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Audio Modeling based on Delayed Sinusoids
Rémy Boyer and Karim Abed-Meraim

Abstract— In this work, we present an evolution of the
DDS (Damped & Delayed Sinusoidal) model introduced
within the framework of the general signal modeling. This
model is named the Partial Damped & Delayed Sinusoidal
(PDDS) model and takes into account a single time delay
parameter for a set (sum) of damped sinusoids. This modi-
fication is more consistent with the transient audio modeling
problem. We show the validity of this approach by compari-
son with the well-known EDS (Exponentially Damped Sinu-
soids) approach. Finally, the performances of three model
high-resolution parameter estimation algorithms are com-
pared on synthetic fast time-varying signals and on two typ-
ical audio transients.

Keywords— Transient audio compact representations,
damped and delayed sinusoids, high-resolution method

I. Introduction

DURING the decade, many efforts have been made to
achieve an efficient parametric representation of an

audio signal for very low bite-rate compression purposes
[1]. More precisely, the audio transient compact represen-
tation by parametric models is an up-to-date and difficult
problem [2], [3], [4]. Basically, in an audio signal, we have
two important features : the spectral content and the time
waveform. For some kind of quasi-stationary signals, the
most important is to well represent their spectral varia-
tion without considering too much the variation of the time
waveform [3], [4], [5]. In the context of transient audio com-
pact modeling, the signal time waveform is the main audio
feature and have to be represented as best we can, i.e.,
with minimum modeling errors. In the sequel, we define a
transient signal as a signal whose support duration is short
compared to the analysis range.
Parametric EDS (Exponentially Damped Sinusoidal)
model has been widely studied in the signal processing com-
munity [6], [7], [8]. However, its application to signal com-
pression is quite recent [9], [10], [12], [13], [14], [15], [16],
[17]. This approach comes as a natural evolution of the si-
nusoidal model introduced by McAulay & Quatieri [5]. In
fact, sinusoidal models assume that model parameters have
slow variation regarding the analysis time range. Yet, this
is not always consistent with the previous transient signal
definition and when processing such diverse audio signal as
speech or music.
EDS model and its extensions [10], [11] permit more ap-
propriate fast time-varying signal modeling since each si-
nusoidal component amplitude is allowed to vary exponen-
tially over time. Based on this property, these models
present a growing interest in the audio community since
they lead to compact (sparse) representations for almost
the totality of audio signal. However, this model becomes
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ineffective on sharp transient signals like some percussive
sounds (castanets, gong, triangle, ...) [9], [18], [19]. Mod-
eling characteristic artifacts are created with two effects.
First, the apparition of a pre-echo signal [4], [20], i.e, a dis-
tortion before the sound onset. Second, the signal dynamic
is badly reproduced. These phenomena appear to be very
prejudicial to the auditory perception of this sound cate-
gory. Moreover, the onset part is of extreme importance
for the ”naturalness” of the audio signal [21].
Many approaches have been considered to solve this prob-
lem. These can basically be classified in four cate-
gories : the first is based on an irregular segmentation
of the time axis [19], [22], the second exploits the time-
frequency duality principle and the parametric modeling
of a frequency-transformed signal [23], [24] and the third
uses the ”Matching-Pursuit” algorithm and the ”Atomic”
formalization to expand the signal on a redundant family
(Gabor, EDS, ...) [15], [16]. Finally, an original method is
presented in [13]. Recently, the parametric model, called
DDS (Damped & Delayed Sinusoids) was presented in [18]
as a generalization of the sinusoidal and EDS models. In
this work, we make two realistic assumptions :
(A.1) A percussive audio signal can be seen as a set (sum)
of damped sinusoids, all having a same time-delay.
(A.2) Two successive audio transients are at ”sufficient”
relative distance one from an other to perform an efficient
time-delay estimation/detection based on the signal en-
velop variation.
In this context, we modify the general DDS model and in-
troduce the Partial Damped & Delayed Sinusoidal (PDDS)
model. This model can be seen as a generalization of the
EDS model and a particular case of the DDS one.
After that, we propose model parameter High-Resolution
(HR) estimation algorithms, named PDDS-D1 and PDDS-
MC2 and we explain why it is necessary to use HR methods
in the audio transient modeling problem context. Finally,
we show the efficiency of this approach on synthetic fast
time-varying signals and on two typical audio transients.

II. Delayed sinusoidal models

A. PDDS model definition

In [18], we presented the M -order parametric DDS
model. In this approach, every waveform 1-DDS possesses
a delay parameter : {tm}1≤m≤M . Yet, in an audio model-
ing application, it is sufficient to consider a small number K
of transient signals on a N -sample analysis such as K ¿ M
(typically, K < 3 for N = 512 samples). We note k the
index of the k-th transient signal and we fix

1D stands for Deflation.
2MC stands for Multi-Channel.
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M
4
=

K∑

k=0

Mk (1)

where Mk is the modeling partial order to represent the k-
th transient signal with a support of Nk = N − tk samples.
We denote {t0, t1, . . . , tK+1} the delay parameter set with
t0 = 0, tK+1 = N − 1, tk < tk+1, 0 ≤ tk ≤ N − 1 and
Bk = tk+1 − tk. In relation with assumption (A.1), we
define the real Mk-PDDS model for n = 0, . . . , N − 1, by :

x̂k(n)
4
=

Mk∑
m=1

am,kedm,k(n−tk) . cos(ωm,k(n−tk)+φm,k) . ψ(n−tk).

(2)
In the previous expression, dm,k is the (negative) damping
factor, ωm,k is the angular-frequency and am,k and φm,k are
respectively the m-th real amplitude and the m-th initial
phase of the k-th Mk-PDDS model. The poles are defined
by zm,k = edm,k+iωm,k . Moreover, the Heaviside function
ψ(n) is defined by ”1” for 0 ≤ n ≤ N−1 and ”0” otherwise.
Note that there is a unique delay tk for a set (sum) of Mk

EDS waveforms (see figure 1).

single time−delay : t
k
 

M
k
 EDS waveforms

analysis time−segment 0 N−1 

Fig. 1. Mk-PDDS model : one single time-delay for a set (sum) of
Mk EDS waveforms.

Now, we can write the M -PDDS model expression as the
sum of (K + 1) partial models, according to :

x̂(n)
4
=

K∑

k=0

x̂k(n). (3)

B. Models Equivalence (ME)

If we assume that the signal x̂k(n) is time shifted of the
quantity ” + tk”, we have, for n = 0, . . . , Nk − 1 :

x̂k(n + tk) =
Mk∑

m=1

am,kedm,kn . cos(ωm,kn + φm,k). (4)

We recognize the expression of the real Mk-EDS model de-
fined on a Nk-sample support. Moreover, we consider a
second signal on the Bk-sample support {tk, . . . , tk+1− 1},
defined by x̂k(n+tk) where 0 ≤ n ≤ Bk−1. The latter can

be seen as a truncated version of the signal of expression
(4) by discarding the Nk − Bk last samples. This opera-
tion is made in a view to eliminate the perturbation of the
(k+1)-th transient signal. We conclude that if we have the
knowledge of the delay tk, then the time translation of the
quantity ”+ tk” of the Mk-PDDS model and the time sup-
port reduction (Nk to Bk) lead to consider an analysis by a
Mk-EDS model on a Bk (≤ Nk) sample support. Once the
model parameter estimation procedure is accomplished, we
reconstruct the Mk-PDDS model by making the ”inverse”
operation, i.e., a time support extension (Bk to Nk) and a
translation of the quantity ”− tk”. We define, in a similar
way, the tk-sample shifted audio signal by xk(n) = x(n+tk)
for 0 ≤ n ≤ Bk − 1.

III. PDDS model parameters estimation

A. The need for High-Resolution (HR) method

Recalling that Bk is the effective analysis segment size of
the k-th transient signal. This quantity can be quite small
if the time-delay or the damping-factors are large. In these
cases, it leads to a frequency resolution problem. Indeed,
the Fourier resolution is of order 1/Bk for a Bk-sample
segment. We can realize that the frequency resolution can
be too coarse to make an efficient spectral analysis based
on a Fourier-type method [11], [23]. Consequently, we use
a HR method to jointly estimate the angular-frequencies
and the damping-factors. These methods allow to over-
come the Fourier resolution and perform well on very short
time segments. More precisely, we will use the Kung’s al-
gorithm [25]. This method is based on the fundamental
shift-invariance property of the signal basis.
Note that in the audio compression context, the total model
order M is not estimated but fixed to reach a target bit-
rate.

B. Delays estimation/detection

A transient signal can be seen as a very fast variation
of the power of its envelop. So, in relation with assump-
tion (A.2), it seems natural to compute the envelop of
the audio signal and to design a power transient detector
based on the envelop variation. Consequently, we consider,
here, a modified version of the detector, introduced in [26].
This modification consists of applying the detector on the
smoothed signal envelop, rather than the audio signal. This
improves slightly the detection/estimation performance.

B.1 Smoothed envelop

The smoothed envelop of the signal is computed by con-
sidering the median filtering of the modulus of the analyt-
ical signal νP (n). More precisely, we have :

νP (n)
4
= |ν(n)| . fP (n) (5)

where the analytical signal is defined by ν(n) = x(n) +
iΨx(n), Ψx(n) being the Hilbert transform of the audio
signal and fP (n) is a median filter of length 2P . Note
that using a non-linear median filter allows to obtain a
smoothed envelop of the signal, i.e., without some awkward
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oscillatory phenomena. On the other hand, this filter with
short duration, typically P = 5 or less, keeps unchanged
the global variation of the signal envelop.

B.2 The power transient detector

The second operation is to expose a transient detector
which is based on the smoothed envelop power variations
between two temporal hopping windows. The used formal-
ism is the following :

ϑ(n)
4
=

1
J

log
( ||νF (n)||22
||νB(n)||22

)
||νF (n)||22 (6)

where νB(n) = (νP (n− J) . . . νP (n− 1))T and νF (n) =
(νP (n + 1) . . . νP (n + J))T . The vector νB(n) (respec-
tively νF (n)) represents the Backward (respectively For-
ward) time samples with respect to the analysis time n. J
is the analysis depth. Note that the detector which was
introduced in [26] works directly on the audio signal and
not on the signal envelop. Consequently, our approach is
an improve version of this detector.

B.3 Strategy of detection

In an audio transient detection application, two cases
can occur.

B.3.a Single detection. The analysis segment is short
enough to suppose that on its duration, there is in most one
transient signal. This case is easily handled by maximizing
the criterion ϑ(n), such as :

t1 = arg max
0≤n≤N−1

ϑ(n). (7)

In our application and for an analysis duration between
128 and 512 samples, respectively 4 ms and 16 ms, we can
reasonably suppose the presence of one transient signal at
most during the analysis period.

B.3.b False and multiple detections. The first case is
the false detection event, i.e., the detector indicates the
presence of a transient signal but visually, it is nothing.
The second case is considered when the analysis segment
is long enough to contain multiple transient signals. These
two cases are handled with the introduction of a threshold
st. Then, the estimated time-delays are the K local max-
imum values (larger than st) of the criterion ϑ(n). More
precisely, the used strategy is the one introduced in [26].

C. PDDS-D algorithm : Deflation approach

This algorithm, summarized in Table I, is based on the
following three procedures.

C.1 Partial orders allocation

In the introduction, we have mentioned that the most
important feature for a percussive signal is its time wave-
form. Moreover, generally, the part before the onset has a
weak power and is not very important for the naturalness
of the transient. Inversely, the onset and the decreasing
part have strong powers and are the most important parts

of this kind of signal. Then, we choose to estimate the
partial orders by the following empirical approach : small
partial orders will be associated to low power signals since
they do not need an accurate modeling. Inversely, higher
power signals are associated to larger partial orders. Con-
sequently, we introduce γ ∈ R according to :

Mk = dγ . εke (8)

where d.e denotes the integer part and εk is the power of the
Bk-sample audio signal xk, according to εk = ||xk||22/Bk.
Afterwards, we fix :

γ =
M + 1

ε0 + ε1 + . . . εK
. (9)

C.2 Poles and complex amplitudes estimation

We begin by estimating the delays {tk} and the partial
orders {Mk} according to the previous methodologies. The
PDDS-D algorithm principle is as follows : for each signal
xk, we estimate the signal poles {zm,k}1≤m≤Mk

, according
to the HR method and the complex amplitude parameters
{αm,k = am,keiφm,k}1≤m≤Mk

by resolution of the following
linear least squares criterion :

arg min
αk

||xk − x̂k||2 = arg min
αk

||xk −Z
(Bk)
k αk||2 (10)

where :

Z
(Bk)
k =

[
ζ1,k ζ∗1,k . . . ζMk,k ζ∗Mk,k

]
(11)

is a Bk × (2Mk) Vandermonde matrix with ζm,k =
(1 zm,k . . . zBk−1

m,k )T . We, also, define αk = (α1,k, α∗1,k, . . . , αMk,k, α∗Mk,k)T .
The solution of criterion (10) is :

αk = Z
(Bk)†
k xk (12)

where † denotes the Moore-Penrose pseudo-inverse [27].
We, then, can synthesize the Mk-EDS model x̂k(n + tk).
After that, we build the Mk-PDDS N -sample signal x̂k(n)
by a time support extension (Bk to Nk) and a ”− tk” shift-
ing of the Mk-EDS model.

C.3 Deflation procedure

In a deflation procedure context, the algorithm begins
by initializing the first residual signal r0(n) = x(n). At
the k-th iteration and for the k-th residual signal rk(n),
we estimate the Mk-EDS model : r̂k(n + tk) and we re-
construct the Mk-PDDS signal, r̂k(n). Then, we add it to
the synthesis signal x̃k−1(n). This operation is named the
synthesis stage. And finally, we remove its contribution to
the last residual signal rk(n) to compute the next residual
signal rk+1(n). We summarize these two stages by :

x̃k(n)
4
= x̃k−1(n) + r̂k(n) synthesis stage

rk+1(n)
4
= rk(n) − r̂k(n) analysis stage.

(13)
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(1) Delays estimation : {0, t1, . . . , tK , N − 1}
(2) Partial orders allocation : {M0, . . . ,MK}
k = 0
(1) Initialization : r0(n) = x(n)
(2) estimation of the M0-EDS ME−→ M0-PDDS : r̂0(n)
(3) synthesis : x̃0(n) = r̂0(n)
k = 1
(1) analysis : r1(n) = r0(n)− r̂0(n)
(2) estimation of the M1-EDS ME−→ M1-PDDS : r̂1(n)
(3) synthesis : x̃1(n) = x̃0(n) + r̂1(n)
...

...
...

...
k = K
(1) analysis : rK(n) = rK−1(n)− r̂K−1(n)
(2) estimation of the MK-EDS ME−→ MK-PDDS : r̂K(n)
(3) synthesis : x̃K(n) =

∑K
k=0 r̂k(n)

TABLE I

PDDS-D Algorithm

D. PDDS-MC algorithm : ”Multi-Channel” approach

We introduce, here, a second algorithm named PDDS-
MC. All transients are treated jointly and thus only one
single data matrix factorization is performed. Two versions
of PDDS-MC algorithm are presented.

D.1 PDDS-MC1 algorithm

D.1.a First Hankel matrix factorization. It is possible to
consider the analyzed segment as a set of ”multi-channel”
signals. In this approach, we estimate jointly the damping-
factor and the angular-frequency parameters for the (K+1)
signals {x̂k(n+ tk), n = 0, . . . Bk−1}0≤k≤K . We define the
non-square Lν×Lk Hankel matrixH(x̂k) such as Lν+Lk =
Bk. We introduce the block-Hankel matrix according to :

H(x̂)
4
=

[H(x̂0) H(x̂1) . . . H(x̂K)
]
. (14)

Its rank is 2M under condition that all the poles are dif-
ferent and without modeling noise. Every matrix H(x̂k),
represents the Hankel data matrix of the k-th channel of Bk

samples size and verifies a factorization in a Vandermonde
basis [25]. Consequently, H(x̂) admits the following fac-
torization :

H(x̂) = Θ . Λ1 (15)

where :

Θ =
[
Z

(Lν)
0 Z

(Lν)
1 . . . Z

(Lν)
K

]
(16)

and Λ1 is a non-singular matrix. We notice that factor-
ization (15) highlights the row-shift invariance property of
matrix Θ which is a block-Vandermonde matrix. It is thus
possible to use a HR method on H(x̂) and to jointly de-
termine the poles.

D.1.b Size of the block-Hankel data matrix. The choice of
the parameters Lν and {Lk} is important since it influences
the estimation performances of the PDDS-MC1 algorithm.
In [6], it is shown that it is necessary to choose the row
size Lν of the data matrix such as N/3 ≤ Lν ≤ 2N/3.
Moreover, we have Lν + Lk = Bk. Consequently, the Lk

parameter has to satisfy Bk − 2N/3 ≤ Lk ≤ Bk − N/3.
This condition implies a minimal bound of the channel size
Bk > N/3. By considering the sum over k of the previ-
ous expression, we must have K < 2. In other words, to
obtain maximum performance, the number of transient on
the analysis segment must be 1. In the context of the tran-
sient audio modeling this is not a restrictive condition. In
case of multiple transients, we fix Lk = mink 2Bk/3.

D.2 PDDS-MC2 algorithm : Second Hankel matrix factor-
ization

Another approach is to consider the (Bν − Bk)-sample
zero-padded signals x̂

(zp)
k with Bν = maxk Bk, according

to x̂
(zp)
k = [x̂T

k 0T
Bν−Bk

]T . Based on the properties of the
Hankel operator, we have :

H
(

K∑

k=0

x̂
(zp)
k

)
=

K∑

k=0

H(x̂(zp)
k ) ≈ Θ . Λ2 (17)

where :

Λ2 =
[
Z

(Lν)
0 Γ0 Z

(Lν)
1 Γ1 . . . Z

(Lν)
K ΓK

]
(18)

with Γk = diag(αk) and Bν = 2Lν (square Hankel ma-
trix). Due to the zero-padding, factorization (17) is only
an approximation. However this approximation does not
affect much the performance of the method. Note, we have
to satisfy the constraint 4M ≤ Bν .

D.3 Poles processing

The 2M poles are estimated in the following manner :

{zm,k} = λ2M

{
U

(2M)†
↓ U

(2M)
↑

}
, ∀m, ∀k (19)

where U (2M) is the matrix containing the 2M left singular
vectors of H(x̂) or H(x̂), λ2M{.} is the set of 2M eigenval-
ues and ↓ (respectively ↑) stands for deleting the bottom
(respectively top) row. In presence of audio data (noisy
data), we, simply, substitute xk(n) for x̂k(n).

D.4 Filtering effect at the poles level

Let us notice that Θ, by definition, is (2M)-rank de-
ficient matrix. If we assume that there exists J(< M)
identical poles which are simultaneously present in several
channels then the rank of matrix Θ decreases to 2(M −J).
It follows when we decompose H(x̂) or H(x̂) through the
rank-revealing factorization like the Singular Value Decom-
position (SVD) [27], that we consider a 2(M − J) dimen-
sional Signal basis. For real data matrix, H(x) or H(x),
we have :
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rankδ

(
U (Lν) . diag{σ1 . . . σLν}

)
= 2(M − J) (20)

where {σ`}1≤`≤Lν
is the singular value set and rankδ(.)

stands for the numerical rank3. According to expression
(20), we conclude that it is impossible to estimate several
times the same pole, contrary to the PDDS-D algorithm.
This property can be understood as a ”filtering” property
of the poles stemming from adjoining channels.

D.5 Pairing operation

For the two PDDS-MC methods, there is a pairing
problem between the time-delays {tk}0≤k≤K and the cou-
ples {ωs, ds}1≤s≤M . In other words, we have to asso-
ciate the right time-delay to the right couple of angular-
frequency and damping-factor. A simple way, to resolve
this problem is, first, to compute a ”collection” of wave-
forms gs(n) = edsn cos (ωsn + φs) from the set of esti-
mated couples {ωs, ds} and with φs = −atan(α2/α1) where
(α1 α2)T = [<e(ζs) =m(ζs)]†xk and, second, to maximize
over k the normalized correlation coefficient ρs,k between
each possible Bk-sample waveforms gs and the audio signal
xk. Then, for a given index s, we have :

arg max
k

ρs,k where ρs,k
4
=

|〈gs , xk〉|
||gs||2 . ||xk||2 (21)

and 〈., .〉 denotes the scalar product. Note that from ex-
pression (21), we can, easily, deduce the modeling partial
orders. Indeed, there exists a mapping between the set
1 ≤ s ≤ M and the set 0 ≤ k ≤ K, then the modeling par-
tial order Mk′ is the number of time that one component,
among M , index by s is associated to the current index k′,
i.e.,

Mk′ = card
{

1 ≤ s ≤ M, arg max
0≤k≤K

ρs,k = k′
}

(22)

where card{.} denotes the cardinal.

D.6 Complex amplitudes estimation

The complex amplitudes are determined by solving the
criterion :

arg min
{αk}

||x− x̂||22 (23)

where x is the N -sample audio signal and x̂ is the N -
sample PDDS model of order M . By considering J tk

=
[0Nk×tk

INk
]T , a matrix which adds tk rows of ”0”, we

give the solution of the previous criterion :




α0

α1

...
αK


 =

[
Z

(N)
0 J t1Z

(N1)
1 . . . J tK Z

(NK)
K

]†
x. (24)

3defined in [27] by the number of σ` ≥ δ where δ is a fixed (positive)
threshold.

IV. Fast-time varying signal modeling

A. Noisy synthetic signal

We consider a 100-sample noisy synthetic signal, accord-
ing to :

x = x̂ + σw =
1∑

k=0

xk + σw (25)

where x̂ is a 100-sample PDDS signal. We add a white,
Gaussian, unitary variance perturbation w. Note that the
variance of the random signal σw is σ2. The first part
of the simulation deals with the sum of two 1-PDDS with
separated time supports (see figure 2-a), i.e., the first com-
ponent has a sharp decreasing part (large damping-factor)
in such a way that the second component is practically not
disrupted. In this case, we will say that the two compo-
nents are quasi-orthogonal, such as 〈x̂k, x̂j〉 ≈ 0 for k 6= j.
The second part of the simulations is a study of the case
where the components are non-orthogonal (see figure 2-b),
i.e., 〈x̂k, x̂j〉 À 0.
The performance criterion is the Normalized Mean Square
Error (MSE) evaluated for several Signal to Noise Ra-
tios (SNR) using 100 ”Monte-Carlo” trials. The MSE
is defined by the ratio of the square difference between
the true parameter value and its estimated value over the
square value of the true parameter. Additionally, we define
SNR(x̂, σw) = 10 log10(||x̂||22/σ2).

(a) (b)
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Fig. 2. Synthetic signal, (a) Quasi-orthogonal components, (b) Non-
orthogonal components

A.1 Quasi-orthogonal case

We choose the following numerical values for the model
parameters. M0 = M1 = 1, ω1,0 = 1 rad, ω1,1 = 1.4 rad,
d1,0 = d1,1 = −0.1, t0 = 0, t1 = 50, a1,0 = a1,1 = 1 and
φ1,0 = φ1,1 = 0. This signal is plotted on figure 2-a. On
figures 3-a,b,c,d we expose the simulation results.
We can see that the PDDS-D and the PDDS-MC1 have
very close performances. Only, negligible differences can
be found between these two methods. For SNR higher
than 5 dB, the PDDS-D algorithm is slightly more efficient.
For SNR lower than 5 dB, this consideration is more mit-
igated. The PDDS-D presents better MSE values for the
angular-frequency estimations but we observe a collapse of
its performance for the damping-factor estimations at very
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low SNR. The PDDS-MC2 is clearly less efficient than the
two previous methods.
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Fig. 3. Normalized Mean Square Error (MSE) Vs Signal to Noise
Ratio (SNR) (a) ω1,0, (b) ω1,1, (c) d1,0, (d) d1,1.

A.2 Non-orthogonal case

We choose the following numerical values for the model
parameters. M0 = M1 = 1, ω1,0 = 1 rad, ω1,1 = 1.4 rad,
d1,0 = −0.01, d1,1 = −0.1, t0 = 0, t1 = 50, a1,0 = 1,
a1,1 = 3 and φ1,0 = φ1,1 = 0. This signal is plotted on
figure 2-b.
According to figures 4-a,b,c,d the PDDS-MC1 outperforms
the two other methods, especially at low SNR (≤ 10 dB).
This conclusion can be explained by considering the it-
erative scheme of the PDDS-D. Indeed, at low SNR, the
estimation error at an early stage induces additional errors
at the following ones. Inversely, for the PDDS-MC1, the
”joint” character of the algorithm allows to keep high per-
formance. In the non-orthogonal case, the PDDS-MC2 and
the PDDS-D algorithms show similar performances.

B. Real audio signals

We test and compare the PDDS-D and PDDS-MC algo-
rithms with the EDS approach on two 16 ms typical audio
transient signals : triangle and castanet onsets. The sam-
pling frequency is 32 kHz. Note that we have 4M parame-
ters for the M -EDS model and 4M + K for the M -PDDS
model. Moreover, according to our initial assumption, we
have K ¿ M . Consequently, in the context of paramet-
ric audio coding, the total number of model parameters is
almost the same for the two models.
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Fig. 4. Normalized Mean Square Error (MSE) Vs Signal to Noise
Ratio (SNR) (a) ω1,0, (b) ω1,1, (c) d1,0, (d) d1,1.

B.1 First typical transient audio signal : triangle

B.1.a Time modeling. For this simulation, we choose
a triangle onset since the attack has an extremely short
duration (less than 50 samples). For this reason, this signal
is extremely difficult to be efficiently modeled. We have
represented the original waveform on figure 5-a. We can
see on figure 5-b, the inefficiency of the EDS approach for
a 28-order modeling. Note that the oscillating part of the
signal is well represented but the dynamic onset is very low.
This observation is confirmed by the SNR values in table
II. Note that the SNR in the context of audio modeling is
defined according to SNR(x, r) = 10 log10(||x||22/||r||22) in
dB where r = x− x̂ is the residual audio signal. Inversely,
the PDDS approach presents much better performances as
we can see on figures 5-c,d,e and in table II.

SNR [dB] M0 / M1

PDDS-D 11.6 8 / 20
PDDS-MC1 9.8 9 / 19
PDDS-MC2 9.1 7 / 21
EDS 6.5 M = 28

TABLE II

SNR values and partial orders allocation

We conclude that the PDDS approach outperforms the
EDS approach and the PDDS-D algorithm shows the best
SNR.

B.1.b ”Time-frequency” analysis by filter-bank. Intro-
ducing a frequential aspect in the analysis, we use the
polyphase 32-band pseudo-QMF filter-bank of MPEG1-
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Fig. 5. (a) original triangle signal (normalized amplitude), (b) 28-
EDS modeling, (c) 28-PDDS-D, (d) 28-PDDS-MC1, (e) 28-PDDS-
MC2

audio [28] providing a uniform partition of the frequency
axis. The bandwidth of each subband is 500 Hz with a
32 kHz sampling frequency. In each subband, we use the
criterion SNR to characterize the ”time-frequency” model-
ing performance of the considered model. This criterion is
noted SNRTF . According to figure 6 the PDDS approaches
present, clearly, better SNRTF than the EDS approach.
We conclude that not only the onset is better represented
(see figure 5) but also the whole audio signal is closer of
the original signal, in the sense of the used criterion. This
consideration is confirmed by the average SNRTF over sub-
bands, in table III.

PDDS-D PDDS-MC1 PDDS-MC2 EDS
8.5 7.5 6.2 2.8

TABLE III

Average SNRTF [dB] over subbands

B.2 Second typical transient audio signal : castanets

In this part, we study the performances of the PDDS
model and its robustness to a small error on the time-delay
estimation.

B.2.a Time modeling. In this simulation, we fix the mod-
eling orders to 20. On the top of figure 7, we have repre-
sented the original signal. On the middle of figure 7, we
note the pre-echo4 phenomenon and the weak dynamic on-
set for the EDS modeling. On the bottom of figure 7 and
for the three methods, we can point out the total absence of

4Additional energy before the onset.
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Fig. 6. PDDS Vs EDS in terms of SNRTF criterion, (top) PDDS-D,
(middle) PDDS-MC1, (bottom) PDDS-MC2

pre-echo and the great reproduction of the onset dynamic.
The PDDS model outperforms, clearly, the EDS approach.

B.2.b Perturbation of the estimated time-delay. Here-
after, we study the robustness of the PDDS-D and PDDS-
MC algorithms to a perturbation ∆t of the time-delay ac-
cording to t1+∆t with ∆t = {−10, . . . , 10} on the castanet
onset signal. The estimated time-delay t1 for the castanet
signal is 223 samples. Figure 8-b presents the partial or-
der allocation for the three algorithms. On figure 8-a, we
can see that the PDDS-D algorithm is the more robust al-
gorithm, especially for time-delay under-estimation. The
PDDS-MC2 is the less robust to the time-delay variation
in the context of this simulation. The PDDS-MC1 shows
intermediate robustness. Note that for the three methods,
under-estimation is generally preferable to over-estimation.
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V. Algorithmic complexity and choice of the
algorithm

The complexity of the EDS algorithm can be evaluated
to O(NM2) if we use an iterative processing of the SVD
[29], [30]. The complexity of the PDDS-MC1 is similar to
the EDS one. The computational cost of the PDDS-D al-
gorithm can be evaluated to O(

∑
k BkM2

k ) and O(BνM2)
for the PDDS-MC2. Consequently, the PDDS-MC2 has
the lowest computational complexity. Note that the cost
of the time-delay and the partial order estimations are neg-
ligible.
From the simulation section, we conclude that the PDDS-D
and PDDS-MC algorithms are well adapted to the transient
audio modeling problem. Note that the allocation proce-
dure for the PDDS-D algorithm is based on some empirical
considerations on the ”nature” of transient audio signal.
Inversely, in the context of the PDDS-MC algorithms, the
partial orders estimation is automatic since it is essentially
a simple ”re-allocation”.
To conclude, we can say : for synthetic noisy signals, the
PDDS-MC1 is the most efficient method since it presents
similar performances than the PDDS-D algorithm in case
of quasi-orthogonal components and superior performances
(in particular for low SNRs) in case of non-orthogonal com-

ponents.
For real audio signals and for the true time-delay estima-
tion, the PDDS-D is the most attractive method since it
has a moderate computational cost for slightly higher per-
formance.
However, the PDDS-MC2 method can be chosen if the com-
putational cost is the most important choice criterion, as
often in the audio coding context.
In case of errors on the time delay estimation, we choose
the PDDS-D method since this method presents the bet-
ter trade-off between complexity, performances and robust-
ness.

VI. Conclusion

In this paper, we have introduced an efficient non-
stationary model for the transient compact representation
problem. This model is an evolution of the DDS model
introduced in the general context of signal modeling. This
approach uses a piori information on percussive audio sig-
nal, i.e., an audio transient signal can be seen as a sum
of damped sinusoids with a single time-delay. This natu-
ral consideration leads to the proposed PDDS model and
three high-resolution estimation methods. Finally, after
having compiled the performance of the proposed meth-
ods on synthetic signals, we show that the PDDS approach
outperforms the EDS approach on two typical transient au-
dio signals. This conclusion is confirmed by intensive and
informal listening tests.
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