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Abstract

The harmonic model sampled on a P -dimensional grid contaminated by an additive

white Gaussian noise has attracted considerable attention with a variety of applica-

tions. This model has a natural interpretation in a P -order tensorial framework and

an important question is to evaluate the theoretical lowest variance on the model

parameter (angular-frequency, real amplitude and initial phase) estimation. A stan-

dard Mathematical tool to tackle this question is the Cramér-Rao Bound (CRB)

which is a lower bound on the variance of an unbiased estimator, based on Fisher

information. So, the aim of this work is to derive and analyze closed-form expres-

sions of the deterministic asymptotic CRB associated with the M -order harmonic

model of dimension P with P > 1. In particular, we analyze this bound with respect

to the variation of parameter P .

Key words: Parameter estimation, multidimensional signal processing, harmonic

model, Cramér-Rao Bound.
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1 Introduction

The one-dimensional harmonic model is very useful in many fields such as in

signal processing, audio compression, digital communications, biomedical sig-

nal processing, electromagnetic analysis and others. A generalization of this

model to P > 1 dimensions can be encountered in several domains such as in

MIMO channel modeling from channel sounder measurements (3; 5), wireless

communications (4), passive localization and radar processing, etc. In partic-

ular, we can find in (2) a tensorial-based ESPRIT algorithm adapted to the

multidimensional harmonic model. In addition, we can find in (6; 7) an anal-

ysis of the identification problem associated with this model.

For many practical estimation problems, optimal estimators such as the max-

imum likelihood estimator (ML), the maximum a posteriori estimator (MAP)

or the minimum mean squared error estimator (MMSE) are infeasible. There-

fore, one often needs to resort to suboptimal techniques such as expectation

maximization, gradient-based algorithms, Markov chain Monte Carlo meth-

ods, particle filters, or combinations of those methods. These techniques are

usually evaluated by computing the Mean Square Error (MSE) through ex-

tensive Monte-Carlo simulations and compare it to theoretical performance

bounds.

In signal processing, a popular lower bound is the deterministic Cramér-Rao

Bound (CRB) (9). In spite of the fact that this bound is optimistic for low and

moderate Signal to Noise Ratio (SNR) (1), the predominance of this bound

can be probably explained by its relative simple algebraic derivation in com-

parison to other lower bounds.

More precisely, in this work, we propose closed-form (nonmatrix) expressions
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of the deterministic CRB for the M-order harmonic model (sum of M wave-

forms) of dimension P , viewed as a N1 × . . . × NP tensor, contaminated by

an additive white Gaussian noise. This work is an extension of the seminal

work of Stoica and Nehorai (9) for the one-dimensional (P = 1) harmonic

model. Obviously, many works have been done on the determination of the

deterministic CRB for small P , ie., for P = 2 (two-dimensional harmonic

model) (10; 11) or for P = 3 and P = 4 in the context of sensor array (13).

Other contributions provide matrix-based expressions of the CRB for any P

(14), but at our best knowledge, we cannot find closed-form expressions of

the deterministic CRB for any dimension P . Closed-form expressions (8) are

important for at least two reasons: (i) they provide useful insight into the be-

havior of the bound and (ii) for large analysis duration (Np ≫ 1, ∀p ∈ [1 : P ])

and/or dimension P , computing the CRB in a brute force manner becomes

an impracticable task. 1 .

This article is organized as follow. Section II presents the multidimensional

harmonic model and the associated CanDecomp/Parafac decomposition. Sec-

tion III introduces and analyzes a closed-form expressions of the deterministic

CRB for asymptotic analysis duration. Section IV presents the analysis of the

ACRB for a constant amount of data. Next, section V is dedicated to the

conclusion. The derivation of the asymptotic CRB is given in appendix A and

we present in appendix B, the exact (non-asymptotic) CRB for a first order

harmonic model of dimension P .

1 The computation of the CRB for the considered model is of O(N1N2 . . . NP ) !
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2 CanDecomp/Parafac decomposition of the multidimensional har-

monic model

The multidimensional harmonic model assumes that the observation can be

modeled as the superposition of M undamped exponentials sampled on a P -

dimensional grid. More specifically, we define a noisy M-order harmonic model

of dimension P according to

[Y ]n1...nP
= [X ]n1...nP

+ σ[E ]n1...nP
(1)

where [Y ]n1...nP
denotes the (n1, . . . , nP )-th entry of the (N1× . . .×NP ) tensor

(multiway array) Y associated with the noisy M-order harmonic model of

dimension P . Let Np > 1 be the analysis duration along the p-th dimension

and define np ∈ [0 : Np − 1]. Tensor X in model 1 is the (N1 × . . . × NP )

tensor associated with the noise-free M-order harmonic model of dimension

P defined by

[X ]n1...nP
=

M∑

m=1

αm

P∏

p=1

eiω
(p)
m np (2)

in which the m-th complex amplitude is denoted by αm = ameiφm where am >

0 is the m-th real amplitude, φm is the m-th initial phase and ω(p)
m is the m-th

angular-frequency along the p-th dimension. Let d(ω(p)
m ) = [1 eiω

(p)
m . . . eiω

(p)
m (Np−1)]T

be the Vandermonde vector containing the angular-frequency parameters. As

[d(ω(1)
m ) ◦ d(ω(2)

m ) ◦ . . . ◦ d(ω(P )
m )

︸ ︷︷ ︸

Dm

]n1...nP
=

P∏

p=1

eiω
(p)
m np , (3)

in definition 2 and in which ◦ denotes the outer product, it is straightforward

to see that the tensor, X , associated with the noise-free M-order harmonic

model of dimension P can be expressed as the linear combining of M rank-1

tensors: D1, . . . ,DM , each of size N1 × . . . × NP , according to

4



X =
M∑

m=1

αmDm ∈ C
N1×...×NP . (4)

Consequently, the noise-free M-order harmonic model of dimension P follows

a CanDecomp/Parafac model (15; 6; 7) and its vectorized expression is

x = vec(X ) (5)

=




[X ]000 . . . [X ]N1−1 N2−1 0 [X ]001 . . . . . . [X ]N1−1 N2−1 N3−2 [X ]00 N3−1 . . .





T

=
M∑

m=1

αmvec(Dm)

where

vec(Dm) = d(ω(1)
m ) ⊗ d(ω(2)

m ) ⊗ . . . ⊗ d(ω(P )
m ) (6)

in which ⊗ denotes the Kronecker product. Tensor σE in model 1 is the noise

tensor where σ is a positive real scalar and each entry [E ]n1...nP
follows a

Gaussian distribution N (0, 1). In addition, we assume the decorrelation of (i)

the noise-free signal and the noise and (ii) the noise in each dimension, ie.,

E{[X ]n1...nP
[E ]∗n′

1...n′

P
}= 0, (7)

E{[E ]n1...nP
[E ]∗n′

1...n′

P
}=

P∏

p=1

δnpn′

p
, (8)

where E{.} is the mathematical expectation and δij is the Kronecker delta.

So, based on expressions 5, 7 and 8, the final expression of the vectorized noisy

model is

y = vec(Y) = x + σe (9)

where e = vec(E) ∼ N (0, IN1...NP
).
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3 CRB for the multidimensional harmonic model

The noisy observation y in expression 9 follows a Gaussian distribution, ie.,

y ∼ N (x, σ2IN1...NP
) and is a function of the real parameter vector θ given by

θ = [θ′
T

σ2]T

in which

θ′ = [ωT aT φT ]T

where

a = [a1 . . . aM ]T , (10)

φ= [φ1 . . . φM ]T , (11)

ω = [ω(1)T . . . ω(P )T ]T with ω(p) = [ω
(p)
1 . . . ω

(p)
M ]T . (12)

3.1 Deterministic CRB

3.1.1 Covariance inequality principle

A fundamental result (16; 17) is the following. Let Γ = E
{

(θ̂ − θ)(θ̂ − θ)T
}

be the covariance matrix of an unbiased estimate of θ, denoted by θ̂ and

define the Cramér-Rao Bound (CRB) associated with the M-order harmonic

model of dimension P , denoted by CRB(P ). The covariance inequality principle

states that under quite general/weak conditions, Γ − CRB(P )(θ) is a positive

semidefinite matrix or equivalently in terms of the MSE, we have

MSE([θ̂]i) = E
{(

[θ̂]i − [θ]i
)2
}

≥ CRB(P )([θ]i). (13)

In words, the variance of any unbiased estimate is always bounded below by
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the CRB. In addition, if the MSE for a given unbiased estimator is equal to

the CRB, we say that the considered estimator is statistically efficient.

More specifically, the CRB wrt. the signal parameters is given by

CRB(P )([θ
′]i) =

σ2

2

[

F−1
θ′θ′

]

ii
, for i ∈ [1 : (P + 2)M ] (14)

where

Fθ′θ′ =

















Jωω Jωa Jωφ

JT
ωa Jaa Jaφ

JT
ωφ JT

aφ Jφφ

















(15)

is the Fisher Information Matrix (FIM) wrt. the signal parameter θ′. In addi-

tion, in 15, we have defined each block of the FIM by

Jpq = ℜ







(

∂x

∂p

)H
∂x

∂q






(16)

with ℜ{.} being the real part of a complex number and x is the noise-free M-

order harmonic model of dimension P introduced in expression 5. Note that

to obtain 14, we have exploited the property that the signal and the nuisance

(noise) parameters are decoupled. So, the CRB for the i-th signal parameter,

denoted by [θ′]i, is given by the (i, i)-th term of the FIM inverse weighed by

σ2/2.
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3.1.2 Deterministic asymptotic CRB for the M-order harmonic model of di-

mension P

In the sequel, we consider large analysis duration (Np ≫ 1, ∀p) where ana-

lytic inversion of the FIM is feasible and thus closed-form expressions of the

deterministic CRB(P ) can be obtained.

Theorem 1 The deterministic Asymptotic CRB(P ) (ACRB(P )) for the M-

order harmonic model of dimension P defined in 1 wrt. the model parameter

θ′, ie., ACRB(P )(θ
′), is given by

ACRB(P )(ω
(p)
m ) =

6

N2
p

(
∏P

p=1 Np

)

SNRm

, (17)

ACRB(P )(am) =
a2

m

2
(
∏P

p=1 Np

)

SNRm

, (18)

ACRB(P )(φm) =
3P + 1

2
(
∏P

p=1 Np

)

SNRm

(19)

where SNRm = a2
m/σ2 is the local SNR.

Proof: see Appendix A.

The deterministic ACRB(P ) is fully characterized by the tensor size, (and

thus dimension P ), and the local SNR. In the sequel, we list some important

properties of the ACRB.

P1. The deterministic ACRB(P ) is invariant to the specific value of the initial

phase.

P2. The deterministic ACRB(P ) is invariant to the specific value of the angular-

frequency.

P3. According to expression 17, the ACRB for the p-th angular-frequency de-
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pends of the cube of the corresponding dimension, Np, and is only linear in

the other ones.

P4. As expected at an intuitive level, the ACRB for the real amplitude and for

the initial phase are invariant to the specific dimension p.

3.2 Convergence with respect to (wrt.) dimension P

In this part, the ACRB(P+1) is associated with the tensor of size N1 × . . . ×

NP × NP+1, ie., the first P dimensions, ie., N1, . . . , NP , remains identical as

for the tensor associated with the ACRB(P ) and the last one, ie., the (P + 1)-

th, is added. In addition, it makes sense to consider the ACRB for the same

waveform m and dimension p. In this case, we study the behavior of the

ACRB(P ) wrt. dimension P .

Theorem 2 The ACRB(P ) is a strictly monotonically decreasing sequence

wrt. dimension P , ie., ACRB(P )([θ
′]i) < ACRB(P−1)([θ

′]i) < . . . < ACRB(1)([θ
′]i).

Proof: Using 17, 18 and 19, the quotient of two consecutive ACRB is given by

ACRB(P+1)(ω
(p)
m )

ACRB(P )(ω
(p)
m )

=
ACRB(P+1)(am)

ACRB(P )(am)
=

1

NP+1

, (20)

ACRB(P+1)(φm)

ACRB(P )(φm)
=
(

3P + 4

3P + 1

)
1

NP+1

. (21)

As NP+1 in expressions 20 and 21 is large, meaning 1
NP+1

≪ 1, and as 1 <

3P+4
3P+1

< 2 in 21, we have ACRB(P+1)([θ
′]m) < ACRB(P )([θ

′]m). Consequently,

the ACRB(P ) is a strictly monotonically decreasing sequence wrt. dimension

P .

We can say:
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• Increasing the dimension of the harmonic model decreases the ACRB(P ).

We explain that, at an intuitive level, according to the following argumen-

tation. When dimension P increases, ie., P → P + 1, we have to estimate

more parameters so the degree of freedom decreases but in the same time

the ACRB(P+1) beneficiates from NP+1 additional samples. This two fact

together explains why the ACRB(P ) is decreased by a factor 1/NP+1.

• We have

ACRB(P )(ω
(p)
m )=

1
∏P

p=2 NP

ACRB(1)(ωm) (22)

ACRB(P )(am)=
1

∏P
p=2 NP

ACRB(1)(am) (23)

ACRB(P )(φm)=
3P + 1

4
∏P

p=2 NP

ACRB(1)(φm) (24)

where ACRB(1) is the bound derived by Stoica and Nehorai (9) for P = 1.

3.2.1 The cubic tensor case

A cubic or balanced tensor is a tensor with identical sizes, ie., Np = N, ∀p.

According to the previous theorem the ACRB(P ) are

ACRB(P )(ω
(p)
m ) =

6

NP+2SNRm

=
1

NP−1
ACRB(1)(ωm), (25)

ACRB(P )(am) =
a2

m

2NP SNRm

=
1

NP−1
ACRB(1)(am), (26)

ACRB(P )(φm) =
3P + 1

2NP SNRm

=
3P + 1

4NP−1
ACRB(1)(φm). (27)

For cubic tensors, we can say:

• The ”magnitude of order” of the ACRB(P ) for the real amplitude and the

initial phase is O(N−P ) and O(N−P+2) for the angular-frequency.

• The rate of convergence (18), ie., the ”speed” at which the ACRB(P ) ap-
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proaches its limit, for the angular-frequency and for the real amplitude is

geometric. For the initial phase parameter, the convergence is also geometric

for large dimension P .

3.3 Illustration of the ACRB

In this part, we choose to illustrate the derived bounds for small and large

cubic tensors of size N = 3 and N = 1000, respectively. The dimension of

the multidimensional harmonic model is P = 3 and its ”vectorized” form is

x = 2ei π
3 (d(1) ⊗ d(0.5) ⊗ d(0.2)). We illustrate on Fig. 1, the behavior of the

derived bounds wrt the Signal to Noise Ration (SNR) in linear scale in range

[1, 40]. More precisely, we have reported:

• The numerical CRB which is the bound based on brute force computation

of expression 14. Its complexity is O(N3).

• The Asymptotic CRB defined in expressions 17 to 19.

• The Exact CRB defined in expressions 45 to 47 for a first-order multidi-

mensional harmonic model of dimension three.

As expected for very short duration, the ACRB is not accurate for the angular

frequency and in particular for the real amplitude parameter. In addition, we

can observe that the exact CRB and the numerical CRB are merged. On Fig.

2, we have drawn the ACRB(P ) for P in range [1 : 5] and for long analysis

duration (N = 1000). Note that the complexity is very high (O(109)) then the

numerical CRB or matrix-based derivation of this bound are impracticable.

As we can see increasing the dimension P decreases the ACRB.
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4 Asymptotic CRB for a constant amount of data

In given contexts/applications, we have a constant amount of data, D for

every dimensions, P . In this section, we investigate the derived bound which

integrates this constraint. Let N (P )
p be the number of samples in the p-th

dimension among P . So, we have:

P∏

p=1

N (P )
p = D. (28)

Constraint 28 implies that we have no assurance that the ACRB(P ) exists for

fixed N and P . In other terms, it is not always possible to find integers, N (P )
p ,

which satisfy constraint 28 for all P and N . For instance, assume that D = 9,

the ACRB(3) does not exist since the integer 9 cannot be decomposed into the

product of three integers strictly greater than one. But, if the ACRB exists,

then its expression is

ACRB(P )(ω
(p)
m ) =

6

N
(P )
p

2
DSNRm

, (29)

ACRB(P )(am) =
a2

m

2DSNRm

, (30)

ACRB(P )(φm) =
3P + 1

2DSNRm

. (31)

The main difference to the ACRB without constraint 28 is that the depen-

dance wrt. dimension P is only though the square of term N (P )
p for the angular-

frequency parameter and term 3P +1 for the initial phase. Remark the impor-

tant point that the ACRB for the real amplitude parameter becomes invariant

to parameter P .
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4.1 Real amplitude and Initial phase

The ACRB(P ) for the real amplitude is constant wrt. dimension P and is equal

to the ACRB(1), ie.,

ACRB(P )(am) = ACRB(P−1)(am) = . . . = ACRB(1)(am). (32)

So, the accuracy for real amplitude is not affected by considering multidimen-

sional harmonic model. Contrary to the real amplitude parameters, the rate

for the initial phase is not constant (wrt. P ) and is given by

ACRB(P+1)(φm)

ACRB(P )(φm)
=

P + 4
3

P + 1
3

= λ(P ).

As the rate is higher than one, the ACRB(P )(φm) strictly monotonically in-

creases with P and we have

ACRB(P )(φm) > ACRB(P−1)(φm) > . . . > ACRB(1)(φm). (33)

As rate λ(P ) is a strictly monotonically decreasing sequence in the following

interval:

λ(1) =
7

4
≤ λ(P ) < 1 = lim

P→∞
λ(P ), (34)

the increasing of the bound remains relatively low for small and moderate

P and becomes almost constant for large P . In conclusion, the estimation

accuracy of this parameter is degraded but not seriously.

13



4.2 Angular-frequency parameter

For the p-th angular-frequency parameter, the number of samples into the p-th

dimension, N (P )
p , plays an important role since the quotient of two consecutive

ACRB is given by

ACRB(P+1)(ω
(p)
m )

ACRB(P )(ω
(p)
m )

=

(

N (P )
p

N
(P+1)
p

)2

for p ∈ [1 : P ]. (35)

• For cubic tensors, we have N (P ) > N (P+1) and thus the ACRB is a mono-

tonically increasing sequence.

• For unbalanced tensors, the ACRB can be locally, ie., for a given dimension

p, a constant, a strictly monotonically increasing or decreasing sequences,

depending on the specific distribution of the tensor sizes. But, if the accuracy

is improved in a given dimension, this means that the accuracy decreases in

an other one.

4.3 Illustration of the ACRB for constant amount of data

Consider a total amount of data equals to D = 1.2 1010. For instance, there

exits tensors of sizes:

Dim. 1 1.2 1010

Dim. 2 (4 107) × (3 102)

Dim. 3 105 × (4 102) × (3 102)

Dim. 4 (2.5 102) × (4 102) × (3 102) × (1.5 102)
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Obviously, other distributions of parameter N (P )
p are possible. On Fig. 3, we

have illustrated the ACRB for a first order harmonic model of dimension 3

under constraint 28. These figures confirm the conclusions of section 3.4. In

particular,

• On Fig. 3-a, we can see that for increasing parameter P , the bound increases.

But locally, we can have other behaviors as we can see on Fig. 3-b since for

parameter ω(2), the ACRB for dimension three and four are lower than the

one in dimension two.

• On Fig. 3-c, we can check that the ACRB for the real amplitude is invariant

to parameter P . As expected in section 3.4.1.

• Finally, Fig 3-d indicates that the ACRB for the initial phase increases with

parameter P .

So, constraint 28 modifies drastically the behavior of the ACRB.

5 Conclusion

This paper deals with the asymptotic estimation performance on the model

parameters (angular-frequency, initial phase and real amplitude) for a M-

order multidimensional harmonic model of dimension P . We have shown that

increasing the dimension of the harmonic model decreases the asymptotic

CRB and thus improves the minimal theoretical variance of the estimation

of the model parameters. For P -order cubic tensors of size N × . . . × N , the

”magnitude of order” of the asymptotic CRB for the real amplitude and the

initial phase is O(N−P ) and O(N−P+2) for the angular-frequency. Finally, the

last conclusion is if the amount of data is constant for all dimension (ie.,
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∏P
p=1 Np = cst), the asymptotic CRB for the angular-frequency is a strictly

monotonically increasing sequence for cubic tensors but can be locally (for

a specific dimension) a constant or a strictly monotonically decreasing se-

quence for unbalanced tensors. Regarding the real amplitude parameter, the

asymptotic CRB becomes invariant to parameter P . Finally, we show that the

estimation accuracy for the initial phase is degraded for increasing P but not

seriously.

Appendix A: Proof of theorem 1

The partial derivatives of the noise-free signal wrt. the angular frequency, the

real amplitude and the initial phase are given by

∂x

∂ω
(p)
m

= iαm

(

d(ω(1)
m ) ⊗ . . . ⊗ d′(ω(p)

m ) ⊗ . . . ⊗ d(ω(P )
m )

)

,

∂x

∂am

= eiφm

(

d(ω(1)
m ) ⊗ . . . ⊗ d(ω(P )

m )
)

,

∂x

∂φm

= iαm

(

d(ω(1)
m ) ⊗ . . . ⊗ d(ω(P )

m )
)

for m ∈ [1 : M ], j ∈ [1 : P ] and d′(ω(p)
m ) =




0 eiω

(p)
m 2e2iω

(p)
m . . . (Np − 1)e(Np−1)iω

(p)
m





T

.

Using the asymptotic properties of the harmonic model (9), 1
N3

p
d′(ω

(p)
k )Hd′(ω(p)

m )
Np≫1
−→

1
3
δk−m, 1

N2
p
d′(ω

(p)
k )Hd(ω(p)

m )
Np≫1
−→ 1

2
δk−m, 1

Np
d(ω

(p)
k )Hd(ω(p)

m )
Np≫1
−→ δk−m, a straight-

forward derivation leads to

16



J
ω

(j)
k

ω
(u)
m

= ℜ







(

∂x

∂ω
(j)
k

)H
∂x

∂ω
(u)
m






=







a2
k

N3
u

3

∏P
p=1,p 6=j Np, for j = u and k = m,

a2
k

N2
u

2

N2
j

2

∏P
p=1,p 6=j,u Np, for j 6= u and k = m,

0, otherwise.

(36)

So, we have

Jω(j)ω(u) =

















J
ω

(j)
1 ω

(u)
1

. . . J
ω

(j)
1 ω

(u)
M

...
...

J
ω

(j)
M

ω
(u)
1

. . . J
ω

(j)
M

ω
(u)
M

















M×M

=







N2
j

3

(
∏P

p=1 Np

)

∆2, for j = u,

NuNj

4

(
∏P

p=1 Np

)

∆2, for j 6= u,

(37)

where ∆ = diag{a1, . . . , aM} and thus

Jωω =

















Jω(1)ω(1) . . . Jω(1)ω(P )

...
...

Jω(P )ω(1) . . . Jω(P )ω(P )

















PM×PM

=





P∏

p=1

Np





(

ΥP ⊗ ∆2
)

(38)

where we have defined the following (P × P ) symmetric matrix:

ΥP =























N2
1

3
N1N2

4
. . . . . . N1NP

4

N1N2

4

N2
2

3
. . . . . . N2NP

4

...
...

N1NP

4
N2NP

4
. . . . . .

N2
P

3























. (39)
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Next, we have J
ω

(j)
k

φm

Nj≫1
−→ ℜ

{

α∗
kαm

Nj

2

(
∏P

p=1 Np

)

δk−m

}

and thus Jω(j)φ

Nj≫1
−→

1
2
Nj

(
∏P

p=1 Np

)

∆2. Finally, we find the following compact expression for the

PM × M matrix Jωφ =

∏P

p=1
Np

2
(γP ⊗ ∆2) where γP = [N1 . . . NP ]T . In

addition, the other blocks of the FIM are

[Jaa]km

Np≫1
−→ ℜ






ei(φm−φk)





P∏

p=1

Np



 δk−m






=







∏P
p=1 Np, for k = m,

0, otherwise,

(40)

[Jφφ]km

Np≫1
−→ ℜ






i∗α∗

kiαm





P∏

p=1

Np



 δk−m






=







a2
k

∏P
p=1 Np, for k = m,

0, otherwise,

(41)

[Jaφ]km

Np≫1
−→ 0, ∀k, m, (42)

[Jωa]km

Np≫1
−→ 0, ∀k, m. (43)

For k = m, expressions 42 and 43 are purely imaginary numbers. This explains

why Jaφ and Jωa are null matrices. Consequently, the blocks of the FIM are

asymptotically diagonal or null and we obtain

Jaa =





P∏

p=1

Np



 IM , Jφφ =





P∏

p=1

Np



∆2, Jaφ = 0M×M , Jωa = 0PM×M .

Finally, the FIM wrt. θ′ is given by

Fθ′θ′
Np≫1
−→

















(
∏P

p=1 Np

)

(ΥP ⊗ ∆2) 0

∏P

p=1
Np

2
(γP ⊗ ∆2)

0
(
∏P

p=1 Np

)

IM 0

∏P

p=1
Np

2
(γT

P ⊗ ∆2) 0
(
∏P

p=1 Np

)

∆2

















.
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Thanks to the standard inverse of a partitioned matrix (9), analytic expression

of F−1
θ′θ′ is possible. It comes

F−1
θ′θ′

Np≫1
−→

















Λ 0 ×

0 J−1
aa 0

× 0 ΘΛΘT + J−1
φφ

















(44)

where

Λ = (Jωω − JωφJ
−1
φφ Jωφ)

−1 =
1

∏P
p=1 Np

[(

ΥP −
1

4
γP γT

P

)−1

⊗ ∆−2

]

=
12

∏P
p=1 Np

(

diag(γP )−2 ⊗ ∆−2
)

and Θ = J−1
φφ Jωφ = 1

2

(

γT
P ⊗ IM

)

. So, the (3, 3)-block of matrix F−1
θ′θ′ is given

by

ΘΛΘT + J−1
φφ =

3
∏P

p=1 Np




γT

P diag(γP )−2 γP
︸ ︷︷ ︸

P

⊗∆−2




+

1
∏P

p=1 Np

∆−2

=
3P + 1
∏P

p=1 Np

∆−2

Hence, the inverse of the FIM is

F−1
θ′θ′

Np≫1
−→

















12
∏P

p=1
Np

(diag(γP )−2 ⊗ ∆−2) 0 ×

0 1
∏P

p=1
Np

IM 0

× 0 3P+1
∏P

p=1
Np

∆−2

















.

So, the CRB associated with the M-order harmonic model of dimension P is

given by the diagonal terms of the FIM inverse which proves the theorem.
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Appendix B: Exact CRB for the first order harmonic model of di-

mension P

Using the same formalism as before, we derive in the following theorem the

exact (nonasymptotic) closed-form of the CRB for the first order harmonic

model of dimension P .

Theorem 3 The exact CRB(P ) for the first order harmonic model of di-

mension P defined in (1) where M = 1 wrt. the model parameter θ′ =

[ω(1), . . . , ω(P ) a φ]T , ie., CRB(P )(θ
′), is given by

CRB(P )(ω
(p))=

6

N1N2 . . . NP (N2
p − 1) SNR

, (45)

CRB(P )(a)=
a2

2N1N2 . . . NP SNR
, (46)

CRB(P )(φ)=
3
∑P

p=1
Np−1
Np+1

+ 1

2N1N2 . . . NP SNR
(47)

where SNR = a2/σ2.

Proof: To prove this theorem, we consider the first order harmonic model of

dimension P given by x = aeiφ(d(ω(1))⊗. . .⊗d(ω(P ))) where the model param-

eters are the following triplet: {ω(1), . . . , ω(P ), a, φ}. Recalling some standard

results on power sums, we have

d′(ω(p))Hd′(ω(p))=
Np−1
∑

n=0

n2 =
1

6
(Np − 1)Np(2Np − 1), (48)

d′(ω(p))Hd(ω(p))=
Np−1
∑

n=0

n =
1

2
(Np − 1)Np, (49)

d(ω(p))Hd(ω(p))=
Np−1
∑

n=0

1 = Np. (50)
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Using 48-50, this can be expressed according to Jωω = a2

2

(
∏P

p=1 Np

)

ΨP where

we have defined the following (P × P ) symmetric matrix:

ΨP =























(N1−1)(2N1−1)
3

(N1−1)(N2−1)
2

. . . (N1−1)(NP −1)
2

(N1−1)(N2−1)
2

(N2−1)(2N2−1)
3

. . . (N2−1)(NP −1)
2

...
...

...

(N1−1)(NP −1)
2

(N2−1)(NP −1)
2

. . . (NP −1)(2NP −1)
3























(51)

and

Jaa =
P∏

p=1

Np, Jφφ = a2





P∏

p=1

Np



 , Jaφ = Jωa = 0, Jωφ =
a2

2





P∏

p=1

Np



 νP .

where νP = [N1 − 1 N2 − 1 . . . NP − 1]T .

Consequently, the FIM wrt. the signal parameters for the first order harmonic

model of dimension P is given by matrix 44 and its inverse is given by matrix

44 where

Λ =
2

a2

1
∏P

p=1 Np

(

ΨP −
νP νT

P

2

)−1

=
2

a2

1
∏P

p=1 Np

DP (52)

where DP = diag
{

6
N2

1−1
, . . . , 6

N2
P
−1

}

with Θ =
νT

P

2
and ΘΛΘT+J−1

φφ = 1

a2
∏P

p=1
Np

(

3
∑P

p=1
Np−1
Np+1

+ 1
)

.

More precisely, the inverse of the FIM is

F−1
θ′θ′ =

















2

a2
∏P

p=1
Np

DP 0 ×

0 1
∏P

p=1
Np

0

× 0 1

a2
∏P

p=1
Np

(

3
∑P

p=1
Np−1
Np+1

+ 1
)

















.
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Considering the diagonal terms of the above matrix weighed by σ2/2, we

obtain expressions 45-47.

For cubic tensors, we have

CRB(P )(ω
(p))=

6

NP (N2 − 1) SNR
, (53)

CRB(P )(a)=
a2

2NP SNR
, (54)

CRB(P )(φ)=
3P N−1

N+1
+ 1

2NP SNR
. (55)

Note that as expected if Np goes to infinity for all p, the exact CRB becomes

the ACRB derived in the previous section. The exact CRB for a first order

harmonic of dimension P is quite similar to the asymptotic analysis derived in

the previous sections. In particular, the exact CRB(P ) for the first order case

shares the same properties as the ACRB(P ),
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Fig. 1. CRB Vs. SNR for a first order harmonic model of dimension three for very

short analysis duration (N = 3). 25
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Fig. 2. ACRB Vs. SNR for a first order harmonic model of dimension 3 for very

short analysis duration (N = 1000).
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Fig. 3. ACRB Vs. SNR for a first order harmonic model of dimension 3 under

constraint 28.
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