
HAL Id: hal-00575934
https://hal.science/hal-00575934v1

Submitted on 28 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Approach applied to Loop Specialization
Lamia Djoudi, Jean-Thomas Acquaviva, Denis Barthou

To cite this version:
Lamia Djoudi, Jean-Thomas Acquaviva, Denis Barthou. Compositional Approach applied to Loop
Specialization. Concurrency and Computation: Practice and Experience, 2009, 21 (1), p71-84.
�10.1002/cpe.1337�. �hal-00575934�

https://hal.science/hal-00575934v1
https://hal.archives-ouvertes.fr

Compositional Approach applied to Loop

Specialization

L.Djoudi, J.-T. Acquaviva, and D. Barthou

Université de Versailles, France
{lamia.djoudi,denis.barthou,jean-thomas.acquaviva}@uvsq.fr

Abstract. An optimizing compiler has a hard time to generate a code
which will perform at top speed for an arbitrary data set size. In general,
the low level optimization process must take into account parameters
such as loop trip count for generating efficient code. The code can be
specialized depending upon data set size ranges, at the expense of code
expansion and decision tree overhead.
We propose for loop structures a new method to specialize code at the
assembly level, cutting drastically the overhead cost with a new folding
approach. Our technique can generate and combine sequentially at the
assembly level several versions, tuned for small, medium and large it-
eration number. We first show on the SPEC benchmarks the need for
specialization on small loops. Then we demonstrate the benefit of our
method on kernels with detailed results.

1 Introduction

An optimizing compiler has a hard time to generate a code which will perform
at top speed for an arbitrary data set size. In general, Schwiegelshohn et al.[1]
have shown there is no one best scheduling function for a loop, for all possible
data sets. Even for regular programs, the best latency is only reached asymp-
totically [2,3], for large iteration counts. Splitting loop index to obtain better
schedules[4], or tiling iteration domains are well known techniques that improve
latency. These transformations are driven according to source code features such
as dependencies or memory reuse. On the other hand, low level optimizations
must take into account parameters such as loop trip count for generating effi-
cient code: for example, short loop trip count would favor full unrolling while
very large loop trip counts will favor deep software pipelining. To some extent,
the code generated has to be specialized depending upon data set size ranges
and then has to use extensive versioning to apply these different specialized ver-
sions. The classical drawback of such an optimization scheme is code expansion
and decision tree overhead. It usually puts a hard limit on the total number of
different specialized versions generated.

We propose, for loop structures, a new method to specialize code at the
assembly level and to drastically cut the overhead cost with a new folding ap-
proach. Taking the assembly code, we are able for instance to generate three
versions tuned for small, medium and large iteration number. We combine all

2 L.Djoudi, J.-T. Acquaviva, and D. Barthou

these versions into a code that switches smoothly from one to the other while
the iteration count increases. Hence, the resulting code achieves the same level
of performance as each version on its specific iteration interval.

We first show on the SPEC benchmarks the need for specialization on small
loops. Then we demonstrate the benefit of our method on kernels optimized with
software pipeline, with experimental results.

1.1 Motivating Example

Loop optimization is a critical part in the compiler optimization chain. A rou-
tinely stated rule is that 90% time of the execution time is spent in 10% part of
the code. Another rule, implicitely used by the community, is that the number
of iterations for loops in scientific code is large. Consequently, loops are often
unrolled, pipelined deeply and data streams aggressively prefetched.

However, optimizations for asymptotic behavior involve a part of risk. For
instance in software pipeline, depth is always increased if it can reduce the Ini-
tiation Interval. This yields to codes which deliver poor performance when the
number of iterations is limited. Figure 1 clearly illustrates the trade-off that the
compiler has to handle on a simple vector loop named Tridia. ICC 8.1, first un-
rolls this loops two times and generates a software pipeline of depth 2. While ICC
9.0 unrolls this loops 8 times, then applies software pipeline. The corresponding
tail code is also software pipelined.

The corresponding performance evaluation is:

– ICC 9.0: 65×N
8

+130 (unrolled 8 times) and 10×(N mod 8)+20 for tail code.

– ICC 8.1: 24 × N
2

+ 48 (unrolled 2 times) and 14 × (N mod 2) for tail code.

As illustrated by figure 1, ICC 9.0 choice is justified for asymptotic performance
but is doubtful when the number of iterations is small.

To evaluate the importance of the short loops we have performed a set of
measurements on the SPEC FP 2000 benchmarks. Using MAQAO tool [5], all
loops are instrumented. Instrumentation is done at the assembly level to pre-
vent distortions in the compiler optimization chain. This instrumentation simply
measures the number of iterations executed per loop and the number of CPU
cycles spent within the loop. At the end, histograms are built according to the
number of iterations of these loops weighted by their execution time. We use
ICC v9.0 with flags reported for SPEC results, including profiling guided opti-
mization, on a 1.6 GHz / 9 MB L3 Itanium 2 system. The only instrumented
loops are counted loops, software pipelined loops, but loops driven by conditional
branches are currently not caught by our tool.

Additionally the numbers provided should be considered knowing that ICC
performs aggressive unrolling (most of the time by a factor of 8), consequently
reducing the number of loops iterations.

Figure 2(a) details measurements made on the number of iterations for loops
of CFP2000 codes using the ref data set. The answer is surprising: 25% of loop

Compositional Approach applied to Loop Specialization 3

DO 1 I=2,N

CP1=1./(CP(I)-CI(I)*CS(I-1))

CS(I)=CS(I)*CP1

CSM(I)=(CSM(I)-CI(I)*CSM(I-1))*CP1

1 CONTINUE

Fig. 1. Tridia code and its performance with ICC version 8.1 and 9.0. Moving
from version 8.1 to 9.0, ICC has changed part of its code generation policy.
None of the two different versions is optimal over the whole possible range of
iterations.

time is spent in loops with less than 8 iterations. A more detailed analysis shows
that 6 over 14 benchmarks form the CFP2000 spend half of their loop time
in loops with less than 16 iterations. Therefore, loop tuning based on infinite
number of iteration is missing real performance opportunities, and compilers
should not over-simplify loop behavior. In order to back the idea that short loops

 0%

 20%

 40%

 60%

 80%

 100%

1,0245122561286432168421

Fr
ac

tio
n

of
 th

e
to

ta
l l

oo
p

tim
e

Number of iterations per loop

(a) SPEC FP overall cumulative loop
distribution

 0%

 20%

 40%

 60%

 80%

 100%
w

up
w

is
e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

C
ov

er
ag

e
Fa

ct
or

 Monitored time / Execution time

(b) SPEC FP overall cumulative loop
distribution

Fig. 2. (a) Percentage of execution time spent in loops with iteration count ≤ x-
label. (b) Fraction of the total execution time spent in loops for each benchmarks
of the SPEC FP 2000 suite. Coverage factor is computed as the number of cycle
spent in instrumented loops over the total number of execution cycles.

are an important problem, Figure 2(b) details the fraction of the execution time
spent in loops benchmarks in SPEC.

4 L.Djoudi, J.-T. Acquaviva, and D. Barthou

2 Compositional Approach

The idea of the approach, given different codes (and schedules) for the same loop,
to combine or compose them into one code that achieves the same performance as
the best code, for any iteration count. The purpose of this method is to assemble
together in a costless and smart way different versions of the same loops. It is
understated that the quality of the resulting composed version will depends on
the quality of the different individual versions available at the origin.

Iterative compilation is an approach that relies on the generation of many
different versions of the same code to find out the best among them. Loops
generated by iterative compilation are therefore good candidates.

2.1 Iterative Compilation Framework

Iterative compilation is decomposed usually into two steps: (i) Generate multiple
optimized versions of the same code. The goal is to generate a small number of
versions that have good performance while covering a wide range of iterations.
(ii) Compare the performance of these different versions (either by a model or
by a dynamic evaluation) and build a program combining them. Most of the
research effort has been on the first step, and for the second one, it usually boils
down to generate a decision tree. This means that for one execution, only one
of the specialized code is executed. In this paper, we focus on this second step
and generalize the previous case by enabling one execution to execute several
specialized codes in sequence. Indeed, optimization may be beneficial only on a
given range of iterations. For each of the following optimizations, we describe its
limitations and the conditions for which it applies

1. peeling; Peeling enables a rescheduling of the first iterations of a loop. It gen-
erates more opportunities for a better resource usage, with a free schedule,
at the expense of code expansion.

2. unrolling; Unrolling a loop body offers the opportunity for better ILP. The
higher the unrolling factor, the higher the impact on performance of the tail
code for small loops.

3. data prefetching; Data prefetching cuts by a large amount the read/write
latency of memory accesses. Tuning the prefetch distance is highly dependent
on the total number of iterations. For small loops, the prefetch distance is too
large for the prefetching to be effective. In this case, removing the prefetches
may free resources for a better ILP, therefore increasing performance.

4. software pipeline; The Initiation Interval (II) is usually the value minimized
by software pipeline algorithms, and represents the amount of time between
two successive start of iterations. This comes at the expense of the latency
required to execute a complete iteration, which is important for small loops.

This shows that there are many opportunities in which it would be interesting
to combine different optimized codes according to the iteration count.

Compositional Approach applied to Loop Specialization 5

2.2 Performance Model

Consider two different optimized versions of the same loop, called L1 and L2.
This can be generalized to any number of versions. We assume that these loops
are inner loops (they do not include other loops). The cycle count of L1 is given
by the formula: c1(i) = α1.i+β1, where α1 is an rational number, β1 an integers
and the cycle count is rounded down. Similarly for L2, c2(i) = α2.i + β2. For
instance, for Figure 1, the cycle count for the loop L1 generated by ICC 8.1
is defined with α1 = 12, β1 = 48 and for the loop L2 generated by ICC 9.0,
α2 = 8.125, and β2 = 130, without the tail code. Tail code is considered for our
purposes as another version of the code, within the range of 7 or 1 iteration (for
the loops unrolled 8 and 2 times respectively).

We consider the case where the two loops are such that: α2 < α1 and β1 < β2,
meaning that L1 is faster than L2 when i < β2−β1

α1−α2

and L2 outperforms L1 for
larger number of iterations. We would like to build a best code such that:

∀n, cbest(n) = min
k

(ck(n)).

This best code is built by an optimization function min: min(L1, L2) = best.
This function min defines a minimum on codes with respect to the performance,
for all iteration values. Due to the difficulty of building the minimum of two
codes without introducing any overhead, we propose to tackle a more pragmatic
problem. We want to build a code min(L1, L2) with a level of performance very
close to the performance of the best of the two codes. The following constraints
are applied to the loop to build:

1. Asymptotic performance (in cycle/iteration, when iteration count grows) is
the same than the best asymptotic performance of L1 and L2.

2. Each loop is possibly called many times, each time with a possible differ-
ent loop trip count. Given a loop count distribution, the average gain in
cycle/iteration compared to the best asymptotic performance of L1 and L2

is positive.
3. When performance of both loops L1 and L2 meet, the loop built moves to

the best code for asymptotic performance.

Note that the second constraint does not compel the new loop to outperform L2

and L1 for each iteration count, but in general, for all the execution of the loop,
some cycles have been gained. The reason is that some overhead may appear
when switching from one version to the other. The best code would have the
following cycle count:

c12(i) =

{

i ≤ B : c1(i)
i > B : c2(i) − c2(B) + c1(B) + γ

where B is the integer β2−β1

α1−α2

and γ represents the overhead necessary when
going from one version to the other. This overhead represents register initial-
izations, branch mispredicts,. . . . The difference in cycles/iteration between the

6 L.Djoudi, J.-T. Acquaviva, and D. Barthou

asymptotic best loop and the new loop min(L1, L2) is, for an iteration count i:

dpi(i) =

{

i ≤ B : (c2(i) − c1(i))/i
i > B : (c2(B) − c1(B) − γ)/i

The difference in cycle/iteration is asymptotically 0, meaning that this new
version is as fast as L2. When the loop iteration count is uniformly distributed
among iterations [1..N], the average difference in cycle/iteration is obtained by:

adpi(N) =

N
∑

i=1

dpi(i)

N
.

This definition can easily be adapted to other distributions. In particular, dis-
tribution of values caught during profiled execution can be used. When adpi(N)
is positive, it means that for a uniform distribution of loop trip counts in [1, N],
the new loop min(L1, L2) is in average faster than the best asymptotic loop L2.
This value is positive when N < B since each difference/iteration is positive for
all iterations i < B. For higher values of N , adpi(N) > 0 if:

γ <
B(α2 − α1)(1 + H(N) − H(B)) + (β2 − β1)H(N)

H(N) − H(B)
, (1)

where H(N) is the harmonic number H(N) =
∑N

k=1

1

k
. As H is a strictly in-

creasing function, when N asymptotically grows, γ must be such that:

γ < c2(B) − c1(B).

This constraint implies that the new loop min(L1, L2) takes less cycles than the
best asymptotic version, for any value of the iteration count. From this constraint
we can deduce the basic steps to build the code min(L1, L2):

1. Compare c(L1) and c(L2), in order to compute B
2. Assuming L1 outperforms L2 for the first B iterations, evaluate the code

in-between necessary for the transition and the overhead β generated.
3. If inequality 1 is satisfied, then build the minimum of the two codes. Other-

wise the overhead is too significant w.r.t. the total execution time.

For the example in Figure 1, B = 21, inequality (1) entails that for N > 293, γ
can no longer be strictly positive. For N = 200, γ can be up to 15 cycles.

2.3 Scopes and Limits

As with all other versioning schemes, our approach improves performance at the
expense of code size. If the number of iteration remains constant or at least in a
single range the extra code size and some instruction overhead will penalize the
execution time. However if we considere the SPEC benchmark as representive
of the average code complexity it be can safely stated that iteration range is
varying a lot and that specialization on iteration number will mostly inscreases
performance.

Compositional Approach applied to Loop Specialization 7

3 Assembly to Assembly Transformation

We first present an assembly code dependence analysis then describe two partic-
ular transformations, loop peeling and transformation of prefetching, as well as
their composition. These two steps are for an Itanium architecture, but we be-
lieve this can be generalized to other platforms. Such post-compiler optimization
is already a hot topic of research [6,7,8].

3.1 Code Flattening and Dependence Graph

In order to preserve code semantics, the validity of the transformations applied
is checked by computing a data dependence graph (DDG) on the assembly codes.
Dependencies considered can be either intra-iteration or inter-iteration and de-
pendence analysis is required by the peeling and jam transformations described
in the following section.

In the case of pipelined loops on Itanium, dependence analysis is more com-
plex and loop flattening is a preliminary transformation. IA64 Hardware support
for software pipelining includes a rotating register bank and predicate regis-
ters [9]. Loop flattening is a transformation that removes the effect of software
pipeline: it renames carefully registers according to their rotating status or not,
and predicates are used to retrieve the iteration number when the instruction
becomes valid.

A data dependence graph is then built between the different instructions
in the loop. Register dependences are built by reaching definition analysis. For
memory accesses, the alias analysis performed relies on two techniques: We apply
a conservative approach, based on the schedule generated by the compiler. The
base rule is that all memory accesses are interdependent (read or write with
write). If the compiler schedules two instructions within less cycles than the
minimum latency of the first instruction (the one being the possible dependency
anchor) then we assume that the compiler did this schedule on purpose and
therefore that the two instructions are independent. For instance, if a load ld

f32,[r31] is scheduled 3 cycles before a store st [r33],f40 and the minimum
latency of a load is 6 cycles, then both statements are independent.

We also resort to a partial symbolic computation of addresses, using induction
variable analysis on address registers. The value of address registers can often be
computed with respect to some initial parametric values coming from registers
defined outside of the loop (parameters of a function for instance). In this case,
our de-ambiguation policy depends on the original compilation flags (either with
or without no-alias flag). More independent statements can be found that way.

3.2 Peeling and Prefetching Transformations

We show the composition approach using loop peeling and prefetching.
Peeling is the process of ’taking off’ a number of iterations from a loop body,

and consequently explicitly express them at the beginning or end of the loop.
This is often done in order to match two different bounds of two subsequent

8 L.Djoudi, J.-T. Acquaviva, and D. Barthou

loops. Generally, the positive effect of this technique is better understood if ex-
plained in conjunction with loop fusion. In our approach, the peeling has also a
positive effect if explained in conjunction with software pipelining. Compared to
warming up stages of software pipelined loop, an interleaving scheme does not
increase latency but increases the number of iterations simultaneously in-flight.
This does not yield to excessive register pressure. In fact, the global register
pressure depends on the number of iterations simultaneously alive. Our peeling
techniques is careful enough to keep this number below the software pipelined
loop asymptotic behavior. The initial schedule of peeled iterations is the schedule
obtained after a possible flattening. Then iterations are jammed (or interleaved)
with a list scheduling algorithm with priority to the first iterations. The state-
ments of the first iteration peeled are scheduled first and have higher priority
over the statements of the second iteration. Indeed, this schedule improves over
the initial schedule, w.r.t. the difference in cycle per iteration, as presented in
Section 2.2. If the initial (flatten) loop has a cycle count function of the form
α.i+β, a jammed version of the peeled iterations takes cpeeled(i) = α′.i+β cycles
with α′ ≤ α where α′ is a rational number. The list scheduling algorithm ensures
that the longest dependence chain in one iteration is not increased, the latency
α′ is lower or equal to α. Finally, a mechanism is needed to ensure program
correctness if the number of total iterations is smaller than the number of peeled
iterations. One calculated branch is used for a late entry into the peeled code,
and predicate registers guard interleaved instructions. The branch uses a branch
register to store the address to jump in. Setting a value to a branch register is
a 6 cycle long operation. If the execution time of interleaved iterations exceeds
6 cycles we use this kind of register to minimize the overall latency. Moreover,
instructions guarded by predicates prevent from executing interleaved instruc-
tions that do not belong to the desired peeled iterations. log

2
(N) comparisons,

and log
2
(N)/6 cycles are necessary to set the predicate registers of N peeled

iterations. The overhead is limited to a couple of cycles.
For prefetching, the prefetch distance is estimated from the symbolic com-

putation performed before and from the increment of the address registers, we
assess the number n of first loop iterations that do not take advantage of the
prefetch. The loop is then split into a sequence of two similar loops. The first
loop has no prefetches (they are replaced by nops) and has n iterations. The
second loop is the initial loop, performing the remaining iterations.

4 Related Work

Specialization is a well known technique to obtain high performance programs.
Compiled time specialization often boils down to the generation of codes that are
in mutually exclusive execution paths. Splitting iteration space in order to apply
different optimizations for each fragment has been proposed by Griebl et al.[4]:
their goal is to partition the iteration space according to the dependence pattern
for each statement. This increases control but increases the number of affine
schedules that can be computed for each code. Tiling is another transformation

Compositional Approach applied to Loop Specialization 9

that changes the iteration domain for better scheduling. However, very few works
resort to loop versioning in order to explicitly reduce the overall latency of the
loop. This is due to the intractability of general performance models (finding
best latency affine schedules is still a difficult problem). That is one reason
why asymptotic loop counts are generally considered for optimization. In this
paper, we do not consider memory models (or cache model) and assume that
the compiler or a tool evaluates accurately the performance of inner loops. This
is easier on assembly than on source code.

Software pipelining[10] is a key optimization for VLIW and EPIC architec-
tures. In particular, modulo scheduling, as used by the ICC compiler, exhibits
instruction parallelism, even in the presence of data dependencies, that greatly
improves performance. Modulo scheduling targets large iteration counts and tries
to find an initiation interval (II) as small as possible, defining the throughput
of the loop. However, when the iteration count is small, this may increase the
loop latency (in particular when the II is essentially constrained by resources).
Loop peeling is a well known technique for improving the behavior of the code for
small iteration count. As it comes at the expense of code size, compiler heuristics
usually prefer to not use it. With our approach, it is possible to decide, accord-
ing to the awaited iteration count distribution, whether peeling is worth or not.
Moreover, our technique would take advantage of profile information since the
distribution is then more accurate.

Prefetch works by bringing in data from memory well before it is needed
by a memory operation. This hides the cache miss latencies for data accesses
and thus improves performance. Typically, when a cache line is brought in from
memory, it contains several elements of an array that is accessed in the loop. This
means that a new cache line is needed for this array access only once in several
iterations. This depends on several factors such as the stride of the array access
pattern, the cache line size, etc. In fact, if redundant prefetch instructions are
issued every iteration, it may degrade performance. Prefetch instructions require
extra issue slots and thereby increase the cycle per iteration ratio. Redundant
prefetches can overload the memory subsystem and thereby adversely affect the
performance, and prefetch too much in advance can also result in cache pollu-
tion and performance degradation [11]. Prefetches are interesting only when the
iteration trip count is large enough to make data access at the prefetch distance.
This implies that for medium iteration numbers, prefetch instructions can be
removed.

5 Experiments

We consider three benchmarks: a DAXPY loop (Y [i] = α × X [i] + Y [i]) and two
benchmarks from the CFP2000: GALGEL and MGRID. The DAXPY illustrates the
combination of both unrolling and prefetch specialization.
DAXPY: Prefetch instructions must be generated for both X and Y arrays. It
appears, that using prefetch degrades the initiation interval of the software
pipelined loop due to extra pressure on memory slot.

10 L.Djoudi, J.-T. Acquaviva, and D. Barthou

Based on our performance model, there are three versions of the initial code:

– First zone: peeling, each block of 8 iterations costs 30 + N mod 9. Peeling
degree is set to 8 since is corresponds to the minimal latency in the DDG (4
cycles) which is just enough to schedule 8 floating point instructions.

– Second zone: disable prefetch, the formula is in 1 × N + α1

– Third zone: enable prefetch, formula: 2 × N + α

From the prefetch version, we know that the prefetch distance is set to 800B.
Therefore, considering that every iteration is consuming 8 Bytes, it means that
the loop needs to iterate at least 100 times before accessing the first prefetched
data. So for this 100 first elements, it can used a loop without prefetch instruc-
tions. Performance results are detailed in Figure 3.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

’swp_nounroll_pref/result_swp_nounroll_pref.dat’
’daxpy_compl/result_daxpy_compl.dat’

’swp_nounroll_nopref/result_swp_nounroll_nopref.dat’

(a) Short iteration count for composed
versions

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 150 200 250 300 350 400 450 500

’swp_nounroll_pref/result_swp_nounroll_pref.dat’
’daxpy_compl/result_daxpy_compl.dat’

’swp_nounroll_nopref/result_swp_nounroll_nopref.dat’

(b) Asymptotic behavior for composed
versions

Fig. 3. (a) is a close-up of the relative performance between composed versioning,
prefetch and no prefetch. For the first 8 iterations, composed versioning (referred
as DAXPY composed peeling/no prefetch on the graph) outperforms all the other
versions. However for the 9th iteration, composed versioning suffers from the
overhead of filling up pipeline, while they are already filled-up for both other
versions. This is consistent with our policy: overheads should be postponed as
far as possible. Therefore even if these overheads still account for the same
number of cycles their relative cost is smaller. Notice, that clearly composed
versioning follows the same behavior than no prefetch version. In this example
we chose to stick with no pretech up to 128 iterations. (b) details the behavior
for large number of iterations. Composed versioning sticks with the no prefetch
slope outperforming the prefetch version up to a hundred iterations. Beyond, it
sticks to the original version, for the best asymptotic performance.

GALGEL, loop b1 20: The loop b1 20 is a pipelined loop, and is one of the
many versions generated by the compiler for one source loop. The loop has 8

1 The Itanium architecture can not sustain one branch per cycle without inserting a
stall cycles, the real formula is 1.7 × N + α

Compositional Approach applied to Loop Specialization 11

iterations in the train input data set, 11 in the ref input data set. For this
loop, we performed a peeling of one iteration. Table 4-(a) sums up the results of
the peeling transformation.

Iteration Cycles Performance Model Gain
count Orig. Peeling Orig. Peeling

8 37760118 33984118 16xN+32 16xN+28 2.5 %

11 373744918 344995318 16xN+32 16xN+28 1.92 %

Fig. 4. Peeling one iteration out of loop b1 20, for each iteration count are given: the
cycle count of the original loop and of the peeled loop (excluding peeled iteration), the
cycle count according to a static performance model, and the performance gain of the
peeling in % w.r.t. the original version.

MGRID, loop b7 81: The loop b7 81 in the assembly code is memory access in-
tensive, since it performs in two cycles two load-pairs (equivalent to four loads)
and four stores. The loop uses one prefetch instruction and is pipelined. Peeling
the loop does not bring significant performance gain, according to the perfor-
mance model. Indeed each peeled iteration takes 2 cycles and interleaving peeled
iterations does not reduce this latency. Therefore, as soon as the loop trip count
exceeds the number of iterations peeled off the loop, the cycle count of the op-
timized loop should be similar to the cycle count of original loop.

As for prefetching, we split the loop into a sequence of two similar loops,
the first without any prefetch instruction. The histogram of loop trip counts,
provided by MAQAO [5] and presented in Figure 4-(b) shows that the loop trip
counts are small enough to make prefetch useless.

Indeed, by removing prefetches in this single loop, the performance gain
obtained for the whole benchmark is 25%. This illustrates a case where prefetches
are counter-performant and trashes the data cache.

6 Conclusion

The stem of our work is the diagnosis that in scientific computing a consequent
fraction of execution time is spent in loops with a small number of iterations.
However, even modern compilers seem to bet everything on asymptotic perfor-
mance. Clearly there are performance opportunities for non-asymptotic behav-
iors and optimization must be adapted to the size of data, and for loop, to the
iteration range.

Therefore, we come out with a novel method to version codes. This compo-
sitional versioning limits the overhead, reduces costly decision tree height and
exploits and executes as much as possible of the generated code. This new tech-
nique is based on loop versioning, according to the iteration count distribution.
This is a generalization of simple asymptotic evaluations. Given a loop count
distribution, either coming from static analysis of the code, provided by the user

12 L.Djoudi, J.-T. Acquaviva, and D. Barthou

through pragmas, or observed by profiling, we propose a smart loop versioning
scheme. In particular, we split index sets so that each iteration range can be
optimized more aggressively. The proposed optimizations are, for short range:
peeling and for medium range: turning prefetching off, in addition to any ver-
sions proposed by the compiler. The first results on SPEC benchmarks show up
to 25% speed up for one benchmark.

From an implementation point of view, our work is still in progress and while
we are currently able to handle limited pieces of code and vector loops, we are
now building the infrastructure to address the whole SPEC benchmark. One of
the main issue to address is the switching overhead. In order to reduce it, we
are investigating a way to peel off not only complete iteration but also software
pipeline prologue and epilogue. Where the goal is to reschedule and interleave all
these instructions allowing to switch directly from one version to a fully loaded
pipeline.

References

1. Schwiegelshohn, U., Gasperoni, F., Ebcioglu, K.: On Optimal Parallelization of
Arbitrary Loops. Journal of Parallel and Distributed Computing 11 (1991) 130–
134

2. Darte, A., Robert, Y.: Affine-by-statement scheduling of uniform and affine loop
nests over parametric domains. Journal of Parallel and Distributed Computing
29(1) (1995) 43–59

3. Rau, B.R.: Iterative modulo scheduling: an algorithm for software pipelining loops.
In: Int. Symp. on Microarchitecture, San Jose, California, United States, ACM
Press (1994) 63–74

4. Griebl, M., Feautrier, P., Lengauer, C.: Index set splitting. Int. Journal of Parallel
Programming 28(6) (2000) 607–631

5. Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J.T., Jalby, W.:
Exploring application performance: a new tool for a static / dynamic approach.
In: LACSI Los Alamos Computer Science Institute Symposium. (2005)

6. Cooper, K., Dasgupta, A., Kennedy, K.: Vizer: A system to vectorize intel x86 bi-
naries. In: LACSI Los Alamos Computer Science Institute Symposium. (December
2002)

7. Merten, M., Thiems, M.: An overview of the IMPACT x86 binary reoptimization
framework. Technical report (July 1998)

8. Larus, J., Schnarr, E.: EEL: Machine-independent executable editing. In: Int.
Conf. on Programming Language Design and Implementation. (1995) 291–300

9. McNairy, C., Soltis, D.: Itanium 2 processor microarchitecture. IEEE Micro 23(2)
(2003) 44–55

10. Allan, V.H., Jones, R.B., Lee, R.M., Allan, S.J.: Software pipelining. ACM Com-
puting Surveys 27(3) (1995) 367–432

11. Doshi, G., Krishnaiyer, R., Muthukumar, K.: Optimizing software data prefetches
with rotating registers. In: Int. Conf. on Parallel Architectures and Compila-
tion Techniques, Barcelona, Catalunya, Spain, IEEE Computer Society Press (sept
2001)

