metric space (M,d), along with a family
(Ri)i∈I such that each Ri is a uniformly continuous map from some Mni to R. (One may also allow symbols
fj for uniformly continuous functions from Mmj to M . However, any such function is equally well coded by
(x̄, y) 7→ d

(

fj(x̄), y
)

∈ R, so no generality is gained. In particular, a constant, or zero-ary function, c ∈ M ,
is coded by d(·, c).) The automorphism group Aut(M) is made up of all the isometries of (M,d) which
preserve all the relations Ri. When endowed with the pointwise convergence topology τ , Aut(M) is a Polish
group. One can also consider the metric of uniform convergence ∂ defined by

∂(g, h) = sup
{

d(gm, hm) : m ∈ M
}

.

This metric ∂ is complete, bi-invariant, and in general not separable. It also refines τ , and is τ -lower
semi-continuous, i.e., the sets {(g, h) : ∂(g, h) ≤ r} are closed for all r.

With this paradigm in mind, we define a Polish topometric group as any triplet (G, τ, ∂), where (G, τ) is a
Polish group and ∂ possesses the properties cited above. Automorphism groups of Polish metric structures,
and therefore Polish topometric groups, are ubiquitous in analysis. Of particular interest to us are the
unitary group U(ℓ2) of a complex separable infinite-dimensional Hilbert space, the group Aut(λ) of all
measure-preserving isomorphism of a standard probability space, and the isometry group of the Urysohn
space U. The first two structures in that list in particular have natural, and well-studied, topometric
structures: for instance, the topometric structure on U(ℓ2) is given by the strong operator topology and
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the operator norm (since ℓ2 is unbounded, the uniform convergence metric is calculated on its unit ball).
The notion of ample generics for Polish topometric groups involves an interplay between the topological and
metric structures, and it was shown that all three examples above have ample generics. This was applied to
show that Aut([0, 1], λ), endowed with its usual Polish topology, has the automatic continuity property, i.e.,
any group homomorphism with source Aut([0, 1], λ) and taking values in a separable topological group must
be continuous. Soon thereafter Tsankov [Tsa] used the existence of ample generics for U(ℓ2) to show that it,
too, has the automatic continuity property.

Further study of topometric groups, and of ample generics in this context, leads to an interesting phe-
nomenon, or obstacle, namely that results which would, in the usual Polish group context, be about sets,
are naturally formulated in the topometric context as results about functions. The reason behind this phe-
nomenon is that in the presence of a metric, one no longer asks whether two things are equal or not, but rather,
how far apart they are. Thus, for example, where one would consider a set of the form

{

x : f(x) = g(x)
}

,

we often find ourselves considering the function x 7→ d
(

f(x), g(x)
)

(or ∂
(

f(x), g(x)
)

, depending on what
the objects in question are). Similarly, a point x is naturally represented by the function d(x, ·). It is not
always immediately clear, however, how statements should be translated from the context of sets to that of
functions.

In the beginning of this paper we develop the basics of descriptive set theory in that context, where sets
are replaced by grey sets, i.e., functions with values in [0,+∞]. A rule of thumb which every such extension
should satisfy is that, in the particular case of functions only taking the values 0 and +∞, it should just
boil down to the usual statement regarding sets (where a set A is represented by its zero-indicator 0A, see
below). The first (and easy) task is to figure out the analogues of open sets, closed sets, meagre sets, and so
on, after which we extend a few basic results of descriptive set theory to the grey setting. Having thus argued
that such an approach can be made to work, we focus on the case of Polish groups, introducing in particular
a semi-group structure on grey sets. Using this semi-group structure, one can see that the analogue of a
subgroup in our context (i.e, a grey subgroup) is a semi-norm on G, i.e., a map H such that

• H(1) = 0,
• ∀g ∈ G H(g) = H(g−1),
• ∀g, g′ ∈ G H(gg′) ≤ H(g) +H(g′).

Such a function H naturally defines a left-invariant pseudo-metric dH on G, defined by dH(g, h) =
H(g−1h), and the index of H is simply the density character of the metric space obtained when identi-
fying points g, h such that dH(g, h) = 0. A “grey” analogue of the small index property would then be:
whenever H is a left-invariant pseudo-metric on G with density character < 2ℵ0 , H must be continuous with
respect to τ . This version implies immediately the classical version of the small index property, as well as
automatic continuity, and in fact can be shown to be equivalent to the latter. A topometric version thereof
must take ∂ into account (or else be too strong), and one is led to the following statement, which is one of
our main results.

Theorem. Assume that (G, τ, ∂) is a Polish topometric group with ample generics, and that H is a semi-
norm on G which is Baire-measurable with respect to ∂ and has density character < 2ℵ0 . Then H is
continuous with respect to τ .

We say that a topometric group satisfying the conclusion of the above theorem has the small density
property. It is important to note that the above result can also be obtained from one of the main results
of [BBM13] and in that sense is not new. That said, the version presented here implies the said result of
[BBM13] in a trivial manner, and moreover, the “grey approach” renders possible a more streamlined proof.
We therefore contend that the grey approach is a better presentation of the theory.

We then use our techniques to establish a topometric version of a theorem due to Effros, which states
(among other equivalent conditions) that, if G is a Polish group acting continuously on a Polish space X
and x ∈ X has a dense orbit, then Gx is co-meagre if and only if the map g 7→ gx is open from G to Gx.
One of the implications in this theorem is a direct consequence of Hausdorff’s theorem stating that an open,
metrisable image of a Polish space is Polish. After obtaining a topometric version of Hausdorff’s theorem
(Theorem 5.1 below), we establish the following result, the proof of which requires the machinery of grey
sets.
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Theorem. Let (X, τ, ∂) be a Polish topometric space and G a Polish group acting continuously on X by
τ-homeomorphisms and ∂-isometries. Assume that (U)∂<r = {x ∈ X : ∃u ∈ U ∂(x, u) < r} is open in X
for any open subset U of G and any r > 0, and that x ∈ X is such that Gx is dense. Then the following
conditions are equivalent:

(i) Gx
∂

is Gδ.

(ii) Gx
∂

is co-meagre.

(iii) For any open subset U of G and any r > 0, (Ux)∂<r is open in Gx
∂
.

(iv) There exists y ∈ Gx
∂

such that, for any open subset U of G and any r > 0, (Uy)∂<r is open in Gy.

Note that the condition that (U)∂<r is open in X for any open U and any r > 0 is always satisfied
when G is a Polish group and X = Gn equipped with its natural topometric structure; hence, the previous
theorem applies in particular to the case when G acts on Gn by diagonal conjugation. Also, since (Ux)∂<r =
U({x})∂<r, this result is indeed an illustration of the fact that, when moving to the topometric setting,
one replaces the notion of “point” by that of “point up to a small, uniform error”, which is the information
contained in the distance function to the point.

1. Grey sets

We recall that the classical setting for descriptive set theory is that of Polish spaces, i.e., separable
metrisable topological spaces whose topology is induced by a complete metric, or more generally that of
completely metrisable topological spaces. Our aim is to “do some topology”, or descriptive set theory, where
instead of considering subsets of a topological space X we consider functions on X , say valued in [0,∞].

Definition 1.1. By a grey subset of X , denoted A ⊑ X , we mean a function A : X → [0,∞].
If A and B are two grey subsets of X then we say that A ⊑ B if A ≥ B. Consequently, we write

d
Ai

for x 7→ supAi(x), and similarly for
⊔

Ai, A ⊓B, and A ⊔B. We say that A ⊑∗ B (respectively, A =∗ B) if
A(x) ≥ B(x) (respectively, A(x) = B(x)) outside a meagre set.

Notation 1.2. For any set A ⊆ X we define its zero-indicator

0A(x) =

{

0 x ∈ A,

∞ x /∈ A.

An ordinary set A ⊆ X can be viewed as a grey set by identifying it with its zero-indicator.

1.1. Basic topology. We start with some basic topological notions. These reduce fairly easily to the
corresponding notions regarding ordinary sets, via the following notation.

Notation 1.3. Given a function ϕ : X → [−∞,∞] and r ∈ R, we define ϕ<r =
{

x : ϕ(x) < r
}

, and
similarly for ϕ≤r, etc.

Recall that a function ϕ : X → [−∞,∞] on a topological space X is upper (respectively, lower) semi-
continuous if the set ϕ<r (respectively, ϕ>r) is open for all r ∈ R.

Definition 1.4. Let A ⊑ X be a grey set.

(i) We say that A is open (in symbols, A ⊑o X) if it is upper semi-continuous as a function. We say
that it is closed (A ⊑c X) if it is lower semi-continuous, and clopen if it is both, namely continuous.

(ii) We say that A is Gδ if A≤r is a Gδ set for all r.
(iii) We say that A is meagre if A<r is meagre for some r > 0, and that it is co-meagre if A<r is

co-meagre for all r > 0, i.e., if A=0 is co-meagre.

Convention 1.5. When doing arithmetic in [0,∞], let us agree that ∞−∞ = 0. Recall also that t−. s =
max(0, t− s), which we extend by this convention to all t, s ∈ [0,∞].

With this convention, A ⊑∗ B (respectively, A =∗ B) if and only if B −. A (respectively, |A − B|) is
co-meagre.

For example, 0A is open, i.e., upper semi-continuous (respectively, closed, i.e., lower semi-continuous) if
and only if A is open (respectively, closed), 0A ⊑ 0B if and only if A ⊆ B, and so on. For grey sets, we

3



have A ⊑ X if and only if A ⊑ 0X , and if Ai are all open (respectively, closed) then so is
⊔

Ai (respectively,d
Ai).
One may restrict grey subsets to values in [0, 1] (in which case we define 0A(x) = 1 when x /∈ A), or

extend to [−∞,∞]. Since these are isomorphic ordered sets, equipped with the order topology, choosing one
or the other has essentially no effect on most of our results.

Definition 1.6. Let A ⊑ X .

(i) We define A◦, the interior of A to be the least u.s.c. B greater than A.
(ii) We define A, the closure of A to be the greatest l.s.c. B less than A.

One can check that
⊔

{B ⊑o X : B ⊑ A} = A◦ ⊑ A ⊑ A =
l

{B ⊑c X : B ⊒ A},

A◦(x) = lim sup
y→x

A(y), A(x) = lim inf
y→x

A(y),

(A◦)<r = (A<r)
◦, (A)≤r = (A≤r).

It follows immediately that for any family (Ai)i∈I of grey subsets of X , one has
d

i Ai ⊑
d

i Ai and
(
⊔

iAi

)◦
⊒

⊔

i A
◦
i , and similarly A ⊔B = A ⊔B, (A ⊓B)◦ = A◦ ⊓B◦.

Another notion which transfers without much pain to the grey context is Baire measurability. Throughout
the rest of this section, let X denote a completely metrisable topological space (not necessarily separable).
For all the basic facts and theorems of descriptive set theory we use below, we refer the reader to Kechris
[Kec95]. Whenever A,B ⊆ X and A r B is meagre in X we write A ⊆∗ B, and if A ⊆∗ B ⊆∗ A then we
write A =∗ B. A subset A ⊆ X is called Baire-measurable if there exists an open set U such that A =∗ U .
The family of all Baire-measurable sets forms a σ-algebra which contains all open sets and therefore all Borel
sets. We recall:

Fact 1.7 (see [Kec95, Theorem 8.29]). When X is completely metrisable, we define

U(A) =
⋃

{

U open in X : U ⊆∗ A
}

.

This is an open set, it is always the case that A ⊇∗ U(A), and U(A) is the largest open set with this property.
The set A is then Baire-measurable if and only if A =∗ U(A), if and only if A ⊆∗ U(A).

Lemma 1.8. Let A,B ⊑ X be two grey sets. Then A ⊑∗ B if and only if A<r ⊆∗ B≤s for every rational
r < s, if and only if A<r ⊆∗ B<r (A≤r ⊆∗ B≤r) for all r.

Proof. Easy. �1.8

Lemma 1.9. Let A be a grey subset of X, and define

U(A) =
⊔

{

O ⊑o X : O ⊑∗ A
}

.

Then U(A) ⊑∗ A, U(A) is least u.s.c. (namely, ⊑-greatest open grey set) with this property, and the following
are equivalent:

(i) We have A ⊑∗ U(A).
(ii) We have A =∗ U(A).
(iii) There exists an open grey set B such that A =∗ B.
(iv) As a function, A is Baire-measurable.

Proof. We make free use of Fact 1.7 and Lemma 1.8. Let U ′(A) be the open grey set defined by U ′(A)<r =
⋃

s<r U(A<s), and let us show that U ′(A) = U(A). Indeed, for each r we have
⋃

s<r U(A)<s = U(A)<r ⊆∗

A<r, whereby U(A)<r ⊆ U(A<r) and therefore U(A)<r ⊆ U ′(A)<r , i.e., U(A) ⊑ U ′(A). Conversely, we
have U ′(A)<r ⊆ U(A<r) ⊆

∗ A<r, so U ′(A) ⊑∗ A and therefore U ′(A) ⊑ U(A). Thus U(A) = U ′(A) ⊑∗ A,
and it is clearly ⊑-greatest. Now,

(i) =⇒ (ii) =⇒ (iii). Clear.
(iii) =⇒ (iv). If such B exists then B<r =∗ A<r for all r. It follows that A<r is a Baire-measurable set

for all r, i.e., A is a Baire-measurable function.
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(iv) =⇒ (i). Assume that A<r is a Baire-measurable set for all r. Then A<r ⊆∗ U(A<r), and therefore
A<r =

⋃

s<r A<s ⊆
∗
⋃

s<r U(A<s) = U(A)<r. It follows that A ⊑∗ U(A). �1.9

Notice that if A is meagre then inf U(A) > 0. If A is, in addition, Baire-measurable, then by Lemma 1.9
the converse holds as well.

Lemma 1.10. A grey set B ⊑ X is Gδ if and only if there exists a countable family of On ⊑o X such that
B =

d
n On. Moreover, if A and B are open or closed then A+B and A−. B are Gδ.

Proof. Assume that B is Gδ. For each rational r > 0, let B≤r =
d

n Or,n, where Or,n ⊆ X are open, and let
O′

r,n = 0Or,n
+ r ⊑o X . Then B =

d
r,n O

′
r,n. The converse implication is immediate.

For the moreover part, observe that

(A+B)≤r =
⋂

s+t>r

A≤s ∪B≤t, (A−. B)≤r =
⋂

s−. t>r

A≤s ∪B≥t,

and similarly with any of ≤, ≥ replaced with <, >. �1.10

1.2. Relative topology. We now turn to somewhat more involved aspects of grey set topology, which do
not reduce to the corresponding properties of sets.

Lemma 1.11. For any A,B ⊑ X one has A+B ⊒ A+B◦.

Proof. Recall that by Convention 1.5,

t−. s =

{

t− s if s < t,

0 otherwise.

It follows that the grey set A+B −. B◦ is closed, and A+B −. B◦ ≤ A, i.e., A ⊑ A+B −. B◦. Then
A ⊑ A+B −. B◦ and therefore

A+B ⊒ A+B −. B◦ +B◦ ⊒ A+B◦,

as desired. �1.11

Lemma 1.12. For any A ⊑ B ⊑ X, one has (A − B)◦ + B ⊒ A◦, where we recall that by convention
∞−∞ = 0.

Proof. Assume first that A and B are bounded, and let C = B − A + supA. Then the desired inequality
is equivalent to C +A ⊒ C + A◦. For the general case, truncate A and B at some M > 0, and let
M → ∞. �1.12

Next, given A ⊑ B ⊑ X , we want to define when A is open/closed in B, and notions of relative interior
and closure of A in B.

Definition 1.13. For A ⊑ B ⊑ X , we define the relative closure of A in B as AB = A ⊓B. We say that A
is (relatively) closed in B, in symbols A ⊑c B, if A = AB.

Lemma 1.14. Let B ⊑ X.

(i) If C ⊑c X then C ⊓B ⊑c B.
(ii) If (Ai)i∈I is a family of relatively closed grey subsets of B, then

d
i Ai is also closed in B.

(iii) The grey set AB is the ⊑-least relatively closed grey subset of B containing A.

Proof. For the first item, C ⊓ B ⊑ C ⊓B ⊓ B ⊑ C ⊓ B ∩B = C ⊓B. For the second, let D =
d
Ai. Then

D = D ⊓ B ⊑ D ⊓ B ⊑
d
(Ai ⊓ B) = D. For the third item, we have AB ⊑c B by the first item, and if

A ⊑ C ⊑c B then AB ⊑ CB = C. �1.14

Definition 1.15. For A ⊑ B ⊑ X , we say that A is dense in B if AB = B (equivalently, if A ⊒ B, which
is further equivalent to A = B).

Lemma 1.16. For any A ⊑ B ⊑ X, A is dense in B if, and only if, for any open U ⊑ X, we have
inf B + U ≥ inf A+ U .

Proof. Immediately equivalent to A ⊒ B. �1.16
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We turn to the definition of relative interior inside a grey set, which may seem less straightforward than
the definition of relative closure. In particular, it is not obtained from the latter by mere passage to the
complement (indeed, there is no notion of relative complement of a grey subset). We leave it to the reader
to check that for ordinary sets (identified with their zero-indicator functions) this gives the usual notions.
While there are other possible definitions which pass this test, and even verify Lemma 1.18 (possibly with the
exception of the first item), it is this definition which allow us to prove the relative Baire Category Theorem
below.

Definition 1.17. For A ⊑ B ⊑ X , we define the relative interior of A in B as A◦
B =

(

(A−B)◦+B
)

⊓A. We

say that A ⊑ B is (relatively) open in B, in symbols A ⊑o B, if A = A◦
B, or equivalently, if A ⊑ (A−B)◦+B.

Lemma 1.18. Let B ⊑ X.

(i) If A ⊑o X then A+B ⊑o B.
(ii) If (Ai)i∈I is a family of relatively open grey subsets of B, then

⊔

i Ai and A0 ⊓A1 are also open in
B.

(iii) The grey set A◦
B is the ⊑-greatest grey subset of A relatively open in B.

Proof. The first item is immediate from the definitions. For the second, let D =
⊔

Ai. Then (D−B)◦+B ⊒
⊔

(Ai −B)◦ +B ⊒ D. Similarly,
(

(A0 ⊓A1)−B
)◦

+B = (A0 −B)◦ ⊓ (A1 −B)◦ +B =
(

(A0 −B)◦ +B
)

⊓
(

(A1 −B)◦ +B
)

⊒ A0 ⊓ A1.
For the third item, let us check that A◦

B ⊑o B. Indeed,

(A◦
B −B)◦ +B =

[

[(

(A−B)◦ +B
)

⊓A
]

−B
]◦

+B

⊒
[

(A−B)◦ ⊓ (A−B)
]◦

+B

= (A−B)◦ +B ⊒ A◦
B.

Assume now that C ⊑o B and C ⊑ A. Then

A◦
B =

(

(A−B)◦ +B
)

⊓ A ⊒
(

(C −B)◦ +B
)

⊓ C = C.

�1.18

One should be careful, though: for example, A ⊑o B ⊑o C does not imply that A ⊑o C, and A ⊑ B ⊑ C,
A ⊑o C does not imply A ⊑o B.

Lemma 1.19. Assume that A ⊑o B, and let U = (A−B)◦. Then B +U ⊑ A and B +U ⊑o B. Moreover,
B + U is dense in A, and if A is dense in B then B + U is dense in B.

Proof. Clearly B + U ⊑ A, and B + U ⊑o B since U is open. By Lemma 1.11, and since A ⊑o B, we have
B + U ⊒ U◦ +B ⊒ A, so B + U is dense in A, and if A is dense in B then so is B + U . �1.19

Definition 1.20. Let B ⊑ X , and let On ⊑o B for every n ∈ N. Then we say that
d

n On is Gδ in B. If
each On is moreover dense in B then any intermediate grey set

d
On ⊑ A ⊑ B is said to be co-meagre in B.

When B = X (i.e., when B = 0X), this agrees with our previous definitions. More generally,

Lemma 1.21. Let A ⊑ B ⊑ X.

(i) If A is co-meagre in B then B ⊑∗ A (equivalently, A =∗ B).
(ii) When B is open, the converse holds as well.

Proof. Assume first that A is co-meagre in B. By Lemma 1.19 we may assume that A = B +
d
Un, where

each Un is open, B + Un is dense in B, and Un ⊒ Un+1. Fix ε > 0, and consider the ordinary open sets
Vn = (Un)<ε and Wn = (X r Vn)

◦. Since C↾Wn
= C↾Wn

for any grey set C, we have We then have

B↾Wn
= B + Un↾Wn

≥ B + ε↾Wn
= B↾Wn

+ ε.

Thus B and therefore B and A are infinite on Wn. Since Vn ∪Wn is dense in X , the set S =
⋂

(Vn ∪Wn) is
co-meagre. If x ∈ S, then either x ∈ Wn for some n, in which case A(x) = B(x) = ∞, or x ∈ Vn for all n, in
which case Un(x) = 0 for all n and A(x) = B(x) as well, proving the first item.
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For the second, assume that B is open, and that {x ∈ X : A(x) = B(x)} ⊇ S =
⋂

Vn where Vn ⊆ X are
open and dense. Since B is open, B + 0Vn

is dense in B, so B + 0S is co-meagre in B, and a fortiori so is
A. �1.21

We can now (state and) prove the Baire Category Theorem for grey sets. For the proof, one essentially
figures how to prove the classical Baire Category Theorem inside a Gδ subset of a Polish space without first
proving that such a subset is a Polish space itself, and transfers the argument (modulo a reduction based on
Lemma 1.19) to the grey setting.

Theorem 1.22. Assume that (X, d) is a complete metric space and A ⊑ B ⊑ X, where B is Gδ (in X) and
A is co-meagre in B. Then A is dense in B.

Proof. We have B =
d
On with On ⊑o X , and we may assume that A =

d
An where each An is open and

dense in B. By virtue of Lemma 1.19, we may assume that An = B + Un with Un ⊑o X . We may further
assume that On =

d
k≤n Ok and Un =

d
k≤n Uk, in which case A =

d
n On + Un.

To show that A is dense in B, we apply the criterion presented in Lemma 1.16. Indeed, let V ⊑o X , and
it will be enough to show that if inf B + V < r then inf A+ V < r.

Let us now construct by induction a sequence of Vn ⊑o X such that inf Vn + B < r, starting with
V0 = V . Given Vn, and since An is dense in B, we have r > inf An + Vn, so there is xn ∈ X such that
r > (An + Vn)(xn) ≥ (On + Un + Vn)(xn). For some Mn > 0 big enough, define Vn+1 = Vn +Mnd(·, xn),
which is open as well. Then r > (An + Vn)(xn) = (An + Vn+1)(xn) ≥ (B + Vn+1)(xn), and the induction
may continue.

Since On+Un+Vn is open, choosing Mn big enough, we have (On+Un+V )(y) ≤ (On+Un+Vn)(y) < r
whenever d(y, xn) < 2r/Mn. We also observe that d(xn+1, xn) < r/Mn, so choosing Mn+1 > 2Mn, the
sequence {xn} is Cauchy, converging to some y such that d(y, xn) < 2r/Mn for all n. Then (A+ V )(y) < r,
as desired. �1.22

As explained in the introduction, the primary reason why we considered grey sets is that they are useful
in the topometric setting. We refer the reader to [BBM13] for details on topometric spaces and groups. We
simply recall here that a Polish topometric space is a triplet (Y, τ, ∂) such that (Y, τ) is a Polish space, ∂ is a
metric refining τ , and ∂ is τ -lower semi-continuous. We shall follow the convention that in the context of a
topometric space (Y, τ, ∂), the vocabulary of general topology refers to the topology τ , while the vocabulary
of metric spaces refers to ∂ (unless qualified explicitly otherwise).

We now formulate a generalisation of the classical Kuratowski-Ulam Theorem to this context. We consider
a map π : X → Y , where X is a Polish space and Y a topometric space. For A ⊑ X and y ∈ Y we need to
define the fibres of X and of A over y, in a manner which takes into account the topometric structure on Y .

Notation 1.23. Let (X, ∂) be a metric space. For a grey subset A ⊑ X we define the ∂-thickening (A)∂ ⊑ X
as the greatest 1-Lipschitz function lying below A, i.e.,

(A)∂(x) = inf
x′∈X

A(x′) + ∂(x, x′), (A)∂<r = {x : ∃x′ A(x′) + ∂(x, x′) < r}.

When A ⊆ X is an ordinary set, which we identify with its zero-indicator, we obtain (A)∂ = ∂(·, A) and
(A)∂<r = {x : ∂(x,A) < r}.

In particular, A ⊑ (X, ∂) is 1-Lipschitz if and only if A = (A)∂ .

Notation 1.24. Let X be a space, (Y, ∂) a metric space, and π : X → Y a map. For A ⊑ X and y ∈ Y we
define the fibre of A over y, denoted Ay ⊑ A ⊑ X , and the image of A, denoted πA ⊑ Y , by

Ay(x) = A(x) + ∂(πx, y), (πA)(y) = inf
πx=y

A(x).

In particular Xy(x) = ∂(πx, y). Combining the two, (πA)∂ ⊑ Y is the “infimum over the fibre”, namely,

(πA)∂(y) = inf
x
A(x) + ∂(πx, y) = inf

X
Ay.

We remark that if ∂ is the “trivial” 0/∞ distance then we recover the usual definition of the fibre of a set
A ⊆ X over y, namely Ay = A∩π−1y (identifying a set with its zero-indicator). In this case our result below
specialises to the classical Kuratowski-Ulam Theorem (formulated for an open map between Polish spaces
rather than just for a projection).
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Definition 1.25. Let (X, τX) be a topological space, (Y, τY , ∂Y ) a topometric space. We say that a map
π : X → Y is topometrically open if for every open U ⊆ X (equivalently, every U ⊑o X) we have (πU)∂ ⊑o Y ,
i.e., (πU)∂<r ⊆ Y is open for every r > 0.

We say that a topometric space (Y, τ, ∂) is adequate if id : (Y, τ) → (Y, τ, ∂) is topometrically open.

When ∂ is trivial this is the same as being open, and in particular id : (Y, τ) → (Y, τ, ∂) is automatically
topometrically open. In the general case, however, the latter does not always hold. In fact:

Lemma 1.26. Let (X, τ, ∂) be a topometric space. Then the following are equivalent:

(i) X is adequate, i.e., the map id : (X, τ) → (X, τ, ∂) is topometrically open.
(ii) For every 1-Lipschitz A ⊑ X, the closure A is 1-Lipschitz as well.
(iii) Same, with interior instead of closure.

Proof. Easy. �1.26

Theorem 1.27. Let (Y, τ, ∂) be an adequate Polish topometric space, X a Polish space, and π : X → Y a
continuous map (in the topology τ , by our convention). Assume that π : X → Y is topometrically open, as
per Definition 1.25. Then the following conditions are equivalent, for a Baire-measurable A ⊑ X:

(i) The grey set A is co-meagre in X.
(ii) The set {y ∈ Y : Ay is co-meagre in Xy} is co-meagre in Y .

Proof. (i) =⇒ (ii). This easily reduces to the case when A is open dense in X , so we only consider that case.
Clearly, Ay is open in Xy. For U ⊑o X , define

ΩU =
(

π(A + U)
)

∂
− (πU)∂ ⊑ Y, i.e., ΩU (y) = inf(Ay + U)− inf(Xy + U).

By our assumption, ΩU is the difference between two open grey sets, and is therefore Gδ. Consider now any
V ⊑o Y . By assumption (V )∂ is open in Y as well, and so π−1(V )∂ = (V )∂ ◦ π is open in X . Since A is
dense,

inf
Y

(

π(A + U)
)

∂
+ V = inf

X
A+ U + π−1(V )∂ = inf

X
U + π−1(V )∂ = inf

Y
(πU)∂ + V.

Thus
(

π(A + U)
)

∂
is dense in (πU)∂ , and it follows that ΩU is dense in Y . Since X has a countable base,

Ω =
d

U ΩU is co-meagre, and Ω=0 ⊆ {y ∈ Y : Ay is dense in Xy}. Thus the latter is a co-meagre set.
(ii) =⇒ (i). Assume that A is Baire-measurable, satisfies the hypothesis, and yet is not co-meagre, so

U(A) is not dense, and neither is 1
2U(A). In other words, there is V ⊑o X such that inf V < inf V + 1

2U(A),

and we may assume that inf V = 0 < r < inf V + 1
2U(A). Let B = U(A)−. A, which is co-meagre, so by the

implication we have already established, the set C = {y : Ay and By are co-meagre in Xy} is co-meagre. If

y ∈ C then
Ay+By

2 is co-meagre in Xy as well (or, equivalently, Ay +By is co-meagre in 2Xy).
Since (πV )∂ ⊑o Y , we have infC(πV )∂ = infY (πV )∂ = 0. Therefore there exists y ∈ C such that

r > (πV )∂(y) = infX V +Xy. Since Xy is Gδ (being closed),
Ay+By

2 is dense in Xy, so

r > inf
X

V +
Ay+By

2 ≥ inf
X

V + 1
2U(A) > r,

a contradiction. �1.27

Let us mention an immediate application of this theorem.

Proposition 1.28. Let (X, τ, ∂) be an adequate Polish topometric space. Assume that A ⊑ U ⊑ X, where
U is open and A is co-meagre in U . Then (A)∂ is co-meagre in (U)∂ .

In particular, if A ⊑ X is 1-Lipschitz (relative to ∂), then U(A) is also 1-Lipschitz.

Proof. Let B = A − U . Then B is co-meagre in X , which means in particular that it is Baire-measurable.
By Theorem 1.27 applied to id : X → X , the set C = {x ∈ X : Bx is co-meagre in Xx} is co-meagre in X .
For x ∈ C we have

(U)∂(x) = inf Ux = inf U +Xx = inf U +Bx = inf Ax = (A)∂(x).

By Lemma 1.21, (A)∂ is co-meagre in (U)∂ .
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Now, assume that A ⊑ X is 1-Lipschitz, equivalently A = (A)∂ . By definition of U(A) we have U(A) =∗

A ⊓ U(A). By Lemma 1.21, A ⊓ U(A) is co-meagre in U(A) and by the above
(

U(A) ⊓ A
)

∂
is co-meagre in

(

U(A)
)

∂
. By Lemma 1.21 again,

(

U(A)
)

∂
⊑∗

(

U(A) ⊓ A
)

∂
⊑ (A)∂ = A.

By definition of U(A), we obtain
(

U(A)
)

∂
⊑ U(A). Equality ensues, and U(A) is 1-Lipschitz. �1.28

Foregoing the grey terminology, the above proposition says that, if (X, τ, ∂) is a Polish topometric space
such that (U)∂<ε is open for any open U and any ε > 0, and A ⊆ X is co-meagre in some open U ⊆ X , then
(A)∂<r is co-meagre in (U)∂<r for all r. This fact is crucial for the proof of the topometric generalisation of
Effros’ theorem presented at the end of this article, and we do not know how to prove it without using the
machinery of grey sets, in particular the grey version of the Kuratowski–Ulam theorem.

2. Grey subsets of completely metrisable groups

Throughout this section, let G denote a completely metrisable topological group. We now introduce two
operations on grey subsets; the operation ∗ reminds one of convolution.

Definition 2.1. For two grey subsets A,B ⊑ G we define A−1, A ∗B ⊑ G by

A−1(x) = A(x−1), A ∗B(x) = inf
yz=x

A(y) +B(z).

Note that ∗ is associative and has 0{1G} as a neutral element. We observe that for A,B ⊆ G, 0−1
A = 0A−1

and 0A ∗ 0B = 0A·B. Thus, −1 and ∗ extend the group operations of G, applied to subsets, to grey subsets
(and should be thought of as operations on subsets, rather than as operations on group elements). As
expected, we have, for all grey subsets A,B of G, that

(A ∗B)
−1

= B−1 ∗A−1.

By extension, for x ∈ G we define xA = 0{x} ∗ A, namely xA(y) = A(x−1y), so x0A = 0x·A, and similarly
for Ax. We then obtain

A ∗B =
⊔

x

A(x) + xB =
⊔

x

Ax+B(x).(1)

Lemma 2.2. If A ⊑o G and B ⊑ G then A−1 ⊑o G, A ∗B ⊑o G and B ∗A ⊑o G.

Proof. The first assertion is obvious, the others are by (1) above. �2.2

Proposition 2.3 (Pettis Theorem for grey subsets). Let A,B ⊑ G be grey subsets. Then U(A) ∗ U(B) ⊑
A ∗B.

Proof. We first observe that U(A−1) = U(A)−1, U(xA) = xU(A), U(Ax) = U(A)x, by continuity of the
group operations. Let x ∈ G, and let Dx(y) = U(A)(y) + U(B)(y−1x). Then Dx is open, and Dx ⊑∗

A+ xB−1. It follows that inf Dx ≥ inf A+ xB−1, i.e., U(A) ∗ U(B)(x) ≥ A ∗B(x), as desired. �2.3

Lemma 2.4. Let A ⊑ G be a non meagre Baire-measurable grey subset. Then (A ∗A−1)◦(1) = 0.

Proof. Let B = U(A). Since A is Baire-measurable and non meagre, we have inf B = 0, thus B ∗ B−1(1) =
2 inf B = 0. By Proposition 2.3 we have B ∗B−1 ⊑ A ∗A−1, and since B ∗B−1 ⊑o G, we obtain B ∗B−1 ⊑
(A ∗A−1)◦. Thus (A ∗A−1)◦(1) = 0. �2.4

The following is just a translation of the definition of a subgroup as a set to grey sets.

Definition 2.5. A grey subgroup of G is a grey subset H ⊑ G satisfying the following properties:

• infH = 0,
• H ∗H−1 ⊑ H , i.e., H(x) +H(y) ≥ H(xy−1).
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Assume that H is a grey subgroup. It follows that H(1) ≤ infxy=1H(x)+H(y−1) = 2 infH = 0. Applying
this to the second property we get H−1 = 1 ∗ H−1 ⊑ H ∗ H−1 ⊑ H , and therefore H−1 = H = H ∗ H .
Finally, if H ⊑ G is a grey subgroup then so is H , since then infH ≤ infH = 0 and

H(x) +H(y) = lim inf
x′→x,y′→y

H(x′) +H(y′) ≥ lim inf
x′→x,y′→y

H(x′y′−1) = H(xy−1).

The same argument with lim sup works for H◦, with the caveat that infH◦ need not be zero.

Lemma 2.6. Let H ⊑ G be a grey subgroup. Then the following are equivalent:

(i) infH◦ = 0 (equivalently, H◦ is a grey subgroup).
(ii) H is open in G.
(iii) H is clopen in G.

Proof. (i) =⇒ (ii). If H◦ is a grey subgroup then H◦(1) = 0. It follows that H = H ∗H ⊒ H ∗H◦ ⊒ H+0 =
H , so H = H ∗H◦ is open.

(ii) =⇒ (iii). Assume H(x) > r for some x ∈ G and r ∈ R. Then U = H<H(x)−r is open, and if z ∈ U
then H(xz) ≥ H(x)−H(z) > r, so x ∈ xU ⊆ H>r. Thus H is closed as well and therefore clopen.

(iii) =⇒ (i). Since H = H◦. �2.6

Remark 2.7. What we call a grey subgroup of G is usually called a semi-norm on G. For a grey subgroup
H and a left-invariant pseudo-metric d on G (where we allow infinite distance) define

dH(g, h) = H(g−1h), Hd(g) = d(1, g).

Then d 7→ Hd and H 7→ dH are inverses, yielding a natural bijection between grey subgroups and left-
invariant pseudo-metrics on G.

Notice also that H ⊑ G is closed (open) if and only if dH is, and more generally, dH = dH , and if H◦ is a
grey subgroup then d◦H = dH◦ .

Lemma 2.8. Let H ⊑ G be a non meagre Baire-measurable grey subgroup. Then H is clopen.

Proof. By Lemma 2.4, (H ∗H−1)◦(1) = 0, i.e., H◦(1) = 0, so H is clopen by Lemma 2.6. �2.8

In usual terminology, this lemma says that if a semi-norm H on a completely metrisable topological group
G is Baire-measurable and for any ε > 0 the set of g such that H(g) ≤ ε is non meagre, then H must be
continuous.

3. The small density property

Definition 3.1. Let G be a Polish group, H ⊑ G a grey subgroup. Let dH be the corresponding left-
invariant pseudo-metric, as per Remark 2.7. Then we define the index [G : H ] to be the density character
of dH , namely the least cardinal of a dH -dense subset of G.

We observe that if H is an ordinary subgroup then this agrees with the usual definition of index. Here
we are going to be interested in the condition [G : H ] < 2ℵ0 (i.e., “H has small index”). Since the cofinality
of 2ℵ0 is uncountable, the following are equivalent:

(i) [G : H ] < 2ℵ0 .
(ii) For all ε > 0, G can be covered by fewer than continuum many left translates of H<ε.
(iii) For all ε > 0, a family of disjoint left translates of H<ε has cardinal smaller than the continuum.

Proposition 3.2. Let G be a completely metrisable group, and H be a Baire-measurable grey subgroup of
G. Assume also that [G : H ] < 2ℵ0 . Then H is clopen.

Proof. If G is not a perfect topological space then it is discrete and there is nothing to prove, so we assume
that G has no isolated points. In view of Lemma 2.8, it is enough to show that our assumptions imply that
H is not meagre. Assume for a contradiction that there exists r > 0 such that H<r is meagre. Since the
map (x, y) 7→ x−1y is surjective and open from G2 to G, we obtain that {(x, y) : H(x−1y) < r} is meagre in
G2. Then the Kuratowski–Mycielski Theorem implies that there exists a Cantor set K ⊆ G such that, for
any x 6= y ∈ K, one has H(x−1y) ≥ r (see [Kur73] for the general version of this theorem that we use here,
which is valid in any completely metrisable perfect space). This contradicts our assumption on the index of
H , and we are done. �3.2
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Recall from [BBM13] that a Polish topometric group is a triplet (G, τ, ∂), where (G, τ) is a Polish group,
∂ is a bi-invariant metric refining τ and τ -lower semi-continuous. The canonical example one should have in
mind when thinking of this is the isometry group of some Polish metric space (X, d) (or, more generally, the
automorphism group of some Polish metric structure), endowed with the topology of pointwise convergence
and the supremum metric ∂(g, h) = sup{d(gx, hx) : x ∈ X}. Note that any Polish topometric group (G, τ, ∂)
is adequate as a Polish topometric space. Indeed, if U ⊆ G is an open set then

(U)∂<r =
⋃

∂(g,1)<r

gU

is open as well.
We also need the following fact.

Proposition 3.3. Let (G, τ, ∂) be a Polish topometric group. Then ∂ is a complete metric on G.

Proof. Denote by ∂u a metric generating the coarsest bi-invariant uniformity refining τ ; it is well-known that
∂u is complete whenever G is a Polish group. Since the uniformity generated by ∂ must be finer than the one
generated by ∂u, we may assume without loss of generality that ∂ ≥ ∂u. Let (gn) be a ∂-Cauchy sequence
in G. Then (gn) is ∂u-Cauchy in G, hence it must ∂u-converge to some g ∈ G. Pick ε > 0, and let N be
such that for any n,m ≥ N one has ∂(gn, gm) ≤ ε. Fixing n and letting m go to +∞ we obtain, since ∂ is
τ -lower semicontinuous, that ∂(gn, g) ≤ ε for all n ≥ N . �3.3

Definition 3.4. We say that a Polish topometric group (G, τ, ∂) has the small density property if whenever
H ⊑ G is a ∂-Baire-measurable grey subgroup of index < 2ℵ0 then H is open.

Remark 3.5. We do not call this property the small index property, because even when ∂ is the discrete
metric the small density property as defined above is stronger than the usual small index property (which
corresponds to left-invariant ultra-metrics rather than left-invariant metrics).

We recall that a Polish topometric group (G, τ, ∂) admits ample generics if, for any integer n, there exists
ḡ ∈ Gn such that

(

{kḡk−1 : k ∈ G}
)

∂
is co-meagre in Gn (see [BBM13] for a discussion of this definition).

Theorem 3.6. Let (G, τ, ∂) be a Polish topometric group admitting ample generics. Then G has the small
density property.

Proof. Let H ⊑ G be a ∂-Baire-measurable grey subgroup of small index, and let us show that H is clopen.
By Proposition 3.2, H is ∂-clopen.

We recall that

(H)∂(x) = inf
y
H(y) + ∂(x, y) = H ∗ ∂ = ∂ ∗H,

where for H ∗ ∂ we identify ∂ with the corresponding norm ∂(1, ·). Accordingly, we define (H)n∂ with n∂
in place of ∂, observing that (H)n∂ is also a grey subgroup, and (H)n∂ ⊒ H , whereby H ∗ (H)n∂ = (H)n∂ .

Also,
d

n(H)n∂ = H
∂
= H .

By the Kuratowski–Mycielski Theorem, H cannot be meagre, that is, H<ε is not meagre for any ε > 0.
Assume, for a contradiction, that for some ε > 0 the set B = G r

[

(H)∂
]

<ε
is non meagre in every open

subset of G, and let A = H<ε/4. Below, for x ∈ G and C ⊆ G we denote by Cx the set x−1Cx. By
[BBM13, Lemma 3.6] we can find a mapping a ∈ 2ω 7→ ha ∈ G such that if a, b ∈ 2ω are distinct then

∂
(

Aha , Bhb
)

< ε/4, i.e., ∂
(

Ahah
−1

b , B
)

< ε/4. It follows that H(hah
−1
b ) ≥ ε/4 for all a 6= b, so [G : H ] = 2ℵ0 ,

a contradiction.
Thus, for all ε > 0, the set

[

(H)∂
]

<ε
is co-meagre in some non empty open set, so inf U

(

(H)∂
)

= 0. By

Pettis’ Theorem, we have U
(

(H)∂
)

∗ U
(

(H)∂
)

⊑ (H)∂ ∗ (H)∂ = (H)∂ , so inf(H)◦∂ = 0 and (H)∂ is a clopen
grey subgroup. Since (H)∂ ⊒ (H)n∂ ⊒ n(H)∂ , the latter implies (H)◦n∂(1) = 0 for all n, so (H)n∂ is a clopen
grey subgroup for all n. Since H =

d
n(H)n∂ , H is closed. Since H is also non meagre, infH◦ = 0, so H is

clopen. �3.6

Notice that [BBM13, Theorem 4.7] follows from Theorem 3.6 via a straightforward reduction to the case
where the target group is metrisable, giving a more elegant proof than the one appearing there. Conversely,
Theorem 3.6 also follow from a combination of Proposition 3.2 with [BBM13, Theorem 4.7].
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4. A remark concerning grey subgroups of automorphism groups

We conclude our discussion of grey subgroups with a natural situation in which open grey subgroups
arise. We assume that the reader of this section is familiar with the formalism of continuous logic ([BU10,
BBHU08]).

Let M be a metric structure, G = Aut(M). If M is a classical structure then for every member a ∈ M eq,
the stabiliser Ga is an open subgroup, and if M is ℵ0-categorical then every open subgroup is the stabiliser
of some (real or imaginary) element. In the metric case, on the other hand, the stabiliser Ga is usually not
open in G, and again we encounter the need to consider grey subgroups.

Definition 4.1. Let M be a metric structure, G = Aut(M). The (grey) stabiliser of a ∈ M , still denoted
Ga, is defined by Ga(g) = d(a, ga).

The grey stabiliser is, by definition, an open grey subgroup, and the exact stabiliser is Ga,≤0. As in
classical logic (e.g., [AZ86, Theorem 1.6]), the converse holds for ℵ0-categorical structures.

Proposition 4.2. Let M be an ℵ0-categorical separable structure, G = Aut(M), and let H ⊑o G be a
real-valued open grey subgroup (namely, we exclude +∞ from the range). Then there exists an imaginary
a ∈ M eq such that H = Ga.

Proof. We may consider MN as a sort, equipped with the distance

d(b, c) =
∨

n

2−n ∧ d(bn, cn).

We fix a in this sort which enumerates a dense subset of M. By homogeneity, the set of realisations of
p = tp(a) in M is exactly Ga. We observe that {Ga,<ε}ε>0 is a base of neighbourhoods of the identity, so
for every ε > 0 there exists δ(ε) > 0 such that Ga,<δ(ε) < H<ε.

Let ε > 0 and g, g′, h, h′ ∈ G, and assume that d(ga, g′a) and d(ha, h′a) are smaller than δ = δ(ε/2). Then
g−1g′, h−1h′ ∈ Ga,<δ ⊆ H<ε/2, whereby |dH(g, h)− dH(g′, h′)| < ε. Thus the map ϕ : Ga×Ga → R sending
(ga, ha) 7→ dH(g, h) is well defined and uniformly continuous, and thus extends uniquely to a uniformly
continuous function ϕ : Ga × Ga → [0,∞]. By the Ryll-Nardzewski Theorem [BU07, Fact 1.14], since ϕ
is uniformly continuous and invariant by automorphism, it is a definable pseudo-metric on the set defined
by p (and therefore in particular bounded). By [Ben10], and since by ℵ0-categoricity the set defined by p
is definable, ϕ extends to a definable pseudo-metric on all of MN. (To recall the argument, by the Tietze
extension theorem we may extend ϕ to something definable on all of MN ×MN, call it ϕ0(x, y), and then
ϕ1(x, y) = supz�p |ϕ0(x, z)− ϕ0(y, z)| is a definable pseudo-metric which agrees with ϕ on p.) Finally, with
[b] denoting the canonical parameter for ϕ(x, b),

H(g) = dH(g, 1) = ϕ(ga, a) = d
(

[a], [ga]
)

.

Thus H is precisely the grey stabiliser of [a]. �4.2

5. Topometric versions of two classical theorems

A basic but important tool when studying Polish group actions is Effros’ theorem [Eff65]: whenever G is
a Polish group acting continuously on a Polish space X , an element x ∈ X has a co-meagre orbit if and only
if Gx is dense and the map g 7→ gx is an open map from G to Gx. Combined with a theorem of Hausdorff,
this implies immediately that Gx must then be a dense Gδ. In particular, whenever a Polish group has a
co-meagre conjugacy class, this conjugacy class is a dense Gδ. It is of interest to extend these results of
Effros and Hausdorff to the topometric context, which we manage to do below, under the assumption that
our topometric spaces are adequate. In the proof of Theorem 5.2, the attentive reader will notice the crucial
use of Proposition 1.28, which requires the use of grey sets. Even though this proposition seems to be used
in a trivial case, it appears (insofar as we can see) indispensable for the proof.

Let us first recall the notion of a strong Choquet game as well as some facts regarding it. While Kechris
[Kec95] defined the strong Choquet game for a separable metrisable space A working entirely inside A
(denoted X there), for our purposes it will be convenient to embed A is some Polish space X . Then the
strong Choquet game GA is as an infinite game where two players I and II take turns to play. At step i:

• Player I plays an open set Ui contained in Vi−1 (with V−1 = X) and a point xi ∈ Ui ∩ A.
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• Player II plays an open set Vi containing xi and contained in Ui.

Player II wins the game if
⋂

Ui (which is equal to
⋂

Vi) intersects A. By [Kec95, Theorem 8.17], Player II
has a winning strategy in GA if and only if A is Gδ in X (i.e., A is Polish).

When A ⊆ B ⊆ X define a game GA,B which follows the same rules, only that Player II wins if
⋂

Ui

intersects B. Following the proof of [Kec95, Theorem 8.17], Player II has a winning strategy in GA,B if and
only if there exists a Gδ set X such that A ⊆ C ⊆ B.

Theorem 5.1 (Topometric Hausdorff Theorem). Let Y be a Polish space, (X, τ, ∂) be a Polish topometric
space, and F : Y → X be a continuous map. Assume moreover that F : Y → C is topometrically open for

some F (Y ) ⊆ C ⊆ F (Y )
∂
. Then there exists C ⊆ D ⊆ F (Y )

∂
which is Gδ in X.

In particular, under our hypotheses F (Y )
∂

is co-meagre in F (Y )
τ
, and if F : Y → F (Y )

∂
is topometrically

open then F (Y )
∂

is Gδ in X.

Proof. It will suffice to prove that for every ε > 0, II has a winning strategy in GC,B where B =
(

F (Y )
)

∂≤ε
.

We assume without loss of generality that I only plays sequences of open sets with vanishing diameter with
respect to some complete compatible distance on X such that U i ⊆ Vi−1.

The strategy will produce a sequence of open subsets Wi ⊆ Y and II will always play open sets Vi ⊆ Ui

such that C ∩ Vi = C ∩ Ui ∩
(

F (Wi)
)

∂<ε
(and W−1 = Y ). Assume we are at turn i of the game, and I has

just played (Ui, xi), so in particular xi ∈ Vi−1 ⊆
(

F (Wi−1)
)

∂<ε
. Pick yi ∈ Wi−1 such that ∂

(

F (yi), xi

)

< ε,

and choose Wi open, containing yi and such that W i ⊆ Wi−1, arranging that Wi have vanishing diameter
with respect to some complete compatible distance on Y .

Then yi → y and
⋂

Wi = {y} in Y , while xi → x and
⋂

Ui = {x} in X . Since ∂ is τ -lower semicontinuous
we have ∂

(

F (y), x
)

≤ ε, so x ∈ B and we are done. �5.1

Theorem 5.2 (Topometric Effros Theorem). Let (X, τ, ∂) be an adequate Polish topometric space and G a
Polish group acting continuously on X by τ-homeomorphisms and ∂-isometries. Assume that x ∈ X is such
that Gx is dense. Then the following conditions are equivalent:

(i) Gx
∂

is Gδ.

(ii) Gx
∂

is co-meagre.

(iii) The map G → Gx
∂
, g 7→ gx, is topometrically open. For any open subset U of G and any r > 0,

(Ux)<r is open in Gx
∂
.

(iv) There exists y ∈ Gx
∂

such that the map G → Gy, g 7→ gy, is topometrically open.

Proof. (i) =⇒ (ii). Since Gx is dense.
(ii) =⇒ (iii). Let π : G → X send g 7→ gx. Fix a countable basis (On)n<ω for the topology of G. Recall

that a continuous image of a Borel subset of a Polish space is analytic and therefore Baire-measurable.
Therefore, for any n the function (πOn)∂ is Baire-measurable and 1-Lipschitz (relative to ∂). By Proposi-
tion 1.28, Un = U

(

(πOn)∂
)

is also 1-Lipschitz. Let Ω = {y : ∀n(πOn)∂(y) = Un(y)}. This is a τ -co-meagre,
∂-closed subset. Also, for any O ⊑o G, (πO)∂ ⊓ 0Ω ⊑o 0Ω.

Now, let B = {y : ∀∗g ∈ G gy ∈ Ω}. This set is G-invariant, τ -co-meagre, and ∂-closed. The first point is
obvious, the second follows from the Kuratowski-Ulam theorem, and to see why the third holds assume that
bi ∈ B and b ∈ X are such that ∂(bi, b) → 0. Then there exists g ∈ G such that gbi ∈ Ω for all i, so since Ω
is ∂-closed we get gb ∈ Ω, i.e. b ∈ Ω.

It follows that Gx
∂

is contained in B; to conclude, it is enough to prove that for all U ⊑o G (πU)∂⊓0B ⊑o

0B. To that end, let bi ∈ B converge to b ∈ B; there exists g ∈ G such that gb ∈ Ω and gbi ∈ Ω for all i.
Since (πgU)∂ ⊓ 0Ω ⊑o 0Ω, we have lim sup(πgU)∂(gbi) ≤ (πgU)∂(gb), equivalently lim sup(πU)∂(bi) ≤

(πU)∂(b).
(iii) =⇒ (i). By Theorem 5.1.
(iii) =⇒ (iv). Obvious.

(iv) =⇒ (ii). By Theorem 5.1, with C = Gy, the set Gy
∂

is co-meagre in Gy
τ
. Since Gy

∂
= Gx

∂
, we

obtain that Gx
∂

is co-meagre in X . �5.2
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Since any Polish topometric group is adequate as a topometric space, we obtain that in any Polish
topometric group with ample generics the set of metric generic elements is Gδ in Gn for all n. It is natural
to wonder whether (Gx)∂ being co-meagre is also equivalent to (Ux)∂ being open in (Gx)∂ for all U open in
G. While one implication follows immediately from the above result, further development of “grey topology”
is probably necessary in order to prove (or refute) the other.
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