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I. PROOF OF LEMMA 1

For completeness, we start by recalling the statement of Lemma 1.
Lemma 1 Ry, Tiny C Tingpyy forallk =1, Kper iff
N

"= k=1, Kpw N — g — Nk+1 ( )

Proof. We first prove that (1) is a sufficient condition. Assume that initially {zx} | € Tinyy- Prior to firing, we
have x1(t) = (1 —€)z1 + & Zle nixy —t. Accordingly, the quantity x; reaches 1 at time ¢ defined by

K
€
tri=x1(0) —n=x1+ N;nk(:ﬂk — 1) — 7.

The quantity ¢s is the actual firing time provided that x;(ty) > 0, viz. ty < x1. The latter is equivalent to

K
en > nilze —11) <N (2)

k=2
Using that 0 < zx — 21 < 1 for state configurations in 7y, }, a sufficient condition for this inequality is €, < %m

Applying cyclic permutations, we conclude that, for every configuration in any of the Ty,, .1, the lowest cluster of
oscillator fires before (or exactly when) it reaches 0 if

€y < min

3)

When this condition is violated, cluster configurations with all coordinates zj, k > 2, sufficiently close to 1 and z;
sufficiently close to 0 satisfy the inequality xi(z1) = & Zszz ng(xx — 1) > 1. Accordingly, the concentration x;
reaches 0 before x; reaches n and, to prevent clustering we have to make sure that x2(ty) > n i.e. ty < xg if ty still

denotes the time when z; fires. For ¢t > 2, we have x1(t) = + Zszg ni(zr —t). The condition x1(t;) = n defines
the firing time as follows ¢y = N%nl (ZkK:2 NpTr — N776> where 7, = g Now, the inequality ¢ty < x5 turns out to be
equivalent to

K
anzkane < (N —n1 —ng) zo (4)
k=3

which is certainly satisfied when ZkK:3 nixr — Nne < 0. Solving this inequality for all permutations {ngy¢} gives the
desired condition (1) on the coupling parameter.

We now show that Ry, maps T(,,; into Ti,,,,; when (1) holds. This consists in checking three conditions.
e First, we have xg — ¢y > 0 either because z1 —t;y > 0 and x2 > x;1 or simply because of (4) when (3) fails.

e Then, the strict ordering 3 < --- < xgx_1 < 1 implies a similar ordering for the coordinates of Ry, yz where
x= (1, ,TK).



e Finally, we have

K-—1
(1= e)(Ringy2n anﬂ Rpny2)k = (1 —€)(z2 —tf) + %(Z N1 (Th1 — tf) +n1)
k 1 6 k]zl
=(1—e€)(x2—ty)+ N(Z ng(zk —tr) +n1)
k=2

> (1—e)(wr —ty) + % > ng(ae—ty) =1
k=1

where we used x2 > x; and 1 > x; — ¢ to obtain the inequality. Thus the last inequality in the definition of
Tiny...y 1s satisfied for Ry, yx and the proof is complete.

Finally, that (1) is a necessary condition is easy to check. Indeed, when €, > #ﬁm, initial conditions in T,y

with 1 and x5 sufficiently close to 0 and the other x; close enough to 1 simultaneously violate (2) and (4). Accordingly,
the clusters n; and noy fire simultaneously and a K'-cluster population results with K’ < K — 1. In particular, the
image Ry, 7 cannot belong to T(,, ;. The proof is complete.

II. PROOF OF LEMMA 2

Lemma 2 For every {ny}< | and 0 < e <1, there is a norm in RE=1 for which Rf{‘nk“{ 3o o R?nkﬂ} o R?nk}
per—
18 a contraction.

Proof. We begin to prove contraction for the individual map R?nk}. Its expression depends upon whether the initial
condition x = (x1,--- ,xk) satisfies (2) or not.

Stability in the domain where x satisfies (2). When only considering the first K — 1 coordinates, we obtain

. €
(Rfpy @)k = Thp1 — tf =0+ 21 — 21 —NZOLg(Ie—ZEl), k=1 K—1
Applying the change of variable z — y defined by

K—1
S —wp k=1, K -2 - e
il Ly SUL RIS TSRO

the linear part of the previous expression becomes y +— Ly, 1y where

(Liny) { Yir1 iR, K —2
nptY)k = € K .
{ k} ZZ 1 y@( _sz:€+1nj) lf k:K—l

(We have used ZJ o T Ze TS Z@ 1 “ Z] £+1 n;.) The corresponding (K —1) x (K —1)-matrix Ly, is a com-
panion matrix whose characteristic polynomial Pf,,} immediately follows by reading the bottom line, namely

K-1 K
P{nk} Z /\Z 1—-—= Z nj)
£=0 j:Z+2

The polynomial coefficients 1 — & Z =42 T are positive and decaying (as ¢ decreases) when 0 < € < 1. By a classical
result in numerical analysis (see eg. p. 116 in [1]), this property implies that Py,,} is Schur stable, viz. all its roots
lie inside the unit disk.

Stability in the domain where x does not satisfy (2). In this case, the return map writes

_776)’ k:1a7K_1

(R?nk}x)k = Tk+1 —



and the corresponding linear part becomes after applying the same change of variable as before

trt _Nflnl Z@:; Ye Zj;g n; if k=K-—-1

now based on Z]K: JZE = Yy Zf:_; Yo Zng n;. The associated characteristic polynomial in this case
writes
K-1 f+1
¢
PN = 5= DA D n
1 =1 j=2
. . 1 Pl ) .. . . y .
Similarly to as before, the polynomial —*5— has positive and decaying coefficients; hence all roots of P{nk}()\) lie

inside the unit disk.
Proof that the return maps are contractions. Given that both spectral radii 7(Ly,,}) and r(L/ (e }) are less than 1,

the end of the proof is quite standard. Take any norm |- | in RX~1. We have r(L{,,}) = tlgn |L{nk}|% (see e.g. [2]).
oo
Take 6 > 0 sufficiently small so that r(Ly,,}) + ¢ < 1 and let ¢5 be large enough so that

1
‘Lt|t ST(L{nk})+5, Vt > ts
Consider the analogous t§ for the operator L’{nk} and take ss = max{t,,t,} (this requires electing J so that both

inequalities 7(Ly,,y) +0 < 1 and r(L’{n }) + 6 < 1 simultaneously hold). By choosing |z := |z* % in RE-1 we

casily conclude that the linear parts of Rf, , have norm || - [| less than 1, viz. Rf, , is a global contraction.

Finally, the composed return map R?nwxmq} 0--+0 R"{‘nkﬂ} o R?nk} will be contracting for the norm ||z* H s where

s is any integer larger than each ss; of the Ry,, .,; and ¢ is such that all these maps are contracting. The proof is
complete.

III. PROOF OF LEMMA 3

Lemma 3 The periodic orbit passing Tin,y exists iff
2N? 1

2 _ 2 Nk
N2 =%, ni 1 —ming v

en < C({nk}) =

Proof. Without loss of generality, we study the solution in 7, of the equation
Ringircay @0 Bimpyay © R{”k}(x) =T (6)

for any K-cluster configuration {nj}~_,. For the sake of notation, we use the symbol R! instead of Rinyppyo-vo
R{nk+1} ] R{nk} and RO =1Id.

Periodic orbits have a property that remarkably simplifies their analysis; namely all coordinates fire from the same
value. In particular, this implies that they either all fire before reaching 0 or all reach 0 before firing. To see this,
recall that t7(z) denotes the firing time for z. Using the return map’s definition, a moment reflexion gives

K—-1
(R¥2)=1- Y tf(R‘z), k=1, K. (7)
{=k

Together with the periodicity assumption R¥z = 2 and the return map’s definition, this expression implies
(Rz)1 — tr(R) = (R¥2)2 — tp(Ra) — ty(z) = (R 2)1 — ty(x) = 21 — ty().

By induction, we conclude that successive firing levels (R‘z); — t;(R‘z) do not depend on £ = 0,--- , K — 1 and the
announced alternative follows. To proceed, we consider each case separately.



Analysis when all coordinates fire before reaching 0. In this case, we assume that ¢ ;(R‘z) < (Rfz); for £ =0,--- , K—1
and we accordingly solve the equation (6), i.e. R¥(z) = z.

Letting 7, = 41 — xx for £k =0,--- | K — 1, it turns out convenient to rewrite the periodic orbit coordinates as
follows

K-1
r=1-> 7, k=1, K
L=k

which in particular confirms that xx = 1. In addition, relation (7) and the periodicity condition (6) easily imply
ti(RFz) =15, k=1,--- ,K—1 (8)

To proceed, we use the assumption t;(x) < 1 to rewrite ty(x) = 21 + & Zf:z ne(xy — 1) — 1 as follows

K-1
ty(x )—1—274 Ag where Ak—n——ZnHk (R¥z), — (R*x),), k=0,--- K — 1.
=1 (=2

Accordingly, the definition of the return map implies (Rx)r = xp41 — t5(z) = Zif:l T+ Qg for k=1,---  K—-1
and then ty(Rx) = (Rx)1 + Z net1((Rx)e — (Rx)1) —n = 71 + Ag — Ay since we are assuming ¢7(Rx) < (Rx);.
Repeating this argument 1nductlvely7 we obtain

k-1
(R'z) Z i+ Ay, k=1,--- K—¢ and t;(R'z)=1+Ar 1 —Ap =1, K1 (9)
=L

Form equation (8), it results that Ay;—; = Ay for £ =1,--- | K — 1 which is equivalent to

Znﬁz (R M)y — (R e Znﬁe (R'z); — (R‘x))

. Using again the return map definition we have

(R'z), = { (RE'2) gy — tp(R M)

K
and, together with the relation ) n;y,—1 = N, the previous relation thus simplifies to
j=1

N((Rz)s — (R'2)1) = nepa(1 = (R'a)1 + t(Rx)), £=0,--- K -2
For £ =1,--- , K — 2, we can use relation (9) to get (R‘x)s — (R‘x); = 741 and (R'z); = 70 + Ay_1. Accordingly,

the previous relation results in

=1 Ay, (=2, K1

TR
For ¢ = 0, using the expressions of z; and t¢(z) the previous equality becomes

@(1 — Ay)

7'1:N

Since all the Ay = A are equal, we finally get the condensed expression 7, = §¢(1 — A) for £ =1,--- | K — 1.

In order to compute A we introduce the latter into the definition of Aj via the coordinates xj. This gives a first
order equation for A whose solution is

17—621(

A=K
1—62]{7



K k—1 . . .. .
where Y = % D o Tk 24:1 nyg. Direct combinatorics implies

K K K
NQZZTLk ’n,g:?NzZK-i-ZTLi
k=1 =1 k=1

2 2
showing that Y = m. Notice that A is well-defined when € < 1 since X < 1. Moreover, we have A < 1

N2
when 7 < 1. From the expression of A, we immediately get 75, = %

To conclude the analysis in the present case, it remains to check the conditions on parameters for which we
have

ty(z) <1 and sz€7f{nk+z}, {=0,---,K—1.

Using (9), the first inequality amounts to A > 0, viz. €, < i As for the second conditions, the only non trivial

restriction is (R‘z); > 0 for £ = 0,--- , K — 1, since the other ones are automatically satisfied from the definition of
R and the non-clustering assumption. Again, (9) shows that (R‘z); =7 +A >0for £ =1,--- ,K —1. For £ = 0,

we have ZkK:_ll T = (1-"2)(1—-A) <1, ie x; >0. Summarizing, the periodic orbit passing 7;,,} exists with all
coordinate firing before they reach 0 iff

< 1 2N?
< e—=—————>
niEK NQ_ani

Analysis when all coordinates reach 0 before firing. This case can only occur when ¢, > i We claim that the
solution writes

k—1 K
L Ne
xk:]\/‘(é ne — ( —EK) E ng), k=1,--- , K—1 (10)
£=0 l=k+1

and obviously zx = 1. To check this assertion, according to (7), it suffices to verify that

1 c
t(R'a) = (ng—&—(l—gK)ng_,_l), (=1, K —1.

We shall indeed show by induction that this relation holds for £k = 0,--- , K —1. Since we now assume that t;(z) > 2,
we have tf(x) = ﬁ (2522 NETp — Nne). Using (10) and the definition of X, we successively obtain

K K k—1 K K ZK N ZK Ny
RS S S S S SR S R
k=2 k=2 =0 k=2 l=k+1
K k—1 K k—1 K k—1 K k—1
— D ke Tk D g = D pn Tk X gy U
S T Lo oz "

n
(N —nq)(ng+np — E—Ine)
K

which gives the desired result for £ = 0. The other cases proceed similarly by induction.

The existence conditions now become

zy <tp(x), tr(R'z) < (R'z); and R'z e Tinpseys =0, K —1.

The inequalities z < 41 for k=1,--- | K — 1 are equivalent to the following ones
ng
ne < (14 Xk, k=1,--- K—-1
Ng+1
which certainly hold when ¢, > i Moreover, x1 > 0 is equivalent to 1. > (1 — 5 - )Xk and naturally, we obtain

z1 < ty(z) iff e < X



For ¢ > 0, the only non trivial constraint in Rz € T,,,,} is (R‘z)1 > 0, ie. (R""x)y > t;(R*"'x), since all
other constraints follow from the definition of the return map and the non-clustering assumption. Therefore, all what
remains to be checked is tf(R‘z) < (Rfx)s for £ =0,--- | K — 1.

By induction we easily get (R‘x)y —t;(R‘z) = 2442 — Z?:o t¢(R7z). Using the explicit expression above, it follows
that

(R'2)y — t§(R') = —(N — ngps — ngg) + o2

(N_n€+2)7 gzoavK_l
XK

Altogether, we conclude that the existence condition in the present case reduces to

, 1 N — ng 2N? 1
= <€ < min

_ _ _ = 2 _ 2 _ 5 Nk
Yi k=1, K Xg N —np —ngp1 N2 =Y, ni1—ming N

IV. MAXIMISING CONFIGURATIONS

We first formally state the statement to prove.

Lemma 4 Given K >3 and N > K (and N # 6 if K = 3), the K-cluster configuration that maximizes the critical
value (({ny}) is the one defined by

B | k=1 K—1
m_{N—K+lﬁk:K (11)

This result is not as obvious as it may first appear. Indeed, the action of collapsing extensive clusters together
and of splitting off unitary clusters in a way to keep the total number K constant, increases the left term in the
expression of (({nx}) but simultaneously decreases the right term; so the overall shift of the critical value needs to
be carefully evaluated. In addition, Lemma 4 does not hold in the case K = 3 and N = 6 since one can check that

C({1,1,4}) <<({2,2,2}).

Proof. To show that the configuration (11) minimizes the denominator in {({ny}), we can assume without loss of
generality that {n;} is a permutation of the configuration {gx}& , where 1 < g, < qry1 and Zszl gr = N. Let
¢ < K — 1 be the largest index for which g, = 1. We separate the cases £ > | 5| +1 and £ < [5].

If ¢ > | K] +1, then we have £ > K — (, i.e. the configuration {gj} has more clusters with a single unit than it has
clusters with more than 1 unit. Thus every permutation {n;} must have two consecutive clusters with a single unit.
In this case, the quantity

ng 1

S = min =
k=1, K N —npy1 N -1

reaches its global maximum. Moreover, adding units to the largest cluster gx by taking off units from smaller clusters

qr has the effect to increase the quantity >, ¢i. Thus the configuration (11) minimizes the denominator in ¢({ns})
over all permutations of increasing configurations {q} with ¢ > L%J + 1. The corresponding minimum is

N -2

=(K-1)(2N - K)——

Q= (K —1)(2N - K) -

To deal with the case ¢ < L%J, we begin to show that for every K-cluster configuration, we have 1 — S > %
Consider the following alternative. Either all ny < [£] or there is a pair (ng, ng+1) for which max{ng, ng41} > [%]

In the second case, by contradiction there must be another pair (ny, nj41) where min{ny, ny 41} < [%] (otherwise
we would have ), nj > N which is impossible) implying that

2

N7 _
S<(K]1<1

SN-TRI TR



In the first case, if [££] = &, then we have

X 1
S < - .
TN-N T K-1

Otherwise there must be k such that ny < [%]—1 (otherwise we would again have Y, nj, > N) and then again

< [&1-1 - 1
TN-R K1

Thus in all cases, we have S < ﬁ which implies the desired inequality.
Still for £ < [ 5], the configuration that maximizes the sum >, ¢ is

1 if k=1, ¢
ar = 2 if k=0+1,-- ,K—1
N—-2K-1)+4(if k=K

(Notice that the assumption that {gx}#_, has exactly ¢ sites for which g; = 1 implies that N —2(K — 1) 4+ ¢ > 2.)
Altogether we conclude that when ¢ < L%J, the denominator of (({nx}) is certainly not smaller than

K -2 K
Now, the quantity @, — (K —1)(2N — K) increases with N provided that (2(K —1) — £)%=2 > K — 1. This inequality
holds for every ¢ < L%J when K > 5. Moreover, the quantity (K — 1)2%:1K also increases with NV for K > 2. Thus
the quantity QQ; — @ increases with N and to ascertain that @ is a global minimum, it suffices to check that each
Q¢ — Q is non-negative for N = 2K — ¢. This amounts to verify that the following inequalities hold

2k (i — 1)K — 1) - 35 > e + e+ @), 0=, 15
where
—1)2 _1)2
c(K)=12K? — 14K +3 — %(7K —4) and b(K)= 2(% — 3K +2);

The RHS in the inequality above is a third order polynomial in ¢ that is decreasing between 0 and \_%J when K > 5.
Moreover, it is easy to check that

(K —1)°

22K —1) =3

>0

for every K > 4, i.e. we indeed have @y > @ for every ¢ < L%J when K > 5.

For the cases K = 4 and K = 3, the proof needs to be improved because the quantity QL K| = Q@ actually decreases

with N when this integer is large. We begin with assuming K = 4 and check separately each case j = 0,1 and
2.

For K = 4 and j = 0, the inequality 2(K — 2) > K — 1 shows that Qo — @ increases with N. Moreover, we have
just checked in the general case that Qg > @ for all N > 2K when K = 4; thus @ is also a global minimum in this
case.

For K =4 and j = 1, since (2(K — 1) — 1)% > K — 1, we still have Q1 — @ increases with N. By numerically
computing the values Q1 and @) for N = 7 = 2K —1, we conclude that @ remains a global minimum in this case.

Case K =4 and j = 2. We claim that given an increasing configuration (1,1,q, N — ¢ — 2) with 2 < ¢ < L%J -1,
the minimum S is maximal for the permutation (1, N — g — 2,1,¢). Indeed, up to a cyclic permutation, there are 3
distinct permutations and (1, N — g — 2,1, q) is the only one that has non consecutive '1’. For (1, N —q —2,1,q), we
have S = ﬁ thanks to the assumptions on ¢ and the corresponding denominator of {({ny}) writes
N—-—qg—-1

727 —
2(N(g+2) — ¢ —2¢—3) N_q



This quantity is convex in the domain ¢ between 2 and L%J — 1 (as a product of two positive functions, one being
increasing with decreasing derivative and the other one being decreasing with decreasing derivative). Thus we only
have to check that the values for ¢ =2 and ¢ = L%J — 1 are not smaller than the value for ¢ = 1. Direct calculations
reveal that the former quantity eventually growth with N faster than the latter one when N is large enough. A
numerical check shows that these values for ¢ = 2 and ¢ = L%J — 1 are not smaller than the value for ¢ = 1 provided
that N > 6 (which is the minimal N for j = 2) and the proof is complete for K = 4.

For K = 3, there are two types of configurations to consider, namely the ordered ones (¢, ¢2,¢3) and those of the

form (q1,¢s3,92). For (q1,¢2,qs), thanks to the assumption ¢; < ¢;11, the minimum S is given by S = Nq_qu' For
(q1,q3,q2), depending on the sign of ¢5 — q1¢3, the minimum S is either N‘1_2q1 or Nq_‘%. Since both these quantities

are never smaller than g%, the non-ordered configuration always minimizes the denominator of {({r}).

Using that S < ]‘{,if; for the configuration (¢, N —2¢ —p,q+ p) (where 0 < p < L@j and 1 < g < L%J), we get
that the denominator of the critical value is at least
N-2¢q-p

(2N(2¢+p) — (2¢+p)> — (¢+p)* — &%) N—q (12)

Using similar arguments as above, one concludes that this quantity is convex for p between 0 and LN gsqj. Therefore,
it reaches its minimum at the boundaries of this interval.

For p = 0, the quantity (12) becomes

N —2q
N —q

2¢(2N — 3¢)

which is again convex with ¢ between 1 and |4 |. Moreover, the value for ¢ = | & | growths faster with N than the
value for ¢ = 1 does. A numerical investigation reveals that the former is not smaller than the former provided that
N >7,ie ((1,N—2,1) <((¢,N —2q,q) for all ¢ < [§| when N > 7.

For p = LN;3‘1J, (12) becomes

_ N—q
<2NLN2+qJ NEas e 2) Ef_;

Using once again a convexity argument, we get that this quantity reaches its minimum for either ¢ =1 or ¢ = L%j
In the first case we want to check the inequality

<2N|_N+1J—|_N+1J2_|_N2_1J2_1) E\TT:E 22(2]\/’_3)&

2 2 N -1

Again, as N increases, the LHS growths faster than the RHS and numerics reveal that the inequality holds provided
that N > 10. For g = L%J, one can prove that the corresponding inequality holds for N > 7. Therefore, we have show
that (1,1, N — 2) maximizes ((n1,n2, N —ny —ng) provided that N > 10. For N between 4 and 9, we have listed all
3-cluster configurations and checked that the property remains valid, except for NV = 6 as announced above.
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