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General approach of spatiotemporal modulational instability processes

P. Béjot∗, B. Kibler, E. Hertz, B. Lavorel, and O. Faucher
Laboratoire Interdisciplinaire Carnot de Bourgogne,

UMR 5209 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France∗

In this paper, we derive the general exact solution of the modulation instability gain. The solution
described here is valid for 1D, 2D, and 3D cases considering any temporal response function of the
medium and with possible higher order Kerr nonlinearities. In particular, we show that the gain
induced by modulation instability is initial conditions dependent while the usual calculations do
not lead to such a dependence. Applications for current and high interest nonlinear propagation
problems, such as 1D optical fiber propagation with delayed Raman response and 2D filamentation
in gases, are investigated in details. More specifically, we demonstrate that the new 2D model of
filamentation based on the balance between higher order Kerr terms leads to a new modulation
instability window. The impact of both self-steepening and space-time defocusing effects is also
highlighted. Finally, we discuss the influence of the finite time response of the different order
electronic Kerr effects on the growth of the expected modulation instability bands.

PACS numbers: 42.65.Ky, 42.65.Sf, 42.81.Dp

INTRODUCTION

From the 1960s till today, the modulation instability
(MI) process has still remained the subject of numer-
ous experimental and numerical studies in transparent
materials [1–6]. When a quasi-continuous wave prop-
agates through a nonlinear medium, it can experience,
in appropriate phase-matching conditions, spatiotempo-
ral instabilities that manifest themselves by the expo-
nential growth of weak perturbations. More specifi-
cally, MI results from the interplay between linear ef-
fects, such as group velocity dispersion (GVD) or diffrac-
tion, and the Kerr induced nonlinearity. For instance,
in optical waveguides, if the focusing (defocusing) non-
linear medium exhibits anomalous (normal) dispersion
at the pump frequency ω0, because processes such as
ω0 + ω0 → (ω0 + ω) + (ω0 − ω) can be nonlinearly phase
matched, spectral bands spontaneously grow symmetri-
cally with respect to the input wave frequency even in
absence of any seed. However, both higher order disper-
sion and birefringence characteristics can strongly impact
on the existence of new windows of scalar and vectorial
MI effects [7, 8]. Similarly, MI can also appear in the spa-
tial domain due to the balance between diffraction and
Kerr effect. For instance, it has been shown that multi-
filamentation [10], i.e., the splitting of an ultrashort ultra
high power laser into several distinct structures is a direct
manifestation of spatial MI. On the other hand, recent
experiments have been able to determine the higher non-
linear refractive indices of gases such as argon, nitrogen,
or oxygen [11]. These higher nonlinear indices manifest
themselves at high intensity by the cancelation and even
a sign reversal of the global nonlinear refractive index of
the considered gases. These measurements are of par-
ticular importance for the understanding of pulse prop-
agation dynamics since it has been demonstrated that,
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in some conditions, these indices are responsible for the
collapse saturation during the filamentation process [12].
The scope of this paper is then twofold. In the first sec-
tion, we theoretically study the stability of the nonlinear
Schrödinger equation and derive the exact solution for
MI. This solution is valid for 1D, 2D, and 3D propagation
cases and is established with potential higher order Kerr
terms and non-instantaneous temporal responses. The
master equation derived here can hence describe any sit-
uation of scalar MI. To the best of our knowledge, it is the
first time that such an exact solution is derived. More-
over, conversely to usual derivation of MI gain, we show
that the gain bands are strongly dependent on the initial
noise conditions. In the second section, we apply this
new analytical basis to investigate in details the MI pro-
cess for different configurations and materials. First, ac-
cording to the recent measurements of higher order Kerr
terms of some gases, we demonstrate the existence of a
new 2D MI regime directly induced by these new nonlin-
ear indices. Indeed, on-axis MI can occur in the normal
dispersion regime when the global nonlinear refractive in-
dex becomes negative at very high intensities. Moreover,
we analyze how the self-steepening and space-time defo-
cusing terms modify the MI bands. Secondly, we show
that the master equation gives also the exact solution of
MI in optical fibers when delayed Raman effect is taken
into account. In particular, we predict possible complex
configurations of MI gain bands using the widely used
waveguide category of photonic crystal fibers. Finally, we
study the influence of the electronic finite time response
on the MI. In particular, we demonstrate that the time
response of the Kerr induced nonlinear index has to be
relevantly evaluated in order to accurately describe the
MI bands growth.
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I. MODULATIONAL INSTABILITY ANALYSIS

In this section, we consider a linearly polarized (along
a vector u) electric field propagating in a transparent
centro-symetric medium. The electric field can be writ-
ten as

E(−→r , z, t) = (ε(−→r , z, t)eik0z−iω0t + c.c.)u (1)

where c.c. denotes complex conjugation, ε is the slowly
varying envelope, −→r is the transverse direction, and k0
is the wavevector at the associated pulsation ω0.

In the frame propagating at the pump frequency group
velocity vg = 1/k(1) and neglecting harmonic generation,
ε verifies

∂zε =
i

2k0
T−1△⊥ε+ i

∑
n≥2

k(n)

n!
(i∂t)

nε+ iTk0∆nε (2)

where k(n) = ∂nk
∂ωn |ω0 is the nth-order dispersion coef-

ficient of the medium evaluated at ω0 and ∆n is the
nonlinear refractive index. △⊥ = ∂2

∂x2 + ∂2

∂y2 in 3D or

△⊥ = ∂2

∂r2 + 1
r

∂
∂r in 2D denotes the transverse Lapla-

cian. Assuming that the medium is transparent, ∆n
can be written as ∆n =

∑
j≥1 n2jR2j(t) ⋆ |ε|2j where

⋆ accounts for convolution [13]. Depending on the
considered medium, one can consider only n2 (for in-
stance, for propagation in fiber) or a full development
up to n10 (as shown in [12]). R2j(t) account for the
(2j+1)th order temporal response function of the medium
which are all real and verify

∫∞
−∞ R2j(t)dt = 1 and

R2j(t < 0) = 0. R2(t) can take into account both elec-
tronic induced nonlinear response (generally admitted
as instantaneous) and vibrational or rotational response.
For instance, for silica fiber propagation problems, one
generally takes R2(t) = (1 − fr)δ(t) + frH(t) with
H(t) = faha(t) + fbhb(t), where δ is the Dirac function,
ha = τ1(τ

−2
1 + τ−2

2 )e−t/τ2 sin(t/τ1), hb = 2τb−t
τb

e−t/τb ,
fr = 0.18, fa = 0.79, fb = 0.21, τ1 = 12.2 fs, τ2 = 32
fs, τb = 96 fs and n2j (j > 1)=0 [14]. In air propaga-
tion problem, one takes R2(t) = (1 − fr)δ(t) + frH(t)
where H(t) = τ1(τ

−2
1 + τ−2

2 )e−t/τ2 sin(t/τ1), fr = 0.5,
τ1 = 62.5 fs, τ2 = 70 fs with the higher order nonlinear
indices n2j measured recently in [11]. In both cases, the
electronic nonlinear response is considered as instanta-
neous. Finally, T = 1+ ik(1)

k0
∂t (resp., T−1 = 1− ik(1)

k0
∂t)

accounts for self-steepening (resp., for space-time defo-
cusing). Equation 2 allows to describe the propagation
of electric field up to the single-cycle limit [15].

The steady state solution (i.e., considering a
monochromatic plane wave) of Eq. 2 can be expressed as

ε(z) =
√
I0e

ik0Dnz, (3)

with Dn =
∑

j≥1 n2jI
j
0 and I0 the incident intensity.

The stability of the continuous-wave steady state so-
lution of Eq. 2 is examined by studying the evolution of

the system in presence of a small complex perturbation
a(r, t)

ε(z) =
(√

I0 + a(r, t)
)
eik0Dnz, (4)

with |a(r, t)|2 << I0. Substituting Eq. 4 into Eq. 2 and
linearizing, we find the equation describing the evolution
of a(r, t)

∂za(r, t) =T−1 i

2k0
△⊥a(r, t) + i

∑
n≥2

k(n)

n!
(i∂t)

n

 a(r, t)

+ iTk0I0n2eff (t) ⋆ (a(r, t) + a∗(r, t)) ,

where

n2eff (t) =
∑
j≥1

jR2j(t)n2jI
j−1
0 . (5)

If one considers a cylindrical symmetry around
the propagation axis and considering that a(r, t) =

H
(∫∞

−∞ ã(k⊥, ω)e
−iωtdω

)
, where H is the Hankel trans-

form defined as H(f)(r) =
∫∞
0

k⊥J0(k⊥r)f(k⊥)dk⊥ with
J0 the zeroth order Bessel function, one obtains the prop-
agation equation for ã(k⊥, ω)

∂zã(k⊥, ω) = −i

 k2⊥
2k0

(1− k(1)

k0
ω)−

∑
n≥2

k(n)

n!
ωn

 ã(k⊥, ω)

+ ik0(1 +
k(1)

k0
ω)I0n2eff (ω) (ã(k⊥, ω) + ã∗(−k⊥,−ω)) ,

(6)

where n2eff (ω) =
∫∞
−∞ n2eff (t)e

iωtdt.
Writing the equation propagation for ã∗(−k⊥,−ω), us-

ing the fact that n2eff (ω) = n∗
2eff

(−ω) (since all R2j(t)
are real) and defining u = ã(k⊥, ω) + ã∗(−k⊥,−ω) and
v = ã(k⊥, ω) − ã∗(−k⊥,−ω), u and v then satisfy the
following partial differential equations system

∂u

∂z
= i(D−u+ (D+ + S)v) (7)

∂v

∂z
= i [(D+ +N)u+D−v] ,

where

D+ = − k2⊥
2k0

+
∑
n≥1

k(2n)

(2n)!
ω2n,

N = 2k0I0n2eff (ω),

D− =
k2⊥k

(1)

2k20
ω +

∑
n≥1

k(2n+1)

(2n+ 1)!
ω2n+1,

S = 2k(1)ωI0n2eff .
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Defining K =
√
−D+(D+ +N)− S2

4 and Φ(z) =

(D− + S/2)z, the two solutions of Eq. 7 are

u(z) =
eiΦ(z)

2
×(

u0 cosh(Kz) + i
D+v0 +

S
2 u0

K
sinh(Kz)

)

v(z) =
eiΦ(z)

2
×(

v0 cosh(Kz) + i
(D+ +N)u0 − S

2 v0

K
sinh(Kz)

)
,

where u0(k⊥, ω) = u(k⊥, ω, z = 0) and v0(k⊥, ω) =
v(k⊥, ω, z = 0). Finally, the evolution of the perturba-
tion ã(k⊥, ω) can be expressed as

ã(k⊥, ω) = eiΦ(z)

(
ã0 cosh(Kz) + i

Ã0

K
sinh(Kz)

)
,

(8)
where Ã0 = (D+ã0 + N

2 (ã0 + ã0
♯) + S

2 ã0
♯, with

ã0 = ã(k⊥, ω, z = 0) and ã0
♯ = ã∗(−k⊥,−ω, z = 0).

In the following numerical simulations, ã0 is
the initial noise spectrum calculated as ã0 =

H
(∫∞

−∞ a(r, t, z = 0)eiωtdt
)

while ã0
♯ is calculated as

ã0
♯ = H

(∫∞
−∞ a∗(r, t, z = 0)eiωtdt

)
.

The evolution of the spatio-temporal noise is then gov-
ern by Eq. 8. In particular, MI occurs when Re(K) > 0,
i.e., when D+(D+ + N) + S2

4 < 0, roughly leading to
an exponential growth of a. More precisely, MI occurs
if −N−

√
N2−S2

2 < D+ < −N+
√
N2−S2

2 . Equation 8 is a
general solution of MI in any nonlinear medium which
can present a delayed nonlinear response and higher or-
der nonlinear Kerr terms. However, one has to emphasize
that this equation can be extended to a 3D model by re-
placing k2⊥ by k2x+k2y and considering a 2D spatial Fourier
transform instead of an Hankel transform. Moreover, the
1D case (i.e., for fiber propagation issues) is obtained by
setting k⊥ = 0. To the best of our knowledge, it is the
first time that the exact solution of the evolution of the
noise is derived. One generally uses an ansatz function
for a [8, 19–23]. Using such a method does not allow to
retrieve the exact solution for the evolution of a. Instead,
one can only evaluate a gain (which does not intrinsically
depend on the initial seeding). The fact that the growth
is dependent on the initial noise could play a role in rogue
wave generation [16]. Moreover, considering the initial
conditions dependence of Eq. 8 at a fixed ω, the maxi-
mal gain is dependent on the spatial gradient of both ã0
and ã0

♯. Consequently, it explains why multifilamenta-
tion occurs in the region of strong noise gradient. Since
we have neglected the nonlinear terms with respect to a,

the only limit of validity of this model is potential cas-
cading phenomena which can occur when |a|2 becomes
non-negligible.

II. RESULTS AND DISCUSSION

A. 2D analysis

In this section, we consider the propagation in Argon
of a cylindrical pump beam in order to investigate the im-
pact of its higher order Kerr coefficients which have been
recently measured up to n10 [11]. Moreover, we assume
here that all the nonlinear responses are instantaneous,
i.e., R2j(t) = δ(t) ∀j. Figure 1 shows the comparison
between the integration of Eq. 2 and the results ob-
tained from Eq. 8 for two different regimes in argon at
atmospheric pressure and in a normal dispersion regime.
As demonstrated in [12], Eq. 2 can accurately describe
the propagation of filaments providing that the plasma
contribution stays negligible. The numerical simulations
were performed by starting from a CW pump with a su-
perimposed small noise (with a random spectral phase
added to each frequency bin) as a seed for the MI. Since in
real experiments, the perturbations have their maximum
intensity at the laser central frequency, in the frequency
domain, and at the center of the pulse, in the spatial do-
main, we have also checked that using a noise with an
amplitude presenting a gaussian distribution centered on
the pump frequency in both spectral and spatial domain
does not affect qualitatively the MI bands. We clearly
note the excellent quantitative agreement between ana-
lytical and numerical results, thus confirming the validity
of our calculations. It is worth mentioning that calcula-
tions using an ansatz would only allow to retrieve the
envelope of the gain but not its fine structure.

Figure 1(a) (resp., (b)) displays the analytical (resp.,
the numerical) MI gain bands for a 20 TW.cm−2 pump
propagating trough 1 m of Argon at atmospheric pres-
sure. At low intensities (n2eff > 0), the gain displays a X
pattern in the (k⊥, ω) space. Neglecting higher order dis-
persion coefficients, four-wave mixing (FWM) processes
ω0 + ω0 → (ω0 + ω) + (ω0 − ω) are phase matched if
the condition N−

√
N2−S2

2 ≤ k2
⊥

2k0
−k(2)ω2 ≤ N+

√
N2−S2

2 is
respected. At the pump frequency (ω = 0) and consid-
ering the temporal response of the medium as instanta-
neous, instabilities are maximal for k2⊥max

= 2k20I0n2eff .
This instability can then lead to the pulse break-up and
consequently to multi-filamentation. Moreover, one can
associate to this instability a power P = πI0/k

2
⊥max

=

λ2
0/(8πn2eff ) which corresponds to the widely-studied

critical power. Neglecting the higher order Kerr terms,
if a pulse carries a power above P , then it will lead to a
self-similar blowup singularity of Eq. 2 and to the pulse
collapse [1].

For other frequencies, instabilities are maximal for
k2⊥max

= 2k0

(∑
n≥1

k(2n)

(2n)!ω
2n + k0I0n2eff

)
. Figure 2
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compares the emission angle θ(ω)=k⊥max/k(ω) obtained
with our calculations with those experimentally mea-
sured in the visible [24] and in the infrared [25]. Even if
MI calculations are intrinsically done with a continuous
plane wave with an infinite spatial extension (which does
not correspond to filamentation of ultrashort pulses), MI
calculations accurately reproduce the conical emission in-
duced during the filamentation. The good agreement be-
tween our calculations and the angles measured experi-
mentally consequently confirms that conical emission is
indeed generated by off-axis four waves mixing (4WM)
during filamentation when n2eff >0.

The situation significantly changes at higher intensity
when n2eff < 0. In particular, the X pattern completely
disappears but a new mechanism of MI still occurs. As
stated beforehand, MI occurs as soon as the condition
D+(D+ + N) + S2

4 > 0 is respected. This condition is
equivalent to

n− < n2eff (ω)I0 < n+, (9)

with

n− = −
k0D+

(
2− k(1)2ω2

2k2
0

)
k(1)2ω2

,

n+ = −D+

2k0
.

More particularly, Fig. 3 displays the frequency range
where on-axis (k⊥=0) MI is possible. When I0 lies in the
range 23.5-31.9 TW.cm−2, on-axis MI occurs. At higher
intensity, ∀ (k⊥, ω), n2eff I0<n−, meaning that no phase
matching and consequently, no MI can occur.

As a result, one can distinguish two cases. At mod-
erate intensities (30 TW.cm−2, Figs. 1(c,d)) such that
n− < n2eff I0 < n+, strong on-axis MI is observed. For
higher input intensities (40 TW.cm−2, Figs.1(e-f)), the
gain drastically decreases since the phase matching con-
dition is not fulfilled anymore.

One has to note that Théberge et al. [25] have observed
on-axis infrared emission which cannot be explained by
off-axis 4WM processes. The MI calculations show that
such type of on-axis emission appears as soon as n2eff<0.

One should emphasize that the general solution can be
used to enhance or reduce the gain at specific frequen-
cies by adjusting the phase and amplitude of the initial
seeding. Figure 4 displays the MI gain bands for a pump
intensity of 30 TW.cm−2 when ã0 and ã0

♯ are in phase
(red) and out of phase (blue). By adjusting their relative
phase, the gain can be enhanced or reduced, the latter
being maximal (resp., minimal) when ã0 and ã0

♯ are in
phase (resp., out of phase).

We have shown above that the higher order Kerr terms
lead to on-axis MI in the normal dispersion regime. In
this paragraph, we study the influence of self-steepening
(SS) and space-time defocusing (STD) on the MI band
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Figure 1. Color Online. Analytical (a) (resp., (c) and (e)) and
numerical (b) (resp., (d) and (f)) MI gain (dB) after propaga-
tion of a 20 TW.cm−2 (resp., 30 TW.cm−2 and 40 TW.cm−2)
pump trough 1 m in argon when taking into account both self-
steepening and space-time defocusing.
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growth. The effect of these terms has already been dis-
cussed in [26]. However, our general expression obtained
in section I allows us to better capture the MI dynamics.
To perform this study, we have removed the contributions
of these two terms (by setting k(1) = 0) from the analyt-
ical and the numerical calculations and we have repeated
the same calculations than in the previous section. In
Figs. 5(a-b), the intensity of the pump is 20 TW.cm−2 so
that n2eff > 0. In that condition, neglecting both SS and
STD does not lead to significant change of the MI bands.
Only a slight deviation of the emission pattern can be no-
ticed at frequencies far from the frequency pump. In the
intermediate regime shown in Figs. 5(c-d), both shape
and value of the gain change. In particular, neglecting
SS and STD leads to a dramatic over-estimation of the
MI. This is due to the fact that the coupling between the
pump and the MI bands is over-estimated if one neglects
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Figure 5. Color Online. Comparison between numerical and
analytical calculations of the gain (dB) in the (k⊥, ω) space
when neglecting both self-steepening and space-time defocus-
ing. (a,b) Gain induced by a 20 TW.cm−2 pump (n2eff > 0),
(c,d) gain induced by a 30 TW.cm−2 pump (n2eff < 0) and
(e,f) gain induced by a 40 TW.cm−2 pump (n2eff << 0) after
1 m propagation.

SS and STD far from the frequency pump. Hence, with-
out SS and STD, the maximal gain is obtained at ω=0
and ω=2ω0 while the full calculation gives the frequen-
cies of maximal gain are ω=0.3 ω0 and ω=1.7 ω0 (see
Fig. 4). At higher intensities, Figs. 5(e,f), the MI gain
bands are dramatically over-estimated.

It results from Figs. 5(e,f) that neglecting both SS
and STD suppresses the regime where MI is annihilated
(high intensity regime). When neglecting both SS and
STD, the condition which has to be respected for the MI
to occur is reduced to

n2eff (ω)I0 < n+. (10)

When the intensity increases, this condition is always
respected which leads to MI as shown in Fig. 6.
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Figure 6. Color Online. Diagram displaying the spectral
region where on-axis MI occurs (grey region) when neglect-
ing both SS and STD. This region is below n+ (black line).
The lines displayed n2eff I0 with I0=20TW.cm−2 (red solid),
30TW.cm−2 (dashed green), and 40TW.cm−2 (dotted-dash
violet) assuming the Kerr response as instantaneous, i.e.,
n2eff (ω)=n2eff ∀ ω.

B. 1D analysis in presence of Raman induced
delayed nonlinear response

In order to underline the generality of the solution de-
rived in section 1, we calculated analytical and numerical
solutions of the MI gain induced in a single mode fiber
(SMF) in presence of vibrational Raman nonlinearity.
We considered the propagation of a 1550 nm 5 GW.cm−2

continuous wave in a 15 cm-long standard SMF (anoma-
lous dispersion k(2) = −2.1 10−26 s2.m−1 and positive
nonlinear index n2 = 2.6 10−20 m2.W−1) when vibra-
tional Raman effect is taken into account. Figure 7(a)
displays both analytical and numerical MI-Raman gain
bands. Since the general solution here takes into account
the contributions of both real and imaginary parts of
the Raman effect, the global gain is no more symmet-
ric with respect to the pump frequency, with an am-
plification (resp., absorption) at longer (resp., shorter)
wavelengths. We confirm again the excellent quantita-
tive agreement between analytical and numerical results
by showing in Fig.7(b) that the relative error is less than
1%. The slight discrepancies are mainly due to the fi-
nite propagation step used during the split-step Fourier
numerical simulation. The combined action of paramet-
ric and Raman effects was already discussed in the early
work of Shen and Bloembergen [17] and later the result-
ing global (parametric-raman) gain was widely investi-
gated in the context of optical fibers [18, 19, 21, 22].
With our general solution, the results obtained in these
works can be retrieved only by calculating the parame-
ter K. However, the gain evaluated with the help of an
ansatz function (as shown in Fig. 7(a)) is only a rough es-
timation of the real gain, in particular around the pump

frequency. Moreover, calculating K cannot describe the
asymmetry induced by the imaginary part of the Raman
response function. When the MI gain bands do not over-
lap the Raman bands, positive gain is expected in the
anti-Stokes band when simply evaluating K, while this
part of the spectrum actually undergoes losses as it can
be noticed in Fig. 7(a).
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Figure 7. Color Online. (a) Analytical (red dots) and nu-
merical (solid blue line) MI gain bands calculated after 15 cm
propagation in a SMF fiber with a pump of 5 GW.cm−2 in
presence of a delayed Raman nonlinearity. The black dashed
line represents the gain calculated using an ansatz function.
(b) Relative error between numerical and analytical calcula-
tions.

Nowadays, fiber dispersion properties can be engi-
neered to a very high degree, thus allowing phase-
matching induced by higher order dispersion for ultra-
broadband wavelength conversion [27]. For instance, the
fourth-order dispersion can induce additional scalar MI
bands in the normal dispersion regime [7]. It has been
shown that in presence of negative fourth order dispersion
near zero dispersion frequency, MI bands can grow up
even by pumping in the normal dispersion regime. Conse-
quently, by pumping in the anomalous dispersion regime,
it is then possible to observe two pairs of MI sidebands
[23]. We consider here this possible complex configura-
tion of the MI process using the waveguide category of
photonic crystal fibers (PCF). Figure 8 compares the an-
alytical and numerical gain bands obtained by pumping
a photonic crystal fiber which exhibits a low anomalous
dispersion between its two zero dispersion wavelengths.
Both linear and nonlinear fiber properties can be found
in [28]. We used a 2.6 GW.cm−2 pump intensity at 1064
nm and a fiber length of 1 m. It clearly appears that Eq.
8 is also able to perfectly retrieve the two pairs of MI
sidebands induced by second and fourth order dispersion
terms. Besides the impact of higher order dispersion on
the phase matching, our solution describes the asymmet-
rical shape of MI induced by the Raman gain. Indeed,
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we have adjusted here the input wave intensity so that
the first standard MI sidebands are superposed to the
silica Raman gain band (0-30 THz). Consequently, we
retrieve again that the global MI-Raman gain is no more
symmetric with respect to the pump frequency. As pre-
viously, the standard gain evaluation can give a rough
estimation of the real gain in specific conditions.
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Figure 8. Color Online. (a) Numerical (blue line) and an-
alytical (red dots) MI gain bands obtained in 1m-long PCF
with two zero dispersion frequencies in presence of a delayed
Raman nonlinearity. The black dashed line represents the
gain calculated using an ansatz function. (b) Relative error
between analytical and numerical calculations.

C. Impact of Kerr electronic time response on the
MI bands growth

In this section, we underline the impact of the time re-
sponse of the different higher order nonlinear Kerr terms
on the induced MI. A recent work has highlighted the
influence of a finite nonlinear response time [29] on the
spatio-temporal MI growth but by using the usual sim-
plified approach. Conversely, our method gives the exact
solution even in presence of a delayed nonlinear response
without any approximation. Since the systematic study
of any situation of MI is out of the scope of the present
paper, we have limited our work to 1D MI gain in ar-
gon (as for instance relevant in the frame of hollow core
fiber propagation [30, 31]) with non purely instantaneous
nonlinear responses. Since no accurate information about
the time response of the higher order nonlinearities are
so far available, we used the same expression for all non-
linearities (i.e., the Debye type relaxation model). We
write ∀j, R2j(t) = 1

τ e
−t/τ for t > 0 and R2j(t) = 0 for

t < 0, although the different terms exhibit a priori dis-
tinct temporal behaviors. We used three distinct values

of τ (0, 0.5 fs, and 2 fs) for pump intensities of 20, 30
and, 40 TW.cm−2 which correspond to the three regimes
observed when the Kerr effect is supposed to be instan-
taneous. Figure 9 displays the MI bands calculated af-
ter a 1 m propagation through 1 bar of argon with the
same initial noise. In the low intensity regime (Fig.9(a)),
while MI is not allowed for τ=0, on-axis MI is allowed
when increasing τ . On the contrary, in the intermedi-
ate regime (Fig.9(b)), a reduction by twenty orders of
magnitude of the generated MI bands is observed when
increasing the time response. Finally, in the high inten-
sity regime (Fig.9(c)), increasing the time response leads
to MI while phase matching cannot be achieved if τ=0.
It appears that even for very small values, the Kerr elec-
tronic time response is crucial to accurately describe the
efficiency of MI bands generation. In particular, we show
that increasing the time response from 0 to 2 fs leads to
a drastic change of the MI bands in all intensity regimes.
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Figure 9. Color Online. On-axis gain bands after 1 m prop-
agation through Argon with a pump of 20 TW.cm−2 (a), 30
TW.cm−2 (b), and 40 TW.cm−2 (c) with different Kerr elec-
tronic time responses (0 fs (blue line), 0.5 fs (green dots), and
2 fs (red triangles)).

III. CONCLUSION

In this paper, we have derived the general expression of
modulation instability in presence of a continuous plane
wave pump. The model, valid in 3D, 2D, and 1D, al-
lows to evaluate the MI gain in presence of higher order
Kerr terms and any retarded nonlinear response (includ-
ing the Raman response). We have shown that, if the
propagation of a pulse can be described by the equilib-
rium between the Kerr terms, then on-axis MI bands
grow up as soon as the effective nonlinear index becomes
negative. We have also highlighted the impact of self-
steepening, space-time defocusing, and finite time non-
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linear response on the MI band growth. Finally, in the
frame of fiber propagation problem, we have shown that
our analytical model perfectly describes the MI bands
growth in presence of Raman effect and complex disper-
sive properties. Moreover, we foresee that comparable
analytical solutions can be found for vectorial MI, i.e.,
for propagation through birefringent medium.
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