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Abstract

We consider two reverse logistics systems where returned products are as
good as new. For the first system, the product return flow is independent
of the demand flow. We prove that the optimal policy is of base-stock type
and we establish monotonicity results for the optimal base-stock levels, with
respect to the system parameters (arrival rate, production rate, return rate,
production cost, lost-sale cost, return cost and holding cost). We also pro-
vide an efficient algorithm to compute the optimal base-stock level. For the
second system, demands and returns are strongly correlated: a satisfied de-
mand induces a product return after a stochastic return lead-time, with a
certain probability. When the return lead-time is null, we extend the results
obtained for the first system. When the return lead-time is positive, the op-
timal control problem is more complex and we do not prove that the optimal
policy is of base-stock type. However we provide a framework to analyse
base-stock policies. Finally, we carry out a numerical study on many scenar-
ios to investigate the impact of ignoring dependency between demands and
returns. We observe that ignoring this dependency yields to non-negligible
cost increase.

Keywords:
Reverse logistics, Production/Inventory control, Queueing system, Markov
decision process.



1 Introduction

Recycling and recovery of used products has drawn attention of companies
for several years, not only for ecological reasons, but also for legal and eco-
nomical ones. At the same time, customers return more and more items to
the producers for numerous reasons (DeCroix and Zipkin, 2005). The re-
turned items constitute return flows that must be taken into account. The
management of this material flow, opposite to the conventional supply chain
flow, is addressed in the rapidly expanding field of reverse logistics (Fleis-
chmann et al., 1997). From a logistic point of view, and regardless of why
they occur, product returns complicate the management of an inventory sys-
tem (DeCroix et al., 2005). First, returns represents an exogenous inbound
material flow causing an increase of the inventory between replenishments.
Second, returned products - when recovered - give another alternative sup-
ply source for replenishing the serviceable inventory (Fleischmann and Kuik,
2003). Several researches investigated the influence of product returns on
inventory control. For an overview, we refer the reader to Fleischmann et al.
(1997).

Most of the models do not take into account the relation between re-
turns and demand (see for instance Fleischmann et al., 2002). de Brito and
Dekker (2001) have explored the assumptions generally made in stochastic
models with product returns such as the assumption of independence be-
tween returns an demand. They conclude that it is necessary to break with
this traditional assumption. Most of the models with product returns that
are investigated assume a total, or partial, independence between demanded
items and returned ones. This is owed to the great complexity which could
be led by the relaxation of this hypothesis.

Among the authors that consider the dependency relation of returns with
demand, Simpson (1978) considers a repairable inventory problem where the
dependency between the demand process and return process is allowed only
in the same period. Kiesmueller and van der Laan (2001) develop a periodic
review model with constant return and procurement lead-times. They com-
pare the case of dependent returns with the case of independent returns and
obtain numerically that the average cost is smaller in the dependent case.
Cheung and Yuan (2003) consider a continuous review model with Pois-
son demand, exponential return lead-time and instantaneous procurement
lead-time. They adopt an (s,.S) inventory policy and develop an algorithm
to compute the optimal replenishment parameters. However none of these



models investigate the impact of neglecting correlation between demand and
returns.

In this paper, we relax the instantaneous procurement lead-time assump-
tion of Cheung and Yuan (2003). We use the framework of make-to-stock
queues (Veatch and Wein, 1996; Ha, 1997) to model a stochastic and capac-
itated production process by a single exponential server. This framework
allows us to thoroughly characterize the optimal control policy. We consider
two make-to-stock systems. In the first one, demands and returns are inde-
pendent Poisson processes. We prove that the optimal policy is of base-stock
type. We establish monotonicity results for the optimal base-stock levels,
with respect to the system parameters (arrival rate, production rate, return
rate, production cost, lost-sale cost, return cost and holding cost). We then
compute analytically the average cost for a given base-stock level and pro-
vide properties of the average cost with respect to the base-stock level. In
the second model, demands and returns are correlated: a satisfied demand
induces a product return with a certain probability after a stochastic return
lead-time. We extend the results of the first model when the return lead-time
is null. This special case is interesting for several reasons. It is a tractable
case where the impact of ignoring dependence between returns and demands
is maximum. It also provides a good approximation for short-term returns.
When the return lead-time is positive, the structure of the optimal policy is
more complex to establish and depends on whether or not we can observe
which sold products will be returned. The assumption of observability is not
realistic in most of situations and we will not consider this case. When there
is no observability, the production decisions can be based only on the inven-
tory level. For this case, we restrict the analysis to base-stock policies and
we suggest a numerical procedure to compute the optimal base-stock policy.

Finally, we carry out a numerical study to investigate the impact of ignor-
ing dependency between demand and returns. We first compare the system
with independent returns to the system with dependent returns. Then we
suggest a heuristic for the system with dependent returns, based on the sys-
tem with independent returns. We begin by investigating thoroughly the
zero return lead-time before looking at the influence of return lead-time.

The remainder of this paper is organized as follows. Section 2 (resp., Sec-
tion 3) presents the formulation and results for the system with independent
(resp. dependent) demand and return processes. These results allow us, in
Section 4, to study the impact of ignoring correlation of demand and returns.
Finally, in Section 5, we conclude and suggest future research.



2 Model with returns independent of demands

We first consider a simple model where product returns and demand are
independent stochastic processes. We will refer to this case as Model 1.

2.1 Formulation

We consider a make-to-stock system producing a single item. The supplier
can decide at any time to produce or not this item. The unit production cost
is ¢,. The processing time is exponentially distributed with mean 1/4 and
completed items are stored in a serviceable product inventory, where they
incur an holding cost ¢, per unit per unit time. Demands for those items
arrive according to a Poisson process with rate A. A demand that cannot
be fulfilled immediately, when the inventory is empty, is lost and incurs a
lost-sale cost ¢; including image cost, penalty cost, etc. We assume that the
production cost ¢, is smaller than the lost-sale cost ¢;, otherwise it is optimal
to idle production all the time.

Controlled

Production
Eacil |ty | nventory

() 7  Derend 5

Returns with
rate

Figure 1: Returns independent of demand

We also suppose that there are random returns of items (Figure 1) that are
immediately available to serve customer demand. The inventory is common
to new and returned products which are considered as good as new. In this
first model, returns occur according to a Poisson process, independent of the
demand process, with rate §. Let p = d/A be the proportion of returned
products if all demands were satisfied, and ¢ = 1 —p. We emphasize that p is
larger than the proportion of returned products since some demands are not
satisfied. We assume that the return rate is smaller than the demand rate,



i.e. 0 < A (or equivalently 0 < p < 1). In an infinite planning horizon, this
assumption clearly holds if returns are linked to previously satisfied demands.
It also guarantees the stability of the stock level. A return incurs a return cost
¢, including logistics return costs (repackaging, handling) and possibly the
reimbursement of the customer. The state of the system can be summarized
by X (), the stock level at time ¢ (including new and returned products).

A policy 7 specifies, at any time, when to produce or not. The objective
of the supplier is to find the optimal policy minimizing expected discounted
costs over an infinite time horizon. We denote by 5 > 0 the discount rate.

2.2 Characterization of the optimal policy

We prove in this section that the optimal policy is a base-stock policy.

Definition 1 A base-stock policy, with base-stock level S, states to produce
whenever the stock level is strictly below S and not to produce otherwise.

The problem of finding the optimal policy can be modelled as a continuous
time Markov Decision Process (MDP). We restrict our analysis to stationary
markovian policies since there exists an optimal stationary markovian policy
(Puterman, 1994).

We define v™(x) as the expected total discounted cost associated to policy
7 and initial state 2. We seek to find the optimal policy 7* minimizing v™(z)
and we let v*(x) = v™ (z) denote the optimal value function:

v*(x) = mﬂin v (x)

We denote by § the discount factor. Then, we can uniformize (Lippman,
1975) the MDP with rate v > 84+ A+ 1+ ¢ and the optimal value function
can be shown to satisfy the following optimality equations:

v (x) = Tv*(x),Vr € N

where IN is the set of natural numbers and operator 7' is a contraction map-
ping defined as

Tv(x) = % [ene + pThv(x) + AXTho(z) + 0Tzv(x) + (v — B — A — p— §)v(x)]
(1)



and

Tyv(x) = minfv(z),v(z + 1) + ¢

v(z 1 ifx>0
TZ’Ux_{U(I —i—cl ifx=0

Tzv(x) =v(z+1) + ¢,

Operator T} corresponds to production decisions while operator 75 corre-
sponds to demand arrivals. Operator T3 is associated to product return
events.

To prove that the optimal policy is of base-stock type, it is sufficient to
show that the optimal value function v*(z) is convex in the stock level x. A
function v in IN is said to be convex if and only if Av(z) = v(x + 1) — v(x)
is non-decreasing in z. We will also use the notation A?v(z) = Av(z + 1) —
Av(z). With this notation, v is convex if and only if A%v(x) > 0, for all x.

Let us explain briefly why convexity of the optimal value function implies
the base-stock policy structure of the optimal policy. Convexity of v* ensures
the existence of a threshold S* = min[z|Av*(z) 4 ¢, > 0], possibly infinite,
such that Av* 4 ¢, < 0 if and only if = is below this threshold. Optimality
equations state to produce when Av* + ¢, < 0 and to idle production when
Av* + ¢, > 0. If Av*(x) + ¢, = 0 then it is equal to produce or not in state
x. We decide arbitrarily to produce in this case since it does not affect the
optimal cost but increases the percentage of satisfied demand.

To prove convexity of v*, we define U a set of real-valued functions in IN,
with the following properties.

Definition 2 v € U if and only if, for all x € IN, v satisfies the following
conditions:

e Condition C.1: Av(z + 1) > Av(z) (& A?v(z) >0)
e Condition C.2: Av(zx) > —¢

The first condition states convexity of v. The second condition can be rewrit-
ten as (v(x—1) < v(x)+¢) and means that it is preferable to satisfy a demand
rather than to reject it with cost ¢;. We know (Puterman, 1994) that a se-
quence of real-valued functions v™*! = Tw" converges to the optimal value
function, v*, for all v°. In order to prove that v* € U, it is therefore sufficient
to prove the following lemma.



Lemma 1 Ifvel thenTv e lU.

All the proofs can be found in Appendix. As a direct consequence of Lemma
1, we obtain the following theorem.

Theorem 1 The optimal value function v* belongs to U and the optimal
policy is a base-stock policy.

2.3 Influence of system parameters on optimal base-
stock levels

Now, we aim to study the influence of system parameters on the optimal
policy. For instance how is influenced the optimal base-stock level by a
demand rate increase 7 The methodology of this section is inspired by Cil
et al. (2009).

The optimal base-stock level and value function corresponding to a given
system parameter o will be denoted respectively S and v}, where a belongs
to the set of parameters {\, i, 6, ¢y, ¢, ¢, ¢} (demand rate, production rate,
return rate, holding cost, return cost, lost-sale cost, production cost). The
optimal value functions v} satisfy the following optimality equations:

Vo) = Tavg ()

(%

where T, corresponds to the operator T defined in Equation (1), indexed by
a, the parameter under consideration.

To study the influence of system parameters on the optimal base-stock
level, we need to define the submodularity and supermodularity of a value
function v, with respect to the state x and the parameter under consideration
a as follows. The value function v, is submodular in a and z (denoted

SubM («, z)) if and only if
Avg(x) > Avgre(z), Vo € IN,Va, Ve > 0

The supermodularity in o and = (denoted Super M («, x)) corresponds to the
opposite inequality:

Avg(x) < Avgre(z), Vo € IN,Va, Ve > 0

When v (z) is SubM (o, x) (resp., Super M («, x)), the optimal base-stock
level S* = min[xz|Av(z) > 0] is non-decreasing (resp., non-increasing) in a.
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The sequence of real-valued functions v™! = T,0v" converges to the op-

timal value function v}. In order to prove that v} has the desired modular
properties, it is therefore sufficient to prove the following lemma.

Lemma 2 o Vo€ {{,d,ch,Cr,Cpt, if Vo is SuperM (o, x) and belongs to
U then Tyv,(x) is SuperM (o, x) and belongs to U.

o Yo € {\ ¢, ¢}, if vy is SubM(a, ) and belongs to U then T,v,(x) is
SubM («, z) and belongs to U.

We deduce directly from Lemma 2 the following theorem.

Theorem 2 The optimal value function v’ is Super M («, ) for o € {u, 6, cp, ¢ }
and SubM («, x) for a € {¢;, A, ¢}

As a result, the optimal base-stock level is independent of the return cost,
¢, non-increasing with the service rate, j, the return rate, 6, the holding
cost, ¢, the production cost, c,, and non-decreasing with the arrival rate, A,
the lost-sale cost, ¢;.

There exists a simple alternative to prove that the optimal base-stock level
is independent of ¢,: It suffices to notice that the expected return costs are
independent of the production policy. The expected discounted return costs
can then be considered as a constant in our minimization problem and does
not influence the production policy. Therefore, the optimal base-stock level
is not sensitive to the return cost.

2.4 Performance evaluation for the average cost prob-
lem

The average cost optimal policy can be obtained as the limit of the discounted
cost optimal policy when the discounted rate § goes to zero (Weber and
Stidham, 1987). As a result, for the average cost problem, the optimal policy
is of base-stock type and optimal base-stock levels have the monotonicity
properties presented in Theorem 2.

The average cost optimal policy can be computed by various algorithms,
for instance by value iteration, as for the discounted cost problem (Puterman,
1994). We provide now an alternative to compute more efficiently the optimal
policy.



If we assume a base-stock policy with base-stock level S, the stock level
evolves according to a continuous-time Markov chain with transition rates

given on Figure 2.

A A A A A A
28:0:0:0-0-0=
u+o p+0 p+0 o) 0 0

Figure 2: Graph of the Markov chain

Denote by 7,(S) the stationary probability to be in state z when the
base-stock level is .S. We obtain:

| prFmo(S) fl<z<§
T2 (S) = { pl—prfSﬂ.O(S) ifz> 9

s (1=p7" 1_7)1 ;
WO(S):{m( 1,101 + 5 ?fpl#l
5, if pp =1
where p; = ﬁ.
Now, we can compute the average holding cost, C}(S), lost-sale cost,
Ci(9), production cost, C,(S), and return cost, C,.(S):

S+1_ S+S .
anmo(S) (Pt + M) i A1
onmo(§) |50 + 202 it py = 1

(2)

Cu(S) =cn Y o m(S) =

Ci(S) = Aemo(S)
5-1 s
Cu(8) =116 3 m(5) = ey (125 ) malS)

1

C,(S) =6 ¢

The total average cost, C(.S), is then the sum of these three costs. In order to
compute efficiently the optimal average cost, C*, and the optimal base-stock
level, 5%, we use the following property.

8



Property 1 The average cost C(S) is convezr in S if py < 1.

When p; > 1, convexity does not hold systematically. For example, the
average cost is not convex for the following instance: ¢, = 1,¢, = 16,¢, =
4,¢, =0, =14, p=1,p=0.1.

However we can re-use the upper bound, on the optimal base-stock level,
developed by Ha (1997) for a system similar to ours but without product
returns (6 = 0). This upper bound also holds for our problem since the opti-
mal base-stock level is smaller when product returns are taken into account
(see Theorem 2).

Property 2 (Directly adapted from Ha, 1997) Let S, be the smallest non-
negative integer larger than (p — 1)/(Wp) + 1/Inp — 1 with p = \/p and
' =cp/(Ae;) . For p>1,5*<S8,.

If we consider the extreme case (A = 10, = 1,¢, = 1,¢ = 1000, ¢, = 0),
then S, = 9000. The time to compute the optimal base-stock level for this
instance requires to evaluate C(S) for S € {0,1,---,9000}, which takes less
than one second on a standard personnel computer.

3 Model with returns dependent on demands

3.1 Formulation

We consider a second model which takes into account the correlation between
returns and demand (Figure 3). We will refer to this model as Model 2.

Controlled
Production
Facility Inventory
@ =v » Demand A
T fy\ Returns with
L probability p

Figure 3: Returns dependent on demand



The main difference with the previous model is that a satisfied demand
leads, with probability p, to a product return after a stochastic return lead-
time. This return lead-time is assumed to be exponentially distributed with
rate . de Brito and Dekker (2001) have tested, on real data, the assumption
that the time to return is exponential. They conclude, with a statistical
test, that this assumption can be rejected for some products and can not be
rejected for other products.

The state of the system can now be summarized by two variables (X (¢), Y (¢))
where X (t) is the stock level (including new and returned products) and Y ()
is the number of demands that have been satisfied and will be returned. We
can distinguish two cases:

e Y (t) is observable. The decision maker knows exactly which customers
will return a product and which customers won'’t.

e Y (t) is not observable. The decision maker has for only information
that a proportion p of customers return a product.

It is generally not realistic to assume that we can observe how many prod-
ucts in the market will be returned. In this case, we have observed numeri-
cally that the optimal policy is a state-dependent base-stock policy, i.e. the
base-stock level depends on Y (t). We focus on the case where Y (¢) is not
observable and the decisions are based only on the inventory level.

3.2 Zero return lead-time

Though we were not able to prove structural results for the optimal policy
in the general case, we have established the structure of the optimal policy
for the limit case with zero return lead-time (equivalent to 1/y = 0). This
limit case simplifies the analysis and also provides a good approximation to
systems with short-term returns that typically occur when a customer has
the option to return a product, but in a very short period after purchasing.
The problem simplifies to a single variable problem where we can get rid of
variable Y'(¢). The analysis of such a problem is similar to the one of Section
2.

Denote by v*(x) the optimal value function when the initial inventory is
x. The optimal value function satisfies the following optimality equations.

v*(z) = Tv*(z),Vz € IN

10



To(x) = % [chx + uTyw(x) + ATov(z) + (v — B — X — p — 6)v(x) (3)

e v B

and 77 is defined as in Section 2.2. 3
To prove convexity of v*, we define U a set of real-valued functions in IN,
with the following properties.

Definition 3 v € U if and only if, for all x € IN, v satisfies the following
conditions:

e Condition C.1: A*v(z) >0

e Condition C.2: Av(z) > —n with n = <=L

The second condition states that it is preferable to satisfy an arriving de-
mand.

Lemma 3 Assume thatn > 0. Ifv € U then Tv € U.
As a direct consequence of Lemma 1, we obtain the following theorem.

Theorem 3 Assume that n > 0. The optimal value function v* belongs to
U and the optimal policy is a base-stock policy.

To complete the proof, we had to make the additional assumption that n > 0
which is equivalent to ¢; > pc,. Otherwise when ¢; < pc,, it is optimal
to never produce since satisfying a demand incurs (in expectation) a higher
return cost pc, than not satisfying a demand which incurs a lost-sale cost ¢;.

The methodology to study the influence of system parameters is similar
to the one adopted for Model 1.

Theorem 4 Assume thatn > 0. The optimal value function v}, is Super M («, x)
for a € {u,p,cn, e} and SubM (o, z) for a € {c;, A}.

As a result, the optimal base-stock level is non-increasing with the service
rate, i, the return probability, p, the holding cost, ¢y, the return cost, c,., and
non-decreasing with the arrival rate, A, the lost-sale cost, ¢;.

11



Contrary to the problem with independent returns, the optimal base-stock
level is non-increasing with the return cost ¢,. When ¢, is increasing, pro-
ducing new items leads to higher return costs and it is therefore better to
reduce production. An extreme case would be to consider an infinite return
cost for which it is clearly optimal to set the optimal base-stock level to 0,
to avoid any return. This phenomenon is illustrated in the numerical study
(Figure 6).

If we assume a base-stock policy with base-stock level S, the stock level
evolves as in a basic make-to-stock queue without product returns and de-
mand rate A\¢ where ¢ = 1 — p (Figure 4). The transition rates are given on
Figure 4.

Aq Ag Ag
e
M M M

Figure 4: Graph of the Markov chain with zero return lead-time

For convenience, we define the ratio ps = % and the stationary probabil-
ities are given by:

7 (S) = p3 “7o(S) when 1 <z < S

S(1— .
7o (S) = { pf’(/)rfﬁ) o271

_1

5+1
As for the independent case, we can compute the average holding, lost-sale,
production and return costs:

p3 1 —pa—paS+S

Cu(S) = { o )5 itp, 71

Chy if po =1
Ci(S) = X ¢ 7(S) (5)
Cy(S) = icy(1 — i)
Co(S) = Ap e (1—7o(S)) (6)

12



The average cost, C(S), is again the sum of these three costs.

Unfortunately, the average cost is not systematically convex in S. The
average costs C,(S) and Cy(S) are never simultaneously convex since their
second derivative are of opposite sign, from Equations (5) and (6). However
we can use again the upper bound S, of Section 2.4.

3.3 Positive return lead-time

When the return lead-time is positive (1/v > 0), we restrict the analysis to
base-stock policies such that the system produces if and only if the stock
level is smaller than S. However we don’t claim that the optimal policy is
base-stock.

The continuous-time Markov chain (X (¢), Y (¢)) has a more complex struc-
ture than for the zero return lead-time. There does not exist simple analytical
formulas for the stationary probabilities. We denote again by C' (S) the av-
erage cost when base-stock level S is used. In order to compute C(S), we
use a dynamic program (detailed in Appendix) where we truncate the state
space to {0,1,---,5,} x{0,1,---, M}. One can then search for the optimal
base-stock level S minimizing C (S). Larger and larger values of M are tested
until the results become insensitive to increasing the state space.

4 Numerical study

In this numerical study, we focus on the average cost problems. To compute
the optimal policies, we use the analytical results of previous sections. First,
we compare the influence of return cost, ¢, return probability, p, and ex-
pected return rate, 1/ on the two systems. Second, we look at the impact
of using the optimal policy of System 1 (independent returns) as a heuristic
for System 2 (dependent returns).

4.1 Comparison of models

Figure 5 presents the influence of the return probability, p, on the optimal
base-stock levels, S* and S*, and the optimal average costs, C* and C*.
When p = 0, systems 1 and 2 are equivalent and thus C* = C*, §* = S*.
When p increases, we observe that S* and S* are non-increasing in p. On
the other hand, C* and C* are not monotonic in p. When p increases, the

13



average return cost and holding cost tend to increase while the average lost-
sale cost tends to decrease. Depending on the relative importance of these
average costs, the total average cost might increase or decrease. When p goes
to 1, the holding costs go to infinity for Model 1 since the inventory queue
is unstable (demand rate equal to return rate). It is not the case for Model
2 for which the inventory level remains bounded since returns are correlated
to demands.

In the literature, when there is no production capacity constraint, the
average cost is very sensitive to p when p is close to 1 (Fleischmann et al.,
2002) but not when p is close to 0. In our model, the average cost might
also be very sensitive to p when p is small. This is due to the production
capacity constraint assumption (the production rate is bounded by ). In
this case, increasing slightly the return rate might decrease drastically the
lost-sale costs and hence the total cost.

Figure 6 presents the optimal base-stock levels and average costs versus
the return cost, ¢,. When ¢, = 0 and 1/ = 0, systems 1 and 2 behave as
a basic make-to-stock queue with modified demand rate g\, production rate
1, lost-sale cost ¢; and holding cost ¢,. Therefore, we have C* = C* and
S* = §* when ¢, = 0. When ¢, increases, we observe that S* is constant and
S* is non-increasing in ¢,, which is consistent with theorems 2 and 4. We also
observe that S* equals 0 when pe, > ¢. In this case, the expected return
cost for each satisfied demand becomes higher than the potential lost-sale
cost and it is no more interesting to produce any item.

Figure 7 presents the optimal base-stock levels and average costs versus
the expected return lead-time, 1/v. System 1 is independent of v and thus
S* and C* are also independent of 1/+. The difference of behavior between
the two systems is maximum when the expected return lead-time equals
0. When the expected return lead-time increases, the differences between
the two systems diminish since the return process and the demand process
become almost uncorrelated.

In conclusion of this section, we can say that Systems 1 and 2 may have
very different behaviors, for example for large ¢,, large p or small 1/7.

14
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4.2 Heuristic policy

The question which naturally arises is: can we use Model 1 as a good approx-
imation to design an efficient policy for Model 2 ? To answer this question,
we consider the two following policies for Model 2 :

e The optimal policy of Model 2, with base-stock level S* and average
cost C*

e A heuristic policy for Model 2, with base-stock level S* (the optimal
base-stock level of Model 1). The average cost associated to this heuris-
tic is then C'(S*).

In order to compare these two policies, we consider the relative cost increase
for using the heuristic, defined by:

AC — c (s )~ —C

O*
The lower AC'is, the better the independent model approximates the depen-
dent model.

In the following, we set without loss of generality u = 1 and ¢;, = 1, which
is equivalent to set time and monetary units. We also set the return lead-time
to 0 (1/v =0). This case give an upper-bound to AC with respect to other
values of 1/v. We also set ¢, = 0. The optimal policy of a problem instance
with parameters ¢;, ¢, and ¢, is the same as the optimal policy associated to
a problem instance with lost sale cost (¢; 4 ¢,), return cost (¢, — ¢,) and null
production cost (other things being equal).

We have evaluated the performance of the heuristic by varying the other
parameters for 22990 instances corresponding to all the combinations of the
following sets:

e A {02, 04, 06,08, 1,1.2, 1.4, 1.6, 1.8, 2}

e p € {0.05, 0.1, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60,
0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}

o ¢ € {1,2, 4,8, 16, 32, 64, 128, 256, 512, 1024}

o ¢, €{1,2, 4,8, 16, 32, 64, 128, 256, 512, 1024}
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With this range of parameters, we investigate systems in overloaded regime
(when 1 > A) and in underloaded regime (when p < X). We also consider
systems with a small return rate as well as systems with a return rate close
to the demand rate. Finally, we consider different scenarios for the cost
parameters (¢, < ¢, ¢, = ¢ and ¢, > ¢;). The relation between the return
cost, ¢, and the lost-sale cost, ¢;, is not obvious and depends on the relation
between logistics return costs, remanufacturing costs, image/penalty costs
and reimbursement costs.

We restrict our analysis to the 12951 instances where there is an interest
to produce for both systems (S*, S* > 0). In Table 1, we give the distribution
of AC. For 62.1% of the instances, the heuristic performs very well (AC' <
1%). However for 10.7% of the instances, the heuristic performs poorly with
AC > 10%.

| AC | 0-1% | 1-5% | 5-10% | 10-20% | 20-50% | > 50% |
Number of instances | 8041 2707 823 699 552 129
% of instances 62.1% | 20.9% | 6.4% | 5.4% 4.3% 1.0%

Table 1: Distribution of AC for instances with S*, S* > 0

Some other important conclusions, based on the tested instances, are the
following:

e The maximum error is of 97%.

e Even with a small return probability of p = 5% (925 instances), the
percentage cost increase AC' can go up to 10 %.

e For a return probability p < 0.35 (5555 instances), the percentage cost
increase AC' is bounded by 11%.

For the moment, we have assumed a zero return lead-time. When the
return lead-time increases, we systematically observe that the performance
of the heuristic increases. Figure 8 plots the influence of the expected return
lead-time on the relative cost increase, AC.
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Figure 8: Influence of expected return lead-time on relative cost increase
(p=05,A=p=1,¢,=1,¢=1000,¢, =0,¢, =0)

In conclusion, ignoring dependency between returns and demands may
yield to very bad performances and should not be a systematic assumption.

5 Conclusion and future research

In this paper, we have investigated the impact of dependency between re-
turns and demands in a reverse logistics context. We have considered two
models: One with returns independent of demand and the other with returns
dependent on demand. For the first model, we show that the discounted cost
optimal policy is base-stock and we establish monotonicity results of the opti-
mal base-stock level with respect to system parameters. These results pertain
to the average cost problem, for which we derive additional analytical results
allowing to compute efficiently the optimal policy. For the second model, we
obtain similar results when the return lead-time is equal to zero. When the
return lead-time is positive, we restrict the analysis to base-stock policies
and we provide a numerical method to compute the optimal base-stock level.

In a numerical study, we show that System 2 can not be well approximated
by System 1, especially with high probabilities of return and short return
lead-times. However, through a systematic factorial analysis, we show that,
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when the probability of return is less than 35 % and the return lead-time
is null, the optimal base-stock level of Model 1 provides a good heuristic to
Model 2 and yields to errors smaller than 11 %. When the return lead-time
increases, these errors are becoming smaller and smaller. We also show a non-
monotonic behavior of the average cost for Model 1, due to the production
capacity constraint.

There are several possible avenues for research. It would be interesting
to study if these results pertain to other probability distributions of return
lead-times, production lead-times, and demand processes. Another option
would be to add a control on returns and to consider the joint problem of
controlling manufacturing and remanufacturing.
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Appendix

Proof of Lemma 1

Assume that v € U. We first prove that Twv satisfies Condition 1 of U
(convexity). To that end, we separately show that Tjv and Thv are convex.

Let S = min[z : Av(z) + ¢, > 0] (possibly infinite). We can rewrite
operator T as

_Jue+1)+e ifr<S
Tiv(z) _{ v(x) ifx>9

and deduce

Av(z+1)> —¢ ifx<S—1
ATvw(z) = —c, > —q fr=5-1 (7)
Av(z) > —¢ if v >S.

Inequalities in Equation 7 come directly from Condition 2 of U satisfied by
v and from the assumption that the production cost ¢, is smaller than the
lost-sale cost ¢;. Then we have

Av(x+1)>0 ifz<S—2

2 ) —Av(z+1)>0 ifr=5-2
AT = Ape4+1)>0 ifz=S5—1 (8)
A?v(z) >0 if x> 5.

Inequalities in Equation 8 come directly from convexity of v and definition
of S. For all x € IN, we have therefore A*Tjv(x) > 0 and we conclude that
Tiv is convex. Furthermore

Av(iz—1)> —¢ fxz>1
ATQU(I):{ —Cz( )= ifx;O (9)

and

Az —1)>0 ifz>1
2 _ = el
ATu(z) _{ Av(z)+¢ >0 ifz=0.

The quantity A*Tyv(zr) is non-negative from Condition C.1 when z > 1 and
from Condition C.2 when x = 0, thus Tyv satisfies C.1. Otherwise T3v and
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cpx are trivially convex. Finally T'v, as a non-negative linear combination of
convex functions, is also convex. Let us prove now that T'v satisfies Condition
C.2. Tyv and Ty satisfy C.2 from Equations (7) and (9). On the other
hand Tsv clearly satisfies Condition 2 and Ac,x = ¢, > 0 since ¢px is non-
decreasing in x. Therefore, we have

ATv(x) = % [Acpz + pATyv(z) + ANATyu(x) + 0T3v(z) + (v — B — A — u— ) Av(x)]

v—p5
y

>

o= —q
and Tv satisfies Condition C.2.

Proof of Lemma 2

Let v, € U. Then T, v, € U from Lemma 1. We need now to show that T,
propagate submodular and supermodular properties.

We first prove that operators c,x, 11, Ty, T3 preserve the modular prop-
erties summarized in Table 2. Notice that these operators might depend on
the parameter o under consideration.

SuperM (o, z) | SubM (o, x)
ChT Yo Ya # ¢,
Tive () Vo Va # ¢,
Tove () Vo # ¢ Vo
T3v,(x) Vo Vo

Table 2: Preservation of submodularity and supermodularity by the opera-
tors

Acpx = ¢, is non-decreasing in ¢;, and independent of the other parame-
ters of the system. Therefore cpz is Super M (a, x) for all v and SubM («, )
for all a # ¢y,.

From Cil et al. (2009) (we adapt their maximization problem into a mini-
mization problem), we know that 77 preserve SubM (a, x) and SuperM («, x)
for all a # c,,.

When a = ¢,, we show now that 7} preserves SuperM/(c,,z). Define
S = minfz : Av,, (x) + ¢, > 0] and S, = min[z : Av(x) + ¢, + € > 0]. From
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Equation (7), we have then

Avepe(v+1) = Av (2 4+1) >0 ifz <SS -1<5—1

—cp — Avg, (z+1) >0 ifr=5.-1<85-1
AT Ve 1e(x) — ATivey(x) = § Ave,e(x) — Ave, (. +1) >0 ife>S,r<S—-1
0 fe=5-1=5-1
Ave,e(r) + ¢, >0 ifex >S5, x<S5—-1
(10)

The inequalities in Equation (10) come from the definitions of the thresholds
S and S..
From Equation (9), we have

Ay —1) ifx>1
ATyva(z) = { —q ifx=0
When « # ¢, it is clear that T, propagates SubM (a, x) and Super M («, x).
T, propagate also SubM (¢;, x) since

ATyve 4e(x) — ATov, (x) = { ffg O(x D~ Avlz—1) <0 ﬁ i ié

At last T preserves SubM (o, x) and Super M (c, x) for all a since ATsv,(x) =
Av,(z + 1) for all a.

When « belongs to {cp, ¢, ¢}, Tov, is a linear combination of operators
cpx, T1, Ty, Ty where the coefficients of the combination do not depend on
Ch, Cry ¢ We can conclude that T,v, is SuperM (o, x) for a € {cp, ¢, } and
SubM («, z) for a € {¢;, ¢}

When « belongs to {\, u,d}, it is more complicated because T,v, is a
linear combination of operators c,x, 11, 15, T3 where some of the coefficients
of the combination depend on A, pu,d. Let us consider the propagation of
Super M (1, x). We have:

T,(x) = % lenx + phv,(z) + Ao, (z) + 0150, (%) + evy(z) + (v — F— A — pp — §)v, ()]
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and

TyteVpte ()

= l[chyc + (4 )T vpte(x) + AXovppe(x) + 6T50,4e(x) + (Y= B = A — 1 — € — 6)vpe(2)]

Y
1
- ;[Chx + ﬂTlvu+e(x) + )‘TZU;Hre(x) + 5T30u+6(x) + (7 - 6 — A= n—= 5)Uu+e(x)
+ €(T1vp4e(T) — Vpre())]
Then
ATvevuse(z) = AT, v,(x)
pAT v, () pAT v, ()
+FAAT V4 () +AATH, ()
= +0AT3v,4 () > +0AT3v,(x)
(v =B = A= = 0)Av,(z) +(y = B8 =A—p—0)Av,(x)

+eA[T Upte (z) — Upte ()]
(11)

The four first lines of (11) satisfy the inequality since Ty, Ty, T3 propa-
gate SuperM (p,x). It is therefore sufficient to prove that A[Tiv, (z) —
U/Hre(x)] > 0.

The arguments are the same to propagate SubM (A, x) and SuperM (6, x).
To summarize, we have to prove now the following three additional proper-
ties:

1. A[Tyv(z) —v(z)] > 0 for SuperM (u, x)
2. AlTyv(x) —v(x)] <0 for SubM (A, x)
3. AlTzv(z) — v(x)] > 0 for SuperM (9, z)

We have omitted the subscript « since these properties hold independently
of a. From Cil et al. (2009), we know that convexity of v(x) in z (true since
v € U implies that Tiv(x) — v(x) is non-decreasing in x. Let’s prove now
that Thu(z) — v(x) is non-increasing in . From Equation (9), we have:

A(Tzv@)—”(x)):{ e iz

Inequalities in (12) come from v € U. Finally, T3v(z) — v(z) = Av(z) + ¢, is
non-decreasing in x since v is convex.
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Proof of Property 1

To prove that C' is convex, we will separately prove that C}, C, and C; are
convex.

Case 1: p; <1

We have
GQCh(S)

W:A1XA2XA3XA4
with
Ay =cuprInpip}
Ay =1/((gp7 " + p(pr = 1) = 9)°)
Az =gp1” [(p(pr — 1) — )qIn p1.S — p (q(In py + 2(py — 1))
—(pr = DInpy) = ¢*(Inp, —2)]
Ay =1—(p(p1—1) —q)
In order to prove that C}, is convex, it is sufficient to prove that A;, As <0

and Az, Ay > 0. It is clear that A;, Ay < 0 and A4 > 0, due to p; < 1. Now
Az > 0 since we have A3 = Al + A2 + A3 where

Az =(plpr = 1) —q) glnp1S >0

- s

<0 <0
A3 == plg(npi+2(p1 — 1)) =(p1 — 1) Inpy) >0
<0 <0
Aj=—¢"(Inp1 —2) >0
<0

We can conclude that C, is convex.
C. is clearly convex since it is a constant function of S and Cj is convex
since

>0
>0 <0 >0 >0 © >0 A

2 ~ ~ N ' 2" S S+17 '
?C(S) _ —plpr—1) —q)alpr — 1) (Inp1)” py lapy "™ —p(pr — 1) +q]

05 (g0t = q+plpr = 1))?
—_— Y=
<0 <0
>0
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Finally C is convex for p; < 1.

Case 2: p; =1

In this case, the second derivatives simplify to:

O*Ch(S) _  —ala—1)
952 M(gS+1)3 —
8201(5) 2q3
= \j—t >
957~ (it g5p =

and we conclude that C' is also convex for p; = 1.

Proof of Lemma 3

Assume that v € . Then Tiv is convex (see the proof of Lemma 1). We
prove, in the following, that Tyv is also convex.
We have

qAv(z — 1) +pAv(z) > —qn—pn > —n ifz >0

pAv(x) —qn > —pn —qn > —n ifx=0 (13)

ATyo(z) = {

and

vr [ a2 — 1) +pA%(@) 20 iz >0
sty { e 20 e

The quantity A2T2v(x) is non-negative from Condition C.1 when x > 1 and
from Condition C.2 when x = 0, thus Tyv satisfies C.1. Otherwise T3v and
cpa are trivially convex. Finally T, as a non-negative linear combination of
convex functions, is also convex.

Let us prove now that T'v satisfies Condition C.2. We have Thv satisfying
C.2 from Equations (13). Moreover Tjv satisfies C.2 since

Av(z+1)>-—n ife<S—1

ATv(z) =1 0> —¢ ifr=95-1
Av(z) > —n if x > 8.
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Therefore, we have
. 1 .
ATv(z) = 5 [Achx + pATiv(z) + AATyw(x) + (7 — 6 — X — p)Av(x)

z%kwn—Mrﬁv—ﬂ—A—MM

z—liénz—n
v

and T satisfies Condition C.2.

Proof of Theorem 4

Let v, € U. Then Tava € U from Lemma 3. We need now to show that Ta
propagates submodular and supermodular properties.

We first prove that operators c,z, Ty, Ty preserve the modular properties
summarized in Table 3. Notice that these operators might depend on the
parameter o under consideration.

SuperM (o, x) | SubM (o, x)
ChLT Yo Ya # ¢,

T1v,(x) Va Vo

Tove(z) Vo # ¢ Va & {p,c }

Table 3: Preservation of submodularity and supermodularity by the opera-
tors

Acpx = ¢, is non-decreasing in ¢;, and independent of the other parame-
ters of the system. Therefore ¢,z is Super M («, z) for all o and SubM (v, x)
for all @ # ¢;,. From Cil et al. (2009) (we adapt their maximization problem
into a minimization problem), we know that 77 preserve SubM («,x) and
SuperM («, z) for all a.

From Equation (13), we have

qAvy(z — 1) + pAvy(z) if x>0

Alova(w) = { PAvL(T) — qn ifr=20
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When o ¢ {c,p,c }, it is clear that T, propagate SubM (a, ) and
Super M (a, z). Ty propagates SubM (c;, x) since

) . [Aveye(r = 1) = Avg (z — 1)]
ATyve, 1 c(x) — ATvv,, () = +p[Aveye() — Avg, ()] <0 if 2z >1
PlAV (7)) — Avg ()] —qe <0 if 2 =0

T, propagates Super M (¢, x) since

~ _ Q[Avchre(x - 1) — Av, ('77 - 1)]
ATove 1 c(x) — ATpv, (z) = +p[Ave () — Av, ()] >0 ifx > 1
plAv, e(x) — Av, (z)] +qpe >0 ifx=0

T, propagates SuperM (p, z) since

dAtyseo— 1) — Avy( — 1)
+p[Avp1e(z) — Avp(2)] + eA’vpye(z) > 0
DA 1e(z) = Aty(2)] + e[ Aty () + )
>e(-n+c) =0

ATQUP+6($) — Afgvp(x) =

When « belongs to {cp, ¢, ¢}, Tav, is a linear combination of opera-
tors cpx, T, T, where the coefficients of the combination do not depend on
Ch, Cry ¢ We can conclude that T,v, is SuperM (a,x) for a € {cp, ¢, } and
SubM (v, z) for a € {¢;, ¢}

When « belongs to {A, u}, it is more complicated (see proof of Lemma
2) and we have to prove the following two additional properties:

1. A[Tyv(z) —v(z)] > 0 for SuperM (u, x)
2. A[Tyv(x) — v(x)] <0 for SubM (), z)

We have omitted the subscript « since these properties hold independently
of a. From Cil et al. (2009), we know that convexity of v(x) in z (true since
v € U implies that Tyv(x) — v(z) is non-decreasing in x. Let’s prove now
that Thv(x) — v(z) is non-increasing in z. From Equation (13), we have:

ifxz>1

ifxz=0

~ Av(z — 1) 4+ pAv(z) — Av(z) = —A%v(z) <0 ifz>1
A(Tyv(z) —v(z)) = { q—q[AU(x) + n]pg 0 ifz=0

(14)
Inequalities in (14) come from v € U.
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Value iteration algorithm to compute the average cost of
a base-stock policy when the return lead-time is positive
Let C(S) denote the average cost when the base-stock level is S. Let h(z, y)
denote the relative value function for initial state (z,y). In order to be
able to uniformize this MDP, we assume that y is bounded by M. This is
not a crucial assumption since our results will hold for any M. We can now

uniformize (Lippman, 1975) the MDP with rate ¢ = A+pu+~M. The optimal
value function can be shown to satisfy the following optimality equations:

h(z,y) + é(S) =Th(z,y), V (z,y) € NxN

where the operator T' is a contraction mapping defined as

1

Th(z,y) = g leww + pToh(e,y) + ApTih(z, y) + M1 = p)Toh(z, y) + 9T h{z, y)]
and
B h(x+1,y) ifx<S
Toh(z,y) = { h(x,y) ifx >S9
hMe—1,y+1) ifr>0andy <M
Tih(z,y) = h(z,y) + ¢ ifx=0
h(zx —1,y) ifr>0andy=M
B h(x —1,y) ifx>0
Th(z,y) = { Wz, y)+ca ifz=0
_ Jyhl+lLy=1)+a]+ (M —-yh(r,y) ify>0
Tsh(z.y) = { Mh(z,y) ify=0

Operator Ty is associated to the optimal production decision. Operators T3
(resp. T5) is associated to a demand that will (resp. not) lead to a return.
Finally, operator T3 corresponds to the return of a product.

Based on these optimality equations, we used a value iteration algorithm
(Puterman, 1994) to compute the average cost.
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