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Damped and Delayed Sinusoidal Model for
Transient Signals

Rémy Boyer∗ and Karim Abed-Meraim†

Abstract— In this work, we present the Damped and De-
layed Sinusoidal (DDS) model, a generalization of the sinu-
soidal model. This model takes into account an angular fre-
quency, a damping factor, a phase, an amplitude and a time-
delay parameter for each component. Two algorithms are
introduced for the DDS parameter estimation using a sub-
band processing approach. Finally, we derive the Cramer-
Rao Bound (CRB) expression for the DDS model and a
simulation-based performance analysis in the context of a
noisy fast time-varying synthetic signal and in the audio
transient signal modeling context.

Keywords— Transient signal, damped and delayed sinu-
soids, Fourier analysis, deflation, subband parameter esti-
mation, Cramer-Rao Bound.

I. Introduction

PARAMETRIC models such as the constant-amplitude
sinusoidal or EDS (Exponentially Damped Sinusoidal)

models are popular and efficient tools in many areas of in-
terest including spectral-line [24] or pole estimation [15],
source localization [22], biomedical signal processing [25]
and audio signal compression [2], [12], [20]. In this pa-
per, we introduce a generalization of these models, named
the Damped and Delayed Sinusoidal (DDS) model which
adds a time-delay parameter to allow time-shifting of each
component waveform. Note that this paper goes further
into the work initiated in [3]. Properties of this model are
studied and we show that it can achieve compact represen-
tations of fast time-varying or ”transient” signals.

This paper also addresses the problem of the DDS model
parameter estimation. Two model parameter estimation
algorithms are derived and their performances are com-
pared on a noisy synthetic signal and on a typical audio
transient signal.

The paper is organized as follows: Section II introduces
the DDS model. An overview of the problems and the pro-
posed solutions is presented in section III. In section IV,
two algorithms, named DDS-B (B stands for Block), and
DDS-D (D stands for Deflation), are presented for the esti-
mation of the DDS signal parameters. Section V presents
the derivation of the Cramer-Rao Bound (CRB) for the es-
timation of the DDS parameters in the presence of additive
white Gaussian noise. Section VI provides additional com-
ments about the DDS model and the proposed estimation
algorithms. In section VII, simulation results are given and
section VIII is dedicated to the final conclusions.
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nals and System Lab.), Gif-Sur-Yvette, France, E-mail:
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II. The DDS model

A. Parametric model definitions

The complex M -EDS model definition is given by:

x̂(n)
4
=

M∑
m=1

ameiφm . e(iωm+dm)n (1)

where M is the number of complex sinusoids or the mod-
eling order and {am, φm, dm, ωm}1≤m≤M are the 4M real
amplitude, phase, damping factor and angular frequency
parameters. Note that if we choose dm = 0 for all m, we
obtain the complex sinusoidal model. The M -DDS model
can be understood as a generalization of the previous para-
metric model. Its expression [3], [9] is given by:

x̂(n)
4
=

M∑
m=1

ameiφm . e(iωm+dm)(n−tm) . ψ(n− tm) (2)

where we have introduced the discrete-valued time-delay
parameters {tm} and the Heaviside function defined by
ψ(n) = 1 for n ≥ 0 and 0 otherwise. Note that the complex
M -DDS model is formally similar to the M -EDS model of
expression (1) by supposing that the amplitude varies with
time according to:

x̂(n) =
M∑

m=1

ãm(n) eiφ̃m . e(iωm+dm)n (3)

with ãm(n) = ame−dmtmψ(n− tm) and φ̃m = φm − tmωm.
Real formulation of the previous complex M -DDS model

can be written in terms of the complex amplitude 2αm =
ameiφm and the pole zm = eiωm+dm , according to:

x̂(n) =
M∑

m=1

pm(n) (4)

where pm(n) = (αmzn−tm
m +α∗mz

∗(n−tm)
m )ψ(n−tm) is a real

1-DDS component. In figure 1, different 1-DDS waveforms
are presented.

B. Damping factor sign and compact representation

In this paper, we consider the real discrete space `2(R)
of finite energy signals. The 1-EDS and 1-DDS signals for
dm < 0 belong to this space. However, sinusoidal com-
ponents with dm > 0 are required to model signals with
strong onset when using the M -EDS model. Consequently,
a large number of components M À 1 is used to mitigate
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(a) (b) (c) 

Fig. 1. 1-DDS waveforms: (a) d1 < 0 and t1 = 0, (b) d1 < 0 and
t1 6= 0, (c) d1 ≈ −1 (very narrow time support) and t1 6= 0

the increasing energy of such components during the anal-
ysis segment. In other words, those phenomena cannot be
modeled in a compact way by a sum of 1-EDS with positive
damping factor. A compact representation is one in which:

M ¿ N and
N−1∑
n=0

|x(n)− x̂(n)|2 ¿
N−1∑
n=0

|x(n)|2 (5)

where x(n) is an original signal sample of length N .
On the other hand, signals with strong onset can be effi-
ciently modeled by a sum of 1-DDS components all with
negative damping factor. The strong onset is taken into
account by the introduction in the model of the delay pa-
rameters {tm}. Other approaches to handle this problem
can be found in [8], [10], [16], [17], [21].

C. Time-frequency considerations

It is important to note that the 1-DDS model enables
temporal representations with reduced support. This prop-
erty of temporal support compactness, allows the effective
modeling of any event which has fast temporal variations
or which does not occupy the entire analysis segment. We
note that the standard sinusoidal model does not possess
this interesting property, which explains its poor perfor-
mance for transient signals. The 1-EDS model is able to
model signals with narrow support by imposing a large
numeric value for the |dm| parameter but only at the be-
ginning or at the end of the time analysis interval. When
a signal abruptly ”appears” far from the beginning of the
analysis segment, the 1-EDS model is less efficient [2], [18].
The 1-DDS model with its delay parameter and with the
heaviside function (ψ(n)) is able to model more efficiently
a transient phenomenon being situated not only at the be-
ginning or the end of the analysis segment but also in the
middle of the analysis segment.

For a better understanding of these kind of transient
signals, it is interesting to study their properties in the
Time-Frequency (T-F) plane. In figure 2, we show simple
representations of the T-F distributions of the sinusoidal, 1-
EDS and 1-DDS models. The sinusoidal model uses all the
time resource ∆t and by invoking the duality principle, the
frequency resource ∆f is minimal (see figure 2-a). The 1-
EDS model reduces the time resource occupation by adding
a damping parameter and gets a trade-off between the time

and frequency resource occupation. However, this trade-off
can only be reached at the beginning and at the end of
the analysis segment (see figure 2-b). The 1-DDS model
with the delay parameter and the function ψ(n) allows the
modeling of any event occurring in the T-F plane (see figure
2-c). Contrary to the sinusoidal models and 1-EDS model,
the 1-DDS model realizes a non-forced tiling of the T-F
plane.

Fig. 2. Representations in the time-frequency plane (a) sinusoidal
model, (b) 1-EDS model (d ≤ 0), (c) 1-DDS model (d ≤ 0)

III. Sketch of the solution

Given a (real-valued) signal x(n), the global nonlinear
criterion to be solved is:

arg min
{αm,zm,tm}

N−1∑
n=0

|x(n)− x̂(n)|2 (6)

where x̂(n) is the M -DDS signal given by (4).
Let pm be the N -sample 1-DDS component, i.e. pm =
(pm(0) . . . pm(N − 1))T . We can consider two cases:
• In the first case, the components are quasi-orthogonal.
In other words, for tj 6= tm, we have 〈|pm|, |pj |〉 ≈
0 where 〈., .〉 defines the inner product and |pm|

4
=

(|pm(n)|)0≤n≤N−1. This definition can be seen as a separa-
tion constraint on the component time-supports. Indeed,
if we fix tm < tj , the component pm has a sharp decreas-
ing part (large damping factor) in such a way that the
component pj is practically not disrupted. This approach
is studied in [4] where we propose several algorithms well
adapted to the audio signals.
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• In the second case, the components are non-orthogonal
and |〈|pm|, |pj |〉| is not (approximately) equal to zero when
tm 6= tj . This means that the j-th component is not clearly
separated from the m-th component and direct estimation
of the time delay is a difficult task. However, the angu-
lar frequency estimation by means of Fourier-type [19] or
subspace [15] methods, directly applied to the observed sig-
nal, remains relatively robust while a direct damping factor
estimation, on the 1-DDS signal, is systematically biased.
Simulations in figure 3-a,b show these considerations on an
example of a 1-DDS signal. In this context, we propose to
solve this problem by performing a narrow band-pass fil-
tering around each component to decrease the influence of
the other components [27]. Afterwards, in each subband,
we estimate the 1-DDS model parameters.

(a) (b)
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Fig. 3. 100-sample 1-DDS component (a) estimated angular fre-
quency, (b) estimated damping factor.

In brief, the proposed parameter estimation approach
proceeds in the following steps:
• Angular frequency estimation using a subspace (eventu-
ally a Fourier-type) method.
• Subband filtering to ‘separate’ the sinusoidal components
and mitigate at best the inter-components interferences.
• In each subband, estimate the damping factor, the phase,
the amplitude and the delay (eventually refine the fre-
quency estimation) of the considered component.
Note that subband sinusoidal modeling has been already
considered in [1], [7]. Contrary to our approach, the sub-
band filtering in [1], [7] does not depend on the angular
frequency of the considered signal components and is used
rather to provide a perceptually improved allocation of the
sinusoids.

IV. Transient modeling based on the DDS model

In [3], we have presented a new algorithm named DDS-
B (B stands for Block) for the estimation of the M -DDS
model parameters. This algorithm is based on the use of
subspace methods and exploits a filter-bank architecture.
We start by reviewing the details of this algorithm and
then introduce a second estimation algorithm that uses a
deflation approach in conjunction with the filter-bank ar-
chitecture. The latter, named DDS-D (where D stands for
deflation), is shown to improve the computational cost by
using FFT-based estimation procedures.

A. DDS-B algorithm: ”Block approach”

A.1 Primary estimation of the angular frequency by a sub-
space approach

In the context of the DDS-B algorithm, we per-
form a primary1 estimation of the M angular frequency
{ω(1)

m }1≤m≤M of the signal x(n) using a standard subspace
method. In this paper, we use the Matrix Pencil (MP)
method [15].

Note that the MP method has been developed for the
EDS but not the DDS model. In fact, the subspace shift-
invariance property on which the MP method is based is
only approximately satisfied in the case of DDS signals.
Consequently, the corresponding parameter estimates are
systematically biased. However, as observed in our simula-
tions, the frequency parameter estimates are quite robust
to this model approximation (model error) which justifies
the proposed approach. This point deserves a theoretical
model error perturbation analysis to evaluate the limits of
this approximation and further justify our approach. This
will be the focus of future work.

A.2 Filter-bank design

A filter-bank approach is considered in the DDS-B algo-
rithm. The signal x(n) is filtered as (see figure 4):

ym(n)
4
= hm(n) ∗ x(n) (7)

where hm(n) is the band-pass filter and ym(n) is the con-
tribution of the signal in the frequency bin centered at ω

(1)
m

(∗ denotes the convolution operator). The design of the

Fig. 4. Filter-bank architecture

filter hm(n) is very important since we must find a trade-
off between the frequency selectivity of the filter and its
time support occupation. The time-frequency uncertainty
principle binds these two quantities. Indeed, filtering a
transient signal without substantially degrading the time
waveform implies choosing a short linear-phase FIR filter

1The angular frequency will be re-estimated (refined) after subband
processing.
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(typically between 8 and 12 coefficients). On the other
hand, choosing a filter with short time support decreases,
both, the frequency selectivity and the component sepa-
ration ability of the filter. A good choice to balance this
trade-off is the modulated raised cosine filter of length P ,
defined by [13]:

hm(n) =
∆
π

sinc
(

∆n

2

)
cos

(
%∆n

2

)

1− %2
(

∆n
2

)2 . cos
(
ω(1)

m n
)

(8)

where % is the roll-off parameter and ∆ is the filter band-
width. Another possibility, when the number of compo-
nents M is relatively small, would be to use a rejection
filter of order 2M that cancels frequencies ω

(1)
j for j 6= m

and keeps only the desired one ω
(1)
m .

A.3 Models Equivalence and filtering effects

By supposing that the m-th subband signal ym(n) is well
isolated from the other components by the filtering process,
we introduce the following time offset:

τm
4
= arg max

0≤n≤N−1
|ym(n)| (9)

which represents a rough overestimate of delay parameter
tm. After that, we define the truncated subband signal:

ȳm(n) = ym(n + τm), for n = 0, . . . , Nm − 1 (10)

with Nm = N − τm. The latter is efficiently approximated
by the real 1-EDS model. This assumption is based on the
Model Equivalence (ME) property [4] between the 1-EDS
model and the 1-DDS with a reduced time support and
modified complex amplitude, ie. ȳm(n) is a 1-EDS signal.
Indeed, the τm delayed 1-DDS component can be written
as:

pm(n + τm) = (αmzn
mzτm−tm

m (11)
+α∗mz∗nm z∗(τm−tm)

m )ψ(n + τm − tm)
= αmzPm

m zn
m + α∗mz∗Pm

m z∗nm (12)

where Pm
4
= τm − tm.

Using the fact that pm(n) is causal, ie., ψ(n + a) = ψ(n)
for n ≥ 0 and a ≥ 0, we verify that expression (11) is
the 1-EDS model definition with modified complex ampli-
tude. Using the previous ME property, the estimate of the
truncated subband signal admits the following expression:

ˆ̄ym(n) =
Pm−1∑

k=0

hm(k)pm(n− k + τm)

= αmH(zm)zn
m + α∗mH(z∗m)z∗nm

= α̃mzn
m + α̃∗mz∗nm (13)

with H(z) = zPm
∑Pm−1

k=0 hm(k)z−k (due to the filtering
properties, we have Pm = P where P is the time-delay
introduced by the filter). Consequently, we can see that

only the complex amplitude is modified by the filter hm(n)
according to:

α̃m
4
= Smαm where Sm = diag{H(zm),H(z∗m)} (14)

with α̃m
4
= (α̃m α̃∗m)T and αm

4
= (αm α∗m)T is the complex

amplitude vector.

A.4 Subband parameter estimation

In each subband indexed by m, we estimate the filtered
1-DDS component ŷm(n)

4
= hm(n) ∗ pm(n) which best

matches the m-th filtered signal ym(n) (see figure 5), ie.,
we resolve the following criterion:

arg min
αm,zm,tm

εm (15)

where:

εm
4
=

N−1∑
n=0

|ym(n)− ŷm(n)|2 = ||ym −HmG(zm, tm)αm||2

(16)
where Hm is the N ×N filtering matrix, given by:

Hm =




hm(0) 0 . . . . . . 0
...

. . . . . .
...

hm(P − 1)
. . . . . .

...
...

. . . . . . 0
0 . . . hm(P − 1) . . . hm(0)




.

(17)
ym is the N -sample subband signal, zm = (zm z∗m)T is

the pole vector and G(zm, tm) is the N × 2 zero-padded
Vandermonde matrix defined by:

G(zm, tm)
4
=




0tm 0tm

1 1
zm z∗m
...

...
zN−tm−1
m z

∗(N−tm−1)
m




. (18)

Assuming an initial estimate of the time-delay, criterion
(15) is equivalent to the following one:

arg min
αm,zm

||ȳm − JmG(zm, τm)Smαm||2 (19)

where Jm is a Nm × N selection matrix such as ȳm =
Jmym.

Angular frequency and damping factor estimation: The di-
rect minimization of criterion (15) or (19) requires a com-
putationally expensive multidimensional nonlinear opti-
mization. Instead, we propose a much simpler approach
based on the signal FFT where angular frequency is re-
estimated (this is a refining of the first estimate ω

(1)
m ) ac-

cording to:
ω(2)

m = arg max
λ∈[0,π[

|Ȳm(λ)| (20)
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Fig. 5. Subband signal processing

where Ȳm(λ) is the Fourier Transform (FT) of the trun-
cated subband signal. After that, we estimate the damp-
ing factor d

(1)
m by the shifted-FT method [19]. This method

uses the ratio of the modulus of two FT segments of the
same length but one shifted from the other. Consequently,
we have:

d(1)
m =

1
K

ln

∣∣∣Ȳ (1)
m (ω(2)

m )
∣∣∣

∣∣∣Ȳ (0)
m (ω(2)

m )
∣∣∣

(21)

where Ȳ
(0)
m (λ) and Ȳ

(1)
m (λ) are the respective FTs of the

signals:

ȳ
(0)
m (n)

4
= ȳm(n)w(n) for n = 0, . . . , Nm −K − 1

ȳ
(1)
m (n)

4
= ȳm(n)w(n−K) for n = K, . . . , Nm − 1

where K is a time offset chosen to be small with respect
to the analysis duration. w(n) is a smooth window which
is designed for isolating the pole from its conjugate. We
choose here a Blackman window.

Time delay estimation: The delay parameter is estimated
via a ’model-data’ matching criterion. Therefore, in each
subband m, we resolve criterion (15) with respect to the

time-delay. Given an estimate of the complex pole ẑm
4
=

eiω(2)
m +d(1)

m and optimizing first over the amplitude and then
over t leads to:

tm = arg min
t∈V(τm)

f(d(1)
m , t) where f(d, t)

4
= ||Π⊥

G (d, t)ym||2

(22)
where Π⊥

G (d, t) = IN − GG† is the orthogonal projector

onto the kernel of G(ẑm, t)
4
= HmG(ẑm, t) the filtered ma-

trix of the m-th signal pole. G† is the pseudo-inverse of G
and V(τm) is a given time interval centered at τm−P . We
solve (22) by a simple enumeration of the possible values
in V(τm), so as to reduce the search cost.

Back-estimation of the damping factor: Once we estimate

the delay tm we can sharpen the damping factor estima-
tion using a nonlinear optimization technique such as New-
ton’s algorithm [5]. The back-estimation (using Newton’s
method) of the damping factor corresponds to:

d(2)
m = d(1)

m −
(

∂2f

∂d2
(d(1)

m , tm)
)−1

∂f

∂d
(d(1)

m , tm), (23)

which can be iterated to further improve the estimation of
the damping parameter.
We give the expressions of the first and the second order
derivative with respect to the damping factor as:

∂f
∂d (d, tm) = 2<e{yT

mΠ⊥
GG′G†ym}

∂2f
∂d2 (d, tm) = 2<e{yT

m(Π⊥
G (G′′G† + G′G†′)
−(G′G† + GG†′)G′G†)ym}

(24)
where G†′ = (GHG)−1(GH′−(GH′G+GHG′)(GHG)−1) and
G′ (respectively G′′) denotes the first (respectively second)
order derivative of G with respect to the parameter d.
In order to simplify the above re-estimation procedure, we
use in our simulation a Newton implementation based on
the real-valued (instead of complex) vectors which lead to
vector instead of matrix manipulations according to:

d(2)
m = d(1)

m − f̃ ′(d(1)
m )

f̃ ′′(d(1)
m )

(25)

where f̃(d)
4
= (GT

d ym)2 with Gd = (Gd(0), · · · ,Gd(N−1))T

and:

Gd(n)
4
= ed(n−tm) cos (ω(2)

m (n− tm) + φ̂m)ψ(n− tm). (26)

where φ̂m represents an estimate of the phase parame-
ter given by 2φ̂m = ∠αm(1) − ∠αm(2) where αm =
(αm(1) αm(2))T is estimated as shown in subsection B.2
using ẑm and ∠ denotes the phase argument.

A.5 Complex amplitude estimation

In the context of DDS-B algorithm, we proceed to the
amplitude and phase parameter estimation according to
the linear least squares criterion:

min
α
‖x−G(ẑ, t)α‖2 (27)

where x = (x(0) . . . x(N−1))T is the observed signal vector
and:

G(ẑ, t) =
[
G(ẑ1, t1) G(ẑ2, t2) . . . G(ẑM , tM )

]
(28)

is a block-Vandermonde matrix with ẑm
4
= eiω(2)

m +d(2)
m and

α = (αT
1 . . . αT

M )T . We finally extract the M real ampli-
tudes {am} and the M phases {φm} from:

α = G(ẑ, t)†x (29)

according to 2am = |αm(1)|+|αm(2)| and 2φm = ∠αm(1)−
∠αm(2). Note that, if needed, it is possible to use a real
formulation [3] to reduce the computational complexity.
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B. DDS-D algorithm: ”Deflation approach”

We propose here a second algorithm which is based on a
Fourier-type iterative scheme with deflation to enforce the
1-DDS separation. This approach presents a lower com-
putational complexity than the DDS-B approach. Such
iterative schemes are very efficient and have been consid-
ered in the literature in many signal processing problems
and in particular in the context of the Matching-Pursuit
technique [11], [14].

Fig. 6. ”Deflation” architecture

Consider the m-th residual signal defined by the recur-
rent equation:

xm(n)
4
= xm−1(n)− pm(n) = x(n)−

m∑

j=1

pj(n) (30)

where x0(n) = x(n). Contrary to the DDS-B algorithm,
we determine a primary angular frequency ω

(1)
m estimation

by simply maximizing the FT modulus of the m-th resid-
ual signal according to ω

(1)
m = maxω∈[0,π] |Xm(ω)| where

Xm(ω) is the FT of the signal xm(n). Note that for the
deflation process, the signal pj(n) in expression (30) should
be known, which means that its corresponding amplitude,
phase and damping factor have been estimated. This is
detailed in the next two following sections.
We denote the m-th synthetic signal by x̂m(n)

4
=∑m

j=1 pj(n) and from expression (30), we have:

ε̃m
4
=

N−1∑
n=0

|xm(n)|2 =
N−1∑
n=0

|x(n)− x̂m(n)|2. (31)

This process is stopped when the energy of the residual
is small enough, according to ε̃m ≤ ε.

∑N−1
n=0 |x(n)|2 where

ε > 0 is a chosen threshold.
For estimating the sinusoid parameters, we use the above

deflation technique in conjunction with subband filtering to
enforce the separation of the different components. In this
algorithm, we applied the modulated raised cosine filter,
defined in section IV-A.2, but in the context of DDS-D
algorithm, ie. it is the m-th residual signal which is filtered
such as:

ym(n)
4
= hm(n) ∗ xm(n). (32)

After that, we perform the angular frequency back-
estimation and damping factor estimation according to the

methodology of section IV-A.4 and the time-delay estima-
tion and damping factor back-estimation as described in
previous sections.

Moreover, we have to estimate the complex amplitude
(amplitude and phase parameter) of the subband signal
according to the linear least squares criterion (19). Define

ẑm
4
= ed(2)

m +iω(2)
m . We extract the real amplitude am and the

phase φm in terms of the complex amplitude associated to
the m-th subband signal:

αm = S−1
m (JmG(ẑm, τm))† ȳm. (33)

V. Cramer-Rao Bound for the DDS model

The CRB for the parameter estimation of a DDS process
is derived in this section since it is useful as a touchstone
against which the efficiency of the considered estimators
can be tested. The CRB has been investigated in [23] for
an undamped sinusoidal process and in [28] for a damped
sinusoidal process. We derive, here, the conditional CRB
for the more general DDS case. More precisely, the CRB
is computed conditionally to the exact knowledge of the
discrete-valued time-delay parameters.

Consider a real-valued M -DDS process corrupted by
zero-mean white gaussian noise e(n):

x(n) = x̂(n) + e(n), n = 0, . . . , N − 1 (34)

where x̂(n) is given by (4). Let γ = [dT , ωT , φT ,aT ]T be
the vector of desired damping factor, angular frequency,
phase and amplitude parameters where d = (d1, . . . , dM )T

and ω,φ and a are defined similarly. The time-delay pa-
rameter vector t = (t1, . . . , tM )T is omitted here as it is
assumed perfectly known (see discussion in section VI).
Under the above assumptions, the logarithmic likelihood
function can be expressed as:

Lt(x|γ, σ2) = −N

2
log(2π)−N log σ2 − ‖x− x̂‖2

2σ2
(35)

where σ2 denotes the noise power. The CRB’s of the cor-
responding parameter estimators are given by the diagonal
elements of the inverse of the Fisher Information matrix:

[F t(Θ)]i,j
4
= E

[
∂Lt(x|Θ)

∂Θi
.

∂Lt(x|Θ)
∂Θj

]
(36)

with Θ = [γT , σ2]T . Before proceeding, we first show that
the CRB for γ is decoupled from the CRB for σ2.

Lemma: Under the above assumptions, the elements
of the Fisher Information matrix F t(γ, σ2) corresponding
to the cross terms of γk and σ2 are zero.
The proof of this lemma is given in the appendix. This
lemma allows us to ”ignore” the noise parameter and com-
pute only the Fisher Information sub-matrix corresponding
to the desired parameters γ.

Corollary: The CRB for the variance of any unbiased
estimate of γ (conditionally to the perfect knowledge of the
time-delay parameter vector t) is given by:

[CRBt(γ)]i,j = σ2

[
∂x̂T

∂γi
.

∂x̂

∂γj

]−1

(37)
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where ∂x̂
∂γi

4
=

(
∂x̂(0)
∂γi

∂x̂(1)
∂γi

. . . ∂x̂(N−1)
∂γi

)T

is given by:

∂x̂(n)
∂ai

= edi(n−ti) cos (ωi(n− ti) + φi)ψ(n− ti)

∂x̂(n)
∂di

= ai(n− ti)edi(n−ti) cos (ωi(n− ti) + φi)ψ(n− ti)

∂x̂(n)
∂ωi

= −ai(n− ti)edi(n−ti) sin (ωi(n− ti) + φi)ψ(n− ti)

∂x̂(n)
∂φi

= −aie
di(n−ti) sin (ωi(n− ti) + φi)ψ(n− ti)

VI. Discussion

We provide here some comments to get more insight onto
the proposed DDS model and related parameter estimation
algorithms and CRB.
• The numerical cost of the DDS-B is essentially equal to
the subspace decomposition cost plus the subband filtering
cost plus the least-square resolution of equation (28). This
leads to a total complexity of O(N3 + MN log N + NM2).
On the other hand, the complexity of the DDS-D is essen-
tially dominated by the subband filtering cost and Fourier
transforms for angular frequency and damping factor es-
timation. Therefore, the total complexity of DDS-D is of
O(MN log N) only. Note that, in both cases, the cost of the
Newton algorithm is O(NM) which is negligible in compar-
ison with others implementation costs.
• In section V, we did chose to compute a bound condition-
ally to the exact knowledge of delay parameters because
the latter are discrete-valued and consequently the com-
putation of a (non-conditional) bound leads to intractable
derivations. On the other hand, choosing time-delay pa-
rameters with continuous real valued leads to the following
model indeterminacy: for n = 0, . . . , N − 1, we have:

aed(n−t) cos(ω(n− t) + φ)ψ(n− t) =
aed(n−(t+τ)) cos(ω(n− (t + τ)) + φ + τω)ψ(n− (t + τ))

for any τ such that dt + τe = dte where d.e is the integer
part.
• We observed in our simulation a relatively small distance
(especially when the damping factor is low) between our es-
timation method performances and the CRB for low and
moderate values of the SNR. However, the gap becomes
significant for high SNRs (typically over 20 dB). This is
due to the fact that at high SNRs, the performances are
essentially bounded by the approximation errors of our es-
timation method. Indeed, we assume implicitly that the
rejection filter is perfect and hence in each subband only
one sinusoidal component persists. Due to the angular fre-
quency estimation errors and the finite duration of the re-
jection filter, this assumption is only approximatively sat-
isfied.
• The DDS model might be slightly modified in such a
way to allow a continuous variation of the delay parame-
ters. This can be done for example by using a soft DDS
model where the Heaviside function used in the signal mod-
eling is replaced by an appropriate continuous function that

decreases smoothly to zero (contrary to the Heaviside func-
tion that is discontinuous at zero). This model has the par-
ticular advantage to allow exact computation of the CRB
in terms of all DDS parameters including the time-delays.
This point is still under investigation and will be the focus
of future work.
• We can notice a certain analogy between the compo-
nent cancellation schemes used in DDS-B and DDS-D al-
gorithms and the PIC (Parallel Interference Cancellation)
and SIC (Sequential Interference Cancellation) schemes
used in CDMA (Code Division Multiple Access) communi-
cation systems [6], [26]. Several studies of the PIC and SIC
exist in the literature and some of them can be adapted to
our context. In particular, we can use a multi-stage can-
cellation procedure to improve the DDS parameter estima-
tion.

VII. Simulations

A. Synthetic signal

We choose a 2-DDS non-orthogonal components, ie.,
|t2 − t1| is small. In this case, a time-delay estima-
tion/detection based on the variation of the signal envelope
is inefficient. We show in figure 7-a and b the test signal
and the two components.

(a) (b)
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−0.5

0

0.5
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1.5

Fig. 7. (a), (top) first 1-DDS, (bottom), second 1-DDS, (b) sum of
the two components

A.1 Parameter estimation analysis

The algorithms are compared in terms of parameter es-
timation accuracy through the Normalized Mean Square
Error (NMSE), evaluated for several Signal to Noise Ra-
tios (SNR) using 100 Monte-Carlo trials. The NMSE is
defined by the ratio of the square difference between the
true parameter value and its estimated value over the
square value of the true parameter. Additionally, we de-
fine SNR(x̂, σw) = 10 log10(||x̂||2/σ2). In relation to
figures 8 and 9, we can say that the DDS-B algorithm out-
performs the DDS-D algorithm in this simulation context
for the damping factor estimation. In figure 10, we have
represented the time-delay estimation for each experiment
(50 × 8 = 400). So every 50 experiments, we increase the
SNR by 5 dB. Note that the true time-delay values are
65 and 80 and we can point out the capacity of the pro-
posed algorithms to correctly estimate these parameters,
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Fig. 8. Angular frequency estimation performance, (a) first compo-
nent (m = 1), (b) second component (m = 2). The solid line curve
corresponds to the angular frequency CRB.
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Fig. 9. Damping factors estimation performance, (a) first compo-
nent (m = 1), (b) second component (m = 2). The solid line curve
corresponds to the damping factor CRB.

especially at SNR higher than 15 dB. Finally, we can note
that the performances of these two algorithms are quite far
from the ideal performances of the CRB. We can improve
the efficiency of these algorithms by considering a joint
Newton algorithm in ω, d, φ which can be done at a slight
increase of the computational complexity. This improve-
ment has been observed for the synthetic data of figure 7.
However, for percussive audio signals of the next section,
the observed performance gain due to joint Newton algo-
rithm is negligible. Consequently, we have kept a simple
Newton on the parameter d only since this approach repre-
sents a good trade-off between computational complexity
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Fig. 10. Time-delays estimation for each experiment (400) (true
values: 65 and 80), (a) DDS-B, (b) DDS-D

and performance.

B. Typical audio transient signal

In the context of percussive audio modeling, we choose to
apply the proposed algorithms on a castanet onset which
is a typical audio transient signal (see the top of figure
11-a). In the middle and bottom plots, we show 20-
order DDS-B and DDS-D models, respectively. The cho-
sen criterion is the SMNR (Signal to Modeling Noise Ra-
tio) which is a time matching criterion between the syn-
thesized waveform and the original signal. Note that the
SMNR in the context of audio modeling is defined accord-
ing to SMNR(x, r) = 10 log10(||x||2/||r||2) in dB where
r = x − x̂ is the residual audio signal. Then, we obtain
11.2 dB for the DDS-B algorithm and 12.7 dB for the DDS-
D algorithm. This result is confirmed by the observation
of figure 11-b. Indeed, we can see that the DDS-B algo-
rithm estimates several time-delay parameters lower than
223 samples which is the true onset in the original signal as
indicated in figure 11-a. Consequently, we observe in figure
11-a (middle), a small pre-echo (distortion before the sound
onset [2], [8]). Inversely, the DDS-D modeling presents a
total absence of pre-echo and a good reproduction of the
onset dynamic.
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0 500

−0.5

0

0.5

0 500

−0.5

0

0.5

0 100 200 300 400 500

−0.5

0

0.5

223 

2 4 6 8 10 12 14 16 18 20
200

250

300

350

400

450

component index : m

ti
m

e
−

d
e

la
y
 

DDS−D
DDS−B

223 

Fig. 11. (a), (top) original castanet onset (normalized amplitude),
(middle) 20-order modeling by the DDS-B algorithm, (bottom) 20-
order modeling by the DDS-D algorithm,(b) time-delay estimation
with respect to the index component.

VIII. Conclusion

In this article, we presented a non-stationary paramet-
ric Damped and Delayed Sinusoidal (DDS) model. This
model can be seen as a generalized sinusoidal model in
the sense that we add damping factors and delay parame-
ters. These modifications enable efficient modeling of any
event in the time-frequency plane. We present two model
parameter estimation algorithms applied to a noisy fast
time-varying synthetic signal and to a typical audio tran-
sient signal. The first algorithm, named DDS-B, is based
on a subspace approach and the exploitation of the use of a
filter-bank scheme. The second algorithm, named DDS-D,
uses a Fourier-type algorithm in conjunction with a defla-
tion scheme. Afterwards, we estimate and back-estimate
the model parameters in each subband. Finally, we de-
rive the expression of the Cramer-Rao Bound for the DDS
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model. A performance analysis shows the usefulness and
validity of the proposed approach.

Appendix

Proof of the Lemma

We prove here that:

∀ i, E

[
∂Lt(x|γ, σ2)

∂γi
.

∂Lt(x|γ, σ2)
∂σ2

]
= 0.

For that, consider the equality:

E

[
∂Lt(x|γ, σ2)

∂γi
.

∂Lt(x|γ, σ2)
∂σ2

]
= −E

[
∂2Lt(x|γ, σ2)

∂γi . ∂σ2

]
.

where:

∂2Lt(x|γ, σ2)
∂γi . ∂σ2

=
1
σ4

(x− x̂)T ∂x̂

∂γi
=

1
σ4

eT ∂x̂

∂γi

where e = (e(0) . . . e(N − 1))T denotes the noise vector.
The latter being of zero mean, we have:

E

[
∂2Lt(x|γ, σ2)

∂γi . ∂σ2

]
=

1
σ4

∂x̂T

∂γi
E[e] = 0 ¤
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