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Abstract

Let γ(Cm2Cn) be the domination number of the Cartesian product of directed4

cycles Cm and Cn for m,n ≥ 2. In [11] and [12] Liu and al. determined the value
of γ(Cm2Cn) when m ≤ 6 and when both m and n ≡ 0 (mod 3). In this article6

we give, in general, the value of γ(Cm2Cn) when m ≡ 2 (mod 3) and improve the
known lower bound for most of the remaining cases. We also disprove the conjec-8

tured formula for the case m ≡ 0 (mod 3) appearing in [12].
10

Keywords: Graph, Cartesian product, Domination number, Combinatorial
problems.12

1 Introduction and definitions14

Let G = (V,E) be a finite directed graph (digraph for short) without loops or
multiple arcs.16

A vertex u dominates a vertex v if u = v or uv ∈ E. A set S ⊂ V is a dominating
set of G if any vertex of G is dominated by at least a vertex of S. The domination18

number of G , denoted by γ(G) is the minimal cardinality of a dominating set. The
set V is a dominating set thus γ(G) is finite. These definitions extend to digraphs20

the classical domination notion for undirected graphs.
The determination of domination number of a directed or undirected graph is, in22

general, a difficult question in graph theory. Furthermore this problem has connec-
tions with information theory. For example the domination number of Hypercubes24

is linked to error-correcting codes. Among the lot of related works ([7], [8]) mention
the special case of domination of Cartesian product of undirected paths or cycles26

([1] to [6], [9], [10]).
For G1 = (V1, E1) and G2 = (V2, E2) two digraphs, the Cartesian product G12G228

is the digraph with vertex set V1 × V2 and (x1, x2)(y1, y2) ∈ E(G12G2) if and only
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if x1y1 ∈ E1 and x2 = y2 or x2y2 ∈ E2 and x1 = y1. Note that G2H is isomorph to30

H2G.
In two articles published in this journal ([11], [12]) Liu and al. consider the32

domination number of Cartesian product of two directed cycles. They give the
value of γ(Cm2Cn) when m ≤ 6 and when both m and n ≡ 0 (mod3). Furthermore34

they propose lower and upper bounds for the general case.
In this paper we are able to give, in general, the value of γ(Cm2Cn) when m ≡ 236

(mod 3) and we improve the lower bounds for most of the still unknown cases. We
also disprove the conjectured formula appearing in [12] for the case m ≡ 0 (mod 3).38

We denote the vertices of a directed cycle Cn by the integers {0, 1, . . . , n− 1}
considered modulo n. Thus, when used for vertices labelling, a + b and a − b will40

denote the vertices a+b and a−b (modn). Furthermore there is an arc xy from x to y
in Cn if and only if y = x+1 (modn). For any i in {0, 1, . . . , n− 1} we will denote by42

Ci
m the subgraph of Cm2Cn induced by the vertices {(k, i) / k ∈ {0, 1, . . . ,m− 1}}.

Note that Ci
m is isomorph to Cm.44

2 Main results

Proposition 1 Let S be a dominating set of γ(Cm2Cn) then for all i in {0, 1, . . . , n− 1}46

considered modulo n we have
∣∣S ∩ Ci−1

m

∣∣ + 2
∣∣S ∩ Ci

m

∣∣ ≥ m.

Proof : The m vertices of Ci
m can only be dominated by vertices of S ∩ Ci

m and48

S ∩ Ci−1
m . Each of the vertices of S ∩ Ci

m and S ∩ Ci−1
m dominates respectively two

and one vertex in Ci
m. The result follows.50
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Theorem 2 Let m,n ≥ 2 and k1 =
⌊

m
3

⌋
then52

• if m ≡ 0 (mod 3) then γ(Cm2Cn) ≥ nk1

• if m ≡ 1 (mod 3) then γ(Cm2Cn) ≥ nk1 + n
254

• if m ≡ 2 (mod 3) then γ(Cm2Cn) ≥ nk1 + n.

Proof :56

Let S be a dominating set of Cm2Cn and for any i in {0, 1, . . . , n− 1} let ai =
|S ∩ Ci

m|.58

Assume first m = 3k1. Let J be the set of i ∈ {0, 1, . . . , n− 1} such that ai ≤
k1−1. Let J ′ = {i | i + 1 (mod n) ∈ J}. By proposition 1, we have ai−1 +2ai ≥ 3k160

thus, if i belongs to J , ai−1 + ai ≥ 2k1 + 1. A first consequence is that J ∩ J ′ = ∅.
Furthermore

∑
i∈J∪J ′ ai ≥ |J | (2k1 + 1). If i /∈ J ∪ J ′ we have ai ≥ k1 therefore62 ∑

i∈{0,1,...,n−1} ai ≥ |J |(2k1 + 1) + (n− 2|J |)k1 = |J |+ nk1 ≥ nk1.
Assume now m = 3k1+1. Let J be the set of i ∈ {0, 1, . . . , n− 1} such that ai ≤64

k1. Let J ′ = {i | i + 1 (mod n) ∈ J}. If i belongs to J we have ai−1 + 2ai ≥ 3k1 + 1
thus ai−1 +ai ≥ 2k1 +1. Then J ∩J ′ = ∅ and

∑
i∈J∪J ′ ai ≥ |J | (2k1 +1). Therefore66 ∑

i∈{0,1,...,n−1} ai ≥ |J |(2k1 + 1) + (n− 2|J |)(k1 + 1) = nk1 + n− |J | ≥ nk1 + n
2 .

Assume then m = 3k1 + 2. Let J be the set of i ∈ {0, 1, . . . , n− 1} such that68

ai ≤ k1. Let J ′ = {i | i + 1 (mod n) ∈ J}. If i ∈ J we have ai−1 + 2ai ≥ 3k1 + 2
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thus ai−1 +ai ≥ 2k1 +2. Then J ∩J ′ = ∅ and
∑

i∈J∪J ′ ai ≥ |J | (2k1 +2). Therefore70 ∑
i∈{0,1,...,n−1} ai ≥ |J |(2k1 + 2) + (n− 2|J |)(k1 + 1) ≥ n(k1 + 1).

272

Let us now study in details the case m ≡ 2 (mod3). Assume m = 3k1 +2. Let A
be the set of k1+1 vertices of Cm defined by S = {0}∪{2+3p | p = 0, 1, . . . , k1−1} =74

{0}∪ {2, 5, . . . ,m− 6,m− 3}. For any i in {0, 1, . . . ,m− 1} let Ai be the translate,
considered modulo m, of A by i; thus Ai = {i} ∪ {i + 2, i + 5, . . . , i − 6, i − 3}(see76

Figure 1).
We will call a set S of vertices of Cm2Cn a A-set if for any j in {0, 1, . . . , n− 1}78

we have S ∩ Cj
m = Aij for some ij . We have |S|= n(k1 + 1), thus if a set is

both a A-set and a dominating set, by theorem 2, it is minimum and we have80

γ(Cm2Cn) = n(k1 + 1).

i i

A iA i-1 AA ii+2

Figure 1: Ai,Ai−1 and Ai+2

Lemma 3 Let m = 3k1 + 2. Let S be a A-set and for any j in {0, 1, . . . , n− 1} let
ij such that S ∩ Cj

m = Aij . Assume that:
for any j ∈ {1, . . . , n− 1} ij = ij−1 + 1 (mod m) or ij = ij−1 − 2 (mod m)
and
i0 = in−1 + 1 (mod m) or i0 = in−1 − 2 (mod m).

then S is a dominating set of Cm2Cn.82

Proof :

3



Note first that for any i in {0, 1, . . . ,m− 1} the set of non dominated vertices84

of Cm by Ai is T = {i + 4, i + 7, . . . , i− 4, i − 1}. Note also that Ai+2 = {i + 2} ∪
{i+4, i+7, . . . , i− 4, i− 1} and Ai−1 = {i− 1}∪{i+1, i+4, . . . , i− 7, i− 4}. Thus86

T ⊂ Ai+2 and T ⊂ Ai−1.
Let j in {1, . . . , n− 1}. Let us prove that the vertices of Cj

m are dominated.88

Indeed, by the previous remark and the lemma hypothesis, the vertices non domi-
nated by S ∩ Cj

m are dominated by S ∩ Cj−1
m (see Figure 1). For the same reasons90

the vertices of C0
m are dominated by those of S ∩ C0

m and S ∩ Cn−1
m .

292

Lemma 4 Let m = 3k1 + 2. If there exist integers a, b ≥ 0 such that
a + b = n− 1
and
a− 2b ≡ 2 (mod m) or a− 2b ≡ m− 1 (mod m)

then γ(Cm2Cn) = n(k1 + 1).

Proof : Consider a word w = w1 . . . wn−1 on the alphabet {1,−2} with a94

occurrences of 1 and b of −2. Such a word exists, for example w = 1a(−2)b. We
can associate to w a set S of vertices of Cm2Cn by the following algorithm:96

• S ∩ C0
m = A0

• For i = 1 to n− 1 do98

begin
Let k such that S ∩ Ci−1

m = Ak100

If wi = 1 let k′ = k + 1 (mod m) else k′ = k − 2 (mod m)
S ∩ Ci

m := Ak′102

end

By construction S is a A-set. Notice that we have S ∩Cn−1
m := Ain−1 where in−1 ≡104 ∑n−1

k=1 wk ≡ a − 2b(mod m). Thus in−1 = 2 or in−1 = m − 1(mod m). By lemma 3
S is a dominating set. Furthermore, because S is a A-set, |S|= n(k1 + 1),; thus by106

theorem 2 it is minimum and we have γ(Cm2Cn) = n(k1 + 1). 2

Theorem 5 Let m,n ≥ 2 and m ≡ 2 mod 3. Let k1 =
⌊

m
3

⌋
and k2 =

⌊
n
3

⌋
.108

• if n = 3k2 then γ(Cm2Cn) = n(k1 + 1)

• if n = 3k2 + 1 and 2k2 ≥ k1 then γ(Cm2Cn) = n(k1 + 1)110

• if n = 3k2 + 1 and 2k2 < k1 then γ(Cm2Cn) > n(k1 + 1)

• if n = 3k2 + 2 and n ≥ m then γ(Cm2Cn) = n(k1 + 1).112

• if n = 3k2 + 2 and n ≤ m then then γ(Cm2Cn) = m(k2 + 1).

Proof : We will use lemma 4 considering the following integer solutions of
a, b ≥ 0
a + b = n− 1
a− 2b ≡ 2 (mod m) or a− 2b ≡ m− 1 (mod m).
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• if n = 3k2 then k2 ≥ 1. Take a = 2k2 and b = k2 − 1114

• if n = 3k2 + 1 and 2k2 ≥ k1 then take a = 2k2 − k1 and b = k2 + k1

• if n = 3k2 + 1 and 2k2 < k1 then γ(Cm2Cn) = γ(Cn2Cm) ≥ (2k2+1)m
2 by116

theorem 2. Furthermore (2k2+1)m
2 − n(k1 + 1) = k1

2 − k2 > 0

• if n = 3k2 + 2 and k2 ≥ k1 then take a = 2k2 − 2k1 and b = k2 + 2k1 + 1118

• if n = 3k2 + 2 and k2 ≤ k1 then use γ(Cm2Cn) = γ(Cn2Cm).

2120

3 The case m ≡ 0 (mod 3)

In [12] Liu and al. conjectured the following formula:122

Conjecture 6 Let k ≥ 2. Then γ(C3k2Cn) = k(n + 1) for n 6≡ 0 (mod 3).

Our theorem 5 confirms the conjecture when n ≡ 2 (mod 3). Unfortunately the124

formula is not always valid when n ≡ 1 (mod 3).
Indeed consider C3k2C4. In [11] the following result is proved:126

Theorem 7 Let n ≥ 2. Then γ(C42Cn) = 3n
2 if n ≡ 0 (mod 8) and γ(C42Cn) =

n +
⌈

n+1
2

⌉
otherwise128

We have thus γ(C3k2C4) = γ(C42C3k) = 3k +
⌈

3k+1
2

⌉
when k 6≡ 0 (mod 8).

On the other side the conjecture 6 proposes the value γ(C3k2C4) = 5k. These two130

numbers are different when k ≥ 3.

References132

[1] T.Y. Chang, W.E. Clark: “The Domination numbers of the 5 × n and 6 × n
grid graphs”, J.Graph Thory, 17 (1993) 81-107.134

[2] M. El-Zahar, C.M. Pareek: “Domination number of products of graphs”, Ars
Combin., 31 (1991) 223-227.136

[3] M. El-Zahar, S. Khamis, Kh. Nazzal: “On the Domination number of the
Cartesian product of the cycle of length n and any graph”, Discrete App.138

Math., 155 (2007) 515-522.

[4] R.J. Faudree, R.H. Schelp: ‘The Domination number for the product of140

graphs”, Congr. Numer., 79 (1990) 29-33.

[5] S. Gravier, M. Mollard: “On Domination numbers of Cartesian product of142

paths”, Discrete App. Math., 80 (1997) 247-250.

[6] B. Hartnell, D. Rall: “On dominating the Cartesian product of a graph and144

K2”, Discuss. Math. Graph Theory, 24(3) (2004) 389-402.

[7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater: Fundamentals of Domination146

in Graphs, Marcel Dekker, Inc. New York, 1998.

5



[8] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater eds.: Domination in Graphs:148

Advanced Topics, Marcel Dekker, Inc. New York, 1998.

[9] M.S. Jacobson, L.F. Kinch: “On the Domination number of products of graphs150

I”, Ars Combin., 18 (1983) 33-44.

[10] S. Klavžar, N. Seifter: “Dominating Cartesian products of cycles”, Discrete152

App. Math., 59 (1995) 129-136.

[11] J. Liu, X.D. Zhang, X. Chen, J.Meng: “The Domination number of Cartesian154

products of directed cycles”, Inf. Process. Lett., 110(5) (2010) 171-173.

[12] J. Liu, X.D. Zhang, X. Chen, J.Meng: “On Domination number of Cartesian156

product of directed cycles”, Inf. Process. Lett., 111(1) (2010) 36-39.

6


