On domination of Cartesian product of directed cycles

Michel Mollard

To cite this version:

Michel Mollard. On domination of Cartesian product of directed cycles. 2011. hal-00576481v1

HAL Id: hal-00576481
 https://hal.science/hal-00576481v1

Preprint submitted on 14 Mar 2011 (v1), last revised 24 May 2012 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On domination of Cartesian product of directed cycles

Michel Mollard*
Institut Fourier
100, rue des Maths
38402 St martin d'hères Cedex FRANCE
michel.mollard@ujf-grenoble.fr

Abstract

Let $\gamma\left(C_{m} \square C_{n}\right)$ be the domination number of the Cartesian product of directed cycles C_{m} and C_{n} for $m, n \geq 2$. In [11] and [12] Liu and al. determined the value of $\gamma\left(C_{m} \square C_{n}\right)$ when $m \leq 6$ and when both m and $n \equiv 0(\bmod 3)$. In this article we give, in general, the value of $\gamma\left(C_{m} \square C_{n}\right)$ when $m \equiv 2(\bmod 3)$ and improve the known lower bound for most of the remaining cases. We also disprove the conjectured formula for the case $m \equiv 0(\bmod 3)$ appearing in [12].

Keywords: Graph, Cartesian product, Domination number, Combinatorial problems.

1 Introduction and definitions

Let $G=(V, E)$ be a finite directed graph (digraph for short) without loops or multiple arcs.

A vertex u dominates a vertex v if $u=v$ or $u v \in E$. A set $S \subset V$ is a dominating set of G if any vertex of G is dominated by at least a vertex of S. The domination number of G, denoted by $\gamma(G)$ is the minimal cardinality of a dominating set. The set V is a dominating set thus $\gamma(G)$ is finite. These definitions extend to digraphs the classical domination notion for undirected graphs.

The determination of domination number of a directed or undirected graph is, in general, a difficult question in graph theory. Furthermore this problem has connections with information theory. For example the domination number of Hypercubes is linked to error-correcting codes. Among the lot of related works ([7], [8]) mention the special case of domination of Cartesian product of undirected paths or cycles ([1] to [6], [9], [10]).

For $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ two digraphs, the Cartesian product $G_{1} \square G_{2}$ is the digraph with vertex set $V_{1} \times V_{2}$ and $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \in E\left(G_{1} \square G_{2}\right)$ if and only

[^0]if $x_{1} y_{1} \in E_{1}$ and $x_{2}=y_{2}$ or $x_{2} y_{2} \in E_{2}$ and $x_{1}=y_{1}$. Note that $G \square H$ is isomorph to $H \square G$.

In two articles published in this journal ([11], [12]) Liu and al. consider the domination number of Cartesian product of two directed cycles. They give the value of $\gamma\left(C_{m} \square C_{n}\right)$ when $m \leq 6$ and when both m and $n \equiv 0(\bmod 3)$. Furthermore they propose lower and upper bounds for the general case.

In this paper we are able to give, in general, the value of $\gamma\left(C_{m} \square C_{n}\right)$ when $m \equiv 2$ $(\bmod 3)$ and we improve the lower bounds for most of the still unknown cases. We also disprove the conjectured formula appearing in $[12]$ for the case $m \equiv 0(\bmod 3)$.

We denote the vertices of a directed cycle C_{n} by the integers $\{0,1, \ldots, n-1\}$ considered modulo n. Thus, when used for vertices labelling, $a+b$ and $a-b$ will denote the vertices $a+b$ and $a-b$ (modn). Furthermore there is an arc $x y$ from x to y in C_{n} if and only if $y=x+1(\bmod n)$. For any i in $\{0,1, \ldots, n-1\}$ we will denote by C_{m}^{i} the subgraph of $C_{m} \square C_{n}$ induced by the vertices $\{(k, i) / k \in\{0,1, \ldots, m-1\}\}$. Note that C_{m}^{i} is isomorph to C_{m}.

2 Main results

Proposition 1 Let S be a dominating set of $\gamma\left(C_{m} \square C_{n}\right)$ then for all i in $\{0,1, \ldots, n-1\}$ considered modulo n we have $\left|S \cap C_{m}^{i-1}\right|+2\left|S \cap C_{m}^{i}\right| \geq m$.

Proof : The m vertices of C_{m}^{i} can only be dominated by vertices of $S \cap C_{m}^{i}$ and $S \cap C_{m}^{i-1}$. Each of the vertices of $S \cap C_{m}^{i}$ and $S \cap C_{m}^{i-1}$ dominates respectively two and one vertex in C_{m}^{i}. The result follows.

Theorem 2 Let $m, n \geq 2$ and $k_{1}=\left\lfloor\frac{m}{3}\right\rfloor$ then

- if $m \equiv 0(\bmod 3)$ then $\gamma\left(C_{m} \square C_{n}\right) \geq n k_{1}$
- if $m \equiv 1(\bmod 3)$ then $\gamma\left(C_{m} \square C_{n}\right) \geq n k_{1}+\frac{n}{2}$
- if $m \equiv 2(\bmod 3)$ then $\gamma\left(C_{m} \square C_{n}\right) \geq n k_{1}+n$.

Proof :
Let S be a dominating set of $C_{m} \square C_{n}$ and for any i in $\{0,1, \ldots, n-1\}$ let $a_{i}=$ $\left|S \cap C_{m}^{i}\right|$.

Assume first $m=3 k_{1}$. Let J be the set of $i \in\{0,1, \ldots, n-1\}$ such that $a_{i} \leq$ $k_{1}-1$. Let $J^{\prime}=\{i \mid i+1(\bmod n) \in J\}$. By proposition 1 , we have $a_{i-1}+2 a_{i} \geq 3 k_{1}$ thus, if i belongs to $J, a_{i-1}+a_{i} \geq 2 k_{1}+1$. A first consequence is that $J \cap J^{\prime}=\emptyset$. Furthermore $\sum_{i \in J \cup J^{\prime}} a_{i} \geq|J|\left(2 k_{1}+1\right)$. If $i \notin J \cup J^{\prime}$ we have $a_{i} \geq k_{1}$ therefore $\sum_{i \in\{0,1, \ldots, n-1\}} a_{i} \geq|J|\left(2 k_{1}+1\right)+(n-2|J|) k_{1}=|J|+n k_{1} \geq n k_{1}$.

Assume now $m=3 k_{1}+1$. Let J be the set of $i \in\{0,1, \ldots, n-1\}$ such that $a_{i} \leq$ k_{1}. Let $J^{\prime}=\{i \mid i+1(\bmod n) \in J\}$. If i belongs to J we have $a_{i-1}+2 a_{i} \geq 3 k_{1}+1$ thus $a_{i-1}+a_{i} \geq 2 k_{1}+1$. Then $J \cap J^{\prime}=\emptyset$ and $\sum_{i \in J \cup J^{\prime}} a_{i} \geq|J|\left(2 k_{1}+1\right)$. Therefore $\sum_{i \in\{0,1, \ldots, n-1\}} a_{i} \geq|J|\left(2 k_{1}+1\right)+(n-2|J|)\left(k_{1}+1\right)=n k_{1}+n-|J| \geq n k_{1}+\frac{n}{2}$.

Assume then $m=3 k_{1}+2$. Let J be the set of $i \in\{0,1, \ldots, n-1\}$ such that $a_{i} \leq k_{1}$. Let $J^{\prime}=\{i \mid i+1(\bmod n) \in J\}$. If $i \in J$ we have $a_{i-1}+2 a_{i} \geq 3 k_{1}+2$
thus $a_{i-1}+a_{i} \geq 2 k_{1}+2$. Then $J \cap J^{\prime}=\emptyset$ and $\sum_{i \in J \cup J^{\prime}} a_{i} \geq|J|\left(2 k_{1}+2\right)$. Therefore $\sum_{i \in\{0,1, \ldots, n-1\}} a_{i} \geq|J|\left(2 k_{1}+2\right)+(n-2|J|)\left(k_{1}+1\right) \geq n\left(k_{1}+1\right)$.

Let us now study in details the case $m \equiv 2(\bmod 3)$. Assume $m=3 k_{1}+2$. Let A be the set of $k_{1}+1$ vertices of C_{m} defined by $S=\{0\} \cup\left\{2+3 p \mid p=0,1, \ldots, k_{1}-1\right\}=$ $\{0\} \cup\{2,5, \ldots, m-6, m-3\}$. For any i in $\{0,1, \ldots, m-1\}$ let A_{i} be the translate, considered modulo m, of A by i; thus $A_{i}=\{i\} \cup\{i+2, i+5, \ldots, i-6, i-3\}$ (see Figure 1).

We will call a set S of vertices of $C_{m} \square C_{n}$ a A-set if for any j in $\{0,1, \ldots, n-1\}$ we have $S \cap C_{m}^{j}=A_{i_{j}}$ for some i_{j}. We have $|S|=n\left(k_{1}+1\right)$, thus if a set is both a A-set and a dominating set, by theorem 2, it is minimum and we have $\gamma\left(C_{m} \square C_{n}\right)=n\left(k_{1}+1\right)$.

Figure 1: A_{i}, A_{i-1} and A_{i+2}

Lemma 3 Let $m=3 k_{1}+2$. Let S be a A-set and for any j in $\{0,1, \ldots, n-1\}$ let i_{j} such that $S \cap C_{m}^{j}=A_{i_{j}}$. Assume that:

$$
\left\{\begin{array}{l}
\text { for any } j \in\{1, \ldots, n-1\} i_{j}=i_{j-1}+1(\bmod m) \text { or } i_{j}=i_{j-1}-2(\bmod m) \\
\text { and } \\
i_{0}=i_{n-1}+1(\bmod m) \text { or } i_{0}=i_{n-1}-2(\bmod m) .
\end{array}\right.
$$

then S is a dominating set of $C_{m} \square C_{n}$.

Proof :

Note first that for any i in $\{0,1, \ldots, m-1\}$ the set of non dominated vertices of C_{m} by A_{i} is $T=\{i+4, i+7, \ldots, i-4, i-1\}$. Note also that $A_{i+2}=\{i+2\} \cup$ $\{i+4, i+7, \ldots, i-4, i-1\}$ and $A_{i-1}=\{i-1\} \cup\{i+1, i+4, \ldots, i-7, i-4\}$. Thus $T \subset A_{i+2}$ and $T \subset A_{i-1}$.

Let j in $\{1, \ldots, n-1\}$. Let us prove that the vertices of C_{m}^{j} are dominated. Indeed, by the previous remark and the lemma hypothesis, the vertices non dominated by $S \cap C_{m}^{j}$ are dominated by $S \cap C_{m}^{j-1}$ (see Figure 1). For the same reasons the vertices of C_{m}^{0} are dominated by those of $S \cap C_{m}^{0}$ and $S \cap C_{m}^{n-1}$.

Lemma 4 Let $m=3 k_{1}+2$. If there exist integers $a, b \geq 0$ such that

$$
\left\{\begin{array}{l}
a+b=n-1 \\
\text { and } \\
a-2 b \equiv 2(\bmod m) \text { or } a-2 b \equiv m-1(\bmod m)
\end{array}\right.
$$

then $\gamma\left(C_{m} \square C_{n}\right)=n\left(k_{1}+1\right)$.
Proof : Consider a word $w=w_{1} \ldots w_{n-1}$ on the alphabet $\{1,-2\}$ with a occurrences of 1 and b of -2 . Such a word exists, for example $w=1^{a}(-2)^{b}$. We can associate to w a set S of vertices of $C_{m} \square C_{n}$ by the following algorithm:

- $S \cap C_{m}^{0}=A_{0}$
- For $i=1$ to $n-1$ do begin
Let k such that $S \cap C_{m}^{i-1}=A_{k}$
If $w_{i}=1$ let $k^{\prime}=k+1(\bmod m)$ else $k^{\prime}=k-2(\bmod m)$
$S \cap C_{m}^{i}:=A_{k^{\prime}}$
end
By construction S is a A-set. Notice that we have $S \cap C_{m}^{n-1}:=A_{i_{n-1}}$ where $i_{n-1} \equiv$ $\sum_{k=1}^{n-1} w_{k} \equiv a-2 b(\bmod m)$. Thus $i_{n-1}=2$ or $i_{n-1}=m-1(\bmod m)$. By lemma 3 S is a dominating set. Furthermore, because S is a A-set, $|S|=n\left(k_{1}+1\right)$,; thus by theorem 2 it is minimum and we have $\gamma\left(C_{m} \square C_{n}\right)=n\left(k_{1}+1\right)$.

Theorem 5 Let $m, n \geq 2$ and $m \equiv 2 \bmod 3$. Let $k_{1}=\left\lfloor\frac{m}{3}\right\rfloor$ and $k_{2}=\left\lfloor\frac{n}{3}\right\rfloor$.

- if $n=3 k_{2}$ then $\gamma\left(C_{m} \square C_{n}\right)=n\left(k_{1}+1\right)$
- if $n=3 k_{2}+1$ and $2 k_{2} \geq k_{1}$ then $\gamma\left(C_{m} \square C_{n}\right)=n\left(k_{1}+1\right)$
- if $n=3 k_{2}+1$ and $2 k_{2}<k_{1}$ then $\gamma\left(C_{m} \square C_{n}\right)>n\left(k_{1}+1\right)$
- if $n=3 k_{2}+2$ and $n \geq m$ then $\gamma\left(C_{m} \square C_{n}\right)=n\left(k_{1}+1\right)$.
- if $n=3 k_{2}+2$ and $n \leq m$ then then $\gamma\left(C_{m} \square C_{n}\right)=m\left(k_{2}+1\right)$.

Proof : We will use lemma 4 considering the following integer solutions of

$$
\left\{\begin{array}{l}
a, b \geq 0 \\
a+b=n-1 \\
a-2 b \equiv 2(\bmod m) \text { or } a-2 b \equiv m-1(\bmod m)
\end{array}\right.
$$

- if $n=3 k_{2}$ then $k_{2} \geq 1$. Take $a=2 k_{2}$ and $b=k_{2}-1$
- if $n=3 k_{2}+1$ and $2 k_{2} \geq k_{1}$ then take $a=2 k_{2}-k_{1}$ and $b=k_{2}+k_{1}$
- if $n=3 k_{2}+1$ and $2 k_{2}<k_{1}$ then $\gamma\left(C_{m} \square C_{n}\right)=\gamma\left(C_{n} \square C_{m}\right) \geq \frac{\left(2 k_{2}+1\right) m}{2}$ by theorem 2. Furthermore $\frac{\left(2 k_{2}+1\right) m}{2}-n\left(k_{1}+1\right)=\frac{k_{1}}{2}-k_{2}>0$
- if $n=3 k_{2}+2$ and $k_{2} \geq k_{1}$ then take $a=2 k_{2}-2 k_{1}$ and $b=k_{2}+2 k_{1}+1$
- if $n=3 k_{2}+2$ and $k_{2} \leq k_{1}$ then use $\gamma\left(C_{m} \square C_{n}\right)=\gamma\left(C_{n} \square C_{m}\right)$.

$3 \quad$ The case $m \equiv 0(\bmod 3)$

In [12] Liu and al. conjectured the following formula:
Conjecture 6 Let $k \geq 2$. Then $\gamma\left(C_{3 k} \square C_{n}\right)=k(n+1)$ for $n \not \equiv 0(\bmod 3)$.
Our theorem 5 confirms the conjecture when $n \equiv 2(\bmod 3)$. Unfortunately the formula is not always valid when $n \equiv 1(\bmod 3)$.

Indeed consider $C_{3 k} \square C_{4}$. In [11] the following result is proved:
Theorem 7 Let $n \geq 2$. Then $\gamma\left(C_{4} \square C_{n}\right)=\frac{3 n}{2}$ if $n \equiv 0(\bmod 8)$ and $\gamma\left(C_{4} \square C_{n}\right)=$ $n+\left\lceil\frac{n+1}{2}\right\rceil$ otherwise

We have thus $\gamma\left(C_{3 k} \square C_{4}\right)=\gamma\left(C_{4} \square C_{3 k}\right)=3 k+\left\lceil\frac{3 k+1}{2}\right\rceil$ when $k \not \equiv 0(\bmod 8)$. On the other side the conjecture 6 proposes the value $\gamma\left(C_{3 k} \square C_{4}\right)=5 k$. These two numbers are different when $k \geq 3$.

References

[1] T.Y. Chang, W.E. Clark: "The Domination numbers of the $5 \times n$ and $6 \times n$ grid graphs", J.Graph Thory, 17 (1993) 81-107.
[2] M. El-Zahar, C.M. Pareek: "Domination number of products of graphs", Ars Combin., 31 (1991) 223-227.
[3] M. El-Zahar, S. Khamis, Kh. Nazzal: "On the Domination number of the Cartesian product of the cycle of length n and any graph", Discrete App. Math., 155 (2007) 515-522.
[4] R.J. Faudree, R.H. Schelp: 'The Domination number for the product of graphs", Congr. Numer., 79 (1990) 29-33.
[5] S. Gravier, M. Mollard: "On Domination numbers of Cartesian product of paths", Discrete App. Math., 80 (1997) 247-250.
[6] B. Hartnell, D. Rall: "On dominating the Cartesian product of a graph and $K_{2}{ }^{\prime \prime}$, Discuss. Math. Graph Theory, 24(3) (2004) 389-402.
[7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater: Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[8] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater eds.: Domination in Graphs: Advanced Topics, Marcel Dekker, Inc. New York, 1998.
[9] M.S. Jacobson, L.F. Kinch: "On the Domination number of products of graphs I", Ars Combin., 18 (1983) 33-44.
[10] S. Klavžar, N. Seifter: "Dominating Cartesian products of cycles", Discrete App. Math., 59 (1995) 129-136.
[11] J. Liu, X.D. Zhang, X. Chen, J.Meng: "The Domination number of Cartesian products of directed cycles", Inf. Process. Lett., 110(5) (2010) 171-173.
[12] J. Liu, X.D. Zhang, X. Chen, J.Meng: "On Domination number of Cartesian product of directed cycles", Inf. Process. Lett., 111(1) (2010) 36-39.

[^0]: * CNRS Université Joseph Fourier

