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Let γ( -→ C m 2 -→ C n ) be the domination number of the Cartesian product of directed cycles -→ C m and -→ C n for m, n ≥ 2. Shaheen [13] and Liu et al.([11], [12]) determined the value of γ 6 and [12] when both m and n ≡ 0 (mod 3). In this article we give, in general, the value of γ(

.

Introduction and definitions

Let D = (V, A) be a finite directed graph (digraph for short) without loops or multiple arcs.

A vertex u dominates a vertex v if u = v or uv ∈ A. A set W ⊆ V is a dominating set of D if any vertex of V is dominated by at least one vertex of W .

The domination number of D , denoted by γ(D) is the minimum cardinality of a dominating set. The set V is a dominating set thus γ(D) is finite. These definitions extend to digraphs the classical domination notion for undirected graphs.

The determination of the domination number of a directed or undirected graph is, in general, a difficult question in graph theory. Furthermore this problem has connections with information theory. For example the domination number of hypercubes is linked to error-correcting codes. Among the lot of related works, Haynes et al. ( [START_REF] Haynes | Fundamentals of Domination in Graphs[END_REF], [START_REF]Domination in Graphs: Advanced Topics[END_REF]), mention the special cases of the domination of Cartesian products of undirected paths, cycles or more generally graphs( [START_REF] Chang | The Domination numbers of the 5 × n and 6 × n grid graphs[END_REF] to [START_REF] Hartnell | On dominating the Cartesian product of a graph and K 2[END_REF], [START_REF] Jacobson | On the Domination number of products of graphs I[END_REF], [START_REF] Klavžar | Dominating Cartesian products of cycles[END_REF]).

For two digraphs

D 1 = (V 1 , A 1 ) and D 2 = (V 2 , A 2 ) the Cartesian product D 1 2D 2 is the digraph with vertex set V 1 × V 2 and (x 1 , x 2 )(y 1 , y 2 ) ∈ A(D 1 2D 2 ) if and only if x 1 y 1 ∈ A 1 and x 2 = y 2 or x 2 y 2 ∈ A 2 and x 1 = y 1 . Note that D 2 2D 1 is isomorphic to D 1 2D 2 .
In [START_REF] Shaheen | Domination number of toroidal grid digraphs[END_REF] Shaheen determined the domination number of -→ C m 2 -→ C n for m ≤ 6 and arbitrary n. In two articles [START_REF] Liu | On domination number of Cartesian product of directed cycles[END_REF], [START_REF] Liu | Domination number of Cartesian products of directed cycles[END_REF] Liu et al. considered independently the domination number of the Cartesian product of two directed cycles. They gave also the value of γ(

-→ C m 2 -→ C n ) when m ≤ 6
and when both m and n ≡ 0 (mod 3) [START_REF] Liu | Domination number of Cartesian products of directed cycles[END_REF].

Furthermore they proposed lower and upper bounds for the general case.

In this paper we are able to give, in general, the value of γ(

-→ C m 2 -→ C n ) when m ≡ 2
(mod 3) and we improve the lower bounds for most of the still unknown cases. We also disprove the conjectured formula appearing in [START_REF] Liu | Domination number of Cartesian products of directed cycles[END_REF] for the case m ≡ 0 (mod 3).

We denote the vertices of a directed cycle -→ C n by C n = {0, 1, . . . , n -1}, the integers considered modulo n. Thus, when used for vertex labeling, a + b and ab will denote the vertices a + b and ab (mod n). Notice that there exists an arc xy from x to y in -→ C n if and only if y ≡ x + 1 (mod n), thus with our convention, if and only if y = x + 1. For any i in {0, 1, . . . , n -1} we will denote by

-→ C i m the subgraph of -→ C m 2 -→ C n induced by the vertices {(k, i) | k ∈ {0, 1, . . . , m -1}}. Note that -→ C i m is isomorphic to -→ C m . We will denote by C i m the set of vertices of -→ C i m .
2 General bounds and the case m ≡ 2 (mod 3)

We start this section by developing a general upper bound for γ( -→ C m 2 -→ C n ). Then we will construct minimum dominating sets for m ≡ 2 (mod 3). These optimal sets will be obtained from integer solutions of a system of equations.

Proposition 1 Let W be a dominating set of -→ C m 2 -→ C n . Then for all i in {0, 1, . . . , n -1} considered modulo n we have W ∩ C i-1 m + 2 W ∩ C i m ≥ m.
Proof : The m vertices of C i m can only be dominated by vertices of W ∩ C i m and

W ∩ C i-1 m . Each of the vertices of W ∩ C i m dominates two vertices in C i m . Similarly each of the vertices of W ∩ C i-1 m dominates one vertex in C i m . The result follows. 2 Theorem 2 Let m, n ≥ 2 and k 1 = m 3 then (i) if m ≡ 0 (mod 3) then γ( -→ C m 2 -→ C n ) ≥ nk 1 , or (ii) if m ≡ 1 (mod 3) then γ( -→ C m 2 -→ C n ) ≥ nk 1 + n 2 , or (iii) if m ≡ 2 (mod 3) then γ( -→ C m 2 -→ C n ) ≥ nk 1 + n.
Proof :

Let W be a dominating set of 

-→ C m 2 -→ C n and for any i in {0, 1, . . . , n -1} let a i = |W ∩ C i m |.
m = 3k 1 , γ( -→ C m 2 -→ C n ) ≥ nk 1 + n 3 for m = 3k 1 + 1 and γ( -→ C m 2 -→ C n ) ≥ nk 1 + 2 n 3 for m = 3k 1 + 2.
We will improve these two last results to verify parts (ii) and (iii) of the theorem.

Assume first m = 3k 1 + 1. Let J be the set of j ∈ {0, 1, . . . , n -1} such that

a j ≤ k 1 . If J = ∅ then |W | ≥ n(k 1 + 1) ≥ nk 1 + n
2 and we are done. Otherwise

let J ′ = {j | j + 1 (mod n) ∈ J}. By Proposition 1, for any i in {0, 1, . . . , n -1} considered modulo n, we have a i-1 + 2a i ≥ 3k 1 + 1. Then if i belongs to J, a i-1 + a i ≥ 2k 1 + 1.
A first consequence is that there are no consecutive indices, taken modulo n, in J. Indeed if j -1 and j are in J then, by definition of J, a j-1 + a j ≤ 2k 1 in contradiction with the previous inequality. By definition of J ′ we have thus J ∩ J ′ = ∅.

Now let K = {j ∈ {0, 1, . . . , n -1} | j / ∈ J ∪ J ′ }.
We can write {0, 1, . . . , n -1} = J ∪ J ′ ∪ K where J,J ′ and K are disjoint sets. Notice that θ : j → j -1(modulo n) induces a one to one mapping between J and J ′ .

The cardinality of

W is |W | = i∈{0,1,...,n-1} a i = i∈J a i + i∈J ′ a i + i∈K a i .
We can use θ for grouping 2 by 2 the elements of J ∪J ′ and write

i∈J a i + i∈J ′ a i = i∈J a i + i∈J a θ(i) = i∈J (a i + a i-1 ). Using a i-1 + a i ≥ 2k 1 + 1, because i ∈ J, we obtain i∈J a i + i∈J ′ a i ≥ |J| (2k 1 + 1). If i ∈ K then i / ∈ J and a i ≥ k 1 + 1. Since |K| = n -2|J| we have i∈K a i ≥ (n -2|J|)(k 1 + 1). Then |W | = i∈{0,1,...,n-1} a i ≥ |J|(2k 1 + 1)+ (n -2|J|)(k 1 + 1) = nk 1 + n -|J|. Since |J| = |J ′ | and J ∩ J ′ = ∅ , n -|J| ≥ n
2 and the conclusion for (ii) follows.

The case m = 3k 1 + 2 is similar. Let J be the set of j ∈ {0, 1, . . . , n -1} such that a j ≤ k 1 . If J = ∅ then we are done. Otherwise let J ′ = {j | j + 1 (mod n) ∈ J}.

If i ∈ J we have a i-1 + 2a i ≥ 3k 1 + 2 thus a i-1 + a i ≥ 2k 1 + 2. Then J ∩ J ′ = ∅ and i∈J∪J ′ a i ≥ |J| (2k 1 + 2). Therefore i∈{0,1,...,n-1} a i ≥ |J|(2k 1 + 2) + (n - 2|J|)(k 1 + 1) ≥ n(k 1 + 1). 2 
Let us now study in detail the case m ≡ 2 (mod 3). Assume m = 3k 1 + 2. Let A be the set of k 1 + 1 vertices of -→ C m defined by A = {0} ∪ {2 + 3p | p = 0, 1, . . . , k 1 -1} = {0} ∪ {2, 5, . . . , m -6, m -3}. For any i in {0, 1, . . . , m -1} let us call A i = {j | ji (mod m) ∈ A} the translate, considered modulo m, of A by i.

We have thus A i = {i} ∪ {i + 2, i + 5, . . . , i -6, i -3}(see Figure 1). We will call a set S of vertices of

-→ C m 2 -→ C n a A-set if for any j in {0, 1, . . . , n -1}
we have S ∩ C j m = A i for some i in {0, 1, . . . , n -1}. It will be convenient to denote this index i, function of j, as i j . If S is a A-set then |S|= n(k 1 + 1); thus if a set is both a A-set and a dominating set, by Theorem 2, it is minimum and we have γ(

-→ C m 2 -→ C n ) = n(k 1 + 1). Lemma 3 Let m = 3k 1 + 2.
Let S be a A-set and for any j in {0, 1, . . . , n -1}

Figure 1: A i ,A i-1 and A i+2 define i j as the index such that S ∩ C j m = A i j . Assume that:    for any j ∈ {1, . . . , n -1} i j ≡ i j-1 + 1 (mod m) or i j ≡ i j-1 -2 (mod m) and i 0 ≡ i n-1 + 1 (mod m) or i 0 ≡ i n-1 -2 (mod m). then S is a dominating set of -→ C m 2 -→ C n .
Proof :

Note first that for any i in {0, 1, . . . , m -1} the set of non dominated vertices of C m by A i is T = {i + 4, i + 7, . . . , i -4, i -1}. Note also that

A i+2 = {i + 2} ∪ {i + 4, i + 7, . . . , i -4, i -1} and A i-1 = {i -1} ∪ {i + 1, i + 4, . . . , i -7, i -4}. Thus T ⊂ A i+2 and T ⊂ A i-1 .
Let j in {1, . . . , n -1}. Let us prove that the vertices of C j m are dominated. Indeed, by the previous remark and the lemma hypothesis, the vertices non dominated by S ∩ C j m are dominated by S ∩ C j-1 m (see Figure 1). For the same reasons the vertices of C 0 m are dominated by those of S ∩ C 0 m and S ∩ C n-1 m .

2 We will prove next that the existence of solutions to some system of equations over integers implies the existence of a A-set satisfying the hypothesis of Lemma 3.

Lemma 4 Let m = 3k 1 + 2. If there exist integers a, b ≥ 0 such that    a + b = n -1 and a -2b ≡ 2 (mod m) or a -2b ≡ m -1 (mod m) then γ( -→ C m 2 -→ C n ) = n(k 1 + 1).
Proof : Consider a word w = w 1 . . . w n-1 on the alphabet {1, -2} with a occurrences of 1 and b of -2. Such a word exists, for example w = 1 a (-2) b . We can associate with w a set S of vertices of -→ C m 2 -→ C n using the following algorithm:

• S ∩ C 0 m = A 0 • For i = 1 to n -1 do begin Let k such that S ∩ C i-1 m = A k If w i = 1 let k ′ ≡ k + 1 (mod m) else k ′ ≡ k -2 (mod m) S ∩ C i m := A k ′ end By construction S is a A-set. Notice that we have S ∩ C n-1 m := A i n-1 where i n-1 ≡ n-1 k=1 w k ≡ a -2b (mod m). Thus i n-1 ≡ 2 (mod m) or i n-1 ≡ m -1 (mod m). By
Lemma 3 S is a dominating set. Furthermore, because S is a A-set, |S|= n(k 1 + 1), thus by Theorem 2 it is minimum and we have γ(

-→ C m 2 -→ C n ) = n(k 1 + 1). 2 
With the exception of one sub case we can find solutions (a, b) of the system and thus obtain minimum dominating sets for m ≡ 2 mod 3.

Theorem 5 Let m, n ≥ 2 and m ≡ 2 mod 3. Let k 1 = m 3 and k 2 = n 3 . (i) if n = 3k 2 then γ( -→ C m 2 -→ C n ) = n(k 1 + 1)
,and

(ii) if n = 3k 2 + 1 and 2k 2 ≥ k 1 then γ( -→ C m 2 -→ C n ) = n(k 1 + 1)
,and

(iii) if n = 3k 2 + 1 and 2k 2 < k 1 then γ( -→ C m 2 -→ C n ) > n(k 1 + 1)
,and

(iv) if n = 3k 2 + 2 and n ≥ m then γ( -→ C m 2 -→ C n ) = n(k 1 + 1)
,and

(v) if n = 3k 2 + 2 and n ≤ m then γ( -→ C m 2 -→ C n ) = m(k 2 + 1).
Proof : We will use Lemma 4 considering the following integer solutions of

   a, b ≥ 0 a + b = n -1 a -2b ≡ 2 (mod m) or a -2b ≡ m -1 (mod m). (i) if n = 3k 2 then k 2 ≥ 1. Take a = 2k 2 and b = k 2 -1. (ii) if n = 3k 2 + 1 and 2k 2 ≥ k 1 then take a = 2k 2 -k 1 and b = k 2 + k 1 . (iii) if n = 3k 2 + 1 and 2k 2 < k 1 then γ( -→ C m 2 -→ C n )=γ( -→ C n 2 -→ C m ) ≥ (2k 2 +1)m 2 by Theorem 2. Furthermore (2k 2 +1)m 2 -n(k 1 + 1) = k 1 2 -k 2 > 0. (iv) if n = 3k 2 + 2 and k 2 ≥ k 1 then take a = 2k 2 -2k 1 and b = k 2 + 2k 1 + 1. (v) if n = 3k 2 + 2 and k 2 ≤ k 1 then use γ( -→ C m 2 -→ C n )=γ( -→ C n 2 -→ C m ). 2 
3 The case m ≡ 0 (mod 3)

In [START_REF] Liu | Domination number of Cartesian products of directed cycles[END_REF] Liu et al. conjectured the following formula:

Conjecture 6 Let k ≥ 2. Then γ( --→ C 3k 2 -→ C n ) = k(n + 1)
for n ≡ 0 (mod 3).

Our Theorem 5 confirms the conjecture when n ≡ 2 (mod 3). Unfortunately the formula is not always valid when n ≡ 1 (mod 3). Indeed consider C 3k 2C 4 . In [START_REF] Liu | On domination number of Cartesian product of directed cycles[END_REF] the following result is proved:

Theorem 7 Let n ≥ 2. Then γ( -→ C 4 2 -→ C n ) = 3n 2 if n ≡ 0 (mod 8) and γ( -→ C 4 2 -→ C n ) = n + n+1 2 otherwise.
We have thus γ(

--→ C 3k 2 -→ C 4 ) = γ( -→ C 4 2 --→ C 3k ) = 3k + 3k+1 2
when k ≡ 0 (mod 8).

Alternately, Conjecture 6 proposes the value γ( --→ C 3k 2 -→ C 4 ) = 5k. These two numbers are different when k ≥ 3.

Conclusion

Consider the possible remainder of m, n modulo 3. For some of the nine possi- For these values of m, n there does not always exist a dominating set reaching the bound stated if Theorem 2 and thus the determination of γ( -→ C m 2 -→ C n ) seems to be a more difficult problem.

  bilities, we have found exact values for γ( -→ C m 2 -→ C n ). The remaining cases are: a) m ≡ 0 (mod 3) and n ≡ 1 (mod 3) b) The symmetrical case m ≡ 1 (mod 3) and n ≡ 0 (mod 3). c) m and n ≡ 1 (mod 3). d) The case m or n ≡ 2 (mod 3) is not completely solved by Theorem 5. The following subcases are still open i) m ≡ 2 (mod 3) and n ≡ 1 (mod 3) with m > 2n + 1 ii) the symmetrical case m ≡ 1 (mod 3) and n ≡ 2 (mod 3) with n > 2m + 1.

  Notice first, as noticed by Liu et al.([12]), that each of the vertices of W dominates three vertices of -→ C m 2 -→ C n and thus |W | ≥ mn 3 . This general bound give the announced result for