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Abstract.

Let consider the Pauli group Pq = 〈X,Z〉 with unitary quantum generators X

(shift) and Z (clock) acting on the vectors of the q-dimensional Hilbert space via

X |s〉 = |s+ 1〉 and Z |s〉 = ωs |s〉, with ω = exp(2iπ/q). It has been found that the

number of maximal mutually commuting sets within Pq is controlled by the Dedekind

psi function ψ(q) = q
∏

p|q(1 +
1
p
) (with p a prime) [2] and that there exists a specific

inequality ψ(q)
q

> eγ log log q, involving the Euler constant γ ∼ 0.577, that is only

satisfied at specific low dimensions q ∈ A = {2, 3, 4, 5, 6, 8, 10, 12, 18, 30}. The set A is

closely related to the set A ∪ {1, 24} of integers that are totally Goldbach, i.e. that

consist of all primes p < n− 1 with p not dividing n and such that n− p is prime [5].

In the extreme high dimensional case, at primorial numbers Nr, it is known that the

inequality ψ(Nr)
Nr log logNr

' eγ

ζ(2) (for every r > 2) is equivalent to Riemann hypothesis.

Introducing the Hardy-Littlewood function R(q) = 2C2

∏

p|n
p−1
p−2 (with C2 ∼ 0.660

the twin prime constant), that is used for estimating the number g(q) ∼ R(q) q

ln2 q
of

Goldbach pairs, one shows that the new inequality R(Nr)
log logNr

' eγ is also equivalent to

Riemann hypothesis. In this paper, these number theoretical properties are discusssed

in the context of the qudit commutation structure.

PACS numbers: 02.10.De, 02.10.0x, 03.65.Fd, 03.67.Lx

Mathematics Subject Classification: 11M26, 11P32, 05C10, 81P68, 11A25

1. Introduction

We propose new connections between the Pauli graphs [1, 2], that encode the

commutation relations of qudit observables, and prime number theory. We already

emphasized that the Dedekind psi function ψ(q) = q
∏

p|q(1+
1
p
) (with p a prime) is used

to count the number of maximal commuting sets of the qudits [2] and meets the Riemann

hypothesis (RH) at primorial numbers q ≡ Nr = 2 · · ·pr [3]. Similarly, there exist

striking connections between ψ(q) and the Hardy-Littlewood function g(q) = R(q) q
log2(q)

for the Goldbach distribution of prime pairs [see Sec. 3 for the definition of R(q)]. In

particular, we observe that ψ(q) meets the so-called totally Goldbach numbers at small

q’s and that R(q) < ζ(2)ψ(q)
q

also meets RH at primorial numbers.
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The Euler constant γ = limn→∞(
∑n

k=1
1
k
− logn) ∼ 0.57721, through the Mertens

formula eγ = limn→∞
1

logn

∏

p≤n(1−
1
p
)−1, is an important ingredient of all the inequalities

involved in this correspondence.

In the rest of this section, we report on the number theoretical coincidence between

ψ(q) and the totally Goldbach numbers at small q’s, as well on the already known

theorem connecting ψ(q) and RH at primorial numbers Nr. In Section 2, we explore

in detail this coincidence by refering to the qudit Pauli graphs. Then, in Section 3, we

establish the connection between R(q) and RH at primorial numbers. In the discussion,

the concept of a Goldbach defect for encompassing the statements at low and high q’s

is proposed.

A number theoretical coincidence

Let us start the exposition of our ideas with a few theorems and definitions.

Goldbach’s conjecture, formulated in 1742, is that every even integer greater than

2 is the sum of two primes. To date it has been checked for q up to 2.1018 [4]. A pair

(p1, p2) of primes such that the even integer n = p1 + p2 is called a Golbach partition.

Definition 1: A positive integer n is totally Goldbach if for all primes p < n− 1,

with p not dividing n (except when p = n− p) we have that n− p is prime [5].

Theorem 1: The inequality ψ(q)
q
> eγ log log q is only satisfied at a totally Goldbach

number q ∈ A = {2, 3, 4, 5, 6, 8, 10, 12, 18, 30}. The only totally Goldbach numbers not

satisfying the inequality are q = 1 and q = 24.

Proof: The proof of theorem 1 follows from a combination of results in [5] and

[3] (for a more general setting, see [6]).

Definition 2: A positive integer n is almost totally Goldbach of index r if for all

primes p < n− 1, with p not dividing n (except when p = n− p) we have that n− p is

prime with r exceptions.

index r set almost totally Goldbach mumbers

0 A0 {1, 2, 3, 4, 5, 6, 8, 10, 12, 18, 24, 30}
1 A1 A0 ∪ {7, 9, 14, 16, 20, 36, 42, 60}
2 A2 A1 ∪ {15, 22, 48, 90}
3 A3 A2 ∪ {13, 26, 28, 34, 54, 66, 84, 120}

4 A4 A3 ∪ {11, 21, 40, 78, 210}
5 A5 A4 ∪ {19, 32, 44, 50, 72}
6 A6 A5 ∪ {17, 25, 46, 70, 102, 114}
7 A7 A6 ∪ {33, 38, 52, 64, 126, 150}

8 A8 A7 ∪ {23, 27, 31, 39, 56, 58, 96}
9 A9 A8 ∪ {29, 35, 76, 108, 168, 180}

10 A10 A9 ∪ {45, 74, 132, 144}

Table 1. Almost totally Goldbach numbers of index r ≤ 10.

Let g(n) be the number of ways of representing the integer n as the sum of two
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primes. The maximum value of g(n) is indeed less or equal than the number of primes
n
2

≤ p ≤ n − 1. Values of n such that g(n) reaches its maximum are in the set

B = A0 ∪ {7, 14, 16, 36, 42, 48, 60, 90, 210} [7], where A0 is the set of totally Goldbach

numbers. It is not surprising that numbers in B that are not totally Goldbach are

almost totally Goldbach with a small index r (as shown in Table 1). The first five and

the integer 60 have index 1, while 48 and 90 have index 2 and 210 has index 4. For a

prime number p > 3, the index r(p) is the Sloane’s sequence A062302.

This number theoretical coincidence is further explored in Sec. 2 in the context of

the qudit commutation structure.

Number theoretical inequalities at primorial numbers

Let us start with

Theorem 2: Let Nr = 2 · · ·pr be the primorial of order r. The statement
ψ(Nr)

Nr log logNr
> eγ

ζ(2)
for every r > 2 is equivalent to the Riemann hypothesis.

Proof: Theorem 2 is proved in [3] and in a more general form in [6].

In Sec. 3, we establish further statements relating ψ(q) and the Hardy-Littlewood

function R(q) about the number of Goldbach pairs. An important result is conjecture

1 that is found to be equivalent to RH by theorem 5.

2. The number theoretical coincidence for qudits

In this section, we recall the definition of a q-level system, or qudit, and the number

theoretical structure, involving the Dedekind psi function ψ(q), of maximal sets of

pairwise commuting operators. Calculations about the inequality of theorem 1, at the

number q, and the symmetries of the qudit system in the corresponding dimension q

are given in two separate tables 2 and 3, in order to display the distinctive features of

both types of systems. In table 2, one selects q ∈ A0, a totally Goldbach number, and

in table 3 one selects q /∈ A0, with q ≤ 36.

The single qudit commutation structure

Definition 3: In a loose sense, a qudit is defined as the group Pq = 〈X,Z〉 with unitary

quantum generators

X =















0 0 . . . 0 1

1 0 . . . 0 0

. . . . . . .

. . . . . . .

0 0 . . . 1 0















, Z = diag(1, ω, ω2, . . . , ωq−1), (1)

with ω = exp(2iπ
q
). The Weyl pair (X,Z) satisfies ZX − ωXZ = 0, and each element

of Pq may be uniquely written as ωaXbY c, with a, b, c in the modular ring Zq. One has

|Pq| = q3, P ′
q = Z(Pq) (the derived subgroup equals the center of the group, and is of
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order q). One is interested in the maximal mutually commuting sets within the central

quotient P̃q = Pq/Z(Pq), with the identity Iq removed.

Theorem 3: Let S be the set of maximal mutually commuting sets M in P̃q. The

cardinality of M is |M| = q − 1 and that of S is |S| = σ(q), where σ(q) is the sum of

divisor function.

Proof: The proof of theorem 3 is given in [8] (for the relation to σ(q), see [2]).

Hint: Using the Weyl pair property one writes the group theoretical commutator

as [X,Z] = XZX−1Z−1 = ω−1Iq so that one gets the expression

[

ωaXbZc, ωa
′

Xb′Zc′
]

= ωcb
′−c′bIq,

meaning that two elements of Pq commute if only if the determinant ∆ = det

(

b′ b

c′ c

)

vanishes. Two vectors such that their symplectic inner product [(b′, c′).(b, c)] = ∆ =

b′c − bc′ vanishes are called perpendicular. Thus, one can transfer the study of

commutation relations within the group Pq to the study of perpendicularity of vectors

in the ring Z
2
q [9] with the isomorphism

(Pq/Z(Pq),×) ∼= (Z2
q ,+) (2)

between the central quotient of Pq and the algebra of vectors in the Zq-modular lattice

Z
2
q , endowed with the symplectic inner product “.”.

Then, one defines a isotropic line as a set of q points on the lattice Z2
q such that the

symplectic product of any two of them is 0(mod q). To such an isotropic line corresponds

a maximal commuting set in Pq/Z(Pq).

Taking the prime power decomposition of the Hilbert space dimension as q =
∏

i p
si
i ,

it is shown in (18) of [8] that the number of isotropic lines of the lattice Z
2
q reads

∏

i

psi+1
i − 1

pi − 1
≡ σ(q). (3)

Theorem 4: Let S be the set of maximal mutually commuting sets M in P̃q and

D ⊂ S the subset of S such that for any d ∈ D and s ∈ S the intersection of d and s is

non empty, i.e. d ∩ s 6= ∅. The cardinality of S−D is the Dedekind psi function ψ(q).

Proof: As shown in [8], a isotropic line of Z
2
q corresponds to a Lagrangian

submodule, i.e. a maximal module such that the perpendicular module M⊥ = M .

Let us now specialize to Lagrangian submodules that are free cyclic submodules

Zq(b, c) = {(ub, uc)|u ∈ Zq} ,

for which the application u → (ub, uc) is injective. Not all Lagrangian submodules are

free cyclic submodules. A point x = (b, c) such that Zq(b, c) is free is called an admissible

vector, and the set of free cyclic submodules defined by the admissible vectors is called

the projective line

P1(Zq) = {Zq(b, c)|(b, c) is admissible} .
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Following theorem 5 in [9], the number of points of the projective line is

|P1(Zq)| =
∏

i

(psii + psi−1
i ) ≡ ψ(q), (4)

where ψ(q) is the Dedekind psi function (see also [10]).

Then, using the isomorphism relation (2) between the isotropic lines of Z2
q and the

maximal commuting sets of S, it is clear that a free cyclic submodule is isomorphic to

an element of the set S−D, and that the projective line is in bijective correspondance

with S−D. This completes the proof.

Pauli graphs over a single qudit system

Definition 4: Let Gq be the Pauli graph constructed by taking the observables as

vertices and an edge joining two mutually commuting observables (with the identity Iq
removed). Indeed, |Gq| = q2 − 1. One further defines a point/line incidence geometry

with observables as points and the maximum cliques as lines. One characterizes this

geometry by creating a dual graph G⋆q such that the vertices are the cliques (there are

σ(q) of them) and an edge joins two non-intersecting maximum cliques. The connected

component of G⋆q corresponds to the graph of the projective line P1(Zq) [of size ψ(q)].

q #tg #mc ǫ(q) aut(G∗
q ) graph & subgraphs

2 0 3 2.15 S3 K3

3 0 4 1.16 S4 K4

4 1 6 + 1 0.92 G48 = Z2 × S4 K2,2,2

5 2 6 0.35 S6 K6

6 1 12 0.96 G144 = A4 ×D6 or S4 × S3 G∗
6 ≡ Gr4,3, 3×K4

8 2 12 + 3 0.20 Z
6
2 ⋊ (Z3

3 ⋊G48) G∗
8 , 3× C4

10 3 18 0.31 A6 ⋊D6 or S6 × S3 G∗
10 ≡ Gr6,3, 3×K6

12 2 24 + 4 0.38 Z
12
2 ×G144 3× Cu, 4× G∗

4 , 6×K4

18 4 36 + 3 0.11 Z
12
3 ⋊ (Z12

2 ×G144) 3× G∗
9 , 4×Gr3,3, 12×K3

24 6 48 + 12 −0.059 (Z24
2 ⋊ Z

12
3 ) ⋊ (Z12

2 ×G144) 3× BP6, 4× G∗
8 ,

6× Cu ,12 × {K4,K2,2}

30 6 72 0.22 S3 × S4 × S6 4× G∗
10, 6× G∗

6 , 12×K6

Table 2. Data about the structure maximal mutually commuting sets for qudits when

q ∈ A0 (the set of totally Goldbach numbers). The symbols #tg and #mc denote the

number of totally Goldbach pairs and the number of maximal mutually commuting

sets, respectively. In column 4, one computes the difference ǫ(q) = ψ(q)
q

− eγ log log q

and in column 5 the automorphism group of the corresponding projective line. The

graphs or the non trivial subgraphs that may identified at the single or multiple point

intersection set are displayed in colum 6. The notations Kn, Kn1,···,nl
, Cn, Grp,q and

Cu are for the complete graph with n vertices, a l-partite graph, the polygon graph

with n vertices, the grid graph p×q and the cube graph respectively, respectively. The

notation BP6 means a bipartite graph of spectrum {08, (−6)1, 61, (−2)3, 23}. Here, the

symbol × corresponds to non-intersecting copies of the relevant subgraph.
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q (r,#atg) #mc ǫ(q) aut(G∗
q ) graph & subgraphs

7 (1, 2) 8 −0.043 S8 K8

9 (1, 2) 12 + 1 −0.069 (Z4
3 ⋊ Z

3
2) ⋊G48 G∗

9 , 4×K3

11 (4, 0) 12 −0.47 S12 K12

13 (3, 2) 14 −0.60 S14 K14

14 (1, 3) 24 −0.014 A8 ⋊D6 or S8 × S3 G∗
14 ,3×K8

15 (2, 2) 24 −0.17 A6 ⋊G48 or S6 × S4 G∗
15 ,4×K6

16 (1, 4) 24 + 7 −0.32 A2
8 ⋊G48 3×K4,4, 6× C4

17 (6, 0) 18 −0.80 S18 K18

19 (5, 2) 20 −0.87 S20 K20

20 (1, 4) 36 + 4 −0.15 Z
18
2 ⋊ (S2

6 × S3 3× BP5, 6× {K6,G
∗
4}

21 (4, 2) 32 −0.46 A8 ⋊G48 or S8 × S4 G∗
21, 4×K8

22 (2, 5) 36 −0.37 A12 ⋊D6 or S12 × S3 G∗
22

23 (8, 0) 24 −0.99 S24 K24

25 (5, 2) 30 + 1 −0.88 A6
5 ⋊ (Z6

2 ⋊ S6) 6×K5

26 (3, 5) 42 −0.49 A14 ⋊D6 or S14 × S3 G∗
26, 3×K14

27 (8, 0) 36 + 4 −0.79 A4
9 ⋊ (Z4

2 ⋊ S4) 4×K3,3,3

28 (3, 4) 48 + 8 −0.42 Z
24
2 ⋊ (S8 × S3) 3× BP7, 6×K8, 8× G∗

4

29 (9, 0) 30 −1.13 S30 K30

31 (8, 2) 32 −1.16 S32 K32

32 (5, 4) 48 + 15 −0.71 A3
16 ⋊G48 3×K8,8, 6×K4,4, 12× C4

33 (7, 2) 48 −0.77 A12 ⋊G48 or S12 × S4 G∗
33, 4×K12

34 (3, 7) 54 −0.65 A18 ⋊D6 or S18 × S3 G∗
34, 3×K18

35 (9, 0) 48 −0.89 A8 ⋊G48 or S8 × S6 G∗
35, 6×K8

36 (1, 8) 72 + 19 −0.27 A12
6 ⋊ (Z10

2 ⋊ S2
4) 4× SG, 3× BP9, 12 × {C6,G

∗
4}

Table 3. Data about the structure of maximal mutually commuting sets for qudits

when q /∈ A0. The two symbols r and #atg denotes the index of a almost totally

Goldbach pair (see definition 2) and the number of them. The symbol #mc denotes

the number of maximal mutually commuting sets. In column 4, one computes the

difference ǫ(q) = ψ(q)
q

− eγ log log q and in column 5 the automorphism group of the

corresponding projective line. The graphs or the non trivial subgraphs that may

identified at the single or multiple point intersection set are displayed in colum 6.

Notations are the same than for table 2. The notation BPr means the bipartite graph

of prime index r and spectrum {−r1, r1, (−1)r, 1r}; the graph BP3 is the cube graph

Cu. The notation BP9 means a bipartite graph of spectrum {016, (−9)1, 91, (−3)3, 33}.

The spectrum of the subgraph SG found for q = 36 is {81, 09, (4)4, 24}.

Definition 5: Let G be a graph. The set of graph eigenvalues λi (with multiplicities

ni), also called the graph spectrum of G, is denoted spec(G) = {λn1

1 , λ
n2

2 , . . .}. A graph

whose spectrum consists entirely of integers is called an integral graph.

Results

Main properties of graphs Gq and G∗
q are displayed in tables 2 and 3. A few noticeable

properties are summarized below.
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Result 1: Let G⋆q the dual Pauli graph of the definition 4, i.e. the graph attached

to the projective line P1(Zq), integral graphs of the following type are found

type 1: if q = r, with r a prime, spec(G⋆q ) = {(r + 1)1, (−1)r+1}.

type 2: if q = rs, with r, s two distinct primes, spec(G⋆q ) = {q1, 1q, (−r)s, (−s)r}.

type 3: if q = rst, with r, s, t three distinct primes, spec(G⋆q ) =

{q1, trs, srt, rst, (−1)q, (−rs)t, (−rt)s, (−st)r}.

type 4: if q = 4r, with r a odd prime, spec(G⋆q ) = {q1, 22r, 0ψ(q)/2, (−4)r, (−2r)2}.

type 5: if q = pl is the power of a prime p, with l > 1, spec(G⋆q ) =

{q1, 0ψ(q)−(p+1), (−q/p)p}.

type 6: in dimension q ≤ 36, cases not of the above type occur

for q = 18 with spec(G⋆q ) = {181, 36, 024, (−6)3, (−9)2}, for q = 24 with

spec(G⋆q ) = {241, 46, 036, (−8)3, (−12)2} and for q = 36 with spec(G⋆q ) =

{361, 66, 060, (−12)3, (−18)2}.

Result 2: Let G⋆q the dual Pauli graph of the definition 4. Graphs and subgraphs

of the following type are found in colum 6 of tables 2 and 3.

type 1: if q = r, with r a prime, G⋆r = Kr+1.

type 2: if q = rs, with r, s two distinct primes, copies of complete subgraphs of the

form pj ×Kpi+1, i, j ∈ {1, 2}, are found.

types 4, 5 and 6: For a dimension q containing a square, the projective line P1(Zq)

contains bipartite or multipartite subgraphs. For q ∈ A0, they are of the type K2,2,

K2,2,2, Cu or BP6 (see column 6 in Table 2). For q /∈ A0, bipartite or multipartite

subgraphs of the type K4,4, K4,4,4 and BPr, r 6= 6 are found (see column 6 in Table 3).

for type 3 and higher dimensions of the primorial type one gets result 3.

Result 3: For primorial dimensions q = Nr =
∏r

i=1 pi, r > 3, the automorphism

group of the graph G∗
q is a product of the symmetric groups Spi+1 arising from the factors

of q. In addition, according to theorem 2, if Riemann hypothesis is satisfied, the size of

the projective line follows as |P1(Zq)|

q log log q
> eγ

ζ(2)
∼ 1.08.

Comments

Let us discuss shortly the results collected in tables 2 and 3. At first sight, the

symmetries of a qudit in a dimension q ∈ A0 corresponding to a totally Goldbach

number (in table 2) do not contrast with those at small dimensions q /∈ A0, q ≤ 36 (in

table 2). Let us restrict our reading of the tables to the cases where q contains a square so

that the total number σ(q) of isotropic lines/maximal commuting sets, in (3), is strictly

bigger than the size ψ(q) of the projective line, in (4). Hence, our decomposition of the

cardinality of the set of maximal commuting sets is as in column 3: σ(q) = ψ(q) + (.)

[2].

For these non square free cases, in table 2 (column 5) the two groups G48 of the

quartit and G144 of the sextit are building blocks of the automorphism groups. Looking

at the dual Pauli graph G∗
q as a simplicial complex, both groups correspond to the

topology of the sphere and of the torus, respectively. Non trivial grid graphs or bipartite
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graphs are found as constituents of G∗
q , as shown in column 6. In table 3, the graph

G∗
q for non square free dimensions shows symmetries of a different topology involving

higher order symmetric groups and simpler bipartite subgraphs such as BPr (see the

legend of the table for a definition).

Dimension 24 deserves a special attention because it is the only totally Goldbach

number that violates the inequality of theorem 1. Note that dimension 24 is also very

special for lattices (such as the Leech lattice) and marks a kind of phase transition for

symmetries [11], of a different type than the one described in [6].

3. On Goldbach pairs at primorial dimensions and RH

According to Hardy and Littlewood [12], the number of Goldbach pairs (p1, p2) of primes

whose sum is the even integer q is asymtotically given by the Hardy-Littlewood function

g(q) = R(q) q
log2 q

, with R(q) = 2C2

∏

p|q
p−1
p−2

, and C2 =
∏

p>2(1 −
1

(p−1)2
) ∼ 0.660 is the

twin prime constant.

Proposition 1: Let Nr = 2 · · ·pr be the primorial number of order r, we have

limr→∞
R(Nr)

log logNr
= eγ.

Proof: One splits the infinite product for C2 as

C2 =

r
∏

i=2

(1−
1

(pi − 1)2
)

∞
∏

i=r+1

(1−
1

(pi − 1)2
),

and one uses the equality pi−1
pi−2

= 1/(1− 1
pi−1

) to obtain

R(Nr) = 2

∞
∏

i=r+1

(1−
1

(pi − 1)2
)

r
∏

i=2

(1 +
1

pi − 1
). (5)

Then, by the convergence of the infinite product for C2

R(Nr) ∼ 2
r
∏

i=2

(1 +
1

pi − 1
) = 2

r
∏

i=2

(1−
1

pi
)−1 =

r
∏

i=1

(1−
1

pi
)−1.

Finally, proposition 1 follows by using the same line of reasoning than in proposition

3 of [3].

Conjecture 1: The Hardy-Littlewood inequality R(Nr)
log logNr

> eγ holds for every

r > 1.

This proposed conjecture follows from numerical evidence as shown on table 4. In

theorem 5, conjecture 1 is found to be equivalent to Riemann hypothesis.

Proposition 2: For an even integer q, the following inequality holds

R(q) < ζ(2)
ψ(q)

q
. (6)

Proof: One introduces the ratio x(q) = 1
ζ(2)

R(q)
ψ(q)/q

that reads.

x(q) =
2
∏

p>2(1−
1

(p−1)2
)

4
3

∏

p>2
1

1− 1

p2

∏

p>2,p|q

1
3
2
(1 + 1

p
)(1− 1

p−1
)
.
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r Nr ur − eγ

2 6 2.74

10 6.5 × 109 0.23

102 4.2× 10219 0.028

103 6.8× 103392 0.0049

104 9.1 × 1045336 0.0010

105 1.9× 10563920 0.00023

Table 4. Numerical evidence for conjecture 1 (in column 3).

By splitting the product as
∏

p∤q()×
∏

p|q() the ratio x(q) is rewritten as

x(q) =
∏

p>2,p∤q

1− 1
(p−1)2

1− 1
p2

∏

p>2,p|q

(1 +
1

p− 1
)(1−

1

p
).

The right hand side product
∏

p|q() equals 1 and the first one
∏

p>2,p∤q is lower than

1 so that Proposition 2 is satisfied.

Corollary 1: The primorial numbers Nr are champion numbers, i.e. left to right

maxima of the function q → x(q). One gets limr→∞ x(Nr) = 1.

Proof: According to [13], p. 90, or [14], p. 238, the number of Goldbach pairs is

such that there exists a constant c1 with R(q) < c1
ψ(q)
q
. Using the same method than

the one used in [3] for the champions of ψ(q)/q one gets c1 ≡ ζ(2).

Theorem 5: Conjecture 1 is equivalent to RH.

Proof: If Riemann hypothesis is not true, then according to Theorem 4.2 of [3]

and the inequality (6) there are infinitely many r such R(Nr)
log logNr

< eγ, corresponding to

as many violations of the Hardy-Littlewood inequality in Conjecture 1.

Now we prove that Conjecture 1 follows from Riemann hypothesis.

It is known from theorem 3 (b) of [15] that if RH is true then, for any x ≥ 2,

f(x) = eγ log θ(x)
∏

p≤x

(1−
1

p
) < 1,

with θ(x) =
∑

p≤x log p the first Tchebycheff function.

We introduce the new function

g(x) =
eγ

2C2

log θ(x)
∏

p≤x

p− 2

p− 1

and show below that, under RH, we have

g(x) < 1. (7)

Let us explicit the ratio
g(x)

f(x)
=

1

C2

∏

2<p≤x

p(p− 2)

(p− 1)2
,
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where C2 =
∏

2<p≤x(1−
1

(p−1)2
)
∏

p>x(1−
1

(p−1)2
). One immediately gets

log g(x) = log f(x)−
∑

p>x

log(1−
1

(p− 1)2
). (8)

Next, using the change of variables y = x− 1, one is interested with the range of values

such that p− 1 > y so that log(1− 1
(p−1)2

) < log(1− 1
y2
).

Replacing the sum by an integral at the right hand side of (8), one obtains

−
∑

p>x

log(1−
1

(p− 1)2
) < −

∫ ∞

y

log(1−
1

u2
)du = −

[

u log(1−
1

u2
) + log(

u+ 1

u− 1
)

]∞

y

∼
1

y
∼

1

x
,

at large y. By [15, Theorem 3 (b)] this is dominated by log f. Hence, by (8) log g < 0

and the inequality (7) follows.

Then, by using the same reasoning that in [15], Conjecture 1 follows from the

inequality g(x) < 1 by observing that

g(pr) =
eγ log logNr

R(Nr)
.

This completes the proof of Theorem 5.

4. Discussion

It is useful to encapsulate some of the results obtained for Goldbach pairs at small even

dimensions and at primorial dimensions by introducing a measure that we denote the

Goldbach defect.

Definition 6: For a positive even integer q, one defines a Goldbach defect gdq from

the relation gdq = ζ(2)qR(q)− ψ(q).

Result 4: The champions of the function gdq (the numbers at which gdq reaches

a new record) form the sequence

C = {2, 4, 6, 12, 18, 24, 30, 42, 54, 60, 84, 90, 120, 150, 180, 210, 270, 300, 330, 390, 420,

510, 570, 630, 780, 840, 990, 1050, 1260, 1470, 1650, 1680, 1890, 2100, 2310, 2730, 3150, 3360,

3570, 3990, 4290, 4410, 4620, 5250, 5460, 6090, 6510, 6930, 7770, 7980, 8190, 9030, 9240 . . .}

The sequence C is found to be a subset of the champions of the cototient function

(A051953 in Sloane’s encyclopedia). By its definition, sequence C encompasses the even

totally Goldbach numbers, except for the number 10 (see definition 1) and the primorial

numbers (see Conjecture 1 and Corollary 1). None of the (small) even dimensions in

table 3 belongs to the sequence. INumbers in C satisfy

ζ(2)ψ(i)

i log log i
>

R(i)

log log i
> eγ for all i ∈ C, i 6= 2.

In future work, the Goldbach defect may turn to be useful for discussing the change

in the symmetries of the Pauli graphs. The first not square free and not totally Golbach

dimension in the sequence C is q = 60. The cardinality of maximal commuting sets for

this case decomposes as σ(60) = ψ(60) + (.), i.e. 168 = 144 + 24.
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In conclusion, we found a cornerstone between the arithmetic of qudits, the

Goldbach pairs and Riemann hypothesis. It may be that the loss of coherence of a

classical system, in comparison to a quantum system, crucially depends on its high

dimensionality. The inequalities of theorem 2 and 4 would serve to define an entropy.

Mixtures of multiple qudit structures also have an attractive nested arithmetical and

geometrical structure that is worthwhile to investigate in detail (see Table 1 in [2] and

[16]).
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[14] Sándor J, Mitrinović D S and Crstici B 1995 Handbuch of Number Theory I (Springer, Dordrecht).

[15] Nicolas J L 1983 Petites valeurs de la fonction d’Euler. J. Numb. Th. 17 375-388.

[16] Saniga M and Planat M 2011 A sequence of qubit-qudit Pauli groups as a nested structure of

doilies. Preprint 1102.3281 (quant-ph).


