Supplementary Information to "Co-Repressive Interaction and Clustering of Degrade-and-Fire Oscillators"

Bastien Fernandez¹ and Lev S. Tsimring²

¹Centre de Physique Théorique, UMR 6207 CNRS - Aix-Marseille Université,
Campus de Luminy Case 907, 13288 Marseille CEDEX 9, FRANCE

²BioCircuits Institute, University of California, San Diego, La Jolla, CA, 92093-0328

(Dated: March 9, 2011)

I. PROOF OF LEMMA 1

For completeness, we start by recalling the statement of Lemma 1.

Lemma 1 $R_{\{n_k\}}\mathcal{T}_{\{n_k\}} \subset \mathcal{T}_{\{n_{k+1}\}}$ for all $k=1,\cdots,K_{per}$ iff

$$\epsilon_{\eta} \le \min_{k=1,\cdots,K_{per}} \frac{N}{N - n_k - n_{k+1}} \tag{1}$$

Proof. We first prove that (1) is a sufficient condition. Assume that initially $\{x_k\}_{k=1}^K \in \mathcal{T}_{\{n_k\}}$. Prior to firing, we have $\chi_1(t) = (1 - \epsilon)x_1 + \frac{\epsilon}{N} \sum_{k=1}^K n_k x_k - t$. Accordingly, the quantity χ_1 reaches η at time t_f defined by

$$t_f := \chi_1(0) - \eta = x_1 + \frac{\epsilon}{N} \sum_{k=2}^K n_k (x_k - x_1) - \eta.$$

The quantity t_f is the actual firing time provided that $x_1(t_f) \ge 0$, viz. $t_f \le x_1$. The latter is equivalent to

$$\epsilon_{\eta} \sum_{k=2}^{K} n_k (x_k - x_1) \le N \tag{2}$$

Using that $0 \le x_k - x_1 \le 1$ for state configurations in $\mathcal{T}_{\{n_k\}}$, a sufficient condition for this inequality is $\epsilon_{\eta} \le \frac{N}{N-n_1}$. Applying cyclic permutations, we conclude that, for every configuration in any of the $\mathcal{T}_{\{n_{k+\ell}\}}$, the lowest cluster of oscillator fires before (or exactly when) it reaches 0 if

$$\epsilon_{\eta} \le \min_{i=1,\cdots,K} \frac{N}{N - n_i} \tag{3}$$

When this condition is violated, cluster configurations with all coordinates $x_k, k \geq 2$, sufficiently close to 1 and x_1 sufficiently close to 0 satisfy the inequality $\chi_1(x_1) = \frac{\epsilon}{N} \sum_{k=2}^K n_k(x_k - x_1) \geq \eta$. Accordingly, the concentration x_1 reaches 0 before χ_1 reaches η and, to prevent clustering we have to make sure that $\chi_2(t_f) > \eta$ i.e. $t_f < x_2$ if t_f still denotes the time when x_1 fires. For $t \geq x_1$, we have $\chi_1(t) = \frac{\epsilon}{N} \sum_{k=2}^K n_k(x_k - t)$. The condition $\chi_1(t_f) = \eta$ defines the firing time as follows $t_f = \frac{1}{N-n_1} \left(\sum_{k=2}^K n_k x_k - N \eta_\epsilon \right)$ where $\eta_\epsilon = \frac{\eta}{\epsilon}$. Now, the inequality $t_f < x_2$ turns out to be equivalent to

$$\sum_{k=3}^{K} n_k x_k - N \eta_{\epsilon} < (N - n_1 - n_2) x_2 \tag{4}$$

which is certainly satisfied when $\sum_{k=3}^{K} n_k x_k - N \eta_{\epsilon} \leq 0$. Solving this inequality for all permutations $\{n_{k+\ell}\}$ gives the desired condition (1) on the coupling parameter.

We now show that $R_{\{n_k\}}$ maps $\mathcal{T}_{\{n_k\}}$ into $\mathcal{T}_{\{n_{k+1}\}}$ when (1) holds. This consists in checking three conditions.

- First, we have $x_2 t_f > 0$ either because $x_1 t_f \ge 0$ and $x_2 > x_1$ or simply because of (4) when (3) fails.
- Then, the strict ordering $x_2 < \cdots < x_{K-1} < 1$ implies a similar ordering for the coordinates of $R_{\{n_k\}}x$ where $x = (x_1, \cdots, x_K)$.

• Finally, we have

$$(1 - \epsilon)(R_{\{n_k\}}x)_1 + \frac{\epsilon}{N} \sum_{k=1}^K n_{k+1}(R_{\{n_k\}}x)_k = (1 - \epsilon)(x_2 - t_f) + \frac{\epsilon}{N} (\sum_{k=1}^{K-1} n_{k+1}(x_{k+1} - t_f) + n_1)$$

$$= (1 - \epsilon)(x_2 - t_f) + \frac{\epsilon}{N} (\sum_{k=2}^K n_k(x_k - t_f) + n_1)$$

$$> (1 - \epsilon)(x_1 - t_f) + \frac{\epsilon}{N} \sum_{k=1}^K n_k(x_k - t_f) = \eta$$

where we used $x_2 > x_1$ and $1 \ge x_1 - t_f$ to obtain the inequality. Thus the last inequality in the definition of $\mathcal{T}_{\{n_{k+1}\}}$ is satisfied for $R_{\{n_k\}}x$ and the proof is complete.

Finally, that (1) is a necessary condition is easy to check. Indeed, when $\epsilon_{\eta} > \frac{N}{N-n_1-n_2}$, initial conditions in $\mathcal{T}_{\{n_k\}}$ with x_1 and x_2 sufficiently close to 0 and the other x_i close enough to 1 simultaneously violate (2) and (4). Accordingly, the clusters n_1 and n_2 fire simultaneously and a K'-cluster population results with $K' \leq K - 1$. In particular, the image $R_{\{n_k\}}x$ cannot belong to $\mathcal{T}_{\{n_{k+1}\}}$. The proof is complete.

II. PROOF OF LEMMA 2

Lemma 2 For every $\{n_k\}_{k=1}^K$ and $0 < \epsilon \le 1$, there is a norm in \mathbb{R}^{K-1} for which $R_{\{n_{k+K_{per}-1}\}}^* \circ \cdots \circ R_{\{n_{k+1}\}}^* \circ R_{\{n_k\}}^*$ is a contraction.

Proof. We begin to prove contraction for the individual map $R_{\{n_k\}}^*$. Its expression depends upon whether the initial condition $x = (x_1, \dots, x_K)$ satisfies (2) or not.

Stability in the domain where x satisfies (2). When only considering the first K-1 coordinates, we obtain

$$(R_{\{n_k\}}^*x)_k = x_{k+1} - t_f = \eta + x_{k+1} - x_1 - \frac{\epsilon}{N} \sum_{\ell=2}^K \alpha_\ell(x_\ell - x_1), \quad k = 1, \dots, K-1$$

Applying the change of variable $x \mapsto y$ defined by

$$y_k = \begin{cases} x_k - x_{k+1} & \text{if } k = 1, \dots, K - 2 \\ x_{K-1} & \text{if } k = K - 1 \end{cases} \iff x_k = \sum_{\ell=k}^{K-1} y_{\ell}, \ \ell = 1, \dots, K - 1$$

the linear part of the previous expression becomes $y \mapsto L_{\{n_k\}}y$ where

$$(L_{\{n_k\}}y)_k = \begin{cases} y_{k+1} & \text{if } k = 1, \cdots, K-2 \\ -\sum_{\ell=1}^{K-1} y_{\ell} (1 - \frac{\epsilon}{N} \sum_{j=\ell+1}^{K} n_j) & \text{if } k = K-1 \end{cases}$$

(We have used $\sum_{j=2}^{K-1} n_j \sum_{\ell=1}^{j-1} y_\ell = \sum_{\ell=1}^{K-2} y_\ell \sum_{j=\ell+1}^{K-1} n_j$.) The corresponding $(K-1) \times (K-1)$ -matrix $L_{\{n_k\}}$ is a companion matrix whose characteristic polynomial $P_{\{n_k\}}$ immediately follows by reading the bottom line, namely

$$P_{\{n_k\}}(\lambda) = \sum_{\ell=0}^{K-1} \lambda^{\ell} (1 - \frac{\epsilon}{N} \sum_{j=\ell+2}^{K} n_j)$$

The polynomial coefficients $1 - \frac{\epsilon}{N} \sum_{j=\ell+2}^{K} n_j$ are positive and decaying (as ℓ decreases) when $0 < \epsilon \le 1$. By a classical result in numerical analysis (see eg. p. 116 in [1]), this property implies that $P_{\{n_k\}}$ is Schur stable, viz. all its roots lie inside the unit disk.

Stability in the domain where x does not satisfy (2). In this case, the return map writes

$$(R_{\{n_k\}}^*x)_k = x_{k+1} - \frac{N}{N - n_1} (\sum_{\ell=2}^K n_\ell x_\ell - \eta_\epsilon), \quad k = 1, \dots, K - 1$$

and the corresponding linear part becomes after applying the same change of variable as before

$$(L'_{\{n_k\}}y)_k = \begin{cases} y_{k+1} & \text{if } k = 1, \dots, K-2\\ -\frac{1}{N-n_1} \sum_{\ell=2}^{K-1} y_\ell \sum_{j=2}^{\ell} n_j & \text{if } k = K-1 \end{cases}$$

now based on $\sum_{j=2}^{K-1} n_j \sum_{\ell=j}^{K-1} y_\ell = \sum_{\ell=2}^{K-1} y_\ell \sum_{j=2}^{\ell} n_j$. The associated characteristic polynomial in this case writes

$$P'_{\{n_k\}}(\lambda) = \frac{1}{N - n_1} \sum_{\ell=1}^{K-1} \lambda^{\ell} \sum_{j=2}^{\ell+1} n_j$$

Similarly to as before, the polynomial $\frac{P'_{\{n_k\}}(\lambda)}{\lambda}$ has positive and decaying coefficients; hence all roots of $P'_{\{n_k\}}(\lambda)$ lie inside the unit disk.

Proof that the return maps are contractions. Given that both spectral radii $r(L_{\{n_k\}})$ and $r(L'_{\{n_k\}})$ are less than 1, the end of the proof is quite standard. Take any norm $|\cdot|$ in \mathbb{R}^{K-1} . We have $r(L_{\{n_k\}}) = \lim_{t\to\infty} |L^t_{\{n_k\}}|^{\frac{1}{t}}$ (see e.g. [2]). Take $\delta > 0$ sufficiently small so that $r(L_{\{n_k\}}) + \delta < 1$ and let t_{δ} be large enough so that

$$|L^t|^{\frac{1}{t}} \le r(L_{\{n_k\}}) + \delta, \quad \forall t \ge t_\delta$$

Consider the analogous t'_{δ} for the operator $L'_{\{n_k\}}$ and take $s_{\delta} = \max\{t_{\eta}, t'_{\eta}\}$ (this requires electing δ so that both inequalities $r(L_{\{n_k\}}) + \delta < 1$ and $r(L'_{\{n_k\}}) + \delta < 1$ simultaneously hold). By choosing $||x|| := |x^{s_{\delta}}|^{\frac{1}{s_{\delta}}}$ in \mathbb{R}^{K-1} , we easily conclude that the linear parts of $R^*_{\{n_k\}}$ have norm $||\cdot||$ less than 1, viz. $R^*_{\{n_k\}}$ is a global contraction.

Finally, the composed return map $R_{\{n_{k+K_{\mathrm{per}}-1}\}}^* \circ \cdots \circ R_{\{n_{k+1}\}}^* \circ R_{\{n_k\}}^*$ will be contracting for the norm $\|x^s\|^{\frac{1}{s}}$ where s is any integer larger than each s_{δ} of the $R_{\{n_{k+\ell}\}}$ and δ is such that all these maps are contracting. The proof is complete.

III. PROOF OF LEMMA 3

Lemma 3 The periodic orbit passing $\mathcal{T}_{\{n_k\}}$ exists iff

$$\epsilon_{\eta} < \zeta(\{n_k\}) := \frac{2N^2}{N^2 - \sum_k n_k^2} \frac{1}{1 - \min_k \frac{n_k}{N - n_{k+1}}}$$
 (5)

Proof. Without loss of generality, we study the solution in $\mathcal{T}_{\{n_k\}}$ of the equation

$$R_{\{n_{k+K-1}\}} \circ \cdots \circ R_{\{n_{k+1}\}} \circ R_{\{n_k\}}(x) = x$$
 (6)

for any K-cluster configuration $\{n_k\}_{k=1}^K$. For the sake of notation, we use the symbol R^{ℓ} instead of $R_{\{n_{k+\ell-1}\}} \circ \cdots \circ R_{\{n_{k+1}\}} \circ R_{\{n_k\}}$ and $R^0 = \mathrm{Id}$.

Periodic orbits have a property that remarkably simplifies their analysis; namely all coordinates fire from the same value. In particular, this implies that they either all fire before reaching 0 or all reach 0 before firing. To see this, recall that $t_f(x)$ denotes the firing time for x. Using the return map's definition, a moment reflexion gives

$$(R^K x)_k = 1 - \sum_{\ell=k}^{K-1} t_f(R^\ell x), \quad k = 1, \dots, K.$$
 (7)

Together with the periodicity assumption $R^K x = x$ and the return map's definition, this expression implies

$$(Rx)_1 - t_f(Rx) = (R^K x)_2 - t_f(Rx) - t_f(x) = (R^K x)_1 - t_f(x) = x_1 - t_f(x).$$

By induction, we conclude that successive firing levels $(R^{\ell}x)_1 - t_f(R^{\ell}x)$ do not depend on $\ell = 0, \dots, K-1$ and the announced alternative follows. To proceed, we consider each case separately.

Analysis when all coordinates fire before reaching 0. In this case, we assume that $t_f(R^{\ell}x) \leq (R^{\ell}x)_1$ for $\ell = 0, \dots, K-1$ and we accordingly solve the equation (6), i.e. $R^K(x) = x$.

Letting $\tau_k = x_{k+1} - x_k$ for $k = 0, \dots, K - 1$, it turns out convenient to rewrite the periodic orbit coordinates as follows

$$x_k = 1 - \sum_{\ell=k}^{K-1} \tau_{\ell}, \quad k = 1, \cdots, K$$

which in particular confirms that $x_K = 1$. In addition, relation (7) and the periodicity condition (6) easily imply

$$t_f(R^k x) = \tau_k, \quad k = 1, \dots, K - 1 \tag{8}$$

To proceed, we use the assumption $t_f(x) \leq x_1$ to rewrite $t_f(x) = x_1 + \frac{\epsilon}{N} \sum_{\ell=2}^K n_\ell(x_\ell - x_1) - \eta$ as follows

$$t_f(x) = 1 - \sum_{\ell=1}^{K-1} \tau_\ell - \Delta_0 \quad \text{where} \quad \Delta_k = \eta - \frac{\epsilon}{N} \sum_{\ell=2}^K n_{\ell+k} ((R^k x)_\ell - (R^k x)_1), \ k = 0, \dots, K - 1.$$

Accordingly, the definition of the return map implies $(Rx)_k = x_{k+1} - t_f(x) = \sum_{\ell=1}^k \tau_k + \Delta_0$ for $k = 1, \dots, K-1$ and then $t_f(Rx) = (Rx)_1 + \frac{\epsilon}{N} \sum_{\ell=2}^K n_{\ell+1} ((Rx)_\ell - (Rx)_1) - \eta = \tau_1 + \Delta_0 - \Delta_1$ since we are assuming $t_f(Rx) \leq (Rx)_1$. Repeating this argument inductively, we obtain

$$(R^{\ell}x)_{k} = \sum_{j=\ell}^{k+\ell-1} \tau_{j} + \Delta_{\ell-1}, \ k = 1, \dots, K - \ell \quad \text{and} \quad t_{f}(R^{\ell}x) = \tau_{\ell} + \Delta_{\ell-1} - \Delta_{\ell}, \ \ell = 1, \dots, K - 1$$
 (9)

Form equation (8), it results that $\Delta_{\ell-1} = \Delta_{\ell}$ for $\ell = 1, \dots, K-1$ which is equivalent to

$$\sum_{j=2}^{K} n_{j+\ell-1}((R^{\ell-1}x)_j - (R^{\ell-1}x)_1) = \sum_{j=2}^{K} n_{j+\ell}((R^{\ell}x)_j - (R^{\ell}x)_1)$$

. Using again the return map definition we have

$$(R^{\ell}x)_k = \begin{cases} (R^{\ell-1}x)_{k+1} - t_f(R^{\ell-1}x) & \text{if } k = 1, \dots, K-1 \\ 1 & \text{if } k = K \end{cases}$$

and, together with the relation $\sum_{j=1}^{K} n_{j+\ell-1} = N$, the previous relation thus simplifies to

$$N((R^{\ell}x)_2 - (R^{\ell}x)_1) = n_{\ell+1}(1 - (R^{\ell}x)_1 + t_f(R^{\ell}x)), \quad \ell = 0, \dots, K-2$$

For $\ell = 1, \dots, K - 2$, we can use relation (9) to get $(R^{\ell}x)_2 - (R^{\ell}x)_1 = \tau_{\ell+1}$ and $(R^{\ell}x)_1 = \tau_{\ell} + \Delta_{\ell-1}$. Accordingly, the previous relation results in

$$\tau_{\ell} = \frac{n_{\ell}}{N}(1 - \Delta_{\ell}), \quad \ell = 2, \cdots, K - 1.$$

For $\ell = 0$, using the expressions of x_1 and $t_f(x)$ the previous equality becomes

$$\tau_1 = \frac{n_1}{N} (1 - \Delta_0)$$

Since all the $\Delta_{\ell} = \Delta$ are equal, we finally get the condensed expression $\tau_{\ell} = \frac{n_{\ell}}{N}(1-\Delta)$ for $\ell = 1, \dots, K-1$.

In order to compute Δ we introduce the latter into the definition of Δ_0 via the coordinates x_k . This gives a first order equation for Δ whose solution is

$$\Delta = \frac{\eta - \epsilon \Sigma_K}{1 - \epsilon \Sigma_K},$$

where $\Sigma_K = \frac{1}{N^2} \sum_{k=2}^K n_k \sum_{\ell=1}^{k-1} n_\ell$. Direct combinatorics implies

$$N^{2} = \sum_{k=1}^{K} n_{k} \sum_{\ell=1}^{K} n_{\ell} = 2N^{2} \Sigma_{K} + \sum_{k=1}^{K} n_{k}^{2}$$

showing that $\Sigma_K = \frac{N^2 - \sum_k n_k^2}{2N^2}$. Notice that Δ is well-defined when $\epsilon < 1$ since $\Sigma_K < 1$. Moreover, we have $\Delta < 1$ when $\eta < 1$. From the expression of Δ , we immediately get $\tau_k = \frac{n_k(1-\eta)}{N(1-\epsilon\Sigma_K)}$.

To conclude the analysis in the present case, it remains to check the conditions on parameters for which we have

$$t_f(x) \le x_1$$
 and $R^{\ell} x \in \mathcal{T}_{\{n_{k+\ell}\}}, \quad \ell = 0, \dots, K - 1.$

Using (9), the first inequality amounts to $\Delta > 0$, viz. $\epsilon_{\eta} \leq \frac{1}{\Sigma_K}$. As for the second conditions, the only non trivial restriction is $(R^{\ell}x)_1 > 0$ for $\ell = 0, \dots, K-1$, since the other ones are automatically satisfied from the definition of R and the non-clustering assumption. Again, (9) shows that $(R^{\ell}x)_1 = \tau_{\ell} + \Delta > 0$ for $\ell = 1, \dots, K-1$. For $\ell = 0$, we have $\sum_{k=1}^{K-1} \tau_k = (1 - \frac{n_K}{N})(1 - \Delta) < 1$, i.e. $x_1 > 0$. Summarizing, the periodic orbit passing $\mathcal{T}_{\{n_k\}}$ exists with all coordinate firing before they reach 0 iff

$$\epsilon_{\eta} \le \frac{1}{\Sigma_K} = \frac{2N^2}{N^2 - \sum_k n_k^2}$$

Analysis when all coordinates reach 0 before firing. This case can only occur when $\epsilon_{\eta} > \frac{1}{\Sigma_K}$. We claim that the solution writes

$$x_k = \frac{1}{N} \left(\sum_{\ell=0}^{k-1} n_{\ell} - (1 - \frac{\eta_{\epsilon}}{\Sigma_K}) \sum_{\ell=k+1}^{K} n_{\ell} \right), \quad k = 1, \dots, K - 1$$
 (10)

and obviously $x_K = 1$. To check this assertion, according to (7), it suffices to verify that

$$t_f(R^{\ell}x) = \frac{1}{N} \left(n_{\ell} + (1 - \frac{\eta_{\epsilon}}{\Sigma_K}) n_{\ell+1} \right), \quad \ell = 1, \dots, K - 1.$$

We shall indeed show by induction that this relation holds for $k = 0, \dots, K-1$. Since we now assume that $t_f(x) > x_1$ we have $t_f(x) = \frac{1}{N-n_1} \left(\sum_{k=2}^K n_k x_k - N \eta_{\epsilon} \right)$. Using (10) and the definition of Σ_K , we successively obtain

$$\begin{split} N\left(\sum_{k=2}^{K}n_{k}x_{k}-N\eta_{\epsilon}\right) &= \sum_{k=2}^{K}n_{k}\sum_{\ell=0}^{k-1}n_{\ell}-\sum_{k=2}^{K}n_{k}\sum_{\ell=k+1}^{K}n_{\ell} + \left(\frac{\sum_{k=2}^{K}n_{k}\sum_{\ell=k+1}^{K}n_{\ell}}{\Sigma_{K}}-N^{2}\right)\eta_{\epsilon} \\ &= \sum_{k=2}^{K}n_{k}\sum_{\ell=0}^{k-1}n_{\ell}-\sum_{k=3}^{K}n_{k}\sum_{\ell=2}^{k-1}n_{\ell} + \left(\frac{\sum_{k=3}^{K}n_{k}\sum_{\ell=2}^{k-1}n_{\ell}-\sum_{k=2}^{K}n_{k}\sum_{\ell=1}^{k-1}n_{\ell}}{\Sigma_{K}}\right)\eta_{\epsilon} \\ &= (N-n_{1})(n_{0}+n_{1}-\frac{n_{1}}{\Sigma_{K}}\eta_{\epsilon}) \end{split}$$

which gives the desired result for k = 0. The other cases proceed similarly by induction.

The existence conditions now become

$$x_1 < t_f(x), \quad t_f(R^{\ell}x) \le (R^{\ell}x)_2 \quad \text{and} \quad R^{\ell}x \in \mathcal{T}_{\{n_{k+\ell}\}}, \quad \ell = 0, \dots, K-1.$$

The inequalities $x_k < x_{k+1}$ for $k = 1, \dots, K-1$ are equivalent to the following ones

$$\eta_{\epsilon} < (1 + \frac{n_k}{n_{k+1}})\Sigma_K, \quad k = 1, \cdots, K - 1$$

which certainly hold when $\epsilon_{\eta} > \frac{1}{\Sigma_K}$. Moreover, $x_1 > 0$ is equivalent to $\eta_{\epsilon} > (1 - \frac{n_K}{N - n_1})\Sigma_K$ and naturally, we obtain $x_1 < t_f(x)$ iff $\eta_{\epsilon} < \Sigma_K$.

For $\ell > 0$, the only non trivial constraint in $R^{\ell}x \in \mathcal{T}_{\{n_{k+\ell}\}}$ is $(R^{\ell}x)_1 > 0$, i.e. $(R^{\ell-1}x)_2 > t_f(R^{\ell-1}x)$, since all other constraints follow from the definition of the return map and the non-clustering assumption. Therefore, all what remains to be checked is $t_f(R^{\ell}x) \leq (R^{\ell}x)_2$ for $\ell = 0, \dots, K-1$.

By induction we easily get $(R^{\ell}x)_2 - t_f(R^{\ell}x) = x_{\ell+2} - \sum_{j=0}^{\ell} t_f(R^jx)$. Using the explicit expression above, it follows that

$$(R^{\ell}x)_2 - t_f(R^{\ell}x) = -(N - n_{\ell+2} - n_{\ell+1}) + \frac{\eta_{\epsilon}}{\Sigma_K}(N - n_{\ell+2}), \quad \ell = 0, \dots, K - 1.$$

Altogether, we conclude that the existence condition in the present case reduces to

$$\frac{1}{\Sigma_K} < \epsilon_{\eta} < \min_{k=1,\cdots,K} \frac{1}{\Sigma_K} \frac{N - n_k}{N - n_k - n_{k+1}} = \frac{2N^2}{N^2 - \sum_k n_k^2} \frac{1}{1 - \min_k \frac{n_k}{N - n_{k+1}}}$$

IV. MAXIMISING CONFIGURATIONS

We first formally state the statement to prove.

Lemma 4 Given $K \ge 3$ and $N \ge K$ (and $N \ne 6$ if K = 3), the K-cluster configuration that maximizes the critical value $\zeta(\{n_k\})$ is the one defined by

$$n_k = \begin{cases} 1 & \text{if } k = 1, \dots, K - 1 \\ N - K + 1 & \text{if } k = K \end{cases}$$
 (11)

This result is not as obvious as it may first appear. Indeed, the action of collapsing extensive clusters together and of splitting off unitary clusters in a way to keep the total number K constant, increases the left term in the expression of $\zeta(\{n_k\})$ but simultaneously decreases the right term; so the overall shift of the critical value needs to be carefully evaluated. In addition, Lemma 4 does not hold in the case K = 3 and N = 6 since one can check that $\zeta(\{1,1,4\}) < \zeta(\{2,2,2\})$.

Proof. To show that the configuration (11) minimizes the denominator in $\zeta(\{n_k\})$, we can assume without loss of generality that $\{n_k\}$ is a permutation of the configuration $\{q_k\}_{k=1}^K$ where $1 \leq q_k \leq q_{k+1}$ and $\sum_{k=1}^K q_k = N$. Let $\ell \leq K-1$ be the largest index for which $q_k=1$. We separate the cases $\ell \geq \lfloor \frac{K}{2} \rfloor + 1$ and $\ell \leq \lfloor \frac{K}{2} \rfloor$.

If $\ell \ge \lfloor \frac{K}{2} \rfloor + 1$, then we have $\ell > K - \ell$, i.e. the configuration $\{q_k\}$ has more clusters with a single unit than it has clusters with more than 1 unit. Thus every permutation $\{n_k\}$ must have two consecutive clusters with a single unit. In this case, the quantity

$$S = \min_{k=1,\cdots,K} \frac{n_k}{N - n_{k+1}} = \frac{1}{N - 1}$$

reaches its global maximum. Moreover, adding units to the largest cluster q_K by taking off units from smaller clusters q_k has the effect to increase the quantity $\sum_k q_k^2$. Thus the configuration (11) minimizes the denominator in $\zeta(\{n_k\})$ over all permutations of increasing configurations $\{q_k\}$ with $\ell \geq \lfloor \frac{K}{2} \rfloor + 1$. The corresponding minimum is

$$Q = (K-1)(2N-K)\frac{N-2}{N-1}$$

To deal with the case $\ell \leq \lfloor \frac{K}{2} \rfloor$, we begin to show that for every K-cluster configuration, we have $1-S \geq \frac{K-2}{K-1}$. Consider the following alternative. Either all $n_k \leq \lceil \frac{N}{K} \rceil$ or there is a pair (n_k, n_{k+1}) for which $\max\{n_k, n_{k+1}\} > \lceil \frac{N}{K} \rceil$. In the second case, by contradiction there must be another pair $(n_{k'}, n_{k'+1})$ where $\min\{n_{k'}, n_{k'+1}\} < \lceil \frac{N}{K} \rceil$ (otherwise we would have $\sum_k n_k > N$ which is impossible) implying that

$$S \le \frac{\lceil \frac{N}{K} \rceil - 1}{N - \lceil \frac{N}{K} \rceil} \le \frac{1}{K - 1}$$

In the first case, if $\lceil \frac{N}{K} \rceil = \frac{N}{K}$, then we have

$$S \le \frac{\frac{N}{K}}{N - \frac{N}{K}} = \frac{1}{K - 1}.$$

Otherwise there must be k such that $n_k \leq \lceil \frac{N}{K} \rceil - 1$ (otherwise we would again have $\sum_k n_k > N$) and then again

$$S \le \frac{\lceil \frac{N}{K} \rceil - 1}{N - \lceil \frac{N}{K} \rceil} \le \frac{1}{K - 1}$$

Thus in all cases, we have $S \leq \frac{1}{K-1}$ which implies the desired inequality.

Still for $\ell \leq \lfloor \frac{K}{2} \rfloor$, the configuration that maximizes the sum $\sum_{k} q_k^2$ is

$$q_k = \begin{cases} 1 & \text{if } k = 1, \dots, \ell \\ 2 & \text{if } k = \ell + 1, \dots, K - 1 \\ N - 2(K - 1) + \ell & \text{if } k = K \end{cases}$$

(Notice that the assumption that $\{q_k\}_{k=1}^K$ has exactly ℓ sites for which $q_k=1$ implies that $N-2(K-1)+\ell\geq 2$.) Altogether we conclude that when $\ell\leq \lfloor\frac{K}{2}\rfloor$, the denominator of $\zeta(\{n_k\})$ is certainly not smaller than

$$Q_{\ell} = \left[(2(K-1) - \ell)(2N - 2(K-1) + \ell) - 4(K-1) + 3\ell \right] \frac{K-2}{K-1}, \quad \ell = 0, \dots, \lfloor \frac{K}{2} \rfloor.$$

Now, the quantity $Q_{\ell} - (K-1)(2N-K)$ increases with N provided that $(2(K-1)-\ell)\frac{K-2}{K-1} \geq K-1$. This inequality holds for every $\ell \leq \lfloor \frac{K}{2} \rfloor$ when $K \geq 5$. Moreover, the quantity $(K-1)\frac{2N-K}{N-1}$ also increases with N for $K \geq 2$. Thus the quantity $Q_{\ell} - Q$ increases with N and to ascertain that Q is a global minimum, it suffices to check that each $Q_{\ell} - Q$ is non-negative for $N = 2K - \ell$. This amounts to verify that the following inequalities hold

$$2K(K-1)(2(2K-1)-3\frac{(K-1)^2}{K-2}) \ge \ell(c(K)+b(K)\ell+\ell^2), \quad \ell=0,\cdots, \lfloor \frac{K}{2} \rfloor$$

where

$$c(K) = 12K^2 - 14K + 3 - \frac{(K-1)^2}{K-2}(7K-4)$$
 and $b(K) = 2(\frac{(K-1)^2}{K-2} - 3K + 2);$

The RHS in the inequality above is a third order polynomial in ℓ that is decreasing between 0 and $\lfloor \frac{K}{2} \rfloor$ when $K \geq 5$. Moreover, it is easy to check that

$$2(2K-1) - 3\frac{(K-1)^2}{K-2} \ge 0$$

for every $K \geq 4$, i.e. we indeed have $Q_{\ell} \geq Q$ for every $\ell \leq \lfloor \frac{K}{2} \rfloor$ when $K \geq 5$.

For the cases K=4 and K=3, the proof needs to be improved because the quantity $Q_{\lfloor \frac{K}{2} \rfloor} - Q$ actually decreases with N when this integer is large. We begin with assuming K=4 and check separately each case j=0,1 and 2

For K=4 and j=0, the inequality $2(K-2) \ge K-1$ shows that Q_0-Q increases with N. Moreover, we have just checked in the general case that $Q_0 \ge Q$ for all $N \ge 2K$ when K=4; thus Q is also a global minimum in this case.

For K=4 and j=1, since $(2(K-1)-1)\frac{K-2}{K-1} \ge K-1$, we still have Q_1-Q increases with N. By numerically computing the values Q_1 and Q for N=7=2K-1, we conclude that Q remains a global minimum in this case.

Case K=4 and j=2. We claim that given an increasing configuration (1,1,q,N-q-2) with $2\leq q\leq \lfloor\frac{N}{2}\rfloor-1$, the minimum S is maximal for the permutation (1,N-q-2,1,q). Indeed, up to a cyclic permutation, there are 3 distinct permutations and (1,N-q-2,1,q) is the only one that has non consecutive '1'. For (1,N-q-2,1,q), we have $S=\frac{1}{N-q}$ thanks to the assumptions on q and the corresponding denominator of $\zeta(\{n_k\})$ writes

$$2(N(q+2)-q^2-2q-3)\frac{N-q-1}{N-q}$$

This quantity is convex in the domain q between 2 and $\lfloor \frac{N}{2} \rfloor - 1$ (as a product of two positive functions, one being increasing with decreasing derivative and the other one being decreasing with decreasing derivative). Thus we only have to check that the values for q=2 and $q=\lfloor \frac{N}{2} \rfloor -1$ are not smaller than the value for q=1. Direct calculations reveal that the former quantity eventually growth with N faster than the latter one when N is large enough. A numerical check shows that these values for q=2 and $q=\lfloor \frac{N}{2} \rfloor -1$ are not smaller than the value for q=1 provided that $N\geq 6$ (which is the minimal N for j=2) and the proof is complete for K=4.

For K=3, there are two types of configurations to consider, namely the ordered ones (q_1,q_2,q_3) and those of the form (q_1,q_3,q_2) . For (q_1,q_2,q_3) , thanks to the assumption $q_i \leq q_{i+1}$, the minimum S is given by $S=\frac{q_1}{N-q_2}$. For (q_1,q_3,q_2) , depending on the sign of $q_2^2-q_1q_3$, the minimum S is either $\frac{q_2}{N-q_1}$ or $\frac{q_1}{N-q_3}$. Since both these quantities are never smaller than $\frac{q_1}{N-q_2}$, the non-ordered configuration always minimizes the denominator of $\zeta(\{n_k\})$.

Using that $S \leq \frac{q+p}{N-q}$ for the configuration (q, N-2q-p, q+p) (where $0 \leq p \leq \lfloor \frac{N-3q}{2} \rfloor$ and $1 \leq q \leq \lfloor \frac{N}{3} \rfloor$), we get that the denominator of the critical value is at least

$$(2N(2q+p) - (2q+p)^2 - (q+p)^2 - q^2) \frac{N - 2q - p}{N - q}$$
(12)

Using similar arguments as above, one concludes that this quantity is convex for p between 0 and $\lfloor \frac{N-3q}{2} \rfloor$. Therefore, it reaches its minimum at the boundaries of this interval.

For p = 0, the quantity (12) becomes

$$2q(2N-3q)\frac{N-2q}{N-q}$$

which is again convex with q between 1 and $\lfloor \frac{N}{3} \rfloor$. Moreover, the value for $q = \lfloor \frac{N}{3} \rfloor$ growths faster with N than the value for q = 1 does. A numerical investigation reveals that the former is not smaller than the former provided that $N \geq 7$, i.e. $\zeta(1, N-2, 1) \leq \zeta(q, N-2q, q)$ for all $q \leq \lfloor \frac{N}{3} \rfloor$ when $N \geq 7$.

For $p = \lfloor \frac{N-3q}{2} \rfloor$, (12) becomes

$$\left(2N\lfloor\frac{N+q}{2}\rfloor-\lfloor\frac{N+q}{2}\rfloor^2-\lfloor\frac{N-q}{2}\rfloor^2-q^2\right)\frac{\lceil\frac{N-q}{2}\rceil}{N-q}$$

Using once again a convexity argument, we get that this quantity reaches its minimum for either q = 1 or $q = \lfloor \frac{N}{3} \rfloor$. In the first case we want to check the inequality

$$\left(2N \lfloor \frac{N+1}{2} \rfloor - \lfloor \frac{N+1}{2} \rfloor^2 - \lfloor \frac{N-1}{2} \rfloor^2 - 1\right) \frac{\lceil \frac{N-1}{2} \rceil}{N-1} \ge 2(2N-3) \frac{N-2}{N-1}$$

Again, as N increases, the LHS growths faster than the RHS and numerics reveal that the inequality holds provided that $N \ge 10$. For $q = \lfloor \frac{N}{3} \rfloor$, one can prove that the corresponding inequality holds for $N \ge 7$. Therefore, we have show that (1, 1, N - 2) maximizes $\zeta(n_1, n_2, N - n_1 - n_2)$ provided that $N \ge 10$. For N between 4 and 9, we have listed all 3-cluster configurations and checked that the property remains valid, except for N = 6 as announced above.

^[1] E.I. Jury, Theory and applications of the z-transform method, Wiley (1964)

^[2] M. Reed and B. Simon, Functional analysis I, Academic Press (1980)