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Discrete and intersample analysis of systems with
aperiodic sampling

L. Hetel, A. Kruszewski, W. Perruquetti, J.P. Richard

Abstract

This article addresses the stability analysis of lineaetinvariant systems with aperiodic sampled-
data control. Adopting a difference inclusion formalisme show that necessary and sufficient stability
conditions are given by the existence of discrete-time iggaadratic Lyapunov functions. A constructive
method for computing such functions is provided from theragjpnation of the necessary and sufficient
conditions. In practice, this leads to sufficient stabiligteria under LMI form. The inter-sampling
behavior is discussed there: based on differential inchssiwe provide continuous-time methods that
use the advantages of the discrete-time approach. Thasesalillustrated by numerical examples that

indicate the improvement with regard to the existing litera.

Index Terms

aperiodic sampled-data control, difference inclusiotesifity, quasi-quadratic functions.

I. INTRODUCTION

The stability analysis ofinear time invariant(LTI) systems with aperiodic sampling is a very
challenging question. This problem is not easy, since, uadeations of the sampling interval,
the trajectory of a system may become unstable (see [23¢ 68) The problem is relevant to
networked / embedded control applications and has beeressklt from both the discrete-time
and continuous-time points of view.

In continuous-time, it has been approached using a timaydgystem modeling [7], [6], a

norm-bounded uncertainty modeling of the sample-and-bplerator [18], [9] or an impulsive
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system model [20]. The disadvantage of continuous-timéaut is that, in general, the analysis
does not take into account the particular variation of teang-induced delay which exhibits a

“sawtooth shape”. The only method that considers this isstlee recent work [6]. Continuous-

time methods may also suffer from conservatism due to themnppunding of the derivatives

of Lyapunov-Krasovskii functionals or to the symmetry odlipdoidal norms used for bounding

the sample-and-hold operator.

In the discrete-time domain, using the exact integratioar @/ sampling interval, the system
with aperiodic sampling can be expressed éaear difference inclusiorfLDI): see [21], [5] for
a switched LDI, [13] for a polytopic LDI, [1], [8] for a normdunded LDI and [22], [19], [14],
[4] for generic stability properties of LDI. Sufficient liae matrix inequality (LMI) conditions for
stability are given in the literature, based on the existerfcquadratic Lyapunov functions [21],
[5], [8], or of Lyapunov functions that depend on the samplinterval [13], [3]. Compared to
continuous-time approaches, discrete-time methods fopfitvolving an integration procedure
that implicitly takes into account the particular naturettod sampling-induced delay. The main
drawback is that they cannot take into account the intertaisystem behavior. Besides, they
become numerically inaccurate when the minimum samplibgnial tends to zero.

This paper concerns both discrete-time (Section Ill) andtinoous-time (Section 1V) ap-
proaches for the stability analysis of LTI systems underriagee sampling. The LDI model
suggests that improvement in the stability analysis can bdenby using quasi-quadratic Lya-
punov functions [19], [14], [24] which are both necessary anfficient for the stability of LDI.
However, the computation of such functions is still an opssbfem. To the authors knowledge,
there is no LMI criteria in the literature for deriving sualnictions. This paper provides such a
constructive numerical procedure for deriving quasi-gatid Lyapunov functions. The approach
is based on a necessary and sufficient condition that undsré converse Lyapunov theorem for
the stability of LDI defined on compact sets (as the LDI ol#difrom systems with aperiodic
sampling). In practice, some restrictions to sufficientdibons lead to a LMI characterization
of the stability domain that can be favorable compared tcettisting literature. It is possible to
tune the amount of conservatism of these LMI according todtegired numerical complexity.
In a second time, we analyze systems with aperiodic samfilorg the continuous-time point
of view. The goal is to propose a new approach that uses thengatyes of the discrete-time

methods, via the classical integration operator. The amgbracan be used for analyzing the



intersample system behavior.

This paper is organized as follows: Section Il provides ahmiatical formulation of the
problem under study; Section Il deals with the discreteetianalysis, while Section IV presents
continuous-time results. Numerical examples are predent&ection V.

Notations : For a square symmetric matrix/ = 0 (M < 0) indicates thatV/ is positive
(negative) definitel|-||,; denotes the ellipsoidal norm associated to a matfix= M? - 0,
z||lar = VaT Mz, BY Aoz (M) ( Amin(M)) we denote the maximum (minimum) eigenvalue of
a square symmetric matrix/. For a given sef, the symbokoF denotes the convex hull of the
set. Forp € N, Z,, denotes the sdfl,2,...,p.} C N. Fork € N and a compact sé) we denote
by S,(©) = {0 co={0.}), ;€O Vi=0,.. . k- 1} the set of allk — length sequences
with values in©. By V,V(x) := lim._o+ (V(z +ey) — V(z)) e ! we denote the directional
derivative of a function//(x) along the directiory.

[I. MATHEMATICAL FORMULATION

Consider two positive integers, m and the matricesA. € R"*", B. € R™™. We are
interested in the class of LTI systemg&) = A.x(t)+ Beu(t), vt € RY, z(t) = xy € R",Vt < 0.
Herex : R — R” represents the system state andR — R™ represents the control. We consider
that the control law is a piecewise constant state feedbaeky(t) = Kz(ty), Vt € [ty, tkr1) ,
where{t, }, . represents an unbounded monotonously increasing seqoésaepling instants

with elements inR™, i.e.
0:t0<t1<...<tk<...;tk€R+,VkEN; khmtk:oo (l)

We denote by, := t,.1 — t, the sampling interval and we consider that for /all,, belongs

to a compact sef C R*. The closed-loop system has the form
&(t) = Acx(t) + BoKa(ty), Vt € [ty, ter1), z(t) = x9 € R",Vt < 0. 2)

We denote by,,;, andf,,,,. the minimum and maximum of", respectively0 < 6,,,, <
Omaz < 00. The problem under study is formulated as follows:
Problem : Is system (2) stable for all the possible sampling sequeraésfyingd, € 7 and

assumption (1) ?



The study in this paper will be grounded on the use of the matemn operator\ : R™ — R™*",
AO) =T+ /0 6 e*Aeds (A, + B.K). (3)

The operatorA(-) is continuous w.r.td, and @ belongs to the compact s€t. Then the set
{A(0) : 0 € T} is a compact subset &"*". We consider that there exists a polytopic set
Z=co{Zy,Z,...,Z,} CR"™" 4)
with a finite numberp of vertices, so that\(¢) € Z, V6 € 7. Similarly, we consider the set
W = co{Wy,Wsy,...,W,} C R™*" (5)

with a finite numbep of vertices, so thah(0) € W, V0 € [0, 0,,...]. Methods for the construction
of such polytopic sets exist in the literature [12], [13],1l]1and will not be discussed in this
paper. In what follows, we use the integration operator dnmeddonvex sets (4), (5) for both a

discrete-time and continuous-time analysis of systemB gjteriodic sampling.

[Il. DISCRETETIME ANALYSIS
A. Generalities

In this section we recall some basic stability propertied #e construction of a LDI model

for systems with aperiodic sampling. For alE [t;, ;1] the solutions of system (2) satisfy:

(t—tx)
o) = )+ [ eNdsBKa(h) ©)
0

(t—tx) (t—tx)
- (I +/ eAeds A, +/ eSACdsBcK> x(ty) = At — t)x(ty) (7)
0 0

whereA(+) is given in (3). At the sampling instants, system (2) is described by the LDI:
ot € H(z), H(z)={y : y=A0)z,0 €T}, (8)

where 2 represents the state value @t., i.e. z(tx11) € H (x(tx)). Consider the initial
conditionz, € R” and ak — length sequence = {6}, € S,(7). For anyr € N, r < k,
we denote by, the flow (r,z¢) — ¢, (r,zo) defined by, (r, xg) = D, (r)xy Where . (r)

represents the — step transition matrix of (8) associatedao

,n_l...A 1A o), T
éo(r){lw ). A(6:) A (60) :3 o



The solution of (8) associated to the initial condition and to an infinite—length sequence
o € S« (7) represents the sequence of poifis (k, zo) }—,-
Definition 1: The equilibrium pointz = 0 of (8) is said to be globally uniformly exponentially

stable if there are constants> 0, 0 < \y < 1 s.t.:
9o (K, o) || < eAgllzoll, Yk >0 (10)

holds for all initial conditionsr, € R”, all k € N and all sequences € S..(7).

It has been shown in [9] that the stability of the LDI (8) is a@lent to the stability of
the continuous-time system (2). The simplest stabilityecion is the existence of a quadratic
Lyapunov function (a sufficient condition). Note that for LEhis criterion is not necessary, and
may be a conservative stability test [22], [14], [19]. Here 8how how to refine the analysis of

systems with aperiodic sampling by using Lyapunov funditmat are more suitable for LDI.

B. Stability analysis based on discrete-time quasi-quadidayapunov functions

In what follows, we introduce a new discrete-time stabitityaracterization for systems with
aperiodic sampling. Before presenting the approach, we gitechnical result for the LDI (8).
Several necessary and sufficient conditions exist for thbilgly of polytopic LDI [17], [15],
[14]. However, in the case of sampled-data systems (2), tit@ireed LDI (8) is not described
by a polytopic set of vector fields. It can just be said that ¢leé of matrices described by
{A(0): 0 € T} is a compact subset @&"*". As follows, we provide necessary and sufficient
stability conditions that underline a converse Lyapunosotem for LDI defined on compact
sets (such as the ones obtained in the case of sampled-dtemsy.

Theorem 1:Consider the continuous-time system (2) and the equivalehimodel (8) at the
sampling instants. The following statements are equivtalen

1) The equilibrium pointz = 0 of (8) is globally uniformly exponentially stable.

2) There exist a matri¥’ = PT = 0 and a positive integeN s.t. the transition matri®, (N)

defined in (9) satisfies the relation
P = &L(N)Pd,(N), Vo € Sy(T). (11)

3) There exists a positive definite functién: R” — R+ strictly convex, homogeneous (of
the second orden)/ (z) = 2" Lz, with Lgj : R" — R™", Ly = LT = Lige), Yo # 0,0 €



R, a # 0 s.t. the following relation is satisfied :

V(z) — rgleagd/ (A(0)z) > 0. (12)

Moreover, for P and N satisfying relation (11) in 2), the functiol” in 3) is given by
V(z) = 27 Lz, with L) = Zﬁ\;l @CTr*(m)(i)Pgbg*(m)(i) where

N-1
o*(z) = arg oeé?ﬁi((T) zT (; @Z(i)P@Ai)) z. W
The proof is given in the Appendix. The theorem is inspireshfr[17], [15]. Note that it
however goes beyond [17], [15], where only the equivalehce> 2) has been established for
polytopic LDI. Here we propose, for LDI defined on compacssatconstructive way of obtaining
Lyapunov functions from the inequalities (11). In the geneontext of LDI, the theorem can
be seen as an alternative to [16] where conditions for thet@xte of time-dependent Lyapunov
functions were derived. The class of functions that we oblt@re depends only on the system’s
state and does not need information on the evolution of time-trarying parameters. The set
of inequalities (11) represents a necessary and suffictability condition for systems with
aperiodic sampling. However, in practice, the number ofquatities to be checked in (11)
grows in an exponential manner accordingo Therefore, finding a general solution for (11)

represents aiV P-hard problem [2], even for the simple case when theBas finite. Still, one
can reduce it to a simpler problem using a finlteand a convexification of the set of vector
fields in (8), as follows:

Theorem 2:Consider system (2), the equivalent LDI (8), the 8ein (4) and the set

V(Z2)={Y:Y=10'"Z,, Z,, €2, n€L,}. (13)
If there exist a positive integeN and a matrixP? = PT - 0 that satisfy
P=YTPY, VY €Y (Z), then (14)

1) the equilibrium point: = 0 of (8) is globally asymptotically stable;

2) there exists a quasi-quadratic Lyapunov function with fibrm

V(z) = maxa’ Lz (15)

1€y

There is no numerical algorithm that is able to solve the jgmbin a polynomial time.



which is strictly decreasing along the solutions of (8), vehé,;, i € Z,;,, M = pV~!, are

obtained using an enumeration of the elements in the set

Q= {Qf(N) Q7 (N) = X_: (6_2,) P(IB_Z,) + P, o= {m} € SN_l(Ip)} :

j=1
The proof is given in the Appendix. The test involves a finitenber of LMI that are sufficient
for stability. In Section V, we provide numerical exampletiere the proposed test is less
conservative than the existing ones based on quadraticubgapfunctions (such as in [8]), or
on poly-quadratic stability [13]. Note that the case of qadid Lyapunov functions is included
in the conditions provided here ((11) or (14)) since it cep@nds toN = 1. The accuracy of
the stability characterization from conditions (14) mginlepends on two factors: the length
N of the horizon of analysis, and the accuracy of the polyt@mitbeddingZ described in (4)
(for more details on such convex embedding see [12], [13]])[IThe amount of conservatism

introduced in the approach can be tuned according to thesenpters.

IV. CONTINUOUS-TIME ANALYSIS

We now provide a characterization of the intersample bemaof (2). Note that (2) is a
differential equation with discontinuous right hand sidénceV (¢t —t;) € 7
dx(t)
dt
The first elementA. + B.K) z(t) corresponds to an actuation instant, whewéast)+B. Kz ()

€2t 1), 2t ) = {(Ae + B.K) a(t), Aur(t) + BKx(ty)} . (16)

corresponds to the intersample dynamics. The model (16yvalfor studying the existence of

a continuous-time Lyapunov function

V(z) = 2" Lz = maxz” Lz, a7)

i€y
with L;, i € Z,,;, a set of symmetric positive definite matrices, as statedhieofem 3:
Theorem 3:Consider system (2), the equivalent model (16) and the ppigtset)V given
in (5). If there exist a scalak > 0, a set of scalargl; > 0, ,5 = 1,..., M, and matrices
G1,Gy e R™™ st

ATLi + LiAc + AL = 32, By (L — Li) + Gi + G LiB.K — G\W, + GF

<0, (18)
KTBTL, — WIGT + G, —GoW, — WEGE



for all i, 7 € Z),, and for alll € Z,,, then the maximal directional derivative of the functiorr)1
following the vector fields of the closed-loop systeim(t,t,) = maxy ez, VooV (2(t))
satisfies the relation

U (tty) < —AV(2(t)), V€ [tr test], Va(t) £ 0, (19)

and the originr = 0 of the closed-loop system (2) is exponentially stallle.

The proof is given in the Appendix. The goal of the previousottem is two-fold. First, it can
be used for estimating the decay rate of a given quasi-qtiadrgapunov function (17) over
the sampling intervals. If the Lyapunov function is complufeom the discrete-time method
(Theorem 2), then thé; matrices are given and the computation of the decay rate lead set
of LMI. Second, the theorem can be applied for directly cotimgua Lyapunov function without
using the discrete-time analysis. The proposed test lea8dlihear Matrix Inequalities (BMI).
However, they can be reduced to LMI by considering quadiatapunov functions, which gives
a bit more conservative stability conditions. The previthusorem provides a description of the
state behavior at all instants of time (including the iraenple behavior): if the set of matrix
inequalities (18) are satisfied, then (19) holds, which iespthatV (z(t)) < e *V (), Vt > 0.

max;er,, )\ma:p Lz

. ) ) min;ez,, Amin (Lz) .
Remark 1:Conditions (18) are not feasible in the dead-beat contrekcahere for some

This is the same a z(¢) ||?< ce ™ || zo ||? with ¢ =

6 € [0,0m4:], A() has eigenvalues at zero. Excluding this case, the existehfienctions of
the formV (z) = 27 L,z is not only sufficient, but also necessdoy the stability of (2). This
can be easily shown since in this case the matiig) is invertible for all§ € [0, 6,,,.]. Then

z(ty) = A71(t — t;)z(t) and (2) can be expressed as timear differential inclusion
— € He(x), He(z) = {y cy = (Ac + B.KA ™! (9)) z, 6 €0, Qmax]} ) (20)

For such differential inclusion, it is known that the existe of a quasi-quadratic Lyapunov
function is necessary for stability [19], [14]. However,edto the matrix inversion that appears
in (20), no efficient numerical tool exists for applying thesults in [14] to (20)

In the following theorem, we restrict to asymptotic stakiland propose an analysis method
that includes the dead-beat case using the Razumikhin ohétlee for example [10]).

Theorem 4:Consider system (2) and the polytopic 3#tgiven in (5). If there exist a matrix



P = PT - 0, a scalare > 0, and matrices?;, Gy € R™*" s.t. :

ATP+ PA.+ G+ G +eP PB.K—GW, +GI <0, 21)
KTBI'P — WIGT + G, —GoW, — WTIGE — eP
vV | € Z,, then the origine = 0 of the closed loop system (2) is asymptotically stallle.

The proof is given in the Appendix. Note that the set of cdndg (21) represents an optimiza-
tion problem which can be solved using a line search algoriédmd LMI solvers. The theorem
ensures that, within the sampling interval, the Lyapunazdinikhin functionV (z) = =7 Px is
always less than the value at the sampling instants, althdug not monotonously decreasing.
It can be shown, using numerical examples, that this newoagpr provides a less conservative
stability condition in comparison with the existing contous-time approaches (see Example 2,
in Section V). In fact, this stability test is comparable @ tone provided in discrete-time by
a common quadratic Lyapunov function. The advantage,. whetdiscrete-time approach, is the
fact that the intersample behavior is explicitly taken iatcount and that a sampling interval
tending to zero may be considered as well. However, in coisgawith Theorem 3, it cannot be
used for computing a decay rate over the sampling intervahly ensures asymptotic stability,

not exponential stability.

V. NUMERICAL EXAMPLES
Example 1.Consider a LTI system (2) described by :

05 0 1
A= B, = and K = (1.02 —5.62).
0 35 1

A(0) in (3) is Schur for any sampling intervéle [0, 0.46]. However, switching among different
values of# in this interval may lead to an unstable behaviour: one caicedhat although
both A(0.25) and A(0.45) are Schur, the transition matrik = A(0.25)A(0.25)A(0.45) has the
eigenvalues outside the unit circle. This implies that whesn sampling period is varying in a
periodic pattern).25 — 0.25 — 0.45 — 0.25 — 0.25 — 0.45..., the closed-loop system is
unstable. A similar unstable behavior can be observed fer{0.1,0.43} since the transition
matrix ® = (A(0.1))° A(0.43) is not Schur. We consider that the sampling interval anbitra
switches among the valué$.1, 0,,..} and we use Theorem 2 to compute the maxintym, €

[0.1,0.46] ensuring stability. Using the set of LMI (14), it is possilitefind a quasi-quadratic
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Fig. 1. Simulation for an arbitrary sequence of samplingnvels with6,,;, = 0 and6,,., = 0.09 for the Example 2.

Lyapunov function of the form (15) folV = 7 up t0 6,,.. = 0.41 (which is very close to the
value (.43 for which an unstable sampling path exists). Bgr,. = 0.41, using the existing LMI
solvers, it is impossible to find a common quadratic Lyapufumction [21], [8], [1] or a poly-
guadratic one [13]. In fact, the maximum valueséyf,, that can be obtained from quadratic
and poly-quadratic Lyapunov functions atg.. = 0.36 and?,,,, = 0.39, respectively.

Example 2.Consider a continuous-time system described by the fotigwnatrices:

1 15 1
A, = , B.= , K =(5.33 —9.33).
~15 1 1

In order to construct a polytopic se¥ for A(f), we use the method proposed in [13] based
on a Taylor series expansion. We use a uniform partition ef ititerval [0, 6,,,,.] into 10
subintervals and apply locally the embedding method (4tfelodevelopment). Using Theorem
3, a continuous-time quadratic Lyapunov function can benfoup tod,,.. = 0.09 (see Figure
1). For this example the integration operator is singularéfez 0.092 (see Remark 1) which
shows that the obtainet, ... is close to the theoretical bound for quasi-quadratic fiomst

The methods in [18], [20], [9] and [6] show that the system tsbke for 6,,,, = 0.014,
Ormaz = 0.033, 0,4, = 0.07 and ,,,, = 0.12, respectively. Theorem 4 proves the asymptotic
stability for 6 € [0,0.14] which is less conservative than the existing approachete that using

the discrete-time approach (Theorem 2), we are able to shevstability foré € [0.001,0.15].



This means that Theorem 4 is almost as efficient as the destineé approach, with the additional
advantage that it takes into account the intersample behawd very small sampling intervals.
Comparing now the number of LMI decision variables, [18] §ichave(.5(n?+n)+m?*+m =5
variables, [20] has3.5n? + 1.5n = 17 while [6] has8n? + n = 34. In Theorem 4 there are
0.5(n? + n) + 2n% = 11 variables involved ip + 1 = 51 LMI constraints.

VI. CONCLUSIONS

In this paper we addressed the robust stability of LTI systemith aperiodic sampled-
data controller. The approach is based on LMI conditionstier existence of quasi-quadratic
Lyapunov functions. It may also be of interest for a more ganelass of LDI. The intersample
behavior is analyzed through a continuous-time analysa$ tienefits from the discrete-time
approach. The results are illustrated by numerical exasnfilat indicate improvement with

regard to other recent approaches.

APPENDIX
Proof of Theorem 1:1) = 2) Assume that (10) holds. Then there exists a symmetric pesiti
)\mam P
definite matrixP and the associated ellipsoidal nofirf » s.t.||¢, (k, z)||% < )\7((]%)02)\3’“]@”%

holds for allz € R", all k € Nand allo € S..(7). Since\; < 1, there exists a positive integaf
s.t.||oo (N, 2)||% < (N, 2)Ppy(N,z) — 2T Pz <0, Vr € R", Vo €
Soo(T). With ¢, (N, x) = &,(N)z, this is the same a&, (P, N) = ®L(N)PP,(N) - P <0
Vo € So(7T). SinceR, (P, N) depends only on the firsY terms ofo, thenR, (P, N) < 0, Vo €
Sn(7), which implies (11).

2) = 3) Consider a sequencee Sy_1(7). Define

=2

Z (22)

=0
Q,(N) is continuous with respect to < SN_l(T). Since Sy_1(7) is a compact set, then

SUD,csy (1) T Qo(N)z = Maxsesy (1) 2" Qo(N)x. Thus V(z) = maxsesy (1) Qo(N)z
is homogeneous and convex. Furthermdres: PT > 0 implies Q,(N) = QL(N) = 0
We are going to show that if the point 2) is satisfied, then ti@ement of\/(x) over one

step satisfies

_ T + _ T
AV (z) = Ueglvz})l((ﬂ(x ) Qs(N)x aeglﬁ}fw)x Q,(N)x <0 (23)



with 2t = A(#)z. Consider two(N — 1) — length sequences = {a;} 2,8 = {Bi}ry’ €
Sn-1(T) defined by v = arg maxyesy (1) (1) Qo (N)a™, f = argmaxyesy (1) 27 Qo (N)z.
From (23) we obtain

AV(z) = 2" (AT(0)Qa(N)A(0) — Qs(N)) x. (24)

From the definition of),(N), given in (22), withc = «, one can notice that
N-1
Qu(N) = ®L(i) PP, (i) = DL(N = 1) PP, (N = 1) + Qu(N —1). (25)
=0

We denote byy the sequence = {} > € Sy 1(T)Withyo =6, v, = ay_1,i=1,...,N=2.
Moreover, we denote by the sequencé = {5;}.,' € Sx(T), with §y = 6, §; = a;_1,i =
1,..., N — 1. One can notice that the teria’ ()Q.(N)A(9) in (24) can be expressed as

AT(0)Qa(N)A(0) = OF (N)PDs(N) + Q,(N) — P. (26)
Therefore the one-step incrementi6fx) is given by
AV (z) =z (D5 (N)PPs(N) + Q(N) — P — Qg(N)) . (27)

Since 3 = argmax,,esy (1) ¢’ Q-(N)z, one can see that’ Qz(N)z > z7'Q,(N)z for any
v € Sy—1(T). ThereforeAV (z) < a7 (®] (N)P®s(N) — P) x, which means that if the relation
(11) is satisfied for alb € Sx(7) then condition (12) holds.

3) = 1) SinceV is piecewise quadratic an@,(N) = QT(N) = 0, for all z € R™ one can
find two positive scalars, b s.t.al|z||* < V(z) < b||z||* with a = inf,cs, (1) Amin (Q-(N)) and
b = SUP,esy (1) Amaz (Qo(N)). If V(2T) — V(z) < 0 for all » € R, then there exist a positive
scalare < 1 s.t. V(2") < €V (), which is the same a¥ (¢, (k,z)) < "V (), Vo € R", Vk >
0,Vo € 8(7). This leads to||¢,(k, z)||* < éek||x||2. O

Proof of Theorem 2 1) SinceA(9) € Z, fgr all 6 € 7, with Z in (4), then for all sequences
of sampling intervalss € Sy (7), the N-step transition matrixp,(/N) satisfies the relation
&,(N) € co(Y) with Y defined in (13). Therefore (14) implies that the conditiofg)(in
Theorem 1 hold, so the origin of (8) is asymptotically stable

2) This property can be shown by considering the LDl H*(x), H*(x) = {Zx, i € I,},
and showing that (15) is a Lyapunov function for this LDI,ngsimilar arguments to the proof
2) = 3) in Theorem 1. Indeed, one can notice that (14) implies that;z) < V(x),V i € Z,,.



SinceV (z) is convex,y * | a;V(Z;x) > V(3 F_, o; Z;x), for all positive scalarsy;, i € Z, s.t.
P a; =1. We obtain that/ (>"_| o, Z;x) < V(z). Moreover, since\(f) € Z, this leads to
V (A(#)x) < V(z), i.e. the function (15) is strictly decreasing along the sgssolutions[]
Proof of Theorem 3:Note thatvt € [tx, tx11], the maximal derivative of the function (17) along
the solutions of (2) satisfies the relatio/ (¢, ;) < max; s, c0,0,mas] V (Acz(t)+ B Kaz(ty))V (2(1)).

The value of the maximal directional derivative B{x) along a vectoty is given by:

V,V(z) = mlz%x) 227 Ly, I(x) := {z* (x) :i*(z) = arg max xTLix} : (28)
el(z 1€l
Then
Ut ty) < max  max 2z(t)T L; {Acx(t) + B.Kx(t)} (29)

t—tp € [O,lgmaw] iEI(Z’)

Therefore, condition (19) is satisfied if there exists & 0 s.t.

T
t ATL; + L;A.+ \L; L;B.K t
max  max z(?) ¢ z(?) <0. (30)
t—t1,€[0,0maz] i€ (x) x(tk) KTBZLi 0 m(tk)

Equation (7) implies that foft — tx) € [0, 6,.42], the following relation is satisfied:

() (;(Z))) ~ 0, (31)

Using Finsler's lemma for allt — ¢) € [0,0,,..) @andi € Z,,;, one can notice that the set of

relations

T
t ATL, + L,A. + \L; L,B.K t
z(t) ¢ z(t) <0, t—tr €[0,0masl, i € Tur,
l’(tk) KTB;‘FL,' 0 l'(tk)

under the constraint (31) is satisfied if there exist mas$riGe, G, € R™™" s.t.

B, (2(t), 2(te)) = (:g(t))T (AZ“L,- +TLifC+AL,- L,-BCK) (x(t)) .
o{f) KTB] L o ) \att)

x(t) ' Gy | ()
(x(ti)) {(Gz) (' —A(t—tk)) + (AT(ttk)) (GlT Gg)} (I(;)) <0(32)

for all <xT(t) :L'T(tk,)> # 0, all (t—1tx) € [0,0m4.) @and alli € Z,,. Therefore, the equation (30)
is satisfied ifmax;cr) ¥ (2(t), ©(t)) <0, V (t — tx) € [0, 0mqe) - Using (28), this is the same



as¥; (z(t),z(ty)) < 0, Vi € Iy, ¥V (t —t) € [0,0pmas), Stoz(t)” (L; — L) z(t) > 0, Vj €
Iy, j #i. Applying the S-procedure leads to the equation

ATLi+ Lide + ALi = 35,4, Bij (L — Li) + Gy + G LiB.K — G1A(0) + G5
KTBTL, — AT(0)GT + G, —GLA(9) — AT (0)GT
Since A(#) € W,V0 € [0,0,,4.], the previous relation is satisfied when condition (18) bold
Note that the relation (19) implies thaf(z(t)) < e MV (x) Vt > 0, which is the same as
2 )\ 2 - o maxi;ez,, )\mam Lz
| z(t) [|[*< ce™ || o ||? with ¢ = T w— O
Proof of Theorem 4: Consider the quadratic functiovi(z) = z” Pz, P = PT = (. Define
the propositions (A): V (z(¢)) < 0", (B): MATH(0,0m00]V (2(t — 0)) < oV (2(t))" and (C):
“V(x(ty)) < aV (z(t))". According to the Razumikhin’s stability theorem, thevial solution

x = 0 is asymptotically stable if there exists a scalar- 1 and a function/ (z) s.t. (B) =(A).
Note that (B)= (C), so it is sufficient to show that there exist a scalar- 1 and a matrix

P =PT = (st (C)= (A). The corresponding conditions can be expressed as

T T
t ATP+ PA. PB.K t t —aP O t
w(t) | (ATP+ v g [0 [0 )
respectively. Using the S-procedure, the stability coodiis satisfied if there exists> 0 s.t.
T
x(t) ATP+ PA.+eaP PB.K x(t) —0
2(ty) KTBTP —eP | \ () '

Similarly to the proof of Theorem 3, (31) and the Finslermfaa, leads to
ATP 4+ PA, 4+ eaP+ G, +GT  PB.K —GA0) +GY
KTBTP — AT(0)GT + Gy —GaA(0) — AT(0)GT —eP
SinceA(0) € W, V0 € [0, ,...), if the set of conditions (21) is satisfied, then there exists
sufficiently small positive) s.t. (33) is satisfied witlw = 1 + 6. [J

< 0. (33)
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