Supplementary Information to "Co-Repressive Interaction and Clustering of Degrade-and-Fire Oscillators"

Bastien Fernandez ${ }^{1}$ and Lev S. Tsimring ${ }^{2}$
${ }^{1}$ Centre de Physique Théorique, UMR 6207 CNRS - Aix-Marseille Université, Campus de Luminy Case 907, 13288 Marseille CEDEX 9, FRANCE
${ }^{2}$ BioCircuits Institute, University of California, San Diego, La Jolla, CA, 92093-0328

(Dated: March 9, 2011)

I. PROOF OF LEMMA 1

For completeness, we start by recalling the statement of Lemma 1.
Lemma $1 R_{\left\{n_{k}\right\}} \mathcal{T}_{\left\{n_{k}\right\}} \subset \mathcal{T}_{\left\{n_{k+1}\right\}}$ for all $k=1, \cdots, K_{\text {per }}$ iff

$$
\begin{equation*}
\epsilon_{\eta} \leq \min _{k=1, \cdots, K_{p e r}} \frac{N}{N-n_{k}-n_{k+1}} \tag{1}
\end{equation*}
$$

Proof. We first prove that (1) is a sufficient condition. Assume that initially $\left\{x_{k}\right\}_{k=1}^{K} \in \mathcal{T}_{\left\{n_{k}\right\}}$. Prior to firing, we have $\chi_{1}(t)=(1-\epsilon) x_{1}+\frac{\epsilon}{N} \sum_{k=1}^{K} n_{k} x_{k}-t$. Accordingly, the quantity χ_{1} reaches η at time t_{f} defined by

$$
t_{f}:=\chi_{1}(0)-\eta=x_{1}+\frac{\epsilon}{N} \sum_{k=2}^{K} n_{k}\left(x_{k}-x_{1}\right)-\eta
$$

The quantity t_{f} is the actual firing time provided that $x_{1}\left(t_{f}\right) \geq 0$, viz. $t_{f} \leq x_{1}$. The latter is equivalent to

$$
\begin{equation*}
\epsilon_{\eta} \sum_{k=2}^{K} n_{k}\left(x_{k}-x_{1}\right) \leq N \tag{2}
\end{equation*}
$$

Using that $0 \leq x_{k}-x_{1} \leq 1$ for state configurations in $\mathcal{T}_{\left\{n_{k}\right\}}$, a sufficient condition for this inequality is $\epsilon_{\eta} \leq \frac{N}{N-n_{1}}$. Applying cyclic permutations, we conclude that, for every configuration in any of the $\mathcal{T}_{\left\{n_{k+\ell}\right\}}$, the lowest cluster of oscillator fires before (or exactly when) it reaches 0 if

$$
\begin{equation*}
\epsilon_{\eta} \leq \min _{i=1, \cdots, K} \frac{N}{N-n_{i}} \tag{3}
\end{equation*}
$$

When this condition is violated, cluster configurations with all coordinates $x_{k}, k \geq 2$, sufficiently close to 1 and x_{1} sufficiently close to 0 satisfy the inequality $\chi_{1}\left(x_{1}\right)=\frac{\epsilon}{N} \sum_{k=2}^{K} n_{k}\left(x_{k}-x_{1}\right) \geq \eta$. Accordingly, the concentration x_{1} reaches 0 before χ_{1} reaches η and, to prevent clustering we have to make sure that $\chi_{2}\left(t_{f}\right)>\eta$ i.e. $t_{f}<x_{2}$ if t_{f} still denotes the time when x_{1} fires. For $t \geq x_{1}$, we have $\chi_{1}(t)=\frac{\epsilon}{N} \sum_{k=2}^{K} n_{k}\left(x_{k}-t\right)$. The condition $\chi_{1}\left(t_{f}\right)=\eta$ defines the firing time as follows $t_{f}=\frac{1}{N-n_{1}}\left(\sum_{k=2}^{K} n_{k} x_{k}-N \eta_{\epsilon}\right)$ where $\eta_{\epsilon}=\frac{\eta}{\epsilon}$. Now, the inequality $t_{f}<x_{2}$ turns out to be equivalent to

$$
\begin{equation*}
\sum_{k=3}^{K} n_{k} x_{k}-N \eta_{\epsilon}<\left(N-n_{1}-n_{2}\right) x_{2} \tag{4}
\end{equation*}
$$

which is certainly satisfied when $\sum_{k=3}^{K} n_{k} x_{k}-N \eta_{\epsilon} \leq 0$. Solving this inequality for all permutations $\left\{n_{k+\ell}\right\}$ gives the desired condition (1) on the coupling parameter.

We now show that $R_{\left\{n_{k}\right\}}$ maps $\mathcal{T}_{\left\{n_{k}\right\}}$ into $\mathcal{T}_{\left\{n_{k+1}\right\}}$ when (1) holds. This consists in checking three conditions.

- First, we have $x_{2}-t_{f}>0$ either because $x_{1}-t_{f} \geq 0$ and $x_{2}>x_{1}$ or simply because of (4) when (3) fails.
- Then, the strict ordering $x_{2}<\cdots<x_{K-1}<1$ implies a similar ordering for the coordinates of $R_{\left\{n_{k}\right\}} x$ where $x=\left(x_{1}, \cdots, x_{K}\right)$.
- Finally, we have

$$
\begin{aligned}
(1-\epsilon)\left(R_{\left\{n_{k}\right\}} x\right)_{1}+\frac{\epsilon}{N} \sum_{k=1}^{K} n_{k+1}\left(R_{\left\{n_{k}\right\}} x\right)_{k} & =(1-\epsilon)\left(x_{2}-t_{f}\right)+\frac{\epsilon}{N}\left(\sum_{k=1}^{K-1} n_{k+1}\left(x_{k+1}-t_{f}\right)+n_{1}\right) \\
& =(1-\epsilon)\left(x_{2}-t_{f}\right)+\frac{\epsilon}{N}\left(\sum_{k=2}^{K} n_{k}\left(x_{k}-t_{f}\right)+n_{1}\right) \\
& >(1-\epsilon)\left(x_{1}-t_{f}\right)+\frac{\epsilon}{N} \sum_{k=1}^{K} n_{k}\left(x_{k}-t_{f}\right)=\eta
\end{aligned}
$$

where we used $x_{2}>x_{1}$ and $1 \geq x_{1}-t_{f}$ to obtain the inequality. Thus the last inequality in the definition of $\mathcal{T}_{\left\{n_{k+1}\right\}}$ is satisfied for $R_{\left\{n_{k}\right\}} x$ and the proof is complete.
Finally, that (1) is a necessary condition is easy to check. Indeed, when $\epsilon_{\eta}>\frac{N}{N-n_{1}-n_{2}}$, initial conditions in $\mathcal{T}_{\left\{n_{k}\right\}}$ with x_{1} and x_{2} sufficiently close to 0 and the other x_{i} close enough to 1 simultaneously violate (2) and (4). Accordingly, the clusters n_{1} and n_{2} fire simultaneously and a K^{\prime}-cluster population results with $K^{\prime} \leq K-1$. In particular, the image $R_{\left\{n_{k}\right\}} x$ cannot belong to $\mathcal{T}_{\left\{n_{k+1}\right\}}$. The proof is complete.

II. PROOF OF LEMMA 2

Lemma 2 For every $\left\{n_{k}\right\}_{k=1}^{K}$ and $0<\epsilon \leq 1$, there is a norm in \mathbb{R}^{K-1} for which $R_{\left\{n_{k+K_{p e r}-1}\right\}}^{*} \circ \cdots \circ R_{\left\{n_{k+1}\right\}}^{*} \circ R_{\left\{n_{k}\right\}}^{*}$ is a contraction.

Proof. We begin to prove contraction for the individual map $R_{\left\{n_{k}\right\}}^{*}$. Its expression depends upon whether the initial condition $x=\left(x_{1}, \cdots, x_{K}\right)$ satisfies (2) or not.
Stability in the domain where x satisfies (2). When only considering the first $K-1$ coordinates, we obtain

$$
\left(R_{\left\{n_{k}\right\}}^{*} x\right)_{k}=x_{k+1}-t_{f}=\eta+x_{k+1}-x_{1}-\frac{\epsilon}{N} \sum_{\ell=2}^{K} \alpha_{\ell}\left(x_{\ell}-x_{1}\right), \quad k=1, \cdots, K-1
$$

Applying the change of variable $x \mapsto y$ defined by

$$
y_{k}=\left\{\begin{array}{cl}
x_{k}-x_{k+1} & \text { if } k=1, \cdots, K-2 \\
x_{K-1} & \text { if } k=K-1
\end{array} \quad \Longleftrightarrow \quad x_{k}=\sum_{\ell=k}^{K-1} y_{\ell}, \ell=1, \cdots, K-1\right.
$$

the linear part of the previous expression becomes $y \mapsto L_{\left\{n_{k}\right\}} y$ where

$$
\left(L_{\left\{n_{k}\right\}} y\right)_{k}=\left\{\begin{array}{cl}
y_{k+1} & \text { if } k=1, \cdots, K-2 \\
-\sum_{\ell=1}^{K-1} y_{\ell}\left(1-\frac{\epsilon}{N} \sum_{j=\ell+1}^{K} n_{j}\right) & \text { if } k=K-1
\end{array}\right.
$$

(We have used $\sum_{j=2}^{K-1} n_{j} \sum_{\ell=1}^{j-1} y_{\ell}=\sum_{\ell=1}^{K-2} y_{\ell} \sum_{j=\ell+1}^{K-1} n_{j}$.) The corresponding $(K-1) \times(K-1)$-matrix $L_{\left\{n_{k}\right\}}$ is a companion matrix whose characteristic polynomial $P_{\left\{n_{k}\right\}}$ immediately follows by reading the bottom line, namely

$$
P_{\left\{n_{k}\right\}}(\lambda)=\sum_{\ell=0}^{K-1} \lambda^{\ell}\left(1-\frac{\epsilon}{N} \sum_{j=\ell+2}^{K} n_{j}\right)
$$

The polynomial coefficients $1-\frac{\epsilon}{N} \sum_{j=\ell+2}^{K} n_{j}$ are positive and decaying (as ℓ decreases) when $0<\epsilon \leq 1$. By a classical result in numerical analysis (see eg. p. 116 in [1]), this property implies that $P_{\left\{n_{k}\right\}}$ is Schur stable, viz. all its roots lie inside the unit disk.

Stability in the domain where x does not satisfy (2). In this case, the return map writes

$$
\left(R_{\left\{n_{k}\right\}}^{*} x\right)_{k}=x_{k+1}-\frac{N}{N-n_{1}}\left(\sum_{\ell=2}^{K} n_{\ell} x_{\ell}-\eta_{\epsilon}\right), \quad k=1, \cdots, K-1
$$

and the corresponding linear part becomes after applying the same change of variable as before

$$
\left(L_{\left\{n_{k}\right\}}^{\prime} y\right)_{k}=\left\{\begin{aligned}
y_{k+1} & \text { if } k=1, \cdots, K-2 \\
-\frac{1}{N-n_{1}} \sum_{\ell=2}^{K-1} y_{\ell} \sum_{j=2}^{\ell} n_{j} & \text { if } k=K-1
\end{aligned}\right.
$$

now based on $\sum_{j=2}^{K-1} n_{j} \sum_{\ell=j}^{K-1} y_{\ell}=\sum_{\ell=2}^{K-1} y_{\ell} \sum_{j=2}^{\ell} n_{j}$. The associated characteristic polynomial in this case writes

$$
P_{\left\{n_{k}\right\}}^{\prime}(\lambda)=\frac{1}{N-n_{1}} \sum_{\ell=1}^{K-1} \lambda^{\ell} \sum_{j=2}^{\ell+1} n_{j}
$$

Similarly to as before, the polynomial $\frac{P_{\left\{n_{k}\right\}}^{\prime}(\lambda)}{\lambda}$ has positive and decaying coefficients; hence all roots of $P_{\left\{n_{k}\right\}}^{\prime}(\lambda)$ lie inside the unit disk.

Proof that the return maps are contractions. Given that both spectral radii $r\left(L_{\left\{n_{k}\right\}}\right)$ and $r\left(L_{\left\{n_{k}\right\}}^{\prime}\right)$ are less than 1 , the end of the proof is quite standard. Take any norm $|\cdot|$ in \mathbb{R}^{K-1}. We have $\left.r\left(L_{\left\{n_{k}\right\}}\right)=\lim _{t \rightarrow \infty} \mid L_{\left\{n_{k}\right\}}^{t}\right\}^{\frac{1}{t}}$ (see e.g. [2]). Take $\delta>0$ sufficiently small so that $r\left(L_{\left\{n_{k}\right\}}\right)+\delta<1$ and let t_{δ} be large enough so that

$$
\left|L^{t}\right|^{\frac{1}{t}} \leq r\left(L_{\left\{n_{k}\right\}}\right)+\delta, \quad \forall t \geq t_{\delta}
$$

Consider the analogous t_{δ}^{\prime} for the operator $L_{\left\{n_{k}\right\}}^{\prime}$ and take $s_{\delta}=\max \left\{t_{\eta}, t_{\eta}^{\prime}\right\}$ (this requires electing δ so that both inequalities $r\left(L_{\left\{n_{k}\right\}}\right)+\delta<1$ and $r\left(L_{\left\{n_{k}\right\}}^{\prime}\right)+\delta<1$ simultaneously hold). By choosing $\|x\|:=\left|x^{s_{\delta}}\right|^{\frac{1}{s_{\delta}}}$ in \mathbb{R}^{K-1}, we easily conclude that the linear parts of $R_{\left\{n_{k}\right\}}^{*}$ have norm $\|\cdot\|$ less than 1 , viz. $R_{\left\{n_{k}\right\}}^{*}$ is a global contraction.

Finally, the composed return map $R_{\left\{n_{\left.k+K_{\text {per }-1}\right\}}\right.}^{*} \circ \cdots \circ R_{\left\{n_{k+1}\right\}}^{*} \circ R_{\left\{n_{k}\right\}}^{*}$ will be contracting for the norm $\left\|x^{s}\right\|^{\frac{1}{s}}$ where s is any integer larger than each s_{δ} of the $R_{\left\{n_{k+\ell}\right\}}$ and δ is such that all these maps are contracting. The proof is complete.

III. PROOF OF LEMMA 3

Lemma 3 The periodic orbit passing $\mathcal{T}_{\left\{n_{k}\right\}}$ exists iff

$$
\begin{equation*}
\epsilon_{\eta}<\zeta\left(\left\{n_{k}\right\}\right):=\frac{2 N^{2}}{N^{2}-\sum_{k} n_{k}^{2}} \frac{1}{1-\min _{k} \frac{n_{k}}{N-n_{k+1}}} \tag{5}
\end{equation*}
$$

Proof. Without loss of generality, we study the solution in $\mathcal{T}_{\left\{n_{k}\right\}}$ of the equation

$$
\begin{equation*}
R_{\left\{n_{k+K-1}\right\}} \circ \cdots \circ R_{\left\{n_{k+1}\right\}} \circ R_{\left\{n_{k}\right\}}(x)=x \tag{6}
\end{equation*}
$$

for any K-cluster configuration $\left\{n_{k}\right\}_{k=1}^{K}$. For the sake of notation, we use the symbol R^{ℓ} instead of $R_{\left\{n_{k+\ell-1}\right\}} \circ \cdots \circ$ $R_{\left\{n_{k+1}\right\}} \circ R_{\left\{n_{k}\right\}}$ and $R^{0}=\mathrm{Id}$.

Periodic orbits have a property that remarkably simplifies their analysis; namely all coordinates fire from the same value. In particular, this implies that they either all fire before reaching 0 or all reach 0 before firing. To see this, recall that $t_{f}(x)$ denotes the firing time for x. Using the return map's definition, a moment reflexion gives

$$
\begin{equation*}
\left(R^{K} x\right)_{k}=1-\sum_{\ell=k}^{K-1} t_{f}\left(R^{\ell} x\right), \quad k=1, \cdots, K \tag{7}
\end{equation*}
$$

Together with the periodicity assumption $R^{K} x=x$ and the return map's definition, this expression implies

$$
(R x)_{1}-t_{f}(R x)=\left(R^{K} x\right)_{2}-t_{f}(R x)-t_{f}(x)=\left(R^{K} x\right)_{1}-t_{f}(x)=x_{1}-t_{f}(x)
$$

By induction, we conclude that successive firing levels $\left(R^{\ell} x\right)_{1}-t_{f}\left(R^{\ell} x\right)$ do not depend on $\ell=0, \cdots, K-1$ and the announced alternative follows. To proceed, we consider each case separately.

Analysis when all coordinates fire before reaching 0 . In this case, we assume that $t_{f}\left(R^{\ell} x\right) \leq\left(R^{\ell} x\right)_{1}$ for $\ell=0, \cdots, K-1$ and we accordingly solve the equation (6), i.e. $R^{K}(x)=x$.

Letting $\tau_{k}=x_{k+1}-x_{k}$ for $k=0, \cdots, K-1$, it turns out convenient to rewrite the periodic orbit coordinates as follows

$$
x_{k}=1-\sum_{\ell=k}^{K-1} \tau_{\ell}, \quad k=1, \cdots, K
$$

which in particular confirms that $x_{K}=1$. In addition, relation (7) and the periodicity condition (6) easily imply

$$
\begin{equation*}
t_{f}\left(R^{k} x\right)=\tau_{k}, \quad k=1, \cdots, K-1 \tag{8}
\end{equation*}
$$

To proceed, we use the assumption $t_{f}(x) \leq x_{1}$ to rewrite $t_{f}(x)=x_{1}+\frac{\epsilon}{N} \sum_{\ell=2}^{K} n_{\ell}\left(x_{\ell}-x_{1}\right)-\eta$ as follows

$$
t_{f}(x)=1-\sum_{\ell=1}^{K-1} \tau_{\ell}-\Delta_{0} \quad \text { where } \quad \Delta_{k}=\eta-\frac{\epsilon}{N} \sum_{\ell=2}^{K} n_{\ell+k}\left(\left(R^{k} x\right)_{\ell}-\left(R^{k} x\right)_{1}\right), k=0, \cdots, K-1
$$

Accordingly, the definition of the return map implies $(R x)_{k}=x_{k+1}-t_{f}(x)=\sum_{\ell=1}^{k} \tau_{k}+\Delta_{0}$ for $k=1, \cdots, K-1$ and then $t_{f}(R x)=(R x)_{1}+\frac{\epsilon}{N} \sum_{\ell=2}^{K} n_{\ell+1}\left((R x)_{\ell}-(R x)_{1}\right)-\eta=\tau_{1}+\Delta_{0}-\Delta_{1}$ since we are assuming $t_{f}(R x) \leq(R x)_{1}$. Repeating this argument inductively, we obtain

$$
\begin{equation*}
\left(R^{\ell} x\right)_{k}=\sum_{j=\ell}^{k+\ell-1} \tau_{j}+\Delta_{\ell-1}, k=1, \cdots, K-\ell \quad \text { and } \quad t_{f}\left(R^{\ell} x\right)=\tau_{\ell}+\Delta_{\ell-1}-\Delta_{\ell}, \ell=1, \cdots, K-1 \tag{9}
\end{equation*}
$$

Form equation (8), it results that $\Delta_{\ell-1}=\Delta_{\ell}$ for $\ell=1, \cdots, K-1$ which is equivalent to

$$
\sum_{j=2}^{K} n_{j+\ell-1}\left(\left(R^{\ell-1} x\right)_{j}-\left(R^{\ell-1} x\right)_{1}\right)=\sum_{j=2}^{K} n_{j+\ell}\left(\left(R^{\ell} x\right)_{j}-\left(R^{\ell} x\right)_{1}\right)
$$

. Using again the return map definition we have

$$
\left(R^{\ell} x\right)_{k}=\left\{\begin{array}{cl}
\left(R^{\ell-1} x\right)_{k+1}-t_{f}\left(R^{\ell-1} x\right) & \text { if } k=1, \cdots, K-1 \\
1 & \text { if } k=K
\end{array}\right.
$$

and, together with the relation $\sum_{j=1}^{K} n_{j+\ell-1}=N$, the previous relation thus simplifies to

$$
N\left(\left(R^{\ell} x\right)_{2}-\left(R^{\ell} x\right)_{1}\right)=n_{\ell+1}\left(1-\left(R^{\ell} x\right)_{1}+t_{f}\left(R^{\ell} x\right)\right), \quad \ell=0, \cdots, K-2
$$

For $\ell=1, \cdots, K-2$, we can use relation (9) to get $\left(R^{\ell} x\right)_{2}-\left(R^{\ell} x\right)_{1}=\tau_{\ell+1}$ and $\left(R^{\ell} x\right)_{1}=\tau_{\ell}+\Delta_{\ell-1}$. Accordingly, the previous relation results in

$$
\tau_{\ell}=\frac{n_{\ell}}{N}\left(1-\Delta_{\ell}\right), \quad \ell=2, \cdots, K-1
$$

For $\ell=0$, using the expressions of x_{1} and $t_{f}(x)$ the previous equality becomes

$$
\tau_{1}=\frac{n_{1}}{N}\left(1-\Delta_{0}\right)
$$

Since all the $\Delta_{\ell}=\Delta$ are equal, we finally get the condensed expression $\tau_{\ell}=\frac{n_{\ell}}{N}(1-\Delta)$ for $\ell=1, \cdots, K-1$.
In order to compute Δ we introduce the latter into the definition of Δ_{0} via the coordinates x_{k}. This gives a first order equation for Δ whose solution is

$$
\Delta=\frac{\eta-\epsilon \Sigma_{K}}{1-\epsilon \Sigma_{K}}
$$

where $\Sigma_{K}=\frac{1}{N^{2}} \sum_{k=2}^{K} n_{k} \sum_{\ell=1}^{k-1} n_{\ell}$. Direct combinatorics implies

$$
N^{2}=\sum_{k=1}^{K} n_{k} \sum_{\ell=1}^{K} n_{\ell}=2 N^{2} \Sigma_{K}+\sum_{k=1}^{K} n_{k}^{2}
$$

showing that $\Sigma_{K}=\frac{N^{2}-\sum_{k} n_{k}^{2}}{2 N^{2}}$. Notice that Δ is well-defined when $\epsilon<1$ since $\Sigma_{K}<1$. Moreover, we have $\Delta<1$ when $\eta<1$. From the expression of Δ, we immediately get $\tau_{k}=\frac{n_{k}(1-\eta)}{N\left(1-\epsilon \Sigma_{K}\right)}$.

To conclude the analysis in the present case, it remains to check the conditions on parameters for which we have

$$
t_{f}(x) \leq x_{1} \quad \text { and } \quad R^{\ell} x \in \mathcal{T}_{\left\{n_{k+\ell}\right\}}, \quad \ell=0, \cdots, K-1
$$

Using (9), the first inequality amounts to $\Delta>0$, viz. $\epsilon_{\eta} \leq \frac{1}{\Sigma_{K}}$. As for the second conditions, the only non trivial restriction is $\left(R^{\ell} x\right)_{1}>0$ for $\ell=0, \cdots, K-1$, since the other ones are automatically satisfied from the definition of R and the non-clustering assumption. Again, (9) shows that $\left(R^{\ell} x\right)_{1}=\tau_{\ell}+\Delta>0$ for $\ell=1, \cdots, K-1$. For $\ell=0$, we have $\sum_{k=1}^{K-1} \tau_{k}=\left(1-\frac{n_{K}}{N}\right)(1-\Delta)<1$, i.e. $x_{1}>0$. Summarizing, the periodic orbit passing $\mathcal{T}_{\left\{n_{k}\right\}}$ exists with all coordinate firing before they reach 0 iff

$$
\epsilon_{\eta} \leq \frac{1}{\Sigma_{K}}=\frac{2 N^{2}}{N^{2}-\sum_{k} n_{k}^{2}}
$$

Analysis when all coordinates reach 0 before firing. This case can only occur when $\epsilon_{\eta}>\frac{1}{\Sigma_{K}}$. We claim that the solution writes

$$
\begin{equation*}
x_{k}=\frac{1}{N}\left(\sum_{\ell=0}^{k-1} n_{\ell}-\left(1-\frac{\eta_{\epsilon}}{\Sigma_{K}}\right) \sum_{\ell=k+1}^{K} n_{\ell}\right), \quad k=1, \cdots, K-1 \tag{10}
\end{equation*}
$$

and obviously $x_{K}=1$. To check this assertion, according to (7), it suffices to verify that

$$
t_{f}\left(R^{\ell} x\right)=\frac{1}{N}\left(n_{\ell}+\left(1-\frac{\eta_{\epsilon}}{\Sigma_{K}}\right) n_{\ell+1}\right), \quad \ell=1, \cdots, K-1 .
$$

We shall indeed show by induction that this relation holds for $k=0, \cdots, K-1$. Since we now assume that $t_{f}(x)>x_{1}$ we have $t_{f}(x)=\frac{1}{N-n_{1}}\left(\sum_{k=2}^{K} n_{k} x_{k}-N \eta_{\epsilon}\right)$. Using (10) and the definition of Σ_{K}, we successively obtain

$$
\begin{aligned}
N\left(\sum_{k=2}^{K} n_{k} x_{k}-N \eta_{\epsilon}\right) & =\sum_{k=2}^{K} n_{k} \sum_{\ell=0}^{k-1} n_{\ell}-\sum_{k=2}^{K} n_{k} \sum_{\ell=k+1}^{K} n_{\ell}+\left(\frac{\sum_{k=2}^{K} n_{k} \sum_{\ell=k+1}^{K} n_{\ell}}{\Sigma_{K}}-N^{2}\right) \eta_{\epsilon} \\
& =\sum_{k=2}^{K} n_{k} \sum_{\ell=0}^{k-1} n_{\ell}-\sum_{k=3}^{K} n_{k} \sum_{\ell=2}^{k-1} n_{\ell}+\left(\frac{\sum_{k=3}^{K} n_{k} \sum_{\ell=2}^{k-1} n_{\ell}-\sum_{k=2}^{K} n_{k} \sum_{\ell=1}^{k-1} n_{\ell}}{\Sigma_{K}}\right) \eta_{\epsilon} \\
& =\left(N-n_{1}\right)\left(n_{0}+n_{1}-\frac{n_{1}}{\Sigma_{K}} \eta \epsilon\right)
\end{aligned}
$$

which gives the desired result for $k=0$. The other cases proceed similarly by induction.
The existence conditions now become

$$
x_{1}<t_{f}(x), \quad t_{f}\left(R^{\ell} x\right) \leq\left(R^{\ell} x\right)_{2} \quad \text { and } \quad R^{\ell} x \in \mathcal{T}_{\left\{n_{k+\ell}\right\}}, \quad \ell=0, \cdots, K-1 .
$$

The inequalities $x_{k}<x_{k+1}$ for $k=1, \cdots, K-1$ are equivalent to the following ones

$$
\eta_{\epsilon}<\left(1+\frac{n_{k}}{n_{k+1}}\right) \Sigma_{K}, \quad k=1, \cdots, K-1
$$

which certainly hold when $\epsilon_{\eta}>\frac{1}{\Sigma_{K}}$. Moreover, $x_{1}>0$ is equivalent to $\eta_{\epsilon}>\left(1-\frac{n_{K}}{N-n_{1}}\right) \Sigma_{K}$ and naturally, we obtain $x_{1}<t_{f}(x)$ iff $\eta_{\epsilon}<\Sigma_{K}$.

For $\ell>0$, the only non trivial constraint in $R^{\ell} x \in \mathcal{T}_{\left\{n_{k+\ell}\right\}}$ is $\left(R^{\ell} x\right)_{1}>0$, i.e. $\left(R^{\ell-1} x\right)_{2}>t_{f}\left(R^{\ell-1} x\right)$, since all other constraints follow from the definition of the return map and the non-clustering assumption. Therefore, all what remains to be checked is $t_{f}\left(R^{\ell} x\right) \leq\left(R^{\ell} x\right)_{2}$ for $\ell=0, \cdots, K-1$.

By induction we easily get $\left(R^{\ell} x\right)_{2}-t_{f}\left(R^{\ell} x\right)=x_{\ell+2}-\sum_{j=0}^{\ell} t_{f}\left(R^{j} x\right)$. Using the explicit expression above, it follows that

$$
\left(R^{\ell} x\right)_{2}-t_{f}\left(R^{\ell} x\right)=-\left(N-n_{\ell+2}-n_{\ell+1}\right)+\frac{\eta_{\epsilon}}{\Sigma_{K}}\left(N-n_{\ell+2}\right), \quad \ell=0, \cdots, K-1 .
$$

Altogether, we conclude that the existence condition in the present case reduces to

$$
\frac{1}{\Sigma_{K}}<\epsilon_{\eta}<\min _{k=1, \cdots, K} \frac{1}{\Sigma_{K}} \frac{N-n_{k}}{N-n_{k}-n_{k+1}}=\frac{2 N^{2}}{N^{2}-\sum_{k} n_{k}^{2}} \frac{1}{1-\min _{k} \frac{n_{k}}{N-n_{k+1}}}
$$

IV. MAXIMISING CONFIGURATIONS

We first formally state the statement to prove.
Lemma 4 Given $K \geq 3$ and $N \geq K$ (and $N \neq 6$ if $K=3$), the K-cluster configuration that maximizes the critical value $\zeta\left(\left\{n_{k}\right\}\right)$ is the one defined by

$$
n_{k}=\left\{\begin{array}{cl}
1 & \text { if } k=1, \cdots, K-1 \tag{11}\\
N-K+1 & \text { if } k=K
\end{array}\right.
$$

This result is not as obvious as it may first appear. Indeed, the action of collapsing extensive clusters together and of splitting off unitary clusters in a way to keep the total number K constant, increases the left term in the expression of $\zeta\left(\left\{n_{k}\right\}\right)$ but simultaneously decreases the right term; so the overall shift of the critical value needs to be carefully evaluated. In addition, Lemma 4 does not hold in the case $K=3$ and $N=6$ since one can check that $\zeta(\{1,1,4\})<\zeta(\{2,2,2\})$.
Proof. To show that the configuration (11) minimizes the denominator in $\zeta\left(\left\{n_{k}\right\}\right)$, we can assume without loss of generality that $\left\{n_{k}\right\}$ is a permutation of the configuration $\left\{q_{k}\right\}_{k=1}^{K}$ where $1 \leq q_{k} \leq q_{k+1}$ and $\sum_{k=1}^{K} q_{k}=N$. Let $\ell \leq K-1$ be the largest index for which $q_{k}=1$. We separate the cases $\ell \geq\left\lfloor\frac{K}{2}\right\rfloor+1$ and $\ell \leq\left\lfloor\frac{K}{2}\right\rfloor$.

If $\ell \geq\left\lfloor\frac{K}{2}\right\rfloor+1$, then we have $\ell>K-\ell$, i.e. the configuration $\left\{q_{k}\right\}$ has more clusters with a single unit than it has clusters with more than 1 unit. Thus every permutation $\left\{n_{k}\right\}$ must have two consecutive clusters with a single unit. In this case, the quantity

$$
S=\min _{k=1, \cdots, K} \frac{n_{k}}{N-n_{k+1}}=\frac{1}{N-1}
$$

reaches its global maximum. Moreover, adding units to the largest cluster q_{K} by taking off units from smaller clusters q_{k} has the effect to increase the quantity $\sum_{k} q_{k}^{2}$. Thus the configuration (11) minimizes the denominator in $\zeta\left(\left\{n_{k}\right\}\right)$ over all permutations of increasing configurations $\left\{q_{k}\right\}$ with $\ell \geq\left\lfloor\frac{K}{2}\right\rfloor+1$. The corresponding minimum is

$$
Q=(K-1)(2 N-K) \frac{N-2}{N-1}
$$

To deal with the case $\ell \leq\left\lfloor\frac{K}{2}\right\rfloor$, we begin to show that for every K-cluster configuration, we have $1-S \geq \frac{K-2}{K-1}$. Consider the following alternative. Either all $n_{k} \leq\left\lceil\frac{N}{K}\right\rceil$ or there is a pair $\left(n_{k}, n_{k+1}\right)$ for which $\max \left\{n_{k}, n_{k+1}\right\}>\left\lceil\frac{N}{K}\right\rceil$. In the second case, by contradiction there must be another pair $\left(n_{k^{\prime}}, n_{k^{\prime}+1}\right)$ where $\min \left\{n_{k^{\prime}}, n_{k^{\prime}+1}\right\}<\left\lceil\frac{N}{K}\right\rceil$ (otherwise we would have $\sum_{k} n_{k}>N$ which is impossible) implying that

$$
S \leq \frac{\left\lceil\frac{N}{K}\right\rceil-1}{N-\left\lceil\frac{N}{K}\right\rceil} \leq \frac{1}{K-1}
$$

In the first case, if $\left\lceil\frac{N}{K}\right\rceil=\frac{N}{K}$, then we have

$$
S \leq \frac{\frac{N}{K}}{N-\frac{N}{K}}=\frac{1}{K-1}
$$

Otherwise there must be k such that $n_{k} \leq\left\lceil\frac{N}{K}\right\rceil-1$ (otherwise we would again have $\sum_{k} n_{k}>N$) and then again

$$
S \leq \frac{\left\lceil\frac{N}{K}\right\rceil-1}{N-\left\lceil\frac{N}{K}\right\rceil} \leq \frac{1}{K-1}
$$

Thus in all cases, we have $S \leq \frac{1}{K-1}$ which implies the desired inequality.
Still for $\ell \leq\left\lfloor\frac{K}{2}\right\rfloor$, the configuration that maximizes the sum $\sum_{k} q_{k}^{2}$ is

$$
q_{k}=\left\{\begin{array}{cl}
1 & \text { if } k=1, \cdots, \ell \\
2 & \text { if } k=\ell+1, \cdots, K-1 \\
N-2(K-1)+\ell & \text { if } k=K
\end{array}\right.
$$

(Notice that the assumption that $\left\{q_{k}\right\}_{k=1}^{K}$ has exactly ℓ sites for which $q_{k}=1$ implies that $N-2(K-1)+\ell \geq 2$.) Altogether we conclude that when $\ell \leq\left\lfloor\frac{K}{2}\right\rfloor$, the denominator of $\zeta\left(\left\{n_{k}\right\}\right)$ is certainly not smaller than

$$
Q_{\ell}=[(2(K-1)-\ell)(2 N-2(K-1)+\ell)-4(K-1)+3 \ell] \frac{K-2}{K-1}, \quad \ell=0, \cdots,\left\lfloor\frac{K}{2}\right\rfloor
$$

Now, the quantity $Q_{\ell}-(K-1)(2 N-K)$ increases with N provided that $(2(K-1)-\ell) \frac{K-2}{K-1} \geq K-1$. This inequality holds for every $\ell \leq\left\lfloor\frac{K}{2}\right\rfloor$ when $K \geq 5$. Moreover, the quantity $(K-1) \frac{2 N-K}{N-1}$ also increases with N for $K \geq 2$. Thus the quantity $Q_{\ell}-Q$ increases with N and to ascertain that Q is a global minimum, it suffices to check that each $Q_{\ell}-Q$ is non-negative for $N=2 K-\ell$. This amounts to verify that the following inequalities hold

$$
2 K(K-1)\left(2(2 K-1)-3 \frac{(K-1)^{2}}{K-2}\right) \geq \ell\left(c(K)+b(K) \ell+\ell^{2}\right), \quad \ell=0, \cdots,\left\lfloor\frac{K}{2}\right\rfloor
$$

where

$$
c(K)=12 K^{2}-14 K+3-\frac{(K-1)^{2}}{K-2}(7 K-4) \quad \text { and } \quad b(K)=2\left(\frac{(K-1)^{2}}{K-2}-3 K+2\right)
$$

The RHS in the inequality above is a third order polynomial in ℓ that is decreasing between 0 and $\left\lfloor\frac{K}{2}\right\rfloor$ when $K \geq 5$. Moreover, it is easy to check that

$$
2(2 K-1)-3 \frac{(K-1)^{2}}{K-2} \geq 0
$$

for every $K \geq 4$, i.e. we indeed have $Q_{\ell} \geq Q$ for every $\ell \leq\left\lfloor\frac{K}{2}\right\rfloor$ when $K \geq 5$.
For the cases $K=4$ and $K=3$, the proof needs to be improved because the quantity $Q_{\left\lfloor\frac{K}{2}\right\rfloor}-Q$ actually decreases with N when this integer is large. We begin with assuming $K=4$ and check separately each case $j=0,1$ and 2.

For $K=4$ and $j=0$, the inequality $2(K-2) \geq K-1$ shows that $Q_{0}-Q$ increases with N. Moreover, we have just checked in the general case that $Q_{0} \geq Q$ for all $N \geq 2 K$ when $K=4$; thus Q is also a global minimum in this case.

For $K=4$ and $j=1$, since $(2(K-1)-1) \frac{K-2}{K-1} \geq K-1$, we still have $Q_{1}-Q$ increases with N. By numerically computing the values Q_{1} and Q for $N=7=2 K-1$, we conclude that Q remains a global minimum in this case.

Case $K=4$ and $j=2$. We claim that given an increasing configuration ($1,1, q, N-q-2$) with $2 \leq q \leq\left\lfloor\frac{N}{2}\right\rfloor-1$, the minimum S is maximal for the permutation $(1, N-q-2,1, q)$. Indeed, up to a cyclic permutation, there are 3 distinct permutations and $(1, N-q-2,1, q)$ is the only one that has non consecutive ' 1 '. For $(1, N-q-2,1, q)$, we have $S=\frac{1}{N-q}$ thanks to the assumptions on q and the corresponding denominator of $\zeta\left(\left\{n_{k}\right\}\right)$ writes

$$
2\left(N(q+2)-q^{2}-2 q-3\right) \frac{N-q-1}{N-q}
$$

This quantity is convex in the domain q between 2 and $\left\lfloor\frac{N}{2}\right\rfloor-1$ (as a product of two positive functions, one being increasing with decreasing derivative and the other one being decreasing with decreasing derivative). Thus we only have to check that the values for $q=2$ and $q=\left\lfloor\frac{N}{2}\right\rfloor-1$ are not smaller than the value for $q=1$. Direct calculations reveal that the former quantity eventually growth with N faster than the latter one when N is large enough. A numerical check shows that these values for $q=2$ and $q=\left\lfloor\frac{N}{2}\right\rfloor-1$ are not smaller than the value for $q=1$ provided that $N \geq 6$ (which is the minimal N for $j=2$) and the proof is complete for $K=4$.

For $K=3$, there are two types of configurations to consider, namely the ordered ones $\left(q_{1}, q_{2}, q_{3}\right)$ and those of the form $\left(q_{1}, q_{3}, q_{2}\right)$. For $\left(q_{1}, q_{2}, q_{3}\right)$, thanks to the assumption $q_{i} \leq q_{i+1}$, the minimum S is given by $S=\frac{q_{1}}{N-q_{2}}$. For $\left(q_{1}, q_{3}, q_{2}\right)$, depending on the sign of $q_{2}^{2}-q_{1} q_{3}$, the minimum S is either $\frac{q_{2}}{N-q_{1}}$ or $\frac{q_{1}}{N-q_{3}}$. Since both these quantities are never smaller than $\frac{q_{1}}{N-q_{2}}$, the non-ordered configuration always minimizes the denominator of $\zeta\left(\left\{n_{k}\right\}\right)$.

Using that $S \leq \frac{q+p}{N-q}$ for the configuration $(q, N-2 q-p, q+p)$ (where $0 \leq p \leq\left\lfloor\frac{N-3 q}{2}\right\rfloor$ and $1 \leq q \leq\left\lfloor\frac{N}{3}\right\rfloor$), we get that the denominator of the critical value is at least

$$
\begin{equation*}
\left(2 N(2 q+p)-(2 q+p)^{2}-(q+p)^{2}-q^{2}\right) \frac{N-2 q-p}{N-q} \tag{12}
\end{equation*}
$$

Using similar arguments as above, one concludes that this quantity is convex for p between 0 and $\left\lfloor\frac{N-3 q}{2}\right\rfloor$. Therefore, it reaches its minimum at the boundaries of this interval.

For $p=0$, the quantity (12) becomes

$$
2 q(2 N-3 q) \frac{N-2 q}{N-q}
$$

which is again convex with q between 1 and $\left\lfloor\frac{N}{3}\right\rfloor$. Moreover, the value for $q=\left\lfloor\frac{N}{3}\right\rfloor$ growths faster with N than the value for $q=1$ does. A numerical investigation reveals that the former is not smaller than the former provided that $N \geq 7$, i.e. $\zeta(1, N-2,1) \leq \zeta(q, N-2 q, q)$ for all $q \leq\left\lfloor\frac{N}{3}\right\rfloor$ when $N \geq 7$.

For $p=\left\lfloor\frac{N-3 q}{2}\right\rfloor$, (12) becomes

$$
\left(2 N\left\lfloor\frac{N+q}{2}\right\rfloor-\left\lfloor\frac{N+q}{2}\right\rfloor^{2}-\left\lfloor\frac{N-q}{2}\right\rfloor^{2}-q^{2}\right) \frac{\left\lceil\frac{N-q}{2}\right\rceil}{N-q}
$$

Using once again a convexity argument, we get that this quantity reaches its minimum for either $q=1$ or $q=\left\lfloor\frac{N}{3}\right\rfloor$. In the first case we want to check the inequality

$$
\left(2 N\left\lfloor\frac{N+1}{2}\right\rfloor-\left\lfloor\frac{N+1}{2}\right\rfloor^{2}-\left\lfloor\frac{N-1}{2}\right\rfloor^{2}-1\right) \frac{\left\lceil\frac{N-1}{2}\right\rceil}{N-1} \geq 2(2 N-3) \frac{N-2}{N-1}
$$

Again, as N increases, the LHS growths faster than the RHS and numerics reveal that the inequality holds provided that $N \geq 10$. For $q=\left\lfloor\frac{N}{3}\right\rfloor$, one can prove that the corresponding inequality holds for $N \geq 7$. Therefore, we have show that $(1,1, N-2)$ maximizes $\zeta\left(n_{1}, n_{2}, N-n_{1}-n_{2}\right)$ provided that $N \geq 10$. For N between 4 and 9 , we have listed all 3 -cluster configurations and checked that the property remains valid, except for $N=6$ as announced above.
[1] E.I. Jury, Theory and applications of the z-transform method, Wiley (1964)
[2] M. Reed and B. Simon, Functional analysis I, Academic Press (1980)

