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Discrete and intersample analysis of systems with

aperiodic sampling

L. Hetel, A. Kruszewski, W. Perruquetti, J.P. Richard

Abstract

This article addresses the stability analysis of linear time invariant systems with aperiodic sampled-

data control. Adopting a difference inclusion formalism, we show that necessary and sufficient stability

conditions are given by the existence of discrete-time quasi-quadratic Lyapunov functions. A constructive

method for computing such functions is provided from the approximation of the necessary and sufficient

conditions. In practice, this leads to sufficient stabilitycriteria under LMI form. The inter-sampling

behavior is discussed there: based on differential inclusions, we provide continuous-time methods that

use the advantages of the discrete-time approach. The results are illustrated by numerical examples that

indicate the improvement with regard to the existing literature.

Index Terms

aperiodic sampled-data control, difference inclusions, stability, quasi-quadratic functions.

I. INTRODUCTION

The stability analysis oflinear time invariant(LTI) systems with aperiodic sampling is a very

challenging question. This problem is not easy, since, under variations of the sampling interval,

the trajectory of a system may become unstable (see [23], page 69). The problem is relevant to

networked / embedded control applications and has been addressed from both the discrete-time

and continuous-time points of view.

In continuous-time, it has been approached using a time-delay system modeling [7], [6], a

norm-bounded uncertainty modeling of the sample-and-holdoperator [18], [9] or an impulsive
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system model [20]. The disadvantage of continuous-time methods is that, in general, the analysis

does not take into account the particular variation of the sampling-induced delay which exhibits a

“sawtooth shape”. The only method that considers this issueis the recent work [6]. Continuous-

time methods may also suffer from conservatism due to the upper-bounding of the derivatives

of Lyapunov-Krasovskii functionals or to the symmetry of ellipsoidal norms used for bounding

the sample-and-hold operator.

In the discrete-time domain, using the exact integration over a sampling interval, the system

with aperiodic sampling can be expressed as alinear difference inclusion(LDI): see [21], [5] for

a switched LDI, [13] for a polytopic LDI, [1], [8] for a norm-bounded LDI and [22], [19], [14],

[4] for generic stability properties of LDI. Sufficient linear matrix inequality (LMI) conditions for

stability are given in the literature, based on the existence of quadratic Lyapunov functions [21],

[5], [8], or of Lyapunov functions that depend on the sampling interval [13], [3]. Compared to

continuous-time approaches, discrete-time methods profitby involving an integration procedure

that implicitly takes into account the particular nature ofthe sampling-induced delay. The main

drawback is that they cannot take into account the intersample system behavior. Besides, they

become numerically inaccurate when the minimum sampling interval tends to zero.

This paper concerns both discrete-time (Section III) and continuous-time (Section IV) ap-

proaches for the stability analysis of LTI systems under aperiodic sampling. The LDI model

suggests that improvement in the stability analysis can be made by using quasi-quadratic Lya-

punov functions [19], [14], [24] which are both necessary and sufficient for the stability of LDI.

However, the computation of such functions is still an open problem. To the authors knowledge,

there is no LMI criteria in the literature for deriving such functions. This paper provides such a

constructive numerical procedure for deriving quasi-quadratic Lyapunov functions. The approach

is based on a necessary and sufficient condition that underlines a converse Lyapunov theorem for

the stability of LDI defined on compact sets (as the LDI obtained from systems with aperiodic

sampling). In practice, some restrictions to sufficient conditions lead to a LMI characterization

of the stability domain that can be favorable compared to theexisting literature. It is possible to

tune the amount of conservatism of these LMI according to thedesired numerical complexity.

In a second time, we analyze systems with aperiodic samplingfrom the continuous-time point

of view. The goal is to propose a new approach that uses the advantages of the discrete-time

methods, via the classical integration operator. The approach can be used for analyzing the



intersample system behavior.

This paper is organized as follows: Section II provides a mathematical formulation of the

problem under study; Section III deals with the discrete-time analysis, while Section IV presents

continuous-time results. Numerical examples are presented in Section V.

Notations : For a square symmetric matrix,M ≻ 0 (M ≺ 0) indicates thatM is positive

(negative) definite.‖·‖M denotes the ellipsoidal norm associated to a matrixM = MT ≻ 0,

‖x‖M =
√

xT Mx. By λmax(M) ( λmin(M)) we denote the maximum (minimum) eigenvalue of

a square symmetric matrixM . For a given setF , the symbolcoF denotes the convex hull of the

set. Forp ∈ N, Ip denotes the set{1, 2, . . . , p.} ⊂ N. For k ∈ N and a compact setΘ we denote

by Sk(Θ) =
{

σ : σ = {θi}k−1
i=0 , θi ∈ Θ, ∀i = 0, . . . , k − 1

}

the set of allk – length sequences

with values inΘ. By ∇yV (x) := limǫ→0+ (V (x + ǫy) − V (x)) ǫ−1 we denote the directional

derivative of a functionV (x) along the directiony.

II. M ATHEMATICAL FORMULATION

Consider two positive integersn, m and the matricesAc ∈ R
n×n, Bc ∈ R

n×m. We are

interested in the class of LTI systemsẋ(t) = Acx(t)+Bcu(t), ∀t ∈ R
+, x(t) = x0 ∈ R

n, ∀t ≤ 0.

Herex : R → R
n represents the system state andu : R → R

m represents the control. We consider

that the control law is a piecewise constant state feedback,i.e. u(t) = Kx(tk), ∀t ∈ [tk, tk+1) ,

where{tk}k∈N
represents an unbounded monotonously increasing sequenceof sampling instants

with elements inR+, i.e.

0 = t0 < t1 < . . . < tk < . . . ; tk ∈ R
+, ∀k ∈ N; lim

k→∞
tk = ∞. (1)

We denote byθk := tk+1 − tk the sampling interval and we consider that for allk, θk belongs

to a compact setT ⊂ R
+. The closed-loop system has the form

ẋ(t) = Acx(t) + BcKx(tk), ∀t ∈ [tk, tk+1), x(t) = x0 ∈ R
n, ∀t ≤ 0. (2)

We denote byθmin and θmax the minimum and maximum ofT , respectively,0 < θmin <

θmax < ∞. The problem under study is formulated as follows:

Problem : Is system (2) stable for all the possible sampling sequences satisfyingθk ∈ T and

assumption (1) ?



The study in this paper will be grounded on the use of the integration operatorΛ : R
+ → R

n×n,

Λ(θ) := I +

∫ θ

0

esAcds (Ac + BcK) . (3)

The operatorΛ(·) is continuous w.r.t.θ, and θ belongs to the compact setT . Then the set

{Λ(θ) : θ ∈ T } is a compact subset ofRn×n. We consider that there exists a polytopic set

Z = co {Z1, Z2, . . . , Zp} ⊂ R
n×n (4)

with a finite numberp of vertices, so thatΛ(θ) ∈ Z, ∀θ ∈ T . Similarly, we consider the set

W = co {W1, W2, . . . , Wp} ⊂ R
n×n (5)

with a finite numberp of vertices, so thatΛ(θ) ∈ W, ∀θ ∈ [0, θmax]. Methods for the construction

of such polytopic sets exist in the literature [12], [13], [11] and will not be discussed in this

paper. In what follows, we use the integration operator and the convex sets (4), (5) for both a

discrete-time and continuous-time analysis of systems with aperiodic sampling.

III. D ISCRETE-TIME ANALYSIS

A. Generalities

In this section we recall some basic stability properties and the construction of a LDI model

for systems with aperiodic sampling. For allt ∈ [tk, tk+1] the solutions of system (2) satisfy:

x(t) = e(t−tk)Acx(tk) +

∫ (t−tk)

0

esAcdsBcKx(tk) (6)

=

(

I +

∫ (t−tk)

0

esAcdsAc +

∫ (t−tk)

0

esAcdsBcK

)

x(tk) = Λ(t − tk)x(tk) (7)

whereΛ(·) is given in (3). At the sampling instantstk, system (2) is described by the LDI:

x+ ∈ H(x), H(x) = {y : y = Λ(θ)x, θ ∈ T } , (8)

where x+ represents the state value attk+1, i.e. x(tk+1) ∈ H (x(tk)) . Consider the initial

condition x0 ∈ R
n and ak – length sequenceσ = {θi}k−1

i=0 ∈ Sk(T ). For anyr ∈ N, r ≤ k,

we denote byφσ the flow (r, x0) 7→ φσ(r, x0) defined byφσ(r, x0) = Φσ(r)x0 where Φσ(r)

represents ther – step transition matrix of (8) associated toσ:

Φσ(r) =







Λ (θr−1) . . .Λ (θ1) Λ (θ0) , r > 0

I, r = 0.
(9)



The solution of (8) associated to the initial conditionx0 and to an infinite–length sequence

σ ∈ S∞(T ) represents the sequence of points{φσ(k, x0)}∞k=0.

Definition 1: The equilibrium pointx = 0 of (8) is said to be globally uniformly exponentially

stable if there are constantsc > 0, 0 < λd < 1 s.t.:

‖φσ(k, x0)‖ ≤ cλk
d‖x0‖, ∀k ≥ 0 (10)

holds for all initial conditionsx0 ∈ R
n, all k ∈ N and all sequencesσ ∈ S∞(T ).

It has been shown in [9] that the stability of the LDI (8) is equivalent to the stability of

the continuous-time system (2). The simplest stability criterion is the existence of a quadratic

Lyapunov function (a sufficient condition). Note that for LDI, this criterion is not necessary, and

may be a conservative stability test [22], [14], [19]. Here we show how to refine the analysis of

systems with aperiodic sampling by using Lyapunov functions that are more suitable for LDI.

B. Stability analysis based on discrete-time quasi-quadratic Lyapunov functions

In what follows, we introduce a new discrete-time stabilitycharacterization for systems with

aperiodic sampling. Before presenting the approach, we give a technical result for the LDI (8).

Several necessary and sufficient conditions exist for the stability of polytopic LDI [17], [15],

[14]. However, in the case of sampled-data systems (2), the obtained LDI (8) is not described

by a polytopic set of vector fields. It can just be said that theset of matrices described by

{Λ(θ) : θ ∈ T } is a compact subset ofRn×n. As follows, we provide necessary and sufficient

stability conditions that underline a converse Lyapunov theorem for LDI defined on compact

sets (such as the ones obtained in the case of sampled-data systems).

Theorem 1:Consider the continuous-time system (2) and the equivalentLDI model (8) at the

sampling instants. The following statements are equivalent:

1) The equilibrium pointx = 0 of (8) is globally uniformly exponentially stable.

2) There exist a matrixP = P T ≻ 0 and a positive integerN s.t. the transition matrixΦσ(N)

defined in (9) satisfies the relation

P ≻ ΦT
σ (N)PΦσ(N), ∀σ ∈ SN(T ). (11)

3) There exists a positive definite functionV : R
n → R

+ strictly convex, homogeneous (of

the second order),V (x) = xTL[x]x, with L[·] : R
n → R

n×n, L[x] = LT
[x] = L[ax], ∀x 6= 0, a ∈



R, a 6= 0 s.t. the following relation is satisfied :

V (x) − max
θ∈T

V (Λ(θ)x) > 0. (12)

Moreover, for P and N satisfying relation (11) in 2), the functionV in 3) is given by

V (x) = xTL[x]x, with L[x] =
∑N−1

i=0 ΦT
σ∗(x)(i)PΦσ∗(x)(i) where

σ∗(x) = arg max
σ∈SN−1(T )

xT

(

N−1
∑

i=0

ΦT
σ (i)PΦσ(i)

)

x. �

The proof is given in the Appendix. The theorem is inspired from [17], [15]. Note that it

however goes beyond [17], [15], where only the equivalence1) ⇔ 2) has been established for

polytopic LDI. Here we propose, for LDI defined on compact sets, a constructive way of obtaining

Lyapunov functions from the inequalities (11). In the generic context of LDI, the theorem can

be seen as an alternative to [16] where conditions for the existence of time-dependent Lyapunov

functions were derived. The class of functions that we obtain here depends only on the system’s

state and does not need information on the evolution of the time-varying parameters. The set

of inequalities (11) represents a necessary and sufficient stability condition for systems with

aperiodic sampling. However, in practice, the number of inequalities to be checked in (11)

grows in an exponential manner according toN . Therefore, finding a general solution for (11)

represents anNP -hard1 problem [2], even for the simple case when the setT is finite. Still, one

can reduce it to a simpler problem using a finiteN and a convexification of the set of vector

fields in (8), as follows:

Theorem 2:Consider system (2), the equivalent LDI (8), the setZ in (4) and the set

Y (Z) =
{

Y : Y = ΠN−1
i=0 Zµi

, Zµi
∈ Z, µi ∈ Ip

}

. (13)

If there exist a positive integerN and a matrixP = P T ≻ 0 that satisfy

P ≻ Y T PY, ∀Y ∈ Y (Z) , then (14)

1) the equilibrium pointx = 0 of (8) is globally asymptotically stable;

2) there exists a quasi-quadratic Lyapunov function with the form

V (x) = max
i∈IM

xT Lix (15)

1There is no numerical algorithm that is able to solve the problem in a polynomial time.



which is strictly decreasing along the solutions of (8), where Li, i ∈ IM , M = pN−1, are

obtained using an enumeration of the elements in the set

Ω =

{

QZ
σ (N) : QZ

σ (N) =

N−1
∑

j=1

(

Πj
r=1Zµr

)T
P
(

Πj
r=1Zµr

)

+ P, σ = {µr}N−1
r=1 ∈ SN−1(Ip)

}

.

The proof is given in the Appendix. The test involves a finite number of LMI that are sufficient

for stability. In Section V, we provide numerical examples where the proposed test is less

conservative than the existing ones based on quadratic Lyapunov functions (such as in [8]), or

on poly-quadratic stability [13]. Note that the case of quadratic Lyapunov functions is included

in the conditions provided here ((11) or (14)) since it corresponds toN = 1. The accuracy of

the stability characterization from conditions (14) mainly depends on two factors: the length

N of the horizon of analysis, and the accuracy of the polytopicembeddingZ described in (4)

(for more details on such convex embedding see [12], [13], [11]). The amount of conservatism

introduced in the approach can be tuned according to these parameters.

IV. CONTINUOUS-TIME ANALYSIS

We now provide a characterization of the intersample behavior of (2). Note that (2) is a

differential equation with discontinuous right hand side, since∀ (t − tk) ∈ T :

dx(t)

dt
∈ Ξ(t, tk), Ξ(t, tk) = {(Ac + BcK) x(t), Acx(t) + BcKx(tk)} . (16)

The first element(Ac + BcK) x(t) corresponds to an actuation instant, whereasAcx(t)+BcKx(tk)

corresponds to the intersample dynamics. The model (16) allows for studying the existence of

a continuous-time Lyapunov function

V (x) = xTL[x]x = max
i∈IM

xT Lix, (17)

with Li, i ∈ IM , a set of symmetric positive definite matrices, as stated in Theorem 3:

Theorem 3:Consider system (2), the equivalent model (16) and the polytopic setW given

in (5). If there exist a scalarλ > 0, a set of scalarsβij ≥ 0, i, j = 1, . . . , M , and matrices

G1, G2 ∈ R
n×n s.t. :





AT
c Li + LiAc + λLi −

∑

i6=j βij (Lj − Li) + G1 + GT
1 LiBcK − G1Wl + GT

2

KT BT
c Li − W T

l GT
1 + G2 −G2Wl − W T

l GT
2



 ≺ 0, (18)



for all i, j ∈ IM , and for alll ∈ Ip, then the maximal directional derivative of the function (17)

following the vector fields of the closed-loop systemU (t, tk) = maxy(t)∈Ξ(t,tk) ∇y(t)V (x(t))

satisfies the relation

U (t, tk) ≤ −λV (x(t)), ∀t ∈ [tk, tk+1] , ∀x(t) 6= 0, (19)

and the originx = 0 of the closed-loop system (2) is exponentially stable.�

The proof is given in the Appendix. The goal of the previous theorem is two-fold. First, it can

be used for estimating the decay rate of a given quasi-quadratic Lyapunov function (17) over

the sampling intervals. If the Lyapunov function is computed from the discrete-time method

(Theorem 2), then theLi matrices are given and the computation of the decay rate leads to a set

of LMI. Second, the theorem can be applied for directly computing a Lyapunov function without

using the discrete-time analysis. The proposed test leads to Bilinear Matrix Inequalities (BMI).

However, they can be reduced to LMI by considering quadraticLyapunov functions, which gives

a bit more conservative stability conditions. The previoustheorem provides a description of the

state behavior at all instants of time (including the intersample behavior): if the set of matrix

inequalities (18) are satisfied, then (19) holds, which implies thatV (x(t)) < e−λtV (x0), ∀t > 0.

This is the same as‖ x(t) ‖2< ce−λt ‖ x0 ‖2 with c =
maxi∈IM

λmax (Li)

mini∈IM
λmin (Li)

.

Remark 1:Conditions (18) are not feasible in the dead-beat control case, where for some

θ ∈ [0, θmax], Λ(θ) has eigenvalues at zero. Excluding this case, the existenceof functions of

the formV (x) = xTL[x]x is not only sufficient, but also necessaryfor the stability of (2). This

can be easily shown since in this case the matrixΛ(θ) is invertible for all θ ∈ [0, θmax]. Then

x(tk) = Λ−1(t − tk)x(t) and (2) can be expressed as thelinear differential inclusion:

dx

dt
∈ Hc(x), Hc(x) =

{

y : y =
(

Ac + BcKΛ−1 (θ)
)

x, θ ∈ [0, θmax]
}

. (20)

For such differential inclusion, it is known that the existence of a quasi-quadratic Lyapunov

function is necessary for stability [19], [14]. However, due to the matrix inversion that appears

in (20), no efficient numerical tool exists for applying the results in [14] to (20).�

In the following theorem, we restrict to asymptotic stability and propose an analysis method

that includes the dead-beat case using the Razumikhin method (see for example [10]).

Theorem 4:Consider system (2) and the polytopic setW given in (5). If there exist a matrix



P = P T ≻ 0, a scalarǫ > 0, and matricesG1, G2 ∈ R
n×n s.t. :





AT
c P + PAc + G1 + GT

1 + ǫP PBcK − G1Wl + GT
2

KT BT
c P − W T

l GT
1 + G2 −G2Wl − W T

l GT
2 − ǫP



 ≺ 0, (21)

∀ l ∈ Ip, then the originx = 0 of the closed loop system (2) is asymptotically stable.�

The proof is given in the Appendix. Note that the set of conditions (21) represents an optimiza-

tion problem which can be solved using a line search algorithm and LMI solvers. The theorem

ensures that, within the sampling interval, the Lyapunov-Razumikhin functionV (x) = xT Px is

always less than the value at the sampling instants, although it is not monotonously decreasing.

It can be shown, using numerical examples, that this new approach provides a less conservative

stability condition in comparison with the existing continuous-time approaches (see Example 2,

in Section V). In fact, this stability test is comparable to the one provided in discrete-time by

a common quadratic Lyapunov function. The advantage, w.r.t. the discrete-time approach, is the

fact that the intersample behavior is explicitly taken intoaccount and that a sampling interval

tending to zero may be considered as well. However, in comparison with Theorem 3, it cannot be

used for computing a decay rate over the sampling interval, it only ensures asymptotic stability,

not exponential stability.

V. NUMERICAL EXAMPLES

Example 1.Consider a LTI system (2) described by :

Ac =





−0.5 0

0 3.5



 , Bc =





1

1



 andK =
(

1.02 −5.62
)

.

Λ(θ) in (3) is Schur for any sampling intervalθ ∈ [0, 0.46]. However, switching among different

values ofθ in this interval may lead to an unstable behaviour: one can notice that although

both Λ(0.25) andΛ(0.45) are Schur, the transition matrixΦ = Λ(0.25)Λ(0.25)Λ(0.45) has the

eigenvalues outside the unit circle. This implies that whenthe sampling period is varying in a

periodic pattern0.25 → 0.25 → 0.45 → 0.25 → 0.25 → 0.45 . . . , the closed-loop system is

unstable. A similar unstable behavior can be observed forθ ∈ {0.1, 0.43} since the transition

matrix Φ = (Λ(0.1))6 Λ(0.43) is not Schur. We consider that the sampling interval arbitrary

switches among the values{0.1, θmax} and we use Theorem 2 to compute the maximumθmax ∈
[0.1, 0.46] ensuring stability. Using the set of LMI (14), it is possibleto find a quasi-quadratic
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Fig. 1. Simulation for an arbitrary sequence of sampling intervals withθmin = 0 andθmax = 0.09 for the Example 2.

Lyapunov function of the form (15) forN = 7 up to θmax = 0.41 (which is very close to the

value0.43 for which an unstable sampling path exists). Forθmax = 0.41, using the existing LMI

solvers, it is impossible to find a common quadratic Lyapunovfunction [21], [8], [1] or a poly-

quadratic one [13]. In fact, the maximum values ofθmax that can be obtained from quadratic

and poly-quadratic Lyapunov functions areθmax = 0.36 andθmax = 0.39, respectively.

Example 2.Consider a continuous-time system described by the following matrices:

Ac =





1 15

−15 1



 , Bc =





1

1



 , K = (5.33 − 9.33) .

In order to construct a polytopic setW for Λ(θ), we use the method proposed in [13] based

on a Taylor series expansion. We use a uniform partition of the interval [0, θmax] into 10

subintervals and apply locally the embedding method (4th order development). Using Theorem

3, a continuous-time quadratic Lyapunov function can be found up toθmax = 0.09 (see Figure

1). For this example the integration operator is singular for θ ≈ 0.092 (see Remark 1) which

shows that the obtainedθmax is close to the theoretical bound for quasi-quadratic functions.

The methods in [18], [20], [9] and [6] show that the system is stable for θmax = 0.014,

θmax = 0.033, θmax = 0.07 and θmax = 0.12, respectively. Theorem 4 proves the asymptotic

stability for θ ∈ [0, 0.14] which is less conservative than the existing approaches. Note that using

the discrete-time approach (Theorem 2), we are able to show the stability forθ ∈ [0.001, 0.15].



This means that Theorem 4 is almost as efficient as the discrete-time approach, with the additional

advantage that it takes into account the intersample behavior and very small sampling intervals.

Comparing now the number of LMI decision variables, [18] and[9] have0.5(n2+n)+m2+m = 5

variables, [20] has3.5n2 + 1.5n = 17 while [6] has 8n2 + n = 34. In Theorem 4 there are

0.5(n2 + n) + 2n2 = 11 variables involved inp + 1 = 51 LMI constraints.

VI. CONCLUSIONS

In this paper we addressed the robust stability of LTI systems with aperiodic sampled-

data controller. The approach is based on LMI conditions forthe existence of quasi-quadratic

Lyapunov functions. It may also be of interest for a more general class of LDI. The intersample

behavior is analyzed through a continuous-time analysis that benefits from the discrete-time

approach. The results are illustrated by numerical examples that indicate improvement with

regard to other recent approaches.

APPENDIX

Proof of Theorem 1:1) ⇒ 2) Assume that (10) holds. Then there exists a symmetric positive

definite matrixP and the associated ellipsoidal norm‖·‖P s.t.‖φσ(k, x)‖2
P ≤ λmax (P )

λmin (P )
c2λ2k

d ‖x‖2
P

holds for allx ∈ R
n, all k ∈ N and allσ ∈ S∞(T ). Sinceλd < 1, there exists a positive integerN

s.t.‖φσ(N, x)‖2
P < ‖x‖2

P . This is the same asφT
σ (N, x)Pφσ(N, x)−xT Px < 0, ∀x ∈ R

n, ∀σ ∈
S∞(T ). With φσ(N, x) = Φσ(N)x, this is the same asRσ(P, N) = ΦT

σ (N)PΦσ(N) − P ≺ 0

∀σ ∈ S∞(T ). SinceRσ(P, N) depends only on the firstN terms ofσ, thenRσ(P, N) ≺ 0, ∀σ ∈
SN(T ), which implies (11).

2) ⇒ 3) Consider a sequenceσ ∈ SN−1(T ). Define

Qσ(N) =

N−1
∑

i=0

ΦT
σ (i)PΦσ(i). (22)

Qσ(N) is continuous with respect toσ ∈ SN−1(T ). Since SN−1(T ) is a compact set, then

supσ∈SN−1(T ) xT Qσ(N)x = maxσ∈SN−1(T ) xT Qσ(N)x. Thus V (x) = maxσ∈SN−1(T ) xT Qσ(N)x

is homogeneous and convex. Furthermore,P = P T ≻ 0 implies Qσ(N) = QT
σ (N) ≻ 0.

We are going to show that if the point 2) is satisfied, then the increment ofV (x) over one

step satisfies

∆V (x) = max
σ∈SN−1(T )

(x+)T Qσ(N)x+ − max
σ∈SN−1(T )

xT Qσ(N)x < 0 (23)



with x+ = Λ(θ)x. Consider two(N − 1) – length sequencesα = {αi}N−2
i=0 , β = {βi}N−2

i=0 ∈
SN−1(T ) defined by :α = arg maxσ∈SN−1(T )(x

+)T Qσ(N)x+, β = arg maxσ∈SN−1(T ) xT Qσ(N)x.

From (23) we obtain

∆V (x) = xT
(

ΛT (θ)Qα(N)Λ(θ) − Qβ(N)
)

x. (24)

From the definition ofQα(N), given in (22), withσ = α, one can notice that

Qα(N) =
N−1
∑

i=0

ΦT
α(i)PΦα(i) = ΦT

α(N − 1)PΦα(N − 1) + Qα(N − 1). (25)

We denote byγ the sequenceγ = {γi}N−2
i=0 ∈ SN−1(T ) with γ0 = θ, γi = αi−1, i = 1, . . . , N−2.

Moreover, we denote byδ the sequenceδ = {δi}N−1
i=0 ∈ SN(T ), with δ0 = θ, δi = αi−1, i =

1, . . . , N − 1. One can notice that the termΛT (θ)Qα(N)Λ(θ) in (24) can be expressed as

ΛT (θ)Qα(N)Λ(θ) = ΦT
δ (N)PΦδ(N) + Qγ(N) − P. (26)

Therefore the one-step increment ofV (x) is given by

∆V (x) = xT
(

ΦT
δ (N)PΦδ(N) + Qγ(N) − P − Qβ(N)

)

x. (27)

Sinceβ = arg maxσ2∈SN−1(T ) xT Qσ(N)x, one can see thatxT Qβ(N)x ≥ xT Qγ(N)x for any

γ ∈ SN−1(T ). Therefore∆V (x) ≤ xT
(

ΦT
δ (N)PΦδ(N) − P

)

x, which means that if the relation

(11) is satisfied for allδ ∈ SN(T ) then condition (12) holds.

3) ⇒ 1) SinceV is piecewise quadratic andQσ(N) = QT
σ (N) ≻ 0, for all x ∈ R

n one can

find two positive scalarsa, b s.t. a‖x‖2 < V (x) < b‖x‖2 with a = infσ∈SN (T ) λmin (Qσ(N)) and

b = supσ∈SN (T ) λmax (Qσ(N)). If V (x+) − V (x) < 0 for all x ∈ R
n, then there exist a positive

scalarǫ < 1 s.t.V (x+) < ǫV (x), which is the same asV (φσ(k, x)) < ǫkV (x), ∀x ∈ R
n, ∀k >

0, ∀σ ∈ S∞(T ). This leads to‖φσ(k, x)‖2 <
b

a
ǫk‖x‖2. �

Proof of Theorem 2 :1) SinceΛ(θ) ∈ Z, for all θ ∈ T , with Z in (4), then for all sequences

of sampling intervalsσ ∈ SN(T ), the N-step transition matrixΦσ(N) satisfies the relation

Φσ(N) ∈ co (Y) with Y defined in (13). Therefore (14) implies that the conditions (11) in

Theorem 1 hold, so the origin of (8) is asymptotically stable.

2) This property can be shown by considering the LDIx+ ∈ Hz(x), Hz(x) = {Zix, i ∈ Ip} ,

and showing that (15) is a Lyapunov function for this LDI, using similar arguments to the proof

2) ⇒ 3) in Theorem 1. Indeed, one can notice that (14) implies thatV (Zix) < V (x), ∀ i ∈ Ip.



SinceV (x) is convex,
∑p

i=1 αiV (Zix) ≥ V (
∑p

i=1 αiZix), for all positive scalarsαi, i ∈ Ip s.t.
∑p

i=1 αi = 1. We obtain thatV (
∑p

i=1 αiZix) < V (x). Moreover, sinceΛ(θ) ∈ Z, this leads to

V (Λ(θ)x) < V (x), i.e. the function (15) is strictly decreasing along the system solutions.�

Proof of Theorem 3:Note that∀t ∈ [tk, tk+1], the maximal derivative of the function (17) along

the solutions of (2) satisfies the relation :U (t, tk) ≤ maxt−tk∈[0,θmax] ∇(Acx(t)+BcKx(tk))V (x(t)).

The value of the maximal directional derivative ofV (x) along a vectory is given by:

∇yV (x) = max
i∈I(x)

2xT Liy, I(x) :=

{

i∗(x) : i∗(x) = arg max
i∈IM

xT Lix

}

. (28)

Then

U (t, tk) ≤ max
t−tk∈[0,θmax]

max
i∈I(x)

2x(t)T Li {Acx(t) + BcKx(tk)} (29)

Therefore, condition (19) is satisfied if there exists aλ > 0 s.t.

max
t−tk∈[0,θmax]

max
i∈I(x)





x(t)

x(tk)





T 



AT
c Li + LiAc + λLi LiBcK

KT BT
c Li 0









x(t)

x(tk)



 < 0. (30)

Equation (7) implies that for(t − tk) ∈ [0, θmax], the following relation is satisfied:

(

I −Λ(t − tk)
)





x(t)

x(tk)



 = 0. (31)

Using Finsler’s lemma for all(t − tk) ∈ [0, θmax] and i ∈ IM , one can notice that the set of

relations




x(t)

x(tk)





T 



AT
c Li + LiAc + λLi LiBcK

KT BT
c Li 0









x(t)

x(tk)



 < 0, t − tk ∈ [0, θmax] , i ∈ IM ,

under the constraint (31) is satisfied if there exist matrices G1, G2 ∈ R
n×n s.t.

Ψi (x(t), x(tk)) =





x(t)

x(tk)





T 



AT
c Li + LiAc + λLi LiBcK

KT BT
c Li 0









x(t)

x(tk)



+





x(t)

x(tk)





T 









G1

G2





(

I −Λ(t − tk)
)

+





I

−ΛT (t − tk)





(

GT
1 GT

2

)











x(t)

x(tk)



 < 0 (32)

for all
(

xT (t) xT (tk)
)

6= 0, all (t− tk) ∈ [0, θmax] and alli ∈ IM . Therefore, the equation (30)

is satisfied ifmaxi∈I(x) Ψi (x(t), x(tk)) < 0, ∀ (t − tk) ∈ [0, θmax] . Using (28), this is the same



as Ψi (x(t), x(tk)) < 0, ∀i ∈ IM , ∀ (t − tk) ∈ [0, θmax] , s.t. x(t)T (Li − Lj)x(t) > 0, ∀j ∈
IM , j 6= i. Applying the S-procedure leads to the equation




AT
c Li + LiAc + λLi −

∑

i6=j βij (Lj − Li) + G1 + GT
1 LiBcK − G1Λ(θ) + GT

2

KT BT
c Li − ΛT (θ)GT

1 + G2 −G2Λ(θ) − ΛT (θ)GT
2



 ≺ 0.

SinceΛ(θ) ∈ W, ∀θ ∈ [0, θmax], the previous relation is satisfied when condition (18) holds.

Note that the relation (19) implies thatV (x(t)) < e−λtV (x0) ∀t > 0, which is the same as

‖ x(t) ‖2< ce−λt ‖ x0 ‖2 with c =
maxi∈IM

λmax (Li)

mini∈IM
λmin (Li)

. �

Proof of Theorem 4: Consider the quadratic functionV (x) = xT Px, P = P T ≻ 0. Define

the propositions (A): “̇V (x(t)) < 0”, (B): “ maxθ∈[0,θmax]V (x(t − θ)) < αV (x(t))” and (C):

“V (x(tk)) < αV (x(t))”. According to the Razumikhin’s stability theorem, the trivial solution

x = 0 is asymptotically stable if there exists a scalarα > 1 and a functionV (x) s.t. (B)⇒(A).

Note that (B)⇒ (C), so it is sufficient to show that there exist a scalarα > 1 and a matrix

P = P T ≻ 0 s.t. (C)⇒ (A). The corresponding conditions can be expressed as




x(t)

x(tk)





T 



AT
c P + PAc PBcK

KT BT
c P 0









x(t)

x(tk)



 < 0 and





x(t)

x(tk)





T 



−αP 0

0 P









x(t)

x(tk)



 < 0,

respectively. Using the S-procedure, the stability condition is satisfied if there existsǫ > 0 s.t.




x(t)

x(tk)





T 



AT
c P + PAc + ǫαP PBcK

KT BT
c P −ǫP









x(t)

x(tk)



 < 0.

Similarly to the proof of Theorem 3, (31) and the Finsler’s lemma, leads to




AT
c P + PAc + ǫαP + G1 + GT

1 PBcK − G1Λ(θ) + GT
2

KT BT
c P − ΛT (θ)GT

1 + G2 −G2Λ(θ) − ΛT (θ)GT
2 − ǫP



 ≺ 0. (33)

SinceΛ(θ) ∈ W, ∀θ ∈ [0, θmax], if the set of conditions (21) is satisfied, then there existsa

sufficiently small positiveδ s.t. (33) is satisfied withα = 1 + δ. �
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