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Correspondence

Asymptotic Performance for Delayed Exponential Process

Rémy Boyer and Karim Abed-Meraim

Abstract—The damped and delayed sinusoidal (DDS) model can be de-
fined as the sum of sinusoids whose waveforms can be damped and
delayed. This model is suitable for compactly modeling short time events.
This property is closely related to its ability to reduce the time-support of
each sinusoidal component. In this correspondence, we derive exact and
approximate asymptotic Cramér–Rao bounds (CRBs) for the DDS model.
This analysis shows that this model has better, or at least similar, theoretical
performance than the well-known exponentially damped sinusoidal (EDS)
model. In particular, the performance in the DDS case is significantly im-
proved compared to that of the EDS for closely spaced sinusoids thanks
to the nonzero time delays. Consequently, we can exploit the advantageous
properties of the DDS model and, in the same time, we can keep high theo-
retical model parameter estimation accuracy.

Index Terms—Approximate bound, conditional Cramér–Rao bound
(CCRB), delayed sinusoids.

I. INTRODUCTION

Parametric models such as the constant-amplitude sinusoidal or ex-
ponentially damped sinusoidal (EDS) models are popular and efficient
tools in many areas of interest including pole estimation [1], source lo-
calization [2], biomedical signal processing [4], and audio signal com-
pression [6]. In this correspondence, we use a generalization of these
models, named the damped and delayed sinusoidal (DDS) model which
adds a time-delay parameter to allow time-shifting of each component
waveform [5], [3]. Even though the question of the design of model
parameter estimation algorithms has been treated in [3] and [5], the
asymptotic performance of this model has not been completely studied.

The contribution of this correspondence is the derivation and the
comparison of several conditional Cramér–Rao bound (CCRB). This
bound allows the analysis of the achievable theoretical performance of
the DDS model in the situation where we exactly know the time-delay
parameters. Note that a numerical bound has already been proposed in
a companion paper [3], but here we go further into the asymptotic per-
formance analysis of this model.

More specifically, we present the derivation of the exact CCRB.
Next, to highlight the time-delay dependency of this bound in the con-
text of large time-spacing between two consecutive DDS waveforms,
we introduce an asymptotic approximate conditional CRB (ACCRB)
which is shown to be insensitive to the time-delay values. It is important
to note that no restricting assumption on the damping-factor value is
made and we allow in our analysis overlapping consecutive waveforms.
To further analyze the asymptotic performance of this model, we com-
pare the ACCRB for the DDS model to the CRB for the EDS model. We
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show that the distance between the CRB and the ACCRB is small for
well-separated angular frequencies and very large for closely spaced
poles. The latter case can be explained by the fact that the Fisher infor-
mation matrix (FIM) CCRB for the DDS model remains low. Conse-
quently, the DDS model shows at least similar theoretical performance
as the model without time delay (i.e., the EDS model). In other words,
it becomes possible to exploit the advantage of the DDS model and at
the same time one can keep high theoretical performance.

II. DDS MODEL

The complex M -DDS model [3], [5] definition is given by

x̂(n) =

M

m=1

ame
i�

e
(i! +d )(n�t )

 (n� tm) (1)

where M is the number of complex sinusoids and
fam; �m; dm; !m; tmg1�m�M are (nonzero) real amplitude,
phase, damping factor, and angular frequency parameters. We denote
the mth pole by zm = ei! +d and we assume that all the angular
frequencies are distinct: !i 6= !j for i 6= j; !i 2 (0; �] and di < 0.
In (1), we have introduced the discrete-valued time-delay parameters
ftmg and the Heaviside function defined by  (n) = 1 for n � 0,
and 0 otherwise.

III. CCRB FOR THE DDS MODEL

The Cramér–Rao bound (CRB) is useful as a touchstone against
which the efficiency of the considered estimators can be tested. Con-
sider anM -DDS process corrupted by zero-mean white Gaussian noise
w(n) according to

x(n) = x̂(n) + �w(n); n 2 [0 : N � 1] (2)

where x̂(n) is given by (1). Let 
 = [!1 � � �!M d1 � � � dM ]T (respec-
tively, � = [
T �2 t1 � � � tM ]T with t1 � � � � � tM ) be the vector of
desired (respectively, desired plus nuisance) model parameters. Note
that in the following, we assume for simplicity that the complex ampli-
tude are known, and therefore, we omit this parameter in the derivation
of our bounds.

The CRB, which is given by the diagonal terms of the FIM inverse
[7], is a lower bound on the variance of the model parameters, i.e.,
MSE(�) � CRB(�) = F�1� where F� denotes the FIM for param-
eter � and MSE stands for mean-squared error.

Note that the time delay has discrete value and is considered as per-
fectly known; so in the sequel, this parameter will be omitted and we
name this new bound CCRB for conditional CRB. Moreover, we can
formulate Property 1 (the proof is provided in [3]).

Property 1: The elements of the FIM corresponding to the cross
terms of 
i and �2 are zero.

In other words, the CCRB for
 is decoupled from the CCRB for �2;
we can also omit the noise variance in the computation of the CCRB.
Consequently, we retain only vector 
 to derive the CCRB. Its defini-
tion is given according to

CCRB(
jt) = F
�1

 with [F
]i;j

= E
@Lt(x j
)

@
i

@Lt(x j
)

@
j

H

(3)
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whereE[ � ] is the mathematical expectation. Under those assumptions,
the logarithmic likelihood function can be expressed as Lt(x j
) =
c� N log�2 � jx� x̂j2�2 where c is a given constant.

Theorem 1: The CCRB for the variance of any unbiased estimate of

 (conditionally to the perfect knowledge of the time-delay parameter
vector t) is given by

CCRB(
 j t) = F�1
 where F
 =
2

�2
<e

@x̂

@


@x̂

@


H

: (4)

e( � ) is the real part of a complex entity.
In other words, the FIM is proportional to the inverse of the deriva-

tive matrix. Following the same methodology as in [8], we obtain the
expression of the CCRB according to

CCRB(
jt) =
�2

2
I2 
 A�1 Q�1 I2 
 A�1 (5)

where Q = <efPPHg; A = diagfa1; � � � ; aMg and P =
i�PN
�PN

with � = diagfei� ; � � � ; ei� g and

PN =

0t +1 z1 � � � (N � t1 � 1)zN�t �11

0t +1 z2 � � � (N � t2 � 1)zN�t �12

...
...

...
0t +1 zM � � � (N � tM � 1)z

N�t �1
M

: (6)

We begin by the following derivation. Define matrix G which (i; j)th
entry is

gij = �PNP
H
N ��

ij
(7)

= ei(� �� )z�ti z
�t

j

N�1

n=0

(n� ti)(n� tj)

� (ziz
�

j )
n (n� ti) (n� tj) (8)

and Q = e
G iG

�iG G
. Without loss of generality, we sort the

time delays according to �ij = tj � ti � 0 for j � i. Since  (n �
ti) (n� tj) =  (n � tj), (8) becomes for j � i

gij = z
�

i ei(� �� )

N�t �1

n=0

n2(ziz
�

j )
n + �ij

N�t �1

n=0

n(ziz
�

j )
n

(9)
where we explicit the sums in the previous expression according to
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:

The exact computation of the CCRB is given by (5)–(9). To obtain
more tractable formulation, we consider the asymptotic CCRB.

IV. ASYMPTOTIC AND APPROXIMATE CCRB

We make the following three assumptions.
A1) N is sufficiently large according to N � tM .
A2) jdij � 1 for i 2 [1 : M ]. Indeed, the case where jdij is large

is not really of interest as it corresponds to the situation where
the components have short time supports, and hence, they are
well separated, in which case the CRB would be close to that
of a monocomponent signal.

A3) The duration between two consecutive waveforms has to be suf-
ficiently large, i.e., �i;i+1 � 1. However, due to A2), the ith
waveform can have a time support much larger than �i;i+1, and
thus, overlapping waveforms are possible.

A. Asymptotic Expression of the CCRB

Based on A1), expression (9) can be simplified according to

gij
N!1
�! g

(1)
ij = z

�

i �
(1)
ij �ij + �

(2)
ij ei(� �� ) (10)

where

�
(1)
ij

def
=

ziz
�

j

(1� ziz�j )
2

�
(2)
ij

def
=

1 + ziz
�

j

1� ziz�j
: (11)

Note that �(1)ij and �(2)ij are two complex quantities independent of
the time delays. In addition, thanks to A2) which allows us to consider
a first-order approximation (using long division of Taylor series), the
diagonal terms of matrix G are real, independent of the time delays,
the angular frequencies, and the phases since

g
(1)
ii = �

(1)
ii �

(2)
ii =

1

4d2i

�1

di
=
�1

4d3i
: (12)

We will distinguish here two cases. The first one is for well-separated
poles and the second is for closely spaced poles.

B. Well-Separated Poles

Assume that the poles zi and zj are well separated according to

j!ij j � jdij
b (13)

where b is a positive value specified in the sequel and !ij = !i � !j .
Under (13), the expression of jg(1)

ij j for j > i can be upper-bounded
as follows:

g
(1)
ij = z
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i �
(1)
ij (�ij + �
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ij )

�
z
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:

In those inequalities, we have used the facts that j1�ei! +d +d j �
j1 � ei! j = j2 sin!ij=2j � 2�j!ij j and the minimal value of the
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function edx(x+2) is approximately equal to�1=(ed). By comparing
jg

(1)
ij j to jg(1)

ii j, one can observe

g
(1)
ij

g
(1)
ii

�
�3

2e

d2i
j!ij j3

: (14)

Hence, by choosing b = 2=3 in (13), we guarantee that the previous
ratio is negligible, i.e., jg(1)

ij j=jg
(1)
ii j � 1, and hence, in that case, one

can approximate the CCRB by

CCRB(
jt) �! ACCRB(
)
def
= �1

=
�2

2
(I2 
 A�1) �1(I2 
 A�1) (15)

=
�2

2
I2 
 (A A)�1 (16)

where = I2
 with = diagfg
(1)
11 ; � � � ; g

(1)
MMg. Based on these

considerations, we have Theorem 2.
Theorem 2: Under A1)–A3) and condition (13), a closed form of

the ACCRB with respect to the model parameters is given by

ACCRB(
i) = �2�2 d
3
i

a2i
; i 2 [1 : M ]: (17)

Following Theorem 2, the ACCRB is invariant with respect to the
phase, angular frequency, and time-delay parameter; so, the asymp-
totic performance is relied only to the length of each waveform (i.e.,
damping factors and amplitudes) and not to its oscillatory character
nor to its time delay. Note that in standard Fourier analysis, the poles
are considered well separated when j!ij j � 1=N;N being the sample
size. Condition (13) has similar meaning as for a small damping factor
di the effective sample size N is of order 1=di, and hence (13) can be
translated into j!ij j � 1=N2=3.

C. Identical Poles

We consider now the case where two poles are equal, i.e., zi = zj .
This is a limit case that illustrates the situation of closely spaced poles.
In this context, the FIM is not anymore approximately diagonal but
block-diagonal with diagonal blocks given by

Gij =
g
(1)
ii g

(1)
ij

g
(1)
ij

�

g
(1)
jj

:

The eigenvalues coincide with the roots of the characteristic
polynomial

�2 � Tr(Gij)�+ det(Gij) � �2 +
1

2d3i
�+

1� e2d � (di�ij + 1)2

16d6i
(18)

which are approximately �� = (�1=(4d3i ))(1� ed � (di�ij + 1)).
Clearly, when �ij � 1, the minimum eigenvalue �� is far from zero,
while for �ij = 0, this eigenvalue becomes null. This latter situation
represents the one of the EDS model where closely spaced sinusoids
lead to significant performance degradation, i.e., in that case, the FIM
becomes close to singular. However, thanks to the approximate block-
diagonal structure of the FIM, one can observe that the bad estimation
of closely spaced poles does not affect much the estimation of the other
poles.

V. COMPARISON TO THE EDS MODEL

In this section, we compare the DDS and the EDS models in the
case of strong damping factor, i.e., jdij = O(1) and in the case of
well-separated poles with jdij � 1 for i 2 [1 : M ]. Note that we have
already shown that for closely spaced sinusoids the DDS significantly
outperforms the EDS model.

Fig. 1. N = 10 samples, � = 0:02; � = t 2 [0 : 500](t = 0);
a = [1 1], and � = [�=3 0]. (a) Well-separated poles: ! = [0:4 1] and
jdj = [0:004 0:01]. (b) Closely spaced poles: ! = [0:4 0:40001] and jdj =
[0:01 0:01001].

A. CRB Expression for the EDS Model

The CRB for the EDS model can be derived from the CCRB since
we have

CRB(
) = CCRB(
j0)

=
�2

2
F�1
0 = (I2 
 A�1)Q�1

0 (I2 
 A�1) (19)

where

Q0 = e
C iC

�iC C

with cij = �
(1)
ij �

(2)
ij ei(� �� ) in the asymptotic context (i.e.,N !1).

B. Strong Damping Factors

We consider the case where the damping factors are strong and sat-
isfy j�ijed � j � 1. In that case, the components are well separated
in time and we can see from (15) that jg(1)

ij j � 1 for i 6= j due
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Fig. 2. (a) Time-domain signal with ! = [0:2 0:6 0:91:1]; t =
[1000 2000 3000 4000] and jdj = [0:001 0:0015 0:0025 0:0035].
(b) CRBs for the EDS and DDS models.

to the exponential term z
�

i . Hence, the FIM is again close to diag-
onal. Note that the asymptotic expression of the diagonal terms of the
FIM is the same for the EDS and DDS models meaning that the strong
damping-factor case corresponds to the situation of multiple 1-EDS
models; so, the estimation of a given component is completely decorre-
lated from that of the others due to their separation in the time domain.

C. Well-Separated Angular Frequencies and Low Damping Factors

For well-separated angular frequencies with jdij � 1 for i 2 [1 :
M ], we have

kF�10 � �1k2 �
�4

4
kI 
 A�1k4 kQ�10 � �1k2

�
�4

4
kI 
A�1k4 kQ�10 k2 k �1k2 kQ0 � k2

= � kQ�10 k2 kC � k2

where � = 32�4 M

i=1
(1=a2i )

2
M

i=1
d6i is a strictly positive quan-

tity. For well-separated sinusoids, Q0 is a nonsingular matrix and thus

Fig. 3. (a) Time-domain signal with ! = [1 1:0001 1:0002
1:0003 1:0004]; t = [1000 2000 3000 4000] and jdj =
[0:0015 0:001501 0:001502 0:001503 0:00105]. (b) CRBs for
the EDS and DDS models.

kQ�10 k < 1. In addition, we have

kC � k2 =
i 6=j

jcij j
2 =

1

4
i6=j

1 + cos(!ij)

(1� cos(!ij))3
: (20)

Expression (20) is a sum of positive terms that are, for well-separated
angular frequencies, small compared to �. Indeed, for low damping
factors, M

i=1
d6i is a very small quantity. Note that large real amplitude

strengthens � in this way. Consequently, kF�10 � �1k takes very small
values and the CRB for the EDS is close to the ACCRB for the DDS
model.

VI. SIMULATIONS

A. Comment on Assumption A3)

Assumption A3), i.e., �i;i+1 � 1, is in practice not restrictive since
�i;i+1 can take relatively small values if the poles are far located [see
Fig. 1(a)]. In the case of closely spaced poles, �i;i+1 can take small
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values (typically few samples) to get the improvement of the CRB [as
illustrated in Fig. 1(b)] but it should have moderate or large values for
the approximate CRB to fit with the exact one [see Fig. 1(b)].

B. Numerical CRBS

In this part, we consider a 4-DDS model with unit amplitude and
phase � = [�=3 0 �=4 0]. The analysis duration N is 104 samples. In
Fig. 2, we have reported the considered signal and the CRBs for param-
eter 
. Note the good fit between the ACCRB(
) and the CCRB(
jt).
In this situation, i.e., for well-separated sinusoids, the asymptotic per-
formance for the DDS model is similar to that of the EDS model and the
dependence with respect to the time-delay parameter can be neglected.

In Fig. 3, we consider closely spaced sinusoids. In this situation, we
can note that the ACCRB(
) and the CCRB(
jt) are again very close
and have not been affected by the closeness of the four poles. On the
other hand, the CRB for the EDS model is much higher as expected.
Consequently, the time-separation of the different DDS waveform al-
lows the resolution of closely spaced sinusoids.

VII. CONCLUSION

In this correspondence, we have derived the CRB for the DDS model.
More precisely, we consider that the set of time delay is known and
we name this bound the CCRB. We present a work out of the asymp-
totic CCRB corresponding to the scenarios of well-separated poles and
closely (or even identical) poles. It is shown that in the former case
1) the ACCRB is close to that of the EDS model, 2) it depends only
on the amplitudes and damping factors, and 3) the pole parameters are
asymptotically decorrelated (i.e., the limit performance coincides with
that of 1-EDS model). For closely spaced sinusoids, it is shown that
the FIM is well conditioned in the DDS case while it becomes close
to singular in the EDS case. Importantly, this is true not only in the
trivial case of the well time-separated waveforms but also for overlap-
ping waveforms with different time delays.
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Minimum Variance Channel Estimation in MC-CDMA
Systems: Bias Analysis and Cramér–Rao Bound

Shahrokh Nayeb Nazar, Student Member, IEEE, and
Ioannis N. Psaromiligkos, Member, IEEE

Abstract—We present a comprehensive performance analysis of the
minimum variance channel estimator for multicarrier code-division
multiple access systems. We provide novel highly accurate closed form
expressions for the bias due to the additive noise as well as the finite data
record mean-square error of the channel estimates. In addition, we derive
the corresponding Cramér–Rao bound that assumes the knowledge of
only the spreading code of the desired user.

Index Terms—Bias, Cramér–Rao bound (CRB), mean-square error
(MSE), minimum variance (MV) channel estimation, multicarrier code
division multiple access (MC-CDMA).

I. INTRODUCTION

Minimum variance (MV) algorithms are among the most popular
methods for channel estimation and linear detection [1]–[4]. When em-
ployed for blind channel estimation, MV methods are particularly at-
tractive compared to other second-order statistics (SOS)-based estima-
tors, such as subspace MUSIC-type estimators [5], as they do not re-
quire rank estimation and show robustness to channel order overesti-
mation [2]. MV methods require the knowledge of the auto-correlation
matrix of the received data vectors that, in practice, is estimated from
a data record of finite size. In this case, it is well known that the per-
formance of the MV channel estimator is affected by two main factors.
The first is finite sample effects, while the second is the additive noise
which is the reason behind the fact that the MV estimator is asymp-
totically biased (as the sample size increases to infinity). A detailed
study on the effect of noise on the asymptotic performance of the MV
channel estimator for direct-sequence (DS)/CDMA systems has been
performed in [1] under a small noise assumption. The theoretical anal-
ysis presented in [1] uses the spectral components of the received signal
to derive a closed form expression for the asymptotic bias of the MV
estimator. However, as we will illustrate, this approach does not pro-
duce accurate results for heavy system loads, small processing gains
and/or severe multipath distortion.

In an attempt to circumvent these limitations, we derive in this
correspondence a new expression for the asymptotic bias of the MV
estimator for the downlink of multicarrier code-division multiple
access (MC-CDMA) systems. Our analysis provides a close approxi-
mation to the channel estimation bias caused by the additive noise for
MC-CDMA systems regardless of the system loading, channel length
or processing gain. In addition, combining the derived approximation
with the results of [2], we obtain the overall mean-square error (MSE)
of the MV estimator for the case of a finite data record size. Finally,
to benchmark the accuracy of the MV estimation algorithms we also
derive the Cramér–Rao bound (CRB) for the (biased) MV estimator
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