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I. PROOF OF LEMMA 1

For completeness, we start by recalling the statement of Lemma 1.

Lemma 1 R{nk}T{nk} ⊂ T{nk+1} for all k = 1, · · · ,Kper iff

εη ≤ min
k=1,··· ,Kper

N

N − nk − nk+1
(1)

Proof. We first prove that (1) is a sufficient condition. Assume that initially {xk}Kk=1 ∈ T{nk}. Prior to firing, we

have χ1(t) = (1− ε)x1 + ε
N

∑K
k=1 nkxk − t. Accordingly, the quantity χ1 reaches η at time tf defined by

tf := χ1(0)− η = x1 +
ε

N

K∑
k=2

nk(xk − x1)− η.

The quantity tf is the actual firing time provided that x1(tf ) ≥ 0, viz. tf ≤ x1. The latter is equivalent to

εη

K∑
k=2

nk(xk − x1) ≤ N (2)

Using that 0 ≤ xk − x1 ≤ 1 for state configurations in T{nk}, a sufficient condition for this inequality is εη ≤ N
N−n1

.
Applying cyclic permutations, we conclude that, for every configuration in any of the T{nk+`}, the lowest cluster of
oscillator fires before (or exactly when) it reaches 0 if

εη ≤ min
i=1,··· ,K

N

N − ni
(3)

When this condition is violated, cluster configurations with all coordinates xk, k ≥ 2, sufficiently close to 1 and x1

sufficiently close to 0 satisfy the inequality χ1(x1) = ε
N

∑K
k=2 nk(xk − x1) ≥ η. Accordingly, the concentration x1

reaches 0 before χ1 reaches η and, to prevent clustering we have to make sure that χ2(tf ) > η i.e. tf < x2 if tf still

denotes the time when x1 fires. For t ≥ x1, we have χ1(t) = ε
N

∑K
k=2 nk(xk − t). The condition χ1(tf ) = η defines

the firing time as follows tf = 1
N−n1

(∑K
k=2 nkxk −Nηε

)
where ηε = η

ε . Now, the inequality tf < x2 turns out to be

equivalent to

K∑
k=3

nkxk −Nηε < (N − n1 − n2)x2 (4)

which is certainly satisfied when
∑K
k=3 nkxk −Nηε ≤ 0. Solving this inequality for all permutations {nk+`} gives the

desired condition (1) on the coupling parameter.

We now show that R{nk} maps T{nk} into T{nk+1} when (1) holds. This consists in checking three conditions.

• First, we have x2 − tf > 0 either because x1 − tf ≥ 0 and x2 > x1 or simply because of (4) when (3) fails.

• Then, the strict ordering x2 < · · · < xK−1 < 1 implies a similar ordering for the coordinates of R{nk}x where
x = (x1, · · · , xK).
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• Finally, we have

(1− ε)(R{nk}x)1 +
ε

N

K∑
k=1

nk+1(R{nk}x)k = (1− ε)(x2 − tf ) +
ε

N
(

K−1∑
k=1

nk+1(xk+1 − tf ) + n1)

= (1− ε)(x2 − tf ) +
ε

N
(

K∑
k=2

nk(xk − tf ) + n1)

> (1− ε)(x1 − tf ) +
ε

N

K∑
k=1

nk(xk − tf ) = η

where we used x2 > x1 and 1 ≥ x1 − tf to obtain the inequality. Thus the last inequality in the definition of
T{nk+1} is satisfied for R{nk}x and the proof is complete.

Finally, that (1) is a necessary condition is easy to check. Indeed, when εη >
N

N−n1−n2
, initial conditions in T{nk}

with x1 and x2 sufficiently close to 0 and the other xi close enough to 1 simultaneously violate (2) and (4). Accordingly,
the clusters n1 and n2 fire simultaneously and a K ′-cluster population results with K ′ ≤ K − 1. In particular, the
image R{nk}x cannot belong to T{nk+1}. The proof is complete.

II. PROOF OF LEMMA 2

Lemma 2 For every {nk}Kk=1 and 0 < ε ≤ 1, there is a norm in RK−1 for which R∗{nk+Kper−1} ◦ · · · ◦R
∗
{nk+1} ◦R

∗
{nk}

is a contraction.

Proof. We begin to prove contraction for the individual map R∗{nk}. Its expression depends upon whether the initial

condition x = (x1, · · · , xK) satisfies (2) or not.

Stability in the domain where x satisfies (2). When only considering the first K − 1 coordinates, we obtain

(R∗{nk}x)k = xk+1 − tf = η + xk+1 − x1 −
ε

N

K∑
`=2

α`(x` − x1), k = 1, · · · ,K − 1

Applying the change of variable x 7→ y defined by

yk =

{
xk − xk+1 if k = 1, · · · ,K − 2
xK−1 if k = K − 1

⇐⇒ xk =

K−1∑
`=k

y`, ` = 1, · · · ,K − 1

the linear part of the previous expression becomes y 7→ L{nk}y where

(L{nk}y)k =

{
yk+1 if k = 1, · · · ,K − 2

−
∑K−1
`=1 y`(1− ε

N

∑K
j=`+1 nj) if k = K − 1

(We have used
∑K−1
j=2 nj

∑j−1
`=1 y` =

∑K−2
`=1 y`

∑K−1
j=`+1 nj .) The corresponding (K−1)×(K−1)-matrix L{nk} is a com-

panion matrix whose characteristic polynomial P{nk} immediately follows by reading the bottom line, namely

P{nk}(λ) =

K−1∑
`=0

λ`(1− ε

N

K∑
j=`+2

nj)

The polynomial coefficients 1− ε
N

∑K
j=`+2 nj are positive and decaying (as ` decreases) when 0 < ε ≤ 1. By a classical

result in numerical analysis (see eg. p. 116 in [1]), this property implies that P{nk} is Schur stable, viz. all its roots
lie inside the unit disk.

Stability in the domain where x does not satisfy (2). In this case, the return map writes

(R∗{nk}x)k = xk+1 −
N

N − n1
(

K∑
`=2

n`x` − ηε), k = 1, · · · ,K − 1
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and the corresponding linear part becomes after applying the same change of variable as before

(L′{nk}y)k =

{
yk+1 if k = 1, · · · ,K − 2

− 1
N−n1

∑K−1
`=2 y`

∑`
j=2 nj if k = K − 1

now based on
∑K−1
j=2 nj

∑K−1
`=j y` =

∑K−1
`=2 y`

∑`
j=2 nj . The associated characteristic polynomial in this case

writes

P ′{nk}(λ) =
1

N − n1

K−1∑
`=1

λ`
`+1∑
j=2

nj

Similarly to as before, the polynomial
P ′{nk}

(λ)

λ has positive and decaying coefficients; hence all roots of P ′{nk}(λ) lie

inside the unit disk.

Proof that the return maps are contractions. Given that both spectral radii r(L{nk}) and r(L′{nk}) are less than 1,

the end of the proof is quite standard. Take any norm | · | in RK−1. We have r(L{nk}) = lim
t→∞

|Lt{nk}|
1
t (see e.g. [2]).

Take δ > 0 sufficiently small so that r(L{nk}) + δ < 1 and let tδ be large enough so that

|Lt| 1t ≤ r(L{nk}) + δ, ∀t ≥ tδ

Consider the analogous t′δ for the operator L′{nk} and take sδ = max{tη, t′η} (this requires electing δ so that both

inequalities r(L{nk}) + δ < 1 and r(L′{nk}) + δ < 1 simultaneously hold). By choosing ‖x‖ := |xsδ |
1
sδ in RK−1, we

easily conclude that the linear parts of R∗{nk} have norm ‖ · ‖ less than 1, viz. R∗{nk} is a global contraction.

Finally, the composed return map R∗{nk+Kper−1} ◦ · · · ◦R
∗
{nk+1} ◦R

∗
{nk} will be contracting for the norm ‖xs‖ 1

s where

s is any integer larger than each sδ of the R{nk+`} and δ is such that all these maps are contracting. The proof is
complete.

III. PROOF OF LEMMA 3

Lemma 3 The periodic orbit passing T{nk} exists iff

εη < ζ({nk}) :=
2N2

N2 −
∑
k n

2
k

1

1−mink
nk

N−nk+1

(5)

Proof. Without loss of generality, we study the solution in T{nk} of the equation

R{nk+K−1} ◦ · · · ◦R{nk+1} ◦R{nk}(x) = x (6)

for any K-cluster configuration {nk}Kk=1. For the sake of notation, we use the symbol R` instead of R{nk+`−1} ◦ · · · ◦
R{nk+1} ◦R{nk} and R0 = Id.

Periodic orbits have a property that remarkably simplifies their analysis; namely all coordinates fire from the same
value. In particular, this implies that they either all fire before reaching 0 or all reach 0 before firing. To see this,
recall that tf (x) denotes the firing time for x. Using the return map’s definition, a moment reflexion gives

(RKx)k = 1−
K−1∑
`=k

tf (R`x), k = 1, · · · ,K. (7)

Together with the periodicity assumption RKx = x and the return map’s definition, this expression implies

(Rx)1 − tf (Rx) = (RKx)2 − tf (Rx)− tf (x) = (RKx)1 − tf (x) = x1 − tf (x).

By induction, we conclude that successive firing levels (R`x)1 − tf (R`x) do not depend on ` = 0, · · · ,K − 1 and the
announced alternative follows. To proceed, we consider each case separately.
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Analysis when all coordinates fire before reaching 0. In this case, we assume that tf (R`x) ≤ (R`x)1 for ` = 0, · · · ,K−1
and we accordingly solve the equation (6), i.e. RK(x) = x.

Letting τk = xk+1 − xk for k = 0, · · · ,K − 1, it turns out convenient to rewrite the periodic orbit coordinates as
follows

xk = 1−
K−1∑
`=k

τ`, k = 1, · · · ,K

which in particular confirms that xK = 1. In addition, relation (7) and the periodicity condition (6) easily imply

tf (Rkx) = τk, k = 1, · · · ,K − 1 (8)

To proceed, we use the assumption tf (x) ≤ x1 to rewrite tf (x) = x1 + ε
N

∑K
`=2 n`(x` − x1)− η as follows

tf (x) = 1−
K−1∑
`=1

τ` −∆0 where ∆k = η − ε

N

K∑
`=2

n`+k((Rkx)` − (Rkx)1), k = 0, · · · ,K − 1.

Accordingly, the definition of the return map implies (Rx)k = xk+1 − tf (x) =
∑k
`=1 τk + ∆0 for k = 1, · · · ,K − 1

and then tf (Rx) = (Rx)1 + ε
N

K∑̀
=2

n`+1((Rx)` − (Rx)1) − η = τ1 + ∆0 −∆1 since we are assuming tf (Rx) ≤ (Rx)1.

Repeating this argument inductively, we obtain

(R`x)k =

k+`−1∑
j=`

τj + ∆`−1, k = 1, · · · ,K − ` and tf (R`x) = τ` + ∆`−1 −∆`, ` = 1, · · · ,K − 1 (9)

Form equation (8), it results that ∆`−1 = ∆` for ` = 1, · · · ,K − 1 which is equivalent to

K∑
j=2

nj+`−1((R`−1x)j − (R`−1x)1) =

K∑
j=2

nj+`((R
`x)j − (R`x)1)

. Using again the return map definition we have

(R`x)k =

{
(R`−1x)k+1 − tf (R`−1x) if k = 1, · · · ,K − 1

1 if k = K

and, together with the relation
K∑
j=1

nj+`−1 = N , the previous relation thus simplifies to

N((R`x)2 − (R`x)1) = n`+1(1− (R`x)1 + tf (R`x)), ` = 0, · · · ,K − 2

For ` = 1, · · · ,K − 2, we can use relation (9) to get (R`x)2 − (R`x)1 = τ`+1 and (R`x)1 = τ` + ∆`−1. Accordingly,
the previous relation results in

τ` =
n`
N

(1−∆`), ` = 2, · · · ,K − 1.

For ` = 0, using the expressions of x1 and tf (x) the previous equality becomes

τ1 =
n1

N
(1−∆0)

Since all the ∆` = ∆ are equal, we finally get the condensed expression τ` = n`
N (1−∆) for ` = 1, · · · ,K − 1.

In order to compute ∆ we introduce the latter into the definition of ∆0 via the coordinates xk. This gives a first
order equation for ∆ whose solution is

∆ =
η − εΣK
1− εΣK

,
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where ΣK = 1
N2

∑K
k=2 nk

∑k−1
`=1 n`. Direct combinatorics implies

N2 =

K∑
k=1

nk

K∑
`=1

n` = 2N2ΣK +

K∑
k=1

n2
k

showing that ΣK =
N2−

∑
k n

2
k

2N2 . Notice that ∆ is well-defined when ε < 1 since ΣK < 1. Moreover, we have ∆ < 1

when η < 1. From the expression of ∆, we immediately get τk = nk(1−η)
N(1−εΣK) .

To conclude the analysis in the present case, it remains to check the conditions on parameters for which we
have

tf (x) ≤ x1 and R`x ∈ T{nk+`}, ` = 0, · · · ,K − 1.

Using (9), the first inequality amounts to ∆ > 0, viz. εη ≤ 1
ΣK

. As for the second conditions, the only non trivial

restriction is (R`x)1 > 0 for ` = 0, · · · ,K − 1, since the other ones are automatically satisfied from the definition of
R and the non-clustering assumption. Again, (9) shows that (R`x)1 = τ` + ∆ > 0 for ` = 1, · · · ,K − 1. For ` = 0,

we have
∑K−1
k=1 τk = (1 − nK

N )(1−∆) < 1, i.e. x1 > 0. Summarizing, the periodic orbit passing T{nk} exists with all
coordinate firing before they reach 0 iff

εη ≤
1

ΣK
=

2N2

N2 −
∑
k n

2
k

Analysis when all coordinates reach 0 before firing. This case can only occur when εη >
1

ΣK
. We claim that the

solution writes

xk =
1

N

(
k−1∑
`=0

n` − (1− ηε
ΣK

)

K∑
`=k+1

n`

)
, k = 1, · · · ,K − 1 (10)

and obviously xK = 1. To check this assertion, according to (7), it suffices to verify that

tf (R`x) =
1

N

(
n` + (1− ηε

ΣK
)n`+1

)
, ` = 1, · · · ,K − 1.

We shall indeed show by induction that this relation holds for k = 0, · · · ,K−1. Since we now assume that tf (x) > x1

we have tf (x) = 1
N−n1

(∑K
k=2 nkxk −Nηε

)
. Using (10) and the definition of ΣK , we successively obtain

N

(
K∑
k=2

nkxk −Nηε

)
=

K∑
k=2

nk

k−1∑
`=0

n` −
K∑
k=2

nk

K∑
`=k+1

n` +

(∑K
k=2 nk

∑K
`=k+1 n`

ΣK
−N2

)
ηε

=

K∑
k=2

nk

k−1∑
`=0

n` −
K∑
k=3

nk

k−1∑
`=2

n` +

(∑K
k=3 nk

∑k−1
`=2 n` −

∑K
k=2 nk

∑k−1
`=1 n`

ΣK

)
ηε

= (N − n1)(n0 + n1 −
n1

ΣK
ηε)

which gives the desired result for k = 0. The other cases proceed similarly by induction.

The existence conditions now become

x1 < tf (x), tf (R`x) ≤ (R`x)2 and R`x ∈ T{nk+`}, ` = 0, · · · ,K − 1.

The inequalities xk < xk+1 for k = 1, · · · ,K − 1 are equivalent to the following ones

ηε < (1 +
nk
nk+1

)ΣK , k = 1, · · · ,K − 1

which certainly hold when εη >
1

ΣK
. Moreover, x1 > 0 is equivalent to ηε > (1− nK

N−n1
)ΣK and naturally, we obtain

x1 < tf (x) iff ηε < ΣK .
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For ` > 0, the only non trivial constraint in R`x ∈ T{nk+`} is (R`x)1 > 0, i.e. (R`−1x)2 > tf (R`−1x), since all
other constraints follow from the definition of the return map and the non-clustering assumption. Therefore, all what
remains to be checked is tf (R`x) ≤ (R`x)2 for ` = 0, · · · ,K − 1.

By induction we easily get (R`x)2− tf (R`x) = x`+2−
∑`
j=0 tf (Rjx). Using the explicit expression above, it follows

that

(R`x)2 − tf (R`x) = −(N − n`+2 − n`+1) +
ηε

ΣK
(N − n`+2), ` = 0, · · · ,K − 1.

Altogether, we conclude that the existence condition in the present case reduces to

1

ΣK
< εη < min

k=1,··· ,K

1

ΣK

N − nk
N − nk − nk+1

=
2N2

N2 −
∑
k n

2
k

1

1−mink
nk

N−nk+1

IV. MAXIMISING CONFIGURATIONS

We first formally state the statement to prove.

Lemma 4 Given K ≥ 3 and N ≥ K (and N 6= 6 if K = 3), the K-cluster configuration that maximizes the critical
value ζ({nk}) is the one defined by

nk =

{
1 if k = 1, · · · ,K − 1

N −K + 1 if k = K
(11)

This result is not as obvious as it may first appear. Indeed, the action of collapsing extensive clusters together
and of splitting off unitary clusters in a way to keep the total number K constant, increases the left term in the
expression of ζ({nk}) but simultaneously decreases the right term; so the overall shift of the critical value needs to
be carefully evaluated. In addition, Lemma 4 does not hold in the case K = 3 and N = 6 since one can check that
ζ({1, 1, 4}) < ζ({2, 2, 2}).

Proof. To show that the configuration (11) minimizes the denominator in ζ({nk}), we can assume without loss of

generality that {nk} is a permutation of the configuration {qk}Kk=1 where 1 ≤ qk ≤ qk+1 and
∑K
k=1 qk = N . Let

` ≤ K − 1 be the largest index for which qk = 1. We separate the cases ` ≥ bK2 c+ 1 and ` ≤ bK2 c.

If ` ≥ bK2 c+ 1, then we have ` > K − `, i.e. the configuration {qk} has more clusters with a single unit than it has
clusters with more than 1 unit. Thus every permutation {nk} must have two consecutive clusters with a single unit.
In this case, the quantity

S = min
k=1,··· ,K

nk
N − nk+1

=
1

N − 1

reaches its global maximum. Moreover, adding units to the largest cluster qK by taking off units from smaller clusters
qk has the effect to increase the quantity

∑
k q

2
k. Thus the configuration (11) minimizes the denominator in ζ({nk})

over all permutations of increasing configurations {qk} with ` ≥ bK2 c+ 1. The corresponding minimum is

Q = (K − 1)(2N −K)
N − 2

N − 1

To deal with the case ` ≤ bK2 c, we begin to show that for every K-cluster configuration, we have 1 − S ≥ K−2
K−1 .

Consider the following alternative. Either all nk ≤ dNK e or there is a pair (nk, nk+1) for which max{nk, nk+1} > dNK e.
In the second case, by contradiction there must be another pair (nk′ , nk′+1) where min{nk′ , nk′+1} < dNK e (otherwise
we would have

∑
k nk > N which is impossible) implying that

S ≤
dNK e − 1

N − dNK e
≤ 1

K − 1
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In the first case, if dNK e = N
K , then we have

S ≤
N
K

N − N
K

=
1

K − 1
.

Otherwise there must be k such that nk ≤ dNK e−1 (otherwise we would again have
∑
k nk > N) and then again

S ≤
dNK e − 1

N − dNK e
≤ 1

K − 1

Thus in all cases, we have S ≤ 1
K−1 which implies the desired inequality.

Still for ` ≤ bK2 c, the configuration that maximizes the sum
∑
k q

2
k is

qk =

 1 if k = 1, · · · , `
2 if k = `+ 1, · · · ,K − 1

N − 2(K − 1) + ` if k = K

(Notice that the assumption that {qk}Kk=1 has exactly ` sites for which qk = 1 implies that N − 2(K − 1) + ` ≥ 2.)

Altogether we conclude that when ` ≤ bK2 c, the denominator of ζ({nk}) is certainly not smaller than

Q` = [(2(K − 1)− `)(2N − 2(K − 1) + `)− 4(K − 1) + 3`]
K − 2

K − 1
, ` = 0, · · · , bK

2
c.

Now, the quantity Q`− (K−1)(2N −K) increases with N provided that (2(K−1)− `)K−2
K−1 ≥ K−1. This inequality

holds for every ` ≤ bK2 c when K ≥ 5. Moreover, the quantity (K − 1) 2N−K
N−1 also increases with N for K ≥ 2. Thus

the quantity Q` − Q increases with N and to ascertain that Q is a global minimum, it suffices to check that each
Q` −Q is non-negative for N = 2K − `. This amounts to verify that the following inequalities hold

2K(K − 1)(2(2K − 1)− 3
(K − 1)2

K − 2
) ≥ `(c(K) + b(K)`+ `2), ` = 0, · · · , bK

2
c

where

c(K) = 12K2 − 14K + 3− (K − 1)2

K − 2
(7K − 4) and b(K) = 2(

(K − 1)2

K − 2
− 3K + 2);

The RHS in the inequality above is a third order polynomial in ` that is decreasing between 0 and bK2 c when K ≥ 5.
Moreover, it is easy to check that

2(2K − 1)− 3
(K − 1)2

K − 2
≥ 0

for every K ≥ 4, i.e. we indeed have Q` ≥ Q for every ` ≤ bK2 c when K ≥ 5.

For the cases K = 4 and K = 3, the proof needs to be improved because the quantity QbK2 c
−Q actually decreases

with N when this integer is large. We begin with assuming K = 4 and check separately each case j = 0, 1 and
2.

For K = 4 and j = 0, the inequality 2(K − 2) ≥ K − 1 shows that Q0 − Q increases with N . Moreover, we have
just checked in the general case that Q0 ≥ Q for all N ≥ 2K when K = 4; thus Q is also a global minimum in this
case.

For K = 4 and j = 1, since (2(K − 1) − 1)K−2
K−1 ≥ K − 1, we still have Q1 − Q increases with N . By numerically

computing the values Q1 and Q for N = 7 = 2K−1, we conclude that Q remains a global minimum in this case.

Case K = 4 and j = 2. We claim that given an increasing configuration (1, 1, q,N − q − 2) with 2 ≤ q ≤ bN2 c − 1,
the minimum S is maximal for the permutation (1, N − q − 2, 1, q). Indeed, up to a cyclic permutation, there are 3
distinct permutations and (1, N − q − 2, 1, q) is the only one that has non consecutive ’1’. For (1, N − q − 2, 1, q), we
have S = 1

N−q thanks to the assumptions on q and the corresponding denominator of ζ({nk}) writes

2(N(q + 2)− q2 − 2q − 3)
N − q − 1

N − q
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This quantity is convex in the domain q between 2 and bN2 c − 1 (as a product of two positive functions, one being
increasing with decreasing derivative and the other one being decreasing with decreasing derivative). Thus we only
have to check that the values for q = 2 and q = bN2 c − 1 are not smaller than the value for q = 1. Direct calculations
reveal that the former quantity eventually growth with N faster than the latter one when N is large enough. A
numerical check shows that these values for q = 2 and q = bN2 c − 1 are not smaller than the value for q = 1 provided
that N ≥ 6 (which is the minimal N for j = 2) and the proof is complete for K = 4.

For K = 3, there are two types of configurations to consider, namely the ordered ones (q1, q2, q3) and those of the
form (q1, q3, q2). For (q1, q2, q3), thanks to the assumption qi ≤ qi+1, the minimum S is given by S = q1

N−q2 . For

(q1, q3, q2), depending on the sign of q2
2 − q1q3, the minimum S is either q2

N−q1 or q1
N−q3 . Since both these quantities

are never smaller than q1
N−q2 , the non-ordered configuration always minimizes the denominator of ζ({nk}).

Using that S ≤ q+p
N−q for the configuration (q,N − 2q − p, q + p) (where 0 ≤ p ≤ bN−3q

2 c and 1 ≤ q ≤ bN3 c), we get

that the denominator of the critical value is at least(
2N(2q + p)− (2q + p)2 − (q + p)2 − q2

) N − 2q − p
N − q

(12)

Using similar arguments as above, one concludes that this quantity is convex for p between 0 and bN−3q
2 c. Therefore,

it reaches its minimum at the boundaries of this interval.

For p = 0, the quantity (12) becomes

2q(2N − 3q)
N − 2q

N − q

which is again convex with q between 1 and bN3 c. Moreover, the value for q = bN3 c growths faster with N than the
value for q = 1 does. A numerical investigation reveals that the former is not smaller than the former provided that
N ≥ 7, i.e. ζ(1, N − 2, 1) ≤ ζ(q,N − 2q, q) for all q ≤ bN3 c when N ≥ 7.

For p = bN−3q
2 c, (12) becomes(

2NbN + q

2
c − bN + q

2
c2 − bN − q

2
c2 − q2

) dN−q2 e
N − q

Using once again a convexity argument, we get that this quantity reaches its minimum for either q = 1 or q = bN3 c.
In the first case we want to check the inequality(

2NbN + 1

2
c − bN + 1

2
c2 − bN − 1

2
c2 − 1

) dN−1
2 e

N − 1
≥ 2(2N − 3)

N − 2

N − 1

Again, as N increases, the LHS growths faster than the RHS and numerics reveal that the inequality holds provided
that N ≥ 10. For q = bN3 c, one can prove that the corresponding inequality holds for N ≥ 7. Therefore, we have show
that (1, 1, N − 2) maximizes ζ(n1, n2, N − n1 − n2) provided that N ≥ 10. For N between 4 and 9, we have listed all
3-cluster configurations and checked that the property remains valid, except for N = 6 as announced above.
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