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Strongly nonlinear degrade-and-fire (DF) oscillations may emerge in genetic circuits having a
delayed negative feedback loop as their core element. Here we study the synchronization of DF
oscillators coupled through a common repressor field. For weak coupling, initially distinct oscillators
remain de-synchronized. For stronger coupling, oscillators can be forced to wait in the repressed
state until the global repressor field is sufficiently degraded, and then they fire simultaneously
forming a synchronized cluster. Our analytical theory provides necessary and sufficient conditions for
clustering and specifies the maximum the number of clusters which can be formed in the asymptotic
regime. We find that in the thermodynamic limit a phase transition occurs at a certain coupling
strength from the weakly-clustered regime with only microscopic clusters to a strongly clustered
regime when at least one giant cluster has to be present.

PACS numbers: 05.45Xt, 87.16Yc, 87.18Cf

Many gene regulatory networks contain negative feed-
back loops as their core elements [1]. The negative feed-
back provides robustness and noise-resistance to signal-
ing pathways [2]. They also lie at the center of many nat-
ural rhythmic circuits (such as circadian clocks [3]) and
synthetic gene oscillators [4–6]. In our recent work [7]
we identified the delayed negative feedback as the mech-
anism of oscillations in the synthetic two-gene oscillator
[5]. It is well known that delayed auto-repression can
lead to oscillatory gene expression even with only a sin-
gle regulatory element [8–12]. Typically, the period of
delay-induced oscillations is comparable with the delay
time and thus this mechanism seemingly could not ex-
plain rather slow oscillations observed in gene circuits.
However, we showed that in a strongly nonlinear regime,
the period of oscillations is determined by the rate of en-
zymatic degradation of the repressor protein and there-
fore can be arbitrarily longer than the transcriptional
and translational delay. The essential mechanism of os-
cillations in this circuit is based on the periodic alterna-
tion of two regimes - slow degradation of repressor pro-
tein, and the following fast production of the repressor
(firing), hence we termed these sawtooth-like oscillations
“degrade-and-fire” in analogy with integrate-and-fire os-
cillations in neuronal circuits. Bacterial cells contain-
ing the DF circuit demonstrated robust oscillations, but
due to cell-to-cell variability and stochastic effects, in the
absence of cell-cell communication the bacterial colony
quickly becomes desynchronized. In our subsequent work
[13] we succeeded in synchronizing gene oscillators across
bacterial colony, however the synchronized regime was
achieved with a different circuit design that incorporated
a quorum-sensing machinery producing small molecule
AHL which served as signaling element necessary for cell-
cell synchronization.

In this paper we study synchronization of DF oscilla-
tors through purely co-repressive interaction. To enable
the analytical calculations, we replace the original non-

linear delay-differential model of the DF oscillator [7] by
a piecewise linear model which assumes that the concen-
tration x degrades from the maximum value (which can
be scaled to 1) linearly with unit rate, ẋ = −1 (mimick-
ing enzymatic decay with high enzyme affinity), until it it
reaches the (small) threshold value η > 0, after which re-
pressor concentration x is immediately reset to 1 (“fire”),
and the process repeats. It is easy to see that the protein
concentration oscillates with period 1 − η.

Now we consider a population of N degrade-and-fire
(DF) oscillators coupled through a common repressor
field. We postulate that the dynamics of the concen-
tration of repressor protein xi is given by the following
rules

• if positive, xi degrades linearly with rate 1, i.e. ẋi =
−1, or remains constant if it has reached 0,

• when the locally averaged concentration χi(t) =

(1 − ǫ)xi(t) + ǫX(t) (where X(t) = 1
N

∑N
i=1 xi(t)

and 0 6 ǫ 6 1 is the coupling strength parameter)
reaches threshold η, the ith oscillator fires, and its
concentration is reset to 1, i.e. xi(t+) = 1.

With these simple evolution rules, one can readily see
that all oscillators must fire indefinitely (i.e. there cannot
be “oscillator death” regime for any of the oscillators).
Indeed, starting from an arbitrary configuration {xi}

N
i=1

for which all χi > η, all concentrations decay towards
0 with time (those that have reached xi = 0, remain
at zero) and so do all χi. Thus the oscillator with the
lowest xi (possibly, more than one if several oscillators
have identical concentrations xi) eventually fires when
the corresponding χi reaches η. After that, the oscillator
j with new lowest xj has to fire when its χj reaches η,
and so on [14]. It is also clear that if any two oscillators in
a population are in sync at certain time t∗, i.e. xi = xj ,
they will remain in sync for all t > t∗. What is not
obvious however, is under which conditions oscillators
that are initially out of sync will synchronize in the course
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of the dynamics, and what the properties of the resulting
clusters are. To answer these questions, we begin with
the simple case of two oscillators.

Interaction of two DF oscillators. In this case oscilla-
tor i (i = 1, 2) fires when χi = (1− ǫ/2)xi + ǫx3−i/2 = η.
Without loss of generality, we can assume that initially,
one oscillator has just fired (i.e. (x1, x2) = (x, 1) with η <
x 6 1) and denote tf (x) > 0 the firing time associated
with this configuration. The dynamics can be described
through the return map R between ordered concentration
pairs just after firings, (x, 1) 7→ R(x, 1) := (1 − tf (x), 1).

The 2-dimensional dynamics of two DF oscillators is
contained in a parameter dependent subset of the unit
square [0, 1]2 (see Fig. 1). For ǫ = 0, firing occurs
when either of the individual concentrations xi = χi

touches the threshold η. A simple computation shows
that R2(x, 1) = (x, 1) for all x, i.e. we have a continuum
of periodic orbits equivalent to the rigid rotation on a
2-dimensional torus (see Fig. 1a).
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FIG. 1: Typical phase trajectories of two coupled DF oscil-
lators. Simple arrows indicate motions between firings when
both concentrations decay with rate 1. Triple arrows denote
firings when the trajectory jumps from critical line χi = η to
xi = 1. (a) ǫ = 0, every trajectory is periodic. (b) ǫ > 0, for
every initial condition except x1 = x2 the system asymp-
totically converges to a unique periodic trajectory passing
through (x∗, 1) where x∗ = 1 − 2(1 − η)/(4 − ǫ) (thick red
line).
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FIG. 2: Typical time series of two coupled DF oscillators for
η = 0.01 and different values of ǫ: (a) ǫ = 0.01; (b) ǫ = 0.05;
(c) ǫ = 0.5

For ǫ > 0, the dynamics changes drastically, as ex-
pected. Instead of a continuum of neutral periodic orbits,

a single stable periodic orbit emerges which attracts all
trajectories, except for the unstable periodic orbit lying
on the diagonal x1 = x2 (see Fig. 1b). These are direct
consequences of Lemmas 2 and 3 below. Furthermore,
it can be shown that a unique and globally stable pe-
riodic orbit exists in arbitrary systems of two coupled
DF oscillators with any monotonous degradation of both
concentrations. Note that this result implies a somewhat
unexpected corollary that two initially distinct oscillators
never synchronize, and always remain distinct. Figure 2
shows typical trajectories of two coupled oscillators for
η = 0.01 and different values of ǫ. As seen from the
Figure, the two oscillators in the asymptotic regime are
always in anti-phase, and, for large ǫ, one oscillator re-
mains repressed (xi = 0) almost the entire time when the
other repressor is present (more precisely, it fires when
the other concentration reaches the small value 2η/ǫ),
and vice versa.

Many coupled DF oscillators. Now we turn to the anal-
ysis of the clustering dynamics of a population of N co-
repressively coupled DF oscillators. Before we proceed
with analytical results, we illustrate the typical behavior
of the system numerically. Figure 3 shows the time se-
ries of 50 oscillators with initially distinct values of x for
η = 0.01 and different values of the coupling parameter ǫ.
For small ǫ = 0.01 (Fig. 3a), all oscillators fire before they
ever reach zero, and so they remain distinct (no cluster-
ing). For larger ǫ = 0.03 (Fig. 3b) some oscillators reach
zero, and some of them (not all) synchronize, and thus
asymptotically, only 8 clusters remain. Note that this
number is not universal, as it depends on specific ini-
tial conditions. For ǫ = 0.05 (Fig. 3c), only two clusters
remain. Their “weights” however are not equal, in this
example one cluster contains 24 oscillators, and another
26 oscillators. Again, this weight distribution is non-
universal. And for very large ǫ = 0.5 (Fig. 3d) oscillators
produce repressor protein in almost exact anti-phase, one
one repressor is present, the other one is absent.
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FIG. 3: Typical time series of 50 coupled DF oscillators and
of their mean value X(t) (thick/blue line) for η = 0.01 and
different values of ǫ: (a) 0.01; (b) 0.03; (c) 0.05; (d) 0.5.

By grouping oscillators with identical value of xi into
one cluster, the population dynamics can be described
via {(nk, xk)}K

k=1 where nk ∈ {1, ..., N} denotes the size
of the cluster k and xk the corresponding repressor con-
centration (K > N is the total number of clusters). In
this viewpoint, the cluster size distribution {nk} obvi-
ously remains unaffected in time unless two clusters k
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and k′ fire together.
As before, we consider the return map between consec-

utive firings. Any ordering in {(nk, xk)} is irrelevant be-
cause of the permutation symmetry in this system. How-
ever, it is more convenient to deal with ordered values of
xk. Thus we assume that 0 < x1 < x2 < · · · < xK−1 <
xK = 1. Given {nk}, this defines the state configuration
set where the return map R ≡ R{nk} is effectively de-
fined, viz. T{nk} = {(x1, ..., xK) : 0 < x1 < · · · < xK = 1

and (1 − ǫ)x1 + ǫ
N

∑K
k=1 nkxk > η

}

. In order to main-

tain the ordering of protein concentrations in time, we
must include cyclic permutations of indices in the return
map dynamics. The absence of clustering requires that,
when starting in T{nk}, the after-firing configuration has
to lie in T{nk+1} (where all indices are understood mod
K) and this should hold for each k = 1, ...,Kper where
Kper is the minimal size distribution period. This prop-
erty globally holds in state configuration sets provided
that the coupling strength is small enough.

Lemma 1 R{nk}T{nk} ⊂ T{nk+1} for all k = 1, ...Kper iff

ǫη 6 min
k=1,...,Kper

N

N − nk − nk+1

where ǫη := ǫ/η (1)

In particular, for ǫη < N/(N − 2) which is the minimal
RHS in (1), no clustering can ever occur, independently
of the initial configuration. Notice that N/(N − 2) > 1
and → 1 as N → ∞. Lemma 1 is rigorously proven
in [15], but it can be intuitively understood as follows.
The only way two clusters can merge is when one clus-
ter reaches zero (collapse) and remains at zero at least
until the following cluster also reaches zero. It is easy to
see that in the worst case scenario two clusters 1 and 2
should be very close to zero when the other K−2 clusters
are very close to 1. In the limit x1,2 → 0, x3, ..., xK → 1,
after x1 has collapsed, χ1 reaches η when the value of x2

is equal to [N − ǫη(N − n1 − n2)]/(Nǫη), and in order
to avoid merging of n1 and n2, this value has to be pos-
itive. Of course, the same condition has to be satisfied
for all consecutive pairs nk, nk+1, hence the minimum in
inequality (1).

Independently of (1), we may ask about the fate of
the trajectories for which clustering occurs. Since the
sequence of merging events is always finite, this actually
would determine every possible asymptotic regime. In
absence of clustering, the return map in T{nk} becomes
R∗

{nk}
(x1, ..., xK) := (x2− tf , ..., xK − tf , 1) where tf still

denotes the firing time. (This map is actually K − 1-
dimensional because (R∗

{nk}
x)K = xK = 1.) Since the

image R∗
{nk}

x belongs to T{nk+1}, one needs to iterate

further until the point returns back to T{nk}; hence the
dynamics to study is the composed map R∗

{nk+Kper−1}
◦

· · · ◦R∗
{nk+1}

◦R∗
{nk}

. It can be shown [15] that this map

is always a pure contraction.

Lemma 2 For every {nk}
K
k=1 and 0 < ǫ 6 1, there is

a norm in R
K−1 for which R∗

{nk+Kper−1}
◦ · · · ◦ R∗

{nk+1}
◦

R∗
{nk}

is a global contraction.

It follows that, in absence of clustering, every trajectory
initially in T{nk} must approach a unique periodic orbit
(whose single element in T{nk} is the fixed point of the
composed map). More generally, every trajectory in a
population of N oscillators must converge to the periodic
orbit associated with some {nk}. Hence, the asymptotic
cluster size distributions and periodic orbits are in one-to-
one correspondence. Accordingly, to get asymptotically
attainable cluster distributions, it suffices to compute the
existence domains of the corresponding periodic orbits.
These domains are given by the following statement.

Lemma 3 The periodic orbit in T{nk} exists iff

ǫη < ζ({nk}) :=
2N2

N2 −
∑

k n2
k

1

1 − mink
nk

N−nk+1

(2)

This claim is proved in [15] where we also give the explicit
expressions for the periodic orbit. Note that when nK =
N−n1 (i.e. K = 2), we have ζ({nk}) = +∞, which means
that every two-cluster periodic orbit exists for any ǫ. In
particular, for n1 = n2 = 1 this observation implies the
result for two coupled oscillators presented above.

For K > 2, the critical value ζ({nk}) is minimal for the
(equi-)distribution where all nk = 1 (in this case K = N)
and the corresponding minimum is ζc = 2N/(N − 2). So
all possible periodic orbits exist for ǫη up to ζc. For
larger ǫη, some periodic orbits disappear - certainly the
one associated with equi-distribution - and the number
of clusters K must eventually be less than N .

A closer look at the formula (2) reveals that when
{nk} is only composed of microscopic clusters, i.e. when
∑

k n2
k = O(N), the corresponding critical value ζ({nk})

approaches 2 in the thermodynamic limit N → ∞.
Therefore, such distributions do not perdure asymptoti-
cally beyond ǫη ≃ 2 when N is large, and at least some
of the clusters size nk reach O(N) in the course of time.
Moreover, distributions that contain macroscopic clus-
ter(s) (i.e. nk ≃ ρkN with ρk > 0 for some k) all have
critical value ζ({nk}) larger than 2 in the thermody-
namic limit. Thus, there is a sharp transition at a cer-
tain ǫc = ζcη → 2η in the system for large N , from a
dynamical regime in which all kinds of cluster size dis-
tributions may exist asymptotically, to a regime where
every asymptotic distribution contains at least one giant
O(N) cluster.

Maximal number of clusters. The transition at ǫη = ζc

can be quantitatively described by estimating the num-
ber of asymptotic clusters as a function of ǫη. Since the
precise number actually depends on the initial condition
and can be as little as 2, the appropriate quantity to
compute is the maximal possible number Kmax. It can
be proven [15] that for any given K > 3 and N > K
(and N 6= 6 if K = 3), the critical value ζ({nk}

K
k=1) in

(2) reaches its maximum for the distribution consisting
of K − 1 unitary clusters of weight nk = 1 and one big
cluster nK = N − K + 1. In this case, we have

ζ({nk}) = ζmax(K) =
2N2(N − 1)

(K − 1)(2N − K)(N − 2)
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FIG. 4: Number of clusters in the asymptotic regime for 1000
coupled oscillators with η = 0.01 and 1000 different random
initial conditions for each ǫ. The solid blue line indicates the
upper bound (3), and the solid red line shows the number
of clusters Ke(ǫ) for the uniform initial distribution. Inset:

the number of clusters as a function of the initial distribution
width δ for ǫ = 0.03

and therefore all distributions with K clusters exist for
0 6 ǫη < ζmax. This immediately yields the maximum
number of clusters at a given N and ǫη:

Kmax(ǫη) = N if ǫη < ζc

= N −

⌊

1

2
+

√

1

4
+ N(N − 1)

(

1 −
ζc

ǫη

)

⌋

(3)

if ζc 6 ǫη < ζmax(3)

= 2 if ǫη > ζmax(3)

This result indicates that a kind of second order phase
transition takes place at ǫη = ζc with Kmax that behaves

like N(1−
√

1 − ζc/ǫη) slightly above the threshold. For-
mula (3) implies that for each 1 6 K 6 Kmax(ǫη), there
exists a non-empty set of initial conditions which pro-
duces a stable periodic trajectory with K clusters. How-
ever, the “typical” number of clusters emerging from an

arbitrary set of initial conditions can be much less than
this upper bound. We performed numerical simulations
of the full model with initial conditions randomly selected
from the [0, 1]N hypercube. Figure 4 shows that the typ-
ical number of clusters for a given ǫ can be well approxi-
mated by the number Ke corresponding to the uniformly
distributed initial condition xi = i/N . However, the
number of asymptotic clusters depends strongly on the
width of the distribution of initial states. We performed
simulations for initial conditions xi equi-distributed be-
tween 1− δ and 1, and found that the number of asymp-
totic clusters strongly increases as the width of the ini-
tial distribution δ gets smaller, and approaches the values
close to the upper bound Kmax (Fig. 4, inset).

In summary, we presented an analytically solvable
model of co-repressive coupling of degrade-and-fire oscil-
lators in a strongly nonlinear regime. At a certain cou-
pling strength this model exhibits a phase transition from
a regime when all cluster distributions including non-
clustered state can be attained to the regime of strong
clustering characterized by the appearance of at least
one giant O(N) cluster. Our model neglected the vari-
ability in parameters of individual oscillators and pos-
sible delays in the coupling. We plan to address these
effects in our future work. The experimental realiza-
tion of coupled gene oscillators [13] incorporated a dif-
ferent (co-excitatory) mechanism of coupling through a
quorum-sensing mechanism. However, we believe that
co-repressive coupling may also be realized experimen-
tally, if for example oscillators produce an enzyme that
degrade a freely diffusing inducer or the quorum sens-
ing molecule activates a repressor protein. Our results
demonstrate that a strong clustering can be expected in
this case, and large out-of-phase clusters are likely to
emerge.
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