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Abstract

Let γ(
−→
Cm2

−→
Cn) be the domination number of the Cartesian product of directed6

cycles
−→
Cm and

−→
Cn for m,n ≥ 2. Shaheen [13] and Liu et al.([11], [12]) determined

the value of γ(
−→
Cm2

−→
Cn) when m ≤ 6 and [12] when both m and n ≡ 0 (mod 3). In8

this article we give, in general, the value of γ(
−→
Cm2

−→
Cn) when m ≡ 2 (mod 3) and

improve the known lower bounds for most of the remaining cases. We also disprove10

the conjectured formula for the case m ≡ 0 (mod 3) appearing in [12].
12

AMS Classification[2010]:05C69,05C38.
14

Keywords: Directed graph, Cartesian product, Domination number, Directed
cycle.16

1 Introduction and definitions18

Let D = (V,A) be a finite directed graph (digraph for short) without loops or
multiple arcs.20

A vertex u dominates a vertex v if u = v or uv ∈ A. A set W ⊆ V is a
dominating set of D if any vertex of V is dominated by at least one vertex of W .22

The domination number of D , denoted by γ(D) is the minimum cardinality of a
dominating set. The set V is a dominating set thus γ(D) is finite. These definitions24

extend to digraphs the classical domination notion for undirected graphs.
The determination of the domination number of a directed or undirected graph26

is, in general, a difficult question in graph theory. Furthermore this problem has

∗CNRS Université Joseph Fourier
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connections with information theory. For example the domination number of hyper-28

cubes is linked to error-correcting codes. Among the lot of related works, Haynes
et al. ([7], [8]), mention the special cases of the domination of Cartesian products30

of undirected paths, cycles or more generally graphs([1] to [6], [9], [10]).
For two digraphsD1 = (V1, A1) andD2 = (V2, A2) the Cartesian product D12D232

is the digraph with vertex set V1×V2 and (x1, x2)(y1, y2) ∈ A(D12D2) if and only if
x1y1 ∈ A1 and x2 = y2 or x2y2 ∈ A2 and x1 = y1. Note that D22D1 is isomorphic to34

D12D2. In [13] Shaheen determined the domination number of
−→
Cm2

−→
Cn for m ≤ 6

and arbitrary n. In two articles [11], [12] Liu et al. considered independently the36

domination number of the Cartesian product of two directed cycles. They gave also

the value of γ(
−→
Cm2

−→
Cn) when m ≤ 6 and when both m and n ≡ 0 (mod 3) [12].38

Furthermore they proposed lower and upper bounds for the general case.

In this paper we are able to give, in general, the value of γ(
−→
Cm2

−→
Cn) when m ≡ 240

(mod 3) and we improve the lower bounds for most of the still unknown cases. We
also disprove the conjectured formula appearing in [12] for the case m ≡ 0 (mod 3).42

We denote the vertices of a directed cycle
−→
Cn by Cn = {0, 1, . . . , n− 1}, the

integers considered modulo n. Thus, when used for vertex labeling, a+ b and a− b44

will denote the vertices a+ b and a− b (mod n). Notice that there exists an arc xy

from x to y in
−→
Cn if and only if y ≡ x+1 (mod n), thus with our convention, if and46

only if y = x+ 1. For any i in {0, 1, . . . , n− 1} we will denote by
−→
Ci
m the subgraph

of
−→
Cm2

−→
Cn induced by the vertices {(k, i) | k ∈ {0, 1, . . . ,m− 1}}. Note that

−→
Ci
m is48

isomorphic to
−→
Cm. We will denote by Ci

m the set of vertices of
−→
Ci
m.

2 General bounds and the case m ≡ 2 (mod 3)50

We start this section by developing a general upper bound for γ(
−→
Cm2

−→
Cn). Then

we will construct minimum dominating sets for m ≡ 2 (mod 3). These optimal sets52

will be obtained from integer solutions of a system of equations.

Proposition 1 Let W be a dominating set of
−→
Cm2

−→
Cn. Then for all i in {0, 1, . . . , n− 1}54

considered modulo n we have
∣

∣W ∩ Ci−1
m

∣

∣ + 2
∣

∣W ∩ Ci
m

∣

∣ ≥ m.

Proof : The m vertices of Ci
m can only be dominated by vertices of W ∩ Ci

m and56

W ∩Ci−1
m . Each of the vertices of W ∩Ci

m dominates two vertices in Ci
m. Similarly

each of the vertices of W ∩ Ci−1
m dominates one vertex in Ci

m. The result follows.58

2

Theorem 2 Let m,n ≥ 2 and k1 =
⌊

m
3

⌋

then60

(i) if m ≡ 0 (mod 3) then γ(
−→
Cm2

−→
Cn) ≥ nk1, or

(ii) if m ≡ 1 (mod 3) then γ(
−→
Cm2

−→
Cn) ≥ nk1 +

n
2 , or62

(iii) if m ≡ 2 (mod 3) then γ(
−→
Cm2

−→
Cn) ≥ nk1 + n.

Proof :64

2



Let W be a dominating set of
−→
Cm2

−→
Cn and for any i in {0, 1, . . . , n− 1} let

ai = |W ∩ Ci
m|. Notice first, as noticed by Liu et al.([12]), that each of the vertices66

of W dominates three vertices of
−→
Cm2

−→
Cn and thus |W | ≥ mn

3 . This general bound

give the announced result for m = 3k1, γ(
−→
Cm2

−→
Cn) ≥ nk1 +

n
3 for m = 3k1 + 1 and68

γ(
−→
Cm2

−→
Cn) ≥ nk1 + 2n

3 for m = 3k1 + 2. We will improve these two last results to
verify parts (ii) and (iii) of the theorem.70

Assume first m = 3k1 + 1. Let J be the set of j ∈ {0, 1, . . . , n− 1} such that
aj ≤ k1. If J = ∅ then |W | ≥ n(k1 + 1) ≥ nk1 +

n
2 and we are done. Otherwise72

let J ′ = {j | j + 1 (mod n) ∈ J}. By Proposition 1, for any i in {0, 1, . . . , n− 1}
considered modulo n, we have ai−1 + 2ai ≥ 3k1 + 1. Then if i belongs to J ,74

ai−1 + ai ≥ 2k1 + 1. A first consequence is that there are no consecutive indices,
taken modulo n, in J . Indeed if j − 1 and j are in J then, by definition of J ,76

aj−1 + aj ≤ 2k1 in contradiction with the previous inequality. By definition of J ′

we have thus J ∩ J ′ = ∅.78

Now letK = {j ∈ {0, 1, . . . , n− 1} | j /∈ J ∪ J ′}. We can write {0, 1, . . . , n− 1} =
J ∪ J ′ ∪K where J ,J ′ and K are disjoint sets. Notice that θ : j 7→ j − 1(modulo n)80

induces a one to one mapping between J and J ′.
The cardinality of W is |W | =

∑

i∈{0,1,...,n−1} ai =
∑

i∈J ai+
∑

i∈J ′ ai+
∑

i∈K ai.82

We can use θ for grouping 2 by 2 the elements of J∪J ′ and write
∑

i∈J ai+
∑

i∈J ′ ai =
∑

i∈J ai +
∑

i∈J aθ(i) =
∑

i∈J(ai + ai−1). Using ai−1 + ai ≥ 2k1 + 1, because i ∈ J ,84

we obtain
∑

i∈J ai +
∑

i∈J ′ ai ≥ |J | (2k1 + 1).
If i ∈ K then i /∈ J and ai ≥ k1 + 1. Since |K| = n − 2|J | we have

∑

i∈K ai ≥86

(n−2|J |)(k1+1). Then |W | =
∑

i∈{0,1,...,n−1} ai ≥ |J |(2k1+1)+(n−2|J |)(k1+1) =
nk1 + n− |J |.88

Since |J | = |J ′| and J ∩ J ′ = ∅ , n− |J | ≥ n
2 and the conclusion for (ii) follows.

90

The case m = 3k1 + 2 is similar. Let J be the set of j ∈ {0, 1, . . . , n − 1} such
that aj ≤ k1. If J = ∅ then we are done. Otherwise let J ′ = {j | j + 1 (mod n) ∈ J}.92

If i ∈ J we have ai−1 + 2ai ≥ 3k1 + 2 thus ai−1 + ai ≥ 2k1 + 2. Then J ∩ J ′ = ∅
and

∑

i∈J∪J ′ ai ≥ |J | (2k1 + 2). Therefore
∑

i∈{0,1,...,n−1} ai ≥ |J |(2k1 + 2) + (n −94

2|J |)(k1 + 1) ≥ n(k1 + 1).
296

Let us now study in detail the case m ≡ 2 (mod 3). Assume m = 3k1 + 2.

Let A be the set of k1 + 1 vertices of
−→
Cm defined by A = {0} ∪ {2 + 3p | p =98

0, 1, . . . , k1 − 1} = {0} ∪ {2, 5, . . . ,m− 6,m − 3}. For any i in {0, 1, . . . ,m− 1} let
us call Ai = {j | j − i (mod m) ∈ A} the translate, considered modulo m, of A by i.100

We have thus Ai = {i} ∪ {i+ 2, i+ 5, . . . , i− 6, i− 3}(see Figure 1).

We will call a set S of vertices of
−→
Cm2

−→
Cn a A-set if for any j in {0, 1, . . . , n− 1}102

we have S ∩Cj
m = Ai for some i in {0, 1, . . . , n− 1}. It will be convenient to denote

this index i, function of j, as ij . If S is a A-set then |S|= n(k1 + 1); thus if a set104

is both a A-set and a dominating set, by Theorem 2, it is minimum and we have

γ(
−→
Cm2

−→
Cn) = n(k1 + 1).106

Lemma 3 Let m = 3k1 + 2. Let S be a A-set and for any j in {0, 1, . . . , n − 1}
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Figure 1: Ai,Ai−1 and Ai+2

define ij as the index such that S ∩ Cj
m = Aij . Assume that:







for any j ∈ {1, . . . , n− 1} ij ≡ ij−1 + 1 (mod m) or ij ≡ ij−1 − 2 (mod m)
and
i0 ≡ in−1 + 1 (mod m) or i0 ≡ in−1 − 2 (mod m).

then S is a dominating set of
−→
Cm2

−→
Cn.

Proof :108

Note first that for any i in {0, 1, . . . ,m− 1} the set of non dominated vertices
of Cm by Ai is T = {i + 4, i + 7, . . . , i − 4, i − 1}. Note also that Ai+2 = {i + 2} ∪110

{i+4, i+7, . . . , i− 4, i− 1} and Ai−1 = {i− 1}∪ {i+1, i+4, . . . , i− 7, i− 4}. Thus
T ⊂ Ai+2 and T ⊂ Ai−1.112

Let j in {1, . . . , n− 1}. Let us prove that the vertices of Cj
m are dominated.

Indeed, by the previous remark and the lemma hypothesis, the vertices non domi-114

nated by S ∩ Cj
m are dominated by S ∩ Cj−1

m (see Figure 1). For the same reasons
the vertices of C0

m are dominated by those of S ∩ C0
m and S ∩Cn−1

m .116

2

We will prove next that the existence of solutions to some system of equations118

over integers implies the existence of a A-set satisfying the hypothesis of Lemma 3.

Lemma 4 Let m = 3k1 + 2. If there exist integers a, b ≥ 0 such that






a+ b = n− 1
and
a− 2b ≡ 2 (mod m) or a− 2b ≡ m− 1 (mod m)

then γ(
−→
Cm2

−→
Cn) = n(k1 + 1).120
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Proof : Consider a word w = w1 . . . wn−1 on the alphabet {1,−2} with a
occurrences of 1 and b of −2. Such a word exists, for example w = 1a(−2)b. We122

can associate with w a set S of vertices of
−→
Cm2

−→
Cn using the following algorithm:

• S ∩C0
m = A0124

• For i = 1 to n− 1 do
begin126

Let k such that S ∩ Ci−1
m = Ak

If wi = 1 let k′ ≡ k + 1 (mod m) else k′ ≡ k − 2 (mod m)128

S ∩Ci
m := Ak′

end130

By construction S is a A-set. Notice that we have S ∩Cn−1
m := Ain−1

where in−1 ≡
∑n−1

k=1 wk ≡ a− 2b (mod m). Thus in−1 ≡ 2 (mod m) or in−1 ≡ m− 1 (mod m). By132

Lemma 3 S is a dominating set. Furthermore, because S is a A-set, |S|= n(k1 +1),

thus by Theorem 2 it is minimum and we have γ(
−→
Cm2

−→
Cn) = n(k1 + 1). 2134

With the exception of one sub case we can find solutions (a, b) of the system and
thus obtain minimum dominating sets for m ≡ 2 mod 3.136

Theorem 5 Let m,n ≥ 2 and m ≡ 2 mod 3. Let k1 =
⌊

m
3

⌋

and k2 =
⌊

n
3

⌋

.

(i) if n = 3k2 then γ(
−→
Cm2

−→
Cn) = n(k1 + 1),and138

(ii) if n = 3k2 + 1 and 2k2 ≥ k1 then γ(
−→
Cm2

−→
Cn) = n(k1 + 1),and

(iii) if n = 3k2 + 1 and 2k2 < k1 then γ(
−→
Cm2

−→
Cn) > n(k1 + 1),and140

(iv) if n = 3k2 + 2 and n ≥ m then γ(
−→
Cm2

−→
Cn) = n(k1 + 1),and

(v) if n = 3k2 + 2 and n ≤ m then γ(
−→
Cm2

−→
Cn) = m(k2 + 1).142

Proof : We will use Lemma 4 considering the following integer solutions of







a, b ≥ 0
a+ b = n− 1
a− 2b ≡ 2 (mod m) or a− 2b ≡ m− 1 (mod m).

(i) if n = 3k2 then k2 ≥ 1. Take a = 2k2 and b = k2 − 1.

(ii) if n = 3k2 + 1 and 2k2 ≥ k1 then take a = 2k2 − k1 and b = k2 + k1.144

(iii) if n = 3k2 + 1 and 2k2 < k1 then γ(
−→
Cm2

−→
Cn)=γ(

−→
Cn2

−→
Cm) ≥ (2k2+1)m

2 by

Theorem 2. Furthermore (2k2+1)m
2 − n(k1 + 1) = k1

2 − k2 > 0.146

(iv) if n = 3k2 + 2 and k2 ≥ k1 then take a = 2k2 − 2k1 and b = k2 + 2k1 + 1.

(v) if n = 3k2 + 2 and k2 ≤ k1 then use γ(
−→
Cm2

−→
Cn)=γ(

−→
Cn2

−→
Cm).148

2
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3 The case m ≡ 0 (mod 3)150

In [12] Liu et al. conjectured the following formula:

Conjecture 6 Let k ≥ 2. Then γ(
−−→
C3k2

−→
Cn) = k(n+ 1) for n 6≡ 0 (mod 3).152

Our Theorem 5 confirms the conjecture when n ≡ 2 (mod 3). Unfortunately the
formula is not always valid when n ≡ 1 (mod 3).154

Indeed consider C3k2C4. In [11] the following result is proved:

Theorem 7 Let n ≥ 2. Then γ(
−→
C42

−→
Cn) =

3n
2 if n ≡ 0 (mod 8) and γ(

−→
C42

−→
Cn) =156

n+
⌈

n+1
2

⌉

otherwise.

We have thus γ(
−−→
C3k2

−→
C4) = γ(

−→
C42

−−→
C3k) = 3k +

⌈

3k+1
2

⌉

when k 6≡ 0 (mod 8).158

Alternately, Conjecture 6 proposes the value γ(
−−→
C3k2

−→
C4) = 5k. These two numbers

are different when k ≥ 3.160

4 Conclusion

Consider the possible remainder of m, n modulo 3. For some of the nine possi-162

bilities, we have found exact values for γ(
−→
Cm2

−→
Cn). The remaining cases are:

a) m ≡ 0 (mod 3) and n ≡ 1 (mod 3)164

b) The symmetrical case m ≡ 1 (mod 3) and n ≡ 0 (mod 3).

c) m and n ≡ 1 (mod 3).166

d) The case m or n ≡ 2 (mod 3) is not completely solved by Theorem 5. The
following subcases are still open168

i) m ≡ 2 (mod 3) and n ≡ 1 (mod 3) with m > 2n+ 1

ii) the symmetrical case m ≡ 1 (mod 3) and n ≡ 2 (mod 3) with n > 2m+1.170

For these values of m,n there does not always exist a dominating set reaching the

bound stated if Theorem 2 and thus the determination of γ(
−→
Cm2

−→
Cn) seems to be a172

more difficult problem.
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