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Abstract

We propose a discretization for the MAC scheme of the viscous dissipation term

τ (u) : ∇u (where τ (u) stands for the shear stress tensor associated to the velocity

field u), which is suitable for the approximation of this term in a conservation

equation for a scalar variable. This discretization enjoys the property that the

integral over the computational domain Ω of the (discrete) dissipation term is equal

to what is obtained when taking the inner product of the (discrete) momentum

balance equation by u and integrating over Ω. As a consequence, it may be used

as an ingredient to obtain an unconditionally stable scheme for the compressible

Navier-Stokes equations. It is also shown, in some model cases, to ensure the strong

convergence in L1 of the dissipation term.

Key words : MAC scheme, compressible Navier-Stokes equations, RANS turbu-

lence models.

1 Introduction

Let us consider the compressible Navier-Stokes equations, which may be written as:

∂tρ + div(ρu) = 0, (1a)

∂t(ρu) + div(ρu ⊗ u) + ∇p − div(τ (u)) = 0, (1b)

∂t(ρe) + div(ρeu) + pdivu + div(q) = τ (u) : ∇u, (1c)

ρ = ℘(p, e), (1d)

where t stands for the time, ρ, u, p and e are the density, velocity, pressure and internal energy
in the flow, τ (u) stands for the shear stress tensor, q for the energy diffusion flux, and the
function ℘ is the equation of state. This system of equations is posed over Ω × (0, T ), where Ω
is a domain of R

d, d ≤ 3. It must be supplemented by a closure relation for τ (u) and for q,
assumed to be:

τ (u) = µ(∇u + ∇
t
u) −

2µ

3
divu I, q = −λ∇e, (2)
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where µ and λ stand for two (possibly depending on x) positive parameters.

Let us suppose, for the sake of simplicity, that u is prescribed to zero on the whole boundary,
and that the system is adiabatic, i.e. q ·n = 0 on ∂Ω. Then, formally, taking the inner product of
(1b) with u and integrating over Ω, integrating (1c) over Ω, and, finally, summing both relations
yields the stability estimate:

d

dt

∫

Ω

[1

2
ρ |u|2 + ρe

]

dx ≤ 0. (3)

If we suppose that the equation of state may be set under the form p = f(ρ, e) with f(·, 0) = 0
and f(0, ·) = 0, Equation (1c) implies that e remains positive (still at least formally), and so (3)
yields a control on the unknown. Mimicking this computation at the discrete level necessitates
to check some arguments, among them:

(i) to have available a discrete counterpart to the relation:
∫

Ω

[

∂t(ρu) + div(ρu ⊗ u)
]

· udx =
d

dt

∫

Ω

1

2
ρ |u|2 dx.

(ii) to identify the integral of the dissipation term at the right-hand side of the discrete
counterpart of (1c) with the (discrete) L2 inner product between the velocity and the
diffusion term in the discrete momentum balance equation (1b).

(iii) to be able to prove that the right-hand side of (1c) is non-negative, in order to preserve
the positivity of the internal energy.

The point (i) is extensively discussed in [6] (see also [7]), and is not treated here. Indeed, we
focus here on a discretization technique which allows to obtain (ii) and (iii) with the usual
Marker and Cell (MAC) discretization [4, 5], and which is implemented in the ISIS free software
developed at IRSN [9] on the basis of the software component library PELICANS [11]. We
complete the presentation by showing how (ii) may also be used, in some model problems, to
prove the convergence in L1 of the dissipation term.

2 Discretization of the dissipation term

2.1 The two-dimensional case

Let us begin with a two-dimensional case. The first step is to propose a discretization for the
diffusion term in the momentum equation. We begin with the x-component of the velocity, for
which we write a balance equation on Kx

i− 1

2
,j

= (xi−1, xi)×(yj− 1

2

, yj+ 1

2

) (see Figures 1 and 2 for

the notations). Integrating the x component of the momentum balance equation over Kx
i− 1

2
,j
,

we get for the diffusion term:

T̄ dif
i− 1

2
,j

= −
[

∫

Kx

i− 1
2

,j

div
[

τ (u)] dx

]

· e(x) = −
[

∫

∂Kx

i−1
2

,j

τ (u) n dγ
]

· e(x), (4)

where e
(x) stands for the first vector of the canonical basis of R

2. We denote by σx
i,j the right

face of Kx
i− 1

2
,j
, i.e. σx

i,j = {xi} × (yj− 1

2

, yj+ 1

2

). Splitting the boundary integral in (4), the part

of T̄ dif
i− 1

2
,j

associated to σx
i,j, also referred to as the viscous flux through σx

i,j, reads:

−
[

∫

σx
i,j

τ (u) n dγ
]

· e(x) = −2

∫

σx
i,j

µ ∂xu
x dγ +

2

3

∫

σx
i,j

µ (∂xu
x + ∂yu

y) dγ,

2
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2
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Figure 1: Dual cell for the x-component of the velocity

and the usual finite difference technique yields the following approximation for this term:

−
4

3

∫

σx
i,j

µ ∂xu
x dγ +

2

3

∫

σx
i,j

µ ∂yu
y dγ

≈ −
4

3
µi,j

h
y
j

hx
i

(ux
i+ 1

2
,j
− u

x
i− 1

2
,j
) +

2

3
µi,j

h
y
j

h
y
j

(uy

i,j+ 1

2

− u
y

i,j− 1

2

), (5)

where µi,j is an approximation of the viscosity at the face σx
i,j. Similarly, let σx

i− 1

2
,j+ 1

2

=

(xi−1, xi) × {yj+ 1

2

} be the top edge of the cell. Then:

−
[

∫

σx

i− 1
2

,j+ 1
2

τ (u) n dγ
]

· e(x) = −

∫

σx

i− 1
2

,j+ 1
2

µ (∂yu
x + ∂xu

y) dγ

≈ −µi− 1

2
,j+ 1

2

[hx
i− 1

2

h
y

j+ 1

2

(ux
i− 1

2
,j+1

− u
x
i− 1

2
,j
) +

hx
i− 1

2

hx
i− 1

2

(uy

i,j+ 1

2

− u
y

i−1,j+ 1

2

)
]

,

where µi− 1

2
,j+ 1

2

stands for an approximation of the viscosity at the edge σx
i− 1

2
,j+ 1

2

.

Let us now multiply each discrete equation for u
x by the corresponding degree of freedom of

a velocity field v (i.e. the balance over Kx
i− 1

2
,j

by v
x
i− 1

2
,j
) and sum over i and j. The viscous

flux at the face σx
i,j appears twice in the sum, once multiplied by v

x
i− 1

2
,j

and the second one by

−v
x
i+ 1

2
,j
, and the corresponding term reads:

T dis
i,j (u,v) = µi,j

[

−
4

3

h
y
j

hx
i

(ux
i+ 1

2
,j
− u

x
i− 1

2
,j
) +

2

3

h
y
j

h
y
j

(uy

i,j+ 1

2

− u
y

i,j− 1

2

)
]

(vx
i− 1

2
,j
− v

x
i+ 1

2
,j
)

= µi,j h
y
j h

x
i

[4

3

u
x
i+ 1

2
,j
− u

x
i− 1

2
,j

hx
i

−
2

3

u
y

i,j+ 1

2

− u
y

i,j− 1

2

h
y
j

] v
x
i+ 1

2
,j
− v

x
i− 1

2
,j

hx
i

. (6)

3
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Similarly, the term associated to σx
i− 1

2
,j+ 1

2

appears multiplied by v
x
i− 1

2
,j

and by −v
x
i− 1

2
,j+1

, and

we get:

T dis
i− 1

2
,j+ 1

2

(u,v) = µi− 1

2
,j+ 1

2

hx
i− 1

2

h
y

j+ 1

2

[u
x
i− 1

2
,j+1

− u
x
i− 1

2
,j

h
y

j+ 1

2

+
u

y

i,j+ 1

2

− u
y

i−1,j+ 1

2

hx
i− 1

2

] v
x
i− 1

2
,j+1

− v
x
i− 1

2
,j

h
y

j+ 1

2

. (7)

Let us now define the discrete gradient of the velocity as follows:

– The derivatives involved in the divergence, ∂M
x u

x and ∂M
y u

y, are defined over the primal
cells by:

∂M
x u

x(x) =
u

x
i+ 1

2
,j
− u

x
i− 1

2
,j

hx
i

, ∂M
y u

y(x) =
u

y

i,j+ 1

2

− u
y

i,j− 1

2

h
y
j

, ∀x ∈ Ki,j. (8)

– For the other derivatives, we introduce another mesh which is vertex-centred, and we
denote by Kxy the generic cell of this new mesh, with K

xy

i+ 1

2
,j+ 1

2

= (xi, xi+1) × (yj, yj+1).

Then, ∀x ∈ K
xy

i+ 1

2
,j+ 1

2

:

∂M
y u

x(x) =
u

x
i+ 1

2
,j+1

− u
x
i+ 1

2
,j

h
y

j+ 1

2

, ∂M
x u

y(x) =
u

y

i+1,j+ 1

2

− u
y

i,j+ 1

2

hx
i+ 1

2

. (9)

With this definition, we get:

T dis
i,j (u,v) = µi,j

∫

Ki,j

[4

3
∂M

x u
x −

2

3
∂M

y u
y
]

∂M
x v

x dx,

and:

T dis
i− 1

2
,j+ 1

2

(u,v) = µi− 1

2
,j+ 1

2

∫

K
xy

i− 1
2

,j+ 1
2

(∂M
y u

x + ∂M
x u

y) ∂M
y v

x dx.

Let us now perform the same operations for the y-component of the velocity. Doing so, we are
lead to introduce an approximation of the viscosity at the edge σ

y

i− 1

2
,j+ 1

2

= {xi− 1

2

} × (yj, yj+1)

(see Figure 2). Let us suppose that we take the same approximation as on σx
i− 1

2
,j+ 1

2

. Then,

the same argument yields that multiplying each discrete equation for u
x and for u

y by the
corresponding degree of freedom of a velocity field v, we obtain a dissipation term which reads:

T dis(u,v) =

∫

Ω
τ
M(u) : ∇

M
v dx, (10)

where ∇
M is the discrete gradient defined by (8)-(9) and τ

M the discrete tensor:

τ
M(u) =





2µ ∂M
x ux µxy (∂M

y ux + ∂M
x uy)

µxy (∂M
y ux + ∂M

x uy) 2µ ∂M
y uy



 −
2

3
µ (∂M

x ux + ∂M
y uy) I, (11)

where µ is the viscosity defined on the primal mesh by µ(x) = µi,j, ∀x ∈ Ki,j and µxy is the
viscosity defined on the vertex-centred mesh, by µ(x) = µi+ 1

2
,j+ 1

2

, ∀x ∈ K
xy

i+ 1

2
,j+ 1

2

.

4
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Figure 2: Dual cell for the y-component of the velocity

Now the form (10) suggests a natural to discretize the viscous dissipation term in the internal
energy balance in order for the consistency property (ii) to hold. Indeed, if we simply set on
each primal cell Ki,j :

(τ (u) : ∇u)i,j =
1

|Ki,j |

∫

Ki,j

τ
M(u) : ∇

M
udx, (12)

then, thanks to (10), the property (ii) which reads:

T dis(u,u) =
∑

i,j

|Ki,j| (τ (u) : ∇u)i,j .

holds. Furthermore, we get from Definition (11) that τ
M(u)(x) is a symmetrical tensor, for any

i, j and x ∈ Ki,j , and therefore an elementary algebraic argument yields:

(τ (u) : ∇u)i,j =
1

|Ki,j |

∫

Ki,j

τ
M(u) : ∇

M
udx

=
1

2 |Ki,j |

∫

Ki,j

τ
M(u) :

[

∇
M

u + (∇M
u)t

]

dx ≥ 0.

Remark 1 (Approximation of the viscosity) Note that, for the symmetry of τ
M(u) to hold, the

choice of the same viscosity at the edges σx
i− 1

2
,j+ 1

2

and σ
y

i− 1

2
,j+ 1

2

is crucial even though other

choices may appear natural. Assuming for instance the viscosity to be a function of an additional
variable defined on the primal mesh, the following construction seems reasonable:

1. define a constant value for µ on each primal cell,

2. associate a value of µ to the primal edges, by taking the average between the value at the
adjacent cells,

3. finally, split the integral of the shear stress over σx
i− 1

2
,j+ 1

2

in two parts, one for the part

included in the (top) boundary of Ki−1,j and the second one in the boundary of Ki,j .

5
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2
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2
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Figure 3: The xy-staggered cell K
xy

i+ 1

2
,j+ 1

2
,k

, used in the definition of ∂M
y u

x, ∂M
x u

y, and

τ
M(u)x,y = τ

M(u)y,x.

Then the viscosities on σx
i− 1

2
,j+ 1

2

and σ
y

i− 1

2
,j+ 1

2

coincide only for uniform meshes, and, in the

general case, the symmetry of τ
M(u) is lost.

2.2 Extension to the three-dimensional case

Extending the computations of the preceding section to three space dimensions yields the fol-
lowing construction.

– First, define three new meshes, which are ”edge-centred”: K
xy

i+ 1

2
,j+ 1

2
,k

= (xi, xi+1) ×

(yi, yj+1)× (zk− 1

2

, zk+ 1

2

) is staggered from the primal mesh Ki,j,k in the x and y direction

(see Figure 3), Kxz
i+ 1

2
,j,k+ 1

2

in the x and z direction, and K
yz

i,j+ 1

2
,k+ 1

2

in the y and z direction.

– The partial derivatives of the velocity components are then defined as piecewise constant
functions, the value of which is obtained by natural finite differences:

- for ∂M
x u

x, ∂M
y u

y and ∂M
z u

z, on the primal mesh,

- for ∂M
y u

x and ∂M
x u

y on the cells (Kxy

i+ 1

2
,j+ 1

2
,k

),

- for ∂M
z u

x and ∂M
x u

z on the cells (Kxz
i+ 1

2
,j,k+ 1

2

),

- for ∂M
y u

z and ∂M
z u

y on the cells (Kyz

i,j+ 1

2
,k+ 1

2

).

– Then, define four families of values for the viscosity field, µ, µxy, µxz and µyz, associated
to the primal and the three edge-centred meshes respectively.

– The shear stress tensor is obtained by the extension of (11) to d = 3.

– And, finally, the dissipation term is given by (12).

6
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3 A strong convergence result

We conclude this paper by showing how the consistency property (ii) may be used, in some
particular cases, to obtain the strong convergence of the dissipation term, and then pass to the
limit in a coupled equation having the dissipation term as right-hand side. To this purpose, let
us just address the model problem:

−∆u = f in Ω = (0, 1) × (0, 1), u = 0 on ∂Ω, (13)

with u and f two scalar functions, f ∈ L2(Ω). Let us suppose that this problem is discretized by
the usual finite volume technique, with the uniform MAC mesh associated to the x-component
of the velocity. We define a discrete function as a piecewise constant function, vanishing on the
left and right sides of the domain (so on the left and right stripes of staggered (half-)meshes
adjacent to these boundaries), and we define the discrete H1-norm of a discrete function v by:

||v||21 =

∫

Ω
(∂M

x v)2 + (∂M
y v)2 dx.

Let (M(n))n∈N be a sequence of such meshes, with a step hn tending to zero, and let (u(n))n∈N be
the corresponding sequence of discrete solutions. Then, with the variational technique employed
in the preceding section (i.e. multiplying each discrete equation by the corresponding unknown
and summing), we get, with the usual discretization of the right-hand side:

||u(n)||21 =

∫

Ω
(∂M

x u(n))2 + (∂M
y u(n))2 dx =

∫

Ω
fu(n) dx. (14)

Since the discrete H1-norm controls the L2-norm (i.e. a discrete Poincaré inequality holds [2]),
this yields a uniform bound for the sequence (u(n))n∈N in discrete H1-norm. Hence the sequence
(u(n))n∈N converges in L2(Ω) to a function ū ∈ H1

0(Ω), possibly up to the extraction of a subse-
quence [2], and he discrete derivatives (∂M

x u(n))n∈N and (∂M
y u(n))n∈N weakly converge in L2(Ω)

to ∂xū and ∂yū respectively. This allows to pass to the limit in the scheme, and we obtain
that ū satisfies the continuous equation (13) (so, since the solution to (13) is unique, the whole
sequence converges). Thus, taking ū as a test function in the variational form of (13):

∫

Ω
(∂xū)2 + (∂yū)2 dx =

∫

Ω
fūdx.

But, passing to the limit in (14), we get:

lim
n 7→∞

∫

Ω
(∂M

x u(n))2 + (∂M
y u(n))2 dx = lim

n 7→∞

∫

Ω
fu(n) dx =

∫

Ω
fūdx,

which, comparing to the preceding relation, yields:

lim
n→∞

∫

Ω
(∂M

x u(n))2 + (∂M
y u(n))2 dx =

∫

Ω
(∂xū)2 + (∂yū)2 dx.

Since the discrete gradient weakly converges and its norm converges to the norm of the limit,
the discrete gradient strongly converges in L2(Ω)2 to the gradient of the solution. Let us now
imagine that Equation (13) is coupled to a balance equation for another variable, the right-hand
side of which is |∇u|2; this situation occurs in several physical situations, as the modelling of

7
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Joule effect [1], or RANS turbulence models [10, 3]. The discretization (12) of the dissipation
term in the cell K, which reads here:

(

|∇u(n)|2
)

K
=

1

|K|

∫

K

(∂M
x u(n))2 + (∂M

y u(n))2 dx,

thus yields a convergent right-hand side, in the sense that, for any regular function ϕ ∈ C∞
c (Ω),

we have:

lim
n→∞

∑

K

∫

K

(

|∇u
(n)|2

)

K
ϕdx =

∫

Ω
|∇u|2ϕdx.

(A declination of) this argument has been used to prove the convergence of numerical schemes
in [1, 10, 3].
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[10] A. Larcher, J.-C. Latché: Convergence analysis of a finite element-finite volume scheme for
a RANS turbulence model. Submitted (2011).

[11] PELICANS: Collaborative Development Environment.
https://gforge.irsn.fr/gf/project/pelicans.

8


