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Abstract. An accurate calculation of the nondipole anisotropy parameter γ
in the photoionization of helium below the N=2 threshold is presented. The
calculated results are in fairly good agreement with the experimental results of
Krässig et al [Phys. Rev. Lett. 88 (2002) 203002], but not as good as the accuracy
of the calculation should have warranted. A careful examination of the possible
causes for the observed discrepancies between theory and experiment seems to rule
out any role either of the multipolar terms higher than the electric quadrupole, or
of the singlet-triplet spin-orbit mixing. It is argued that such discrepancies might
be instead of instrumental origin, due to the difficulty of measuring vanishingly
small total cross sections σtot with the required accuracy. In such eventuality, it
might be more convenient to use a parameter other than γ, as for instance the
drag current, to measure the nondipole anisotropy of the photoelectron angular
distribution.
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1. Introduction

For photoionization processes in the sub-keV X-ray energy range, the wavelength of the
impinging radiation is significantly larger than the characteristic size of an atomic target in
its ground state. This generally justifies the use of the time honored dipole approximation. In
1969, though, a net forward drift of the electrons ejected in xenon photoionization with low-
energy X-rays was detected [1]. For linearly polarized radiation, the dipole approximation
(DA) predicts a symmetric angular distribution of the photoelectrons about the polarization
vector. Beyond the DA, this symmetry no longer holds, possibly resulting in a net excess
of photoelectrons along the direction of propagation of the impinging light. Therefore, the
measurement reported in [1] was readily recognized as the first clear evidence of a deviation
from the DA in atomic photoionization at low energies [2]. This and other similar results [3]
were the basis for a systematic investigation of nondipole effects at energies so low that the
wavelength of the radiation is orders of magnitude larger than the characteristic size of the
target atom. The limits of the DA are emphasized whenever the dipole transition amplitude
is vanishingly small, as it may occur near the zeroes of Fano profiles, or near Cooper minima,
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Nondipole effects in helium photoionization 2

a common feature in the spectra of the heavier rare gases. Large nondipolar transition
amplitudes, found for example near quadrupolar resonances, also cause the breakdown of the
DA. Indeed, resonant nondipole effects at low photon energies can be comparable to non-
resonant ones in the keV energy region [4,5]. Nondipole effects were eventually reported also
in the photoionization of helium [6], the lightest of all rare gases and therefore arguably the
least prone to give rise to observable nondipole effects. In that work, the authors were able
to reveal the detailed resonant profile of the backward/forward asymmetry parameter γ [7]
in the vicinity of a dipole forbidden quadrupole-allowed resonance lying close to one which
is dipole allowed.

In this paper we present the results of an accurate calculation of the asymmetry of the
photoelectron angular distribution in the photoionization of helium in a large energy range
below the N=2 threshold comprising several closely spaced 1Po and 1De doubly excited states.
The results for the lowest couple of these resonances compare fairly well to the available
experimental data [6]. Discrepancies between theory and experiment, though, are found in
correspondence to the minimum of the total cross section σtot, where the spectrum of γ shows
a strong, spiked feature. It is argued that the observed discrepancy is of instrumental origin,
due to the particularly strong dependence of γ on the experimental uncertainties on σtot

whenever the latter is vanishingly small. Indeed, with a realistic uncertainty for σtot near its
minimum, the agreement between theory and experiment becomes very satisfactory.

2. Theoretical method

The differential photoionization cross-section of helium, with the parent ion He+ being left
in the state α and the photoelectron having linear momentum ~ke, is given by

dσα

dΩ
=

4π2

cω

X

mασασ

|〈ψ(−)

α,~ke σ
|ε̂ ·

2X

i=1

ei~k·~ri~pi|φ0〉|2, (1)

where ω = ck is the photon energy (atomic units, ~ = 1, me = 1, e = 1, will be used
throughout unless otherwise stated), ε̂ is the polarization of the impinging light, φ0 is the
initial atomic state (average over the spin and spatial orientation of the initial state is omitted
as we focus on the photoionization of the 1S ground state); mα and σα are the magnetic
quantum number and the spin projection of the residual electron in the parent ion α; σ is
the spin projection of the photoelectron, and ψ

(−)

α,~ke σ
is the final single-ionization scattering

state, fulfilling incoming boundary conditions [8].
If the exponential in the transition operator in Eq. (1) is expanded in a Taylor series

exp(i~k · ~r) ' 1 + i~k · ~r +
1

2
(i~k · ~r)2 + . . . (2)

the transition amplitude results in a sum of terms of increasing order in the photon
wavenumber k:
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The ground state of helium is strongly localized, with a characteristic size of 1 a.u. Thus, for
photon energies of the order of one atomic unit, the wavenumber k is of the order of 0.01 a.u.
and the series (3) converges rapidly. The dipole approximation is obtained by retaining

the first term only (E1), which does not depend on ~k, while the largest correction to the
dipole approximation comes from the second term, linear in k [9, 10] which yield two terms
identified as the magnetic dipole moment (M1) and the electric quadrupole moment (E2).
The largest corrections to the photoionization cross section, beyond the pure electric dipole
E1-E1, arise from the interference terms: electric dipole/magnetic dipole E1-M1 and electric
dipole/electric quadrupole E1-E2. The correction to the photoelectron angular distribution
due to these terms is proportional to k. If only the terms beyond the pure dipole which are
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linear in k are retained, the partial differential cross section (PDCS) is fully described by
just two additional nondipole parameters beyond the well known dipole total cross section
σ and asymmetry parameter β. Several equivalent parametrization of the PDCS have been
proposed in the past [2,10–17]; the most common parametrization factors out the total cross
section [15] and reads, for a linearly polarized radiation:

dσ

dΩ
=
σtot

4π

˘
1 + β P2(cos θ) +

ˆ
δ + γ cos2 θ

˜
sin θ cos φ

¯
, (4)

where θ is the angle between the direction of observation Ω̂ and the polarization vector ε̂,
while φ is the angle between the planes spanned by the vectors (ε̂, k̂) and (ε̂, Ω̂). The case
which is relevant here is the photoionization of the ground state of helium below the N=2
threshold. Since the ground state of He is an S state, β = 2 identically and the transition
matrix element due to the magnetic dipole is zero. The only contribution linear in k comes
from the E1-E2 interference term. According to the notation of the Appendix, the parameter
γ has the following expression

γ =

k−12
√

2 π2

cω
Re

„
〈φ0‖V̂0,0

1 ‖ψ(−)P o

1s Ep
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2 ‖ψ(−)1De

1s Ed
〉∗

«
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(5)

which is divergent at the possible zeros of σtot. In the present case, if only the E1-E1
contribution to σtot is retained, such divergence occurs close to each and every 1P o resonance
below the N=2 threshold. It may be noted, however, that the measurement of the asymmetry
parameter γ involves two separate experimental determinations: that of the total cross section
σtot, on the one side, and that of the difference between the cross sections for the photoelectron
being ejected in the forward and in the backward direction with respect to ~k, on the other side.
Therefore, to compare with experiments, the finite resolution of the experimental equipment
should be taken into account. This was accomplished by the usual method of convoluting
separately the calculated values of the numerator and of the denominator of eq. 5 with a
normalized Gaussian function with an appropriate width. In fact, as detailed in the next
section, a wide range of reasonable values for the experimental width were used. Yet, for
energies very close to the minimum of σtot, the agreement between the resulting γ(E) and the
experiment did not show any sizeable improvement. Since, in the neighborhood of very small
values of σtot, γ(E) is very sensitive to the accurate evaluation of the total cross section, the
attention was focused on the possible shortcomings of the expression used to calculate σtot.
As discussed in the next section, in order to improve the agreement with the experiment, the
value of σtot close to its minimum should be larger than its dipolar value. Thus, we considered
those terms in σtot which are neglected in the DA. The largest contributions arise from: i)
the terms proportional to k2; ii) the singlet component of the dominant 3Po

J=1 triplet state
due to spin-orbit coupling. With the notation introduced in the appendix, the expression
for the total cross section truncated after the electric quadrupole contribution and retaining
only the terms up to k2 is

σtot =
4π2
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In the energy region where the pure electric dipole amplitude E1 〈φ0‖V̂0,0
1 ‖ψ(−)P o

1s Ep
〉 is

vanishingly small, the second line in Eq. (6) can be neglected, so that the most important

contribution is due to the E2-E2 term
˛̨
˛〈φ0‖V̂1,0

2 ‖ψ(−)De

1s Ed
〉
˛̨
˛
2

. The contribution of the

higher multipoles to the total cross section can of course be safely ignored. As mentioned
above, another possible contribution to the total cross section may come from the mixing
between closely spaced doubly excited states of different multiplicity, due to the spin-orbit
interaction [18–24]. It is well known, for example, that high values of ` for the external
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electron may induce a sizable mixing of the triplet and singlet manifolds [25, 26]. In the
present case, though, the orbital angular momentum involved is essentially ` = 1, so the
spin-orbit mixing is rather small. If c1 and c2 are the coefficients of the 1Po and of the 3Po

in the dominant3Po
J=1 state around an isolated resonance, c1 is proportional to the ratio

between the spin-orbit matrix element between resonances with different multiplicity and
the energy difference between the closest singlet and triplet doubly excited states. The order
of magnitude of the former is arguably the same as the fine structure of the lowest 1Po

J

multiplet, that is ∼ 10−5 a.u. [27], while the energy difference between doubly excited states
for principal quantum numbers of the outer electron n ≤ 8 is of the order of 10−2 a.u. [20].
This means that the triplet contribution to the background cross section can be estimated
to be six orders of magnitude smaller than the singlet-dipole background, and is therefore
completely negligible.

3. Results and discussion

The continuum wave functions necessary to evaluate the electric dipole and electric
quadrupole amplitudes in Eqs. (5) were computed with the B-spline K-matrix method. In
the following we will summarize it briefly. Full details can be found in the literature [28,29].

A stationary wave function ψP
αE in the continuum is written as linear combination

of partial-wave channel (PWC) functions φβE and of localized channel (LC) functions φj .
In each PWC, a well defined state of the parent ion is coupled to a single-electron wave
function with assigned angular momentum, to give the required total angular momentum
and spin. The radial part of the single-electron function is otherwise free. The LC is formed
by antisymmetrized products of localized orbitals, and it serves the purpose of completing the
description of the many-particle wave function at short radii. The hamiltonian is separately
diagonalized in all the PWC’s and in the LC. In this way, a complete set of independent
stationary solutions to the secular problem at any given total energy E can be sought in the
form

ψP
αE = φαE +

X

γ

XZ
dεφγε

P
E − ε

Kγε,αE (7)

where K is the off-shell reaction matrix [8]. The index α runs over all the channels that are
open at the energy E, while the index γ runs over all the available channels (open and closed)
including the LC. The requirement 〈φβε|E −H|ψP

αE〉 = 0 ∀β, ε, translates into a system of
integral equations for the off-shell K matrix, which can be discretized and solved numerically.

The scattering solutions ψ±
E = (ψ±

1E , . . . , ψ
±
nE) fulfilling outgoing/incoming boundary

conditions are obtained through the transformation

ψ±
E = ψP

E [1 ± iπK(E)]−1, 〈ψ±
E |ψ±

E′〉 = δ(E −E′)1.

For the phase conventions on the ψ± states, see the appendix. Resonance parameters
are determined from the positions of the poles of the on-shell scattering matrix S =
(1 − iπK)(1 + iπK)−1 in the lower half of the complex energy plane.

The radial component of all the single-particle wave functions are expanded on a B-spline
set. B-splines of order 7 and a maximum orbital angular momentum `max = 8 ensured a good
accuracy. The radial space is partitioned in a localized sector and in a continuum/Rydberg
sector. The former is defined on a subset of the spline space where the knots are optimized
so as to reliably represent short-range correlations and bound states of the parent ion. The
latter is capable of representing both the oscillating tail of the continuum states and the
long range behavior of the Rydberg satellites up to a principal quantum number n ∼ 20.
The localized sector comprises 33s, 32p, 31d, 30f , 29g, 28h, 27i, 27j, 27k orbitals, confined
within a radius R1 ∼ 70 a.u. The diffuse states are such that the continuum part is reliably
represented up to a radius R2 ∼ 170 a.u. while the Rydberg satellites stretch outwards up
to few hundreds a.u.
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Since photoelectron anisotropy parameters are known to be rather delicate quantities, it
is important to ensure that all the calculated quantities that influence them are satisfactorily
converged. To this end, an extensive set of pertinent results was checked by comparison with
the most accurate theoretical and experimental data available in the literature.

Bound states The energies of the hydrogen-like parent ions involved are virtually exact
(within the electrostatic approximation), the error with respect to the hydrogen-like series
for all the states involved being less than 2 · 10−10 a.u. The energy of the ground state is
E = −2.903679895 a.u. (accurate electrostatic limit −2.903 724 377 a.u. [30]). This value is
intermediate between the accurate extrapolated limit for `max = 7, E = −2.903 674 59 and
for `max = 8, E = −2.903 689 47 a.u. [31].

To ascertain the capability of the basis set to represent the far reaching tails of the more
excited Rydberg states and, arguably, of the doubly excited states below the N=2 threshold,
the energies of the first ten Rydberg states in the 1S, 1Po, 1De manifolds were compared
with accurate electrostatic values reported in the literature [32] (par. 11.3). Since the values
agree up to the ninth digit, the long range tail of the Rydberg satellites is certainly well
represented.

Another stringent test is the comparison of the oscillator strengths for the transitions
between the ground state and the first few 1Po Rydberg states with the corresponding most
accurate values available in the literature [32] (par. 11.5). Also for these quantities, a very
satisfactory agreement, to the fifth or sixth digit, is found. Furthermore, the matrix elements
obtained in the length and acceleration gauges differ from those in the velocity gauge, on
average, by only ∼ 0.003% and ∼ 0.01% respectively. Therefore, it can be concluded that,
at least for the bound states, even the correlated short range part of the wave function is
accurately represented.

Doubly excited states The resonance series are classified according to the Stark-Lin
notation [N1N2m]A. See the original paper by Lin [33] for tables of approximate quantum
numbers for the autoionizing series in helium, and the review by Rost et al [34] for a
comparison between different classification schemes. The resonances of the 1Po and of the
1De manifolds below the N = 2 threshold were calculated up to energies very close to the
threshold (n ∼ 15). The energies and widths of the autoionizing states are obtained with a
fit of the total phaseshift as a function of the energy, as detailed in [35]. As an example, in
Tables 1 and 2 our results for the first few [001]+ and [010]− resonances of the 1P o manifold
and the first few [010]+ and [001]0 resonances of the 1De manifold are compared with the best
data from the literature. A similar accuracy is found also for the higher terms (n ≤ 15) in
all the 1Po and 1De resonance series. The much narrower [100]0 1Po and 1De resonances are
not listed since, at the experimental resolutions considered in this work, they are not visible.
On the other hand, for photon energies above 64eV, the resonant features in the nondipole
anisotropy parameter are essentially a repetition of those between 62eV and 64eV. Therefore,
the listed resonances are sufficient to interpret all the qualitative features of the spectra
examined in the present work. The agreement of energies, widths, and the q parameters
of the Fano profiles is very good −→[...](the energies, both from our calculations and from
the literature, which were available in atomic units, have been converted to electronvolts by
means of the transformation E(eV)= (E(a.u.)+2.90369376)*27.20765438, where 27.20765438
is the Rydberg constant for the He+-e− system).

Photoionization spectra As anticipated in the the previous section, the γ parameter is
particularly sensitive to the precise value of σtot in the neighborhood of the total cross section
minima. For this reason, we also report the parameter σdrag, defined as

σdrag = k̂ ·
Z

dσ

dΩ
Ω̂ dΩ, (8)
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Table 1. Parameters for the first few [001]+ and [010]− 1Po resonances in helium,
below N=2 threshold (in brackets we report the dominant configuration of the
lowest lying resonance). The present values (first rows) are compared with those
by Rost et al [34] and to the experimental values by Schulz et al (1996) [36] and
by Domke et al (1996) [37].

[N1N2m]An Ref. E (eV) Γ(meV) q

[001]+2 60.144 650 37.359 -2.770
(∼ 2s2p) [34] 60.144 121 37.364 -2.77

[36] 60.1503(40) 37.6(2) -2.73(4)
[37] 60.147 37 -2.75

[001]+3 63.655 354 8.194 -2.580
[34] 63.655 261 8.195 -2.58
[36] 63.6575(30) 8.3(5) -2.53(4)
[37] 63.658 10 -2.5

[010]−3 62.757 719 0.10460 -4.252
[34] 62.757 719 0.1046 -4.25
[36] 62.7610(20) 0.11(2) -4.1(4)
[37] 62.758 0.5(3) -3.5

Table 2. Parameters of the first few [010]+ and [001]0 1De resonances below the
N=2 threshold (in brackets we report the dominant configuration of the lowest
lying resonance). The present values (first rows) are compared with experimental
and theoretical results by other authors: Chen (1999) [38], Lindroth (1994) [39],
Ho and Bhatia (1991) [40], and DeHarak et al [41] (experimental results).

[N1N2m]An Ref. E(eV) Γ(meV) q

[010]+2 59.9048 64.319 -0.030
(∼ 2p2) [38] 59.9050 64.24

[39] 59.9044 64.26
[40] 59.9044 64.267
[41] 59.9038(8) 52(21)

[010]+3 63.5156 15.129 0.249
[38] 63.5157 15.17
[39] 63.5156 15.1
[40] 63.51553 15.1
[41] 63.515(9) 12(8)

[001]03 63.8636 0.54530 -2.102
[38] 63.8636 0.5491
[39] 63.864 0.544
[40] 63.86353 0.547
[41] 63.855(8) 8(8)
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which quantifies the net photoelectron flux in the forward direction. In the simple case studied
here, β = 2, δ = 0, so σdrag = (4π/15)σtotγ is the only anisotropy parameter required for
an alternative parametrization of the differential cross section where the total cross section
is not factored out:

dσ

dΩ
=

3

4π
σtot cos2 θ +

15

4π
σdrag cos2 θ sin θ cos φ, (9)

and therefore it does not have the same strong dependence on the experimental uncertainties
of σtot as γ.

Fig. 1 shows all the quantities involved in the evaluation of the nondipole anisotropy
parameter measured by Krässig et al [6]: the dipole total cross section (Fig. 1.a), the
quadrupole total cross section (Fig. 1.b), the drag cross section (Fig. 1.c), and the γ parameter
itself (Fig. 1.d). In Fig. 1 each quantity has been convoluted with several Gaussian weight
functions in order to simulate the effect of an experimental slit function on the measured
quantities. The following fwhm have been used: 20, 30, 40, 50, 60 meV, the smaller widths
corresponding to the sharpest profiles. In Fig. 1.d, the ratio in the expression (5) is taken
after the numerator and the denominator are independently convoluted with the slit function,
with a given fwhm, assuming a zero background. The present spectra for γ are compared
with the experimental values by Krässig et al [6], obtained by digitalizing the plot in the
original paper (the error introduced by the digitalization is significantly smaller than the
experimental error bars). In the total cross section shown in Fig. 1.a, only the well isolated
Fano profile of the [001]+2

1Po resonance is evident. The closely lying [010]+2
1De resonance is

visible in the much smaller electric-quadrupole contribution to the total cross section, shown
in Fig. 1.b. The effect of both resonances is, on the contrary, apparent on the drag cross
section shown in Fig. 1.c as well as in the γ reported in fig. 1.d.

For a closer comparison with the experimental γ spectrum (Fig. 1.d), our theoretical
prediction was shifted at lower energies by 10 meV, well within the energy uncertainty of
20 meV declared by the authors. In order to separately assess the accuracy of the energy
calibration of the present theoretical spectra, we compared the total cross section with the
experimental spectra by Schultz et al [36], with an absolute uncertainty in the energy of just
1.7 meV, in the region of the n = 20, 21, 22 multiplets, where the experimental points could
be accurately extracted from the original published plots. With an energy shift of just 0.5
meV, well below the experimental uncertainty, our spectrum is in excellent agreement with
the experimental one, see Fig. 2. Experimental data of comparable accuracy at lower energies
are not readily available, but it is not unreasonable to assume a similar precision therein as
well.

The comparison of the calculated γ with the experimental values of Krässig et al [6]
shows a fairly good agreement except at the energies close to the minimum of σtot. In the
small region between 60.15eV and 60.3 eV, and particularly above 60.2 eV, none of the present
convoluted theoretical profiles is really in good agreement with the experimental data. In
particular, the theoretical values corresponding to resolution of 20 meV, as declared in [6],
display an exaggeratedly spiked behavior. This is most likely due to a considerable difference
between the theoretical and the experimental values of the total cross section in that critical
region.

A comparison between Figs. 1.a and 1.b shows that, on average, the dipole cross section
dominates over the quadrupole total cross section by as much as four orders of magnitude,
as expected. As a consequence, it turns out that, with the present experimental resolution,
the contribution of the E2-E2 term to σtot close to the minima of the latter is completely
negligible with respect to the contribution due to the finite energy resolution itself. In fact,
we estimated that in order to be able to resolve the contribution of the E2-E2 term, a fwhm
of 1 meV or less would be required. In conclusion, the contribution of the quadrupole cross
section to the total cross section near its minima is not really of any relevance whenever the
energy resolution, as in the present case, is worse than few meV. The cause of the observed
discrepancy must be sought elsewhere.
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Figure 1. Parameters involved in the calculation of the nondipole asymmetry
parameters in helium photoionization below the N=2 threshold. a) dipole total
cross section, b) quadrupole total cross section, c) drag cross section, d) nondipole
asymmetry parameter γ. Each parameter has been convoluted with Gaussian
weight functions with five different fwhm: 20, 30, 40, 50 and 60 meV. In d) the
theoretical prediction is compared with the experimental data by Krassig et al [6],
with a declared uncertainty of 20 meV.
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Figure 2. Energy calibration. Continuous (red) line: present results convoluted
with a Gaussian function with fwhm=1 meV and shifted 0.5 meV at higher
energies. Dashed (blue) line/points: experimental data by Schulz et al digitalized
from [36]. The agreement is very good as the uncertainty in the experimental
energy calibration in this energy region is declared to be 1.7meV.

A possible origin of the discrepancy may be a background signal of entirely instrumental
origin. As a matter of fact, a background signal in the measurement of the total cross section
due to experimental offsets, like stray light, is generally to be expected. For example, in
a measurement of the helium total photoionization cross section below the N=2 threshold
performed in 2003 [42], a background cross section as large as 0.16 Mb (i.e. just one order
of magnitude smaller than the non-resonant cross section), is reported. In order to test the
effect of a possible uncertainty in the experimental values of σtot, in Fig. 3 the experimental γ
parameter is compared with two theoretical curves, both with an energy resolution of 40 meV:
one which assumes no background (dashed curve, green on-line), the other which assumes a
constant background equal to 0.2 Mb (continuous curve, blue on-line), which is comparable
to that reported in [42]. With the inclusion of such background, the large disagreement with
the experimental results in the critical region disappears. Moreover, the inclusion of the
background improves the agreement also in the non-resonant regions.

In [43] the measurement of γ reported in [6] are compared to a semiempirical, convoluted
profile for the non-dipole parameter. The resonant feature in the non-dipole amplitude used
in such profile is obtained by including in the theoretical RPAE background a Fano profile
whose parameters are taken from the literature. The shape of the bandpass is unspecified,
while the resonant profile in the xenon spectrum reported in Fig.4 seems to confirm the
existence of a non-zero background signal. In [43] the agreement found at photon energies
around 60.2 eV is good, while close to the the 1De resonance large deviations are observed.
At variance with this latter finding, our fully theoretical calculation is in very good agreement
with the experiment in that region.

In the present case, near the energies where the total cross section almost vanishes,
it may be presumed that the details of the peaks displayed by γ might depend upon the
experimental uncertainties of the energy resolution and of the background. The drag cross
section reported in Fig. 1.c appears to be much less sensitive to the experimental resolution.
In particular, it is not affected by the uncertainty on the offset of σtot.

Sizable resonant effects in the nondipole asymmetry parameter due to the other terms
belonging to the [001]+ 1Po and [010]+ 1De series, as well as to the terms belonging to the
[010]− 1Po and [001]0 1De, should be visible at higher energies. In Fig. 4, the dipole (a),
the quadrupole (b), and the drag cross section (c) are reported below the N=2 threshold,
convoluted with a Gaussian weight function with fwhm = 5 meV. Already at this resolution,
which is reasonable by today’s standards, several other multiplets should be clearly visible.
Figure 5 shows a detail of the same quantities close to the threshold.
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Figure 3. Nondipole anisotropy parameter γ in helium in the neighborhood
of the [010]+2

1De electric quadrupole and of the [001]+2
1Po electric dipole

resonance. The theoretical curves are evaluated with an energy resolution of 40
meV and assuming either a zero (dashed curve, green on-line) or a uniform 0.2 Mb
(continuous curve, blue on-line) background total cross section. The experimental
data (points with error bars) are digitalized from Krässig et al [6].
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Figure 4. Dipole (a), quadrupole (b), and drag (c) cross sections below helium
N=2 threshold.
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Figure 5. Detail of dipole (a), quadrupole (b), and drag (c) cross sections below
helium N=2 threshold.

4. Summary

We computed the nondipole anisotropy parameter γ in the photoionization of helium below
the N=2 threshold; we compared our results with the experimental data by Krässig et al [6]
between 59.5 eV and 60.6 eV. In general, fairly good agreement between theoretical and
experimental results was found, except near the minimum of the total photoionization cross
section at ∼ 60.2 eV. An analysis of the approximations involved excluded any significant
role of either electric quadrupole E2-E2 effects, or of the spin-orbit mixing between states
of different multiplicity. The observed discrepancies might be instead attribuited to the
experimental uncertainty in the total photoionization cross section around its minimum.
In fact, because of its very definition, the nondipole parameter γ is very sensitive to the
uncertainties in the total cross section when the latter attains vanishingly small values. The
agreement between theory and experiment is indeed completely restored when a realistic
value for the background signal in the measurement of σtot is assumed.

A similar behaviour of the nondipole anisotropy parameter is to be expected also at
energies closer to the N=2 threshold. In the present work, several resonant structures arising
from the interplay between 1Po and 1De doubly excited states have been calculated and
should be experimentally detectable. For those cases which are similar to the one considered
here, that is whenever the total cross section takes on values smaller than the instrumental
sensitivity, it is advisable to use a parameter other than γ (e.g. the drag photoionization cross
section) to measure the forward/backward anisotropy of the photoelectron distribution.
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Appendix A. Differential cross section

In this appendix a general expression is derived for the atomic partial differential cross section
for the absorption of one photon. The transition operator for the absorption of a photon by
an atom, within the field of a monochromatic plane electromagnetic wave, is

V = ε̂ ·
NX

i=1

ei~k·~ri~pi (A.1)

where ε̂ indicates the polarization. Using the well known expansion of a plane wave in
spherical components [44], Eq. (A.1) is readily expanded in electric (J = T ±1) and magnetic
(J = T ) multipoles:

V =
∞X

T=1

TX

τ=−T

T+1X

J=T−1

√
4π ε̂ · ~Y Jτ

T (k̂)VJ
Tτ , (A.2)

where the irreducible transition operator VJ
Tτ is defined as

VJ
Tτ =

NX

i=1

√
4π iJjJ(kri)Y

J
T,τ (i). (A.3)

Here jJ(kr) is a spherical Bessel function [45], Y M
J = Y ∗

JM , and the vector spherical harmonics
and tensor product conform to the following definitions [44, 46]

~Y Jτ
T (θ, φ) ≡

X

Mµ

CTτ
JM,1µ YM

J (θ, φ) ê µ, (A.4)

Y J
Tτ (i) ≡

X

Mm

CTτ
JM,1mYJM (r̂i)p

(i)
1m. (A.5)

In the LS coupling when V is used in the expression for the partial differential cross
section, Eq. (1), the partial differential single photoionization cross section, averaged over
the orientations of the initial target state φ0 and summed over the orientations of the final
parent ion state α and the spin projection of the photoelectron, may be written as

∂σᾱ,Ek̂e

∂Ωk̂e

=
(2π)2

cω

X

`eme

Y`eme(k̂e)
X

TT ′

X

JJ′

 X

ττ ′

CTτ
`eme T ′τ ′

h
~ε · ~Y Jτ

T (k̂)
i h
~ε · ~Y J′τ ′

T ′ (k̂)
i∗

ff
×

×
X

``′

X

LL′

√
4πΠ``eLL′

(2L0 + 1)ΠT
C`′0

`0 `e0


L′ `e L
` Lα `′

ff 
T `e T ′

L′ L0 L

ff
(−)L+L′+L0+T ′+Lα+` ×

×〈φ0‖VJ
T ‖ψ

(−)Γ
αE` 〉 · 〈φ0‖VJ′

T ′‖ψ(−)Γ′

αE`′ 〉
∗, (A.6)

where ψ
(−)Γ
αE` is a suitably normalized continuum wave function with incoming boundary

conditions, energy E, total angular momentum L, parity Π and spin S specified by the
collective index Γ. To be explicit, if the parent ion α, in state φα, has charge Z and energy
Eα, ψ

(−)Γ
αE` is defined in such a way that, for large values of one of the N electron radial

variables, say rN , its only outgoing component is

h
ψ

(−)Γ
αE`

i
outgoing

∼
r

2k

π
ΦΓ

α,`
eikrN+i Z

k
ln 2krN

2i krN
. (A.7)
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Here k = [2(E − Eα)]1/2 and ΦΓ
α,` is obtained by coupling φα to the angular and spin

component of the N -th electron so as to give a total symmetry Γ.
In the total cross section, only the square moduli of the individual multipoles appear:

σα,E =
2π2

c ω(2L0 + 1)

X

TL`α

˛̨
˛
q

T
2T+1 〈φ0‖VT+1

T ‖ψ(−)Γ
αE`α

〉 +
q

T+1
2T+1 〈φ0‖VT−1

T ‖ψ(−)Γ
αE`α

〉
˛̨
˛
2

+

+
˛̨
˛〈φ0‖VT

T ‖ψ(−)Γ
αE`α

〉
˛̨
˛
2
ff
, (A.8)

where the first square modulus refers to the electric multipoles, while the second refers to
the magnetic multipoles.

For photoionization processes in which only photons with large wavelengths are involved,
the transition matrix elements can be conveniently expanded in powers of the argument kr
of the spherical Bessel function [45]

VJ
Tτ =

∞X

ν=0

VJ,ν
Tτ k

J+2ν where (A.9)

VJ,ν
Tτ =

NX

i=1

√
4π iJ rJ+2ν

i Y J
T,τ (i)

(−2)νν!(2J + 2ν + 1)!!
. (A.10)
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