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Abstract

We consider the optimal control of a production-inventory system with a single product where items are
produced one unit at a time. Upon arrival, customer orders can be fulfilled from existing inventory, if
there is any, backordered, or rejected. Although customers are willing to wait if their orders are back-
logged, they are not infinitely patient. In particular, customers cancel their orders if their waiting time
in backlog exceeds a certain patience time. This patience time is random and varies from one customer
to another. At each decision epoch, we must determine whether or not to produce an item and, should
an order arise and there is no inventory on-hand, whether to reject the order or backorder it. Rejecting
an order incurs a rejection cost. If an order is backordered but the order ends up being cancelled by the
customer, we incur a cancellation cost. We can mitigate both costs by holding inventory but we incur
an inventory holding cost. We formulate the problem as a Markov decision process. We show that the
optimal policy can be described by two thresholds: a production base-stock level that determines when
production takes place and an admission threshold that determines when orders should be accepted. We
also characterize analytically the sensitivity of these thresholds to operating parameters, including the
demand and production rates and the various cost parameters. Using the structure of the optimal policy,
we formulate the dynamics of the corresponding production-inventory system as a Markov chain, which
allows us to compute efficiently the performance of the system for any choice of base-stock level and
admission threshold, In a numerical study, we compare the performance of the optimal policy against
several other policies and show that those that ignore customer impatience can perform poorly.

Keywords: Production-inventory systems, customer impatience, optimal control, make-to-stock queues,
Markov decision processes



1 Introduction

Inventory problems treated in the literature fall mostly into two categories. One deals with systems where

customers are assumed to be infinitely patient, so that a customer whose order is backlogged is willing

to wait for that order to be fulfilled no matter how long it takes. The other deals with systems where

customers have zero patience, so that a customer whose order cannot be fulfilled immediately is considered

lost. However, in practice, it is more common for customers to be willing to wait, but only up to a point.

Customers whose orders are backordered eventually cancel their orders and leave if their waiting time in

backlog exceeds a certain patience time. This patience time usually varies from one customer to another

and, for the same customer, may vary from one ordering instance to the next. Despite the prevalence of

such behavior in practice, there is limited literature that deals with this issue. Consequently very little

is known about optimal control policies, or even effective heuristics, for such systems. Very little is also

known about the impact of not accounting for customer impatience in making inventory decisions.

In this paper we address some of these limitations in the context of a production-inventory system with

a single product. In particular, we consider a continuous time and continuous review system where demand

orders arrive continuously over time one unit at a time with stochastic inter-arrival times. With each order

arrival, a decision must be made regarding whether to fulfill the order from on-hand inventory, backorder

it, or reject it. If an order is rejected, a rejection cost (e.g., a lost sale cost) is incurred. If an order is

backordered but the order ends up being cancelled by the customer due to impatience, a cancellation cost

(e.g., the sum of a lost sale cost and a penalty for loss of goodwill) is incurred. We can mitigate both costs

by increasing the number of items held in inventory, but there is a linear cost for keeping inventory on-

hand. Inventory is replenished from a production facility that produces units one at a time with stochastic

production times. At any point in time, the system manager must decide on whether or not to produce

and whether or not to accept an incoming order, should one arise.

We formulate the problem as a Markov decision process (MDP) and use it to characterize the structure

of the optimal policy. We show that the optimal policy can be described by two thresholds: a production

base-stock level and an admission threshold. The production base-stock level determines when production

takes place while the admission threshold determines when orders should be accepted. We also charac-

terize analytically the sensitivity of these thresholds to operating parameters, including the demand and

production rates and the various cost parameters. Using the structure of the optimal policy, we model the

dynamics of the corresponding production-inventory system as a Markov chain which allows us to compute

effeciently the performance of the system for any choice of base-stock level and admission threshold. Using

numerical results, we compare the performance of the optimal policy against several other policies and

show that those that do not account for impatience can perform poorly.

In the existing inventory literature, the issue of customer impatience has been treated mostly in the
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context of so called inventory systems with partial backordering. Under partial backordering (see for

example Montgomery et al. (1973), Moinzadeh (1989), Smeitink (1990), Nahmias and Smith (1994), and

the references therein), an arriving customer that faces a stockout is backordered with a certain probability

and is lost otherwise. In situations where multiple orders are placed at once, this means that a fraction of

customers are backordered while the remainder is lost. These models capture the simplest case of customer

impatience with a mixture of only two types of customers: some that are infinitely patient and, therefore,

can be backordered, and some that have zero patience and, therefore, are lost if they cannot be fulfilled

immediately. This obviously ignores the possibility of having customers who are willing to wait but with

varying degrees of patience. Posner et al. (1972) and Das (1977) do consider systems where customers

are initially willing to wait, but if their demand is not fulfilled within their patience time, they leave the

system. However, in their case, they assume a particular inventory control policy, either a (q, r) or a

base-stock policy, and do not allow for the possibility of rejecting customers. To our knowledge, our paper

is the first to characterize the optimal policy for an inventory system with customer impatience.

Although the modeling of customer impatience is surprisingly limited in the inventory literature, there

is significant and growing literature that models impatience in the context of queueing systems; see for

example Gans et al. (2003), Garnet et al. (2002), Mandelbaum and Zeltyn (2005), Jouini et al. (2007a,

2007b), Armony et al. (2007), Ward and Kumar (2008), and the references therein. A queueing system

can be viewed as a make-to-order version of the system we consider in this paper, where inventory is not

allowed to be held in anticipation of future demand. Much of the queueing literature that incorporates

impatience is focused on performance evaluation and not optimal control. Moreover, the optimal control

problem in a queueing system is simpler as there is typically only a decision about whether or not to admit

a customer.

The rest of the paper is organized as follows. In Section 2, we formulate the problem. In Section 3,

we characterize the structure of the optimal policy. In Section 4, we describe a performance evaluation

model. In Section 5, we present numerical results. In Section 6, we offer a summary and some concluding

comments.

2 Problem Formulation

We consider a system where a single product is produced at a single facility to fulfill demand from customers

who place orders continuously over time according to a Poisson process with rate λ. Items are produced

one unit at a time with exponentially-distributed production times with mean 1/µ. The production facility

can produce ahead of demand in a make-to-stock fashion. However, items in inventory incur a holding

cost h per unit per unit time. Upon arrival, an order is either fulfilled from inventory, if any is available,
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backordered, or rejected. If an order is rejected, the system incurs a rejection cost r. If an order is

backordered, the system incurs no immediate cost. However, customers are impatient and may decide to

cancel their orders if their waiting time in backlog exceeds a patience time. If a customer cancels her order,

the system incurs a cancellation cost c. We assume that the rejecting cost is larger than the cancellation

cost (r ≤ c). Otherwise, it is optimal for the customers to accept all orders. The rejection cost can be

viewed as a lost sale cost (e.g., the opportunity cost of generating revenue from the sale of one unit), while

the cancellation cost can be viewed as the sum of a lost sale cost and a penalty for backlogging the order

and not fulfilling it within the customer’s patience time. We assume there is no other cost to backordering,

although it is possible to impose an additional cost that increases with the amount of time an order stays

in backlog. Customer patience times are independent and exponentially distributed with mean 1/γ. This

means that customers are willing to wait for an amount of time that is exponentially distributed for their

orders to be fulfilled; otherwise, they cancel their orders. We assume that there is a finite upper bound

M on the number of orders that can be on backorder at any time. ”This assumption, which is made for

mathematical tractability, is however not restrictive as we allow this upper to be arbitrarily large.

At any point in time, the system manager must decide whether or not to produce an item. We assume

that preemption is possible, so that deciding not to produce could mean interrupting the production of

a unit that was previously initiated. If interruption occurs, we assume it can be resumed the next time

production is initiated (because of the memoryless property of the exponential distribution, resuming

production from where it was interrupted is equivalent to initiating it from scratch). We assume that there

are no costs associated with interrupting production. This conforms to earlier treatment of production-

inventory systems in the literature; see, for example, Ha (1997a, 1997b). This assumption is not restrictive

since, as we show in Theorem 1, it turns out that, generally, it is not optimal to interrupt production of

an item once it has been initiated. At any point in time, the system manager must also decide on how to

handle incoming orders. In particular, should an order arise and there is no inventory on-hand, a decision

must be made on whether to backorder it or to reject it.

In our model, we assume that demand is Poisson and both production times and patience times are

exponentially distributed. These assumptions are made in part for mathematical tractability as they allow

us to formulate the control problem as an MDP and enable us to describe the structure of an optimal

policy. They are also useful in approximating the behavior of systems where variability is high. The

assumptions of Poisson demand and exponential production times are consistent with previous treatments

of production-inventory systems; see for example, Buzacott and Shanthikumar (Chapter 4, 1993), Ha

(1997a, 1997b), Zipkin (2000), and de Véricourt et al. (2002), among others. In Section 6, we discuss how

these assumptions may be partially relaxed. The assumption of exponentially distributed patience times

has been widely used in modeling customer impatience in queueing systems; see for example Mandelbaum
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and Zeltyn (2005) and Garnet et al. (2002). It captures the realistic feature that customers’ willingness to

wait decreases quickly with time, leading to a setting where most customers are willing to wait for only a

relatively short period, with few (the most loyal customers) willing to wait for an extensive length of time.

The state of the system at time t can be described by net inventory X(t), where X(t)+ = max[0, X(t)]

corresponds to on-hand inventory, and X(t)− = −min[0, X(t)] to backorder level (the number of orders

that are still waiting to be fulfilled). Note that because of the possibility of interrupting production, it

is not necessary to include in the state description whether an item is currently being produced or not.

Furthermore, because both order inter-arrival times and production times are exponentially distributed,

the system is memoryless and decision epochs can be restricted to only times when the state changes

(i.e., the completion of an item, the arrival of an order, or the cancellation of an order due to customer

impatience). The memoryless property allows us to formulate the problem as an MDP and to restrict our

attention to the class of Markovian policies for which actions taken at a particular decision epoch depend

only on the current state of the system. In each state, the system manager makes two types of decisions,

one regarding production and the other regarding order fulfillment. A policy d specifies for each state x

whether production should be initiated or not and should an order arise whether it should be fulfilled from

on-hand inventory, backordered or rejected (if there is inventory on-hand, it is trivial to show that it is

always optimal to fulfill it).

Let R(t) denote the number of orders that have been rejected up to time t and N(t) the number of

orders that have been cancelled by customers due to impatience up to time t. Then the expected discounted

cost (the sum of inventory holding, order cancellation, and lost sales costs) over an infinite planning horizon

obtained under a policy d and a starting state x can be written as:

vd(x) = Ed
x

[∫ ∞

0
e−αthX+(t)dt+

∫ ∞

0
e−αtrdR(t) +

∫ ∞

0
e−αtcdN(t)

]
,

where α > 0 is the discount rate (extending the analysis to the case where the objective is to minimize

average cost is straightforward and is briefly described at the end of Section 3). Our objective is to choose

a policy d∗ that minimizes the expected discounted cost. We refer to the optimal cost function as v∗ where

v∗ = vd
∗
. Following Lippman (1975), we work with a uniformized version of the problem in which the

transition rate in each state under any action is β = λ+µ+Mγ so that the transition times between decision

epochs form a sequence of i.i.d. exponential random variables, each with mean 1/β. The introduction of

the uniform transition rate allows us to transform the continuous time decision process into a discrete time

decision process, simplifying the analysis considerably. To further simplify the analysis, and without loss

of generality, we also rescale time by letting α + β = 1. The optimal cost function can now be shown to
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satisfy the following optimality equation:

v∗(x) = hx+ + λTarrv
∗(x) + µTprodv

∗(x) + γTimpv
∗(x), (1)

where the operators Tprod, Tarr, and Timp are defined as follows,

Tprodv(x) = min(v(x), v(x+ 1)), (2)

Tarrv(x) =

 min(v(x− 1), v(x) + r) if x > −M

v(x) + r, if x = −M, and
(3)

Timpv(x) =

 −x[v(x+ 1) + c] + (M + x)v(x) if −M ≤ x ≤ −1

Mv(x) if x ≥ 0.
(4)

Operator Tprod is associated with the production decision: a decision to produce would increase the

inventory level by one unit once production is completed while a decision not to produce will leave the

inventory level unchanged. Operator Tarr is associated with the handling of the arrival of an order: fulfilling

the order from on-hand inventory or backordering it reduce inventory level by one unit while rejecting it

leaves the inventory level unchanged but leads the system to incur cost r. (Note that when the backorder

level reachesM an incoming order is always rejected and the cost r is incurred.) Operator Timp is associated

with customers canceling their orders due to impatience. If the number of orders backordered is k, then

the transition rate out of this state due to cancellations is kγ. To maintain a uniform transition rate, we

use the standard approach of allowing for fictitious transitions from the state to itself with rate (M − k)γ,

so that the overall transition rate is always Mγ.

3 The Structure of the Optimal Policy

In this section, we characterize the structure of the optimal policy. In order to do so, we show that the

optimal value function v∗(x) for all states x satisfies certain properties as specified in Definition 1 below.

We then show that these properties imply a specific rule for the optimal action in each state.

Definition 1 Let U be a set of real valued functions defined on the set of integers Z, such that if v ∈ U ,

then:

Property P1 ∆v(x) ≥ −c, for all x,

Property P2 ∆2v(x) ≥ 0, for all x,

Property P3 ∆v(x) ≥ −r, for all x ≥ 0, and

Property P4 ∆v(x) ≤ 0, for all x < 0,
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where ∆v(x) = v(x+1)−v(x) and ∆2v(x) = ∆v(x+1)−∆v(x). Therefore, convexity of v(x) is equivalent

to ∆2v(x) ≥ 0.

Lemma 1 If v ∈ U , then Tv ∈ U where Tv(x) = hx++λTarrv(x)+µTprodv(x)+γTimpv(x). Furthermore,

the optimal cost function v∗ is an element of U . That is, v∗ ∈ U ,

The proof of Lemma 1 and all other subsequent results can be found in the Appendix. In the proof, we

first show that the operator T preserves properties P1-P4, which together with the convergence of value

iteration, allows us to conclude that the optimal cost function v∗ satisfies properties P1-P4. Applied to

v∗, property P1 indicates that it is never desirable to have cancellations due to impatience. Property P2

implies that the marginal cost difference due to increasing net inventory is non-increasing. That is, the

optimal value function is convex. Property P3 indicates that it is more preferable to fulfill orders from

on-hand inventory, if there is any, than to reject them. Property P4 implies that it is optimal to produce

whenever there is a backlog.

In order to describe the optimal policy implied by the above properties of the value function, we first

define the following two threshold parameters:

s∗ ≡ min(x : ∆v∗(x) ≥ 0), (5)

and w∗ ≡ max{−M,min(x : ∆v∗(x) + r ≥ 0)}. (6)

We are now ready to characterize the optimal policy.

Theorem 1 There exists an optimal policy that can be specified by thresholds s∗ and w∗ as follows. The

optimal production policy is a base-stock policy with base-stock level s∗, such that it is optimal to produce if

x < s∗ and not to produce otherwise. The optimal order fulfillment policy is a limited admission policy with

admission threshold w∗, such that it is optimal to accept an order if x > w∗ and to reject it otherwise. An

admitted order is fulfilled from on-hand inventory if there is any and is backordered otherwise. Moreover,

we have the following:

• It is always optimal to produce if there are any backorders; that is, s∗ ≥ 0.

• It is always optimal to accept orders if there is on-hand inventory; that is, w∗ ≤ 0.

• If s∗ > 0, then it is never optimal to preempt production once it has been initiated.

In contrast to common pure lost sales and pure backorder policies, the optimal policy allows for both

backordering and order rejection. In doing so, the policy limits both inventory and backorder levels

(inventory is costly because of holding costs and backordering is costly because it increases the chance of

customers canceling their orders due to impatience). Note that as long as s∗ > 0, it is never optimal to
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preempt production once it is initiated. In particular, if it is optimal to produce in state 0 ≤ x < s∗, then

it continues, by virtue of the fact that the production policy is a base-stock policy with base-stock level

s∗, to be optimal to produce in state x − 1 if an order arrives and we decide not to reject it (of course

it continues to be optimal if an order arrives and we decide to reject it, leaving the system in state x).

Similarly, if it is optimal to produce in state w∗ ≤ x < 0, then it continues to be optimal to produce in both

states x+ 1, corresponding to an order cancellation, and state x− 1, corresponding to an order arrival.”

The only scenario under which preemption is possible is when s∗ = 0 (i.e., inventory is never held and

we produce only if there is a backorder). However, even in this case, preemption is optimal only if the

system is in state x = −1 and an order is cancelled, moving the system to state x = 0.

The structure of the optimal policy in Theorem 1 can be shown to continue to hold for several variants

of the problem, including systems where there is a one time backordering cost per unit backordered, a linear

production cost and a convex holding cost. It also continues to hold in the case where the optimization

criterion is the average cost per unit time instead of the expected discounted cost. The existence of an

optimal policy for the average cost, and for this average cost to be finite and independent of the starting

state, can be proven via an argument involving taking the limit as α → 0 in the discounted cost problem

(see for example Cavazos-Cadena and Sennott (1992) and Weber and Stidham (1987)).

In the following theorem, we further characterize the structure of the optimal policy by characterizing

the impact of various system parameters on the base-stock level and the admission threshold.

Theorem 2 The optimal base-stock level s∗ is non-increasing in h, µ, and M and is non-decreasing in c,

r, and λ. The optimal admission threshold w∗ is non-increasing in h, µ, r, and M and is non-decreasing

in c and λ.

The proof of Theorem 2 involves defining various super- and sub-modularity properties and showing that

these are satisfied by the optimal cost function, v∗, which then implies the monotonicity results described

in the theorem. Full details of the proof can be found in the Appendix. Theorem 2 also pertains to the

average-cost case. In Figure 1, we provide representative numerical results, for the average cost criterion,

that illustrate the impact of system parameters on s∗ and w∗. These results show that both s∗ and w∗

can be quite sensitive to changes in system parameter values. For example, when c → r, w∗ → −∞ and

it becomes optimal never to reject any order. When c → ∞, w∗ → 0 and it becomes optimal to always

reject orders when there is no inventory on-hand. When λ is much larger than µ, it also becomes optimal

to always reject when there is no on-hand inventory (In this case, there is not sufficient capacity to fulfill

demand and a fraction of total demand must always be rejected). Note that we were not able to establish

monotonicity results with respect to the impatience parameter γ. In Section 5, we present numerical results

regarding the effect of γ and examine the impact of customer impatience on system performance.
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Figure 1: Impact of system parameters on w∗ and s∗. Unless they are being varied, following parameter
values are used: γ = 0.1, λ = 0.9, µ = 1, c = 100, r = 50, h = 1
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4 A Performance Evaluation Model

In this section, we use knowledge of the structure of the optimal policy to construct a performance evalua-

tion model to compute efficiently the optimal base-stock level and the optimal admission threshold under

the average cost criterion. Having such a model eliminates the need to use dynamic programming to carry

out computations. Moreover, a dynamic programming algorithm, depending on problem parameter values,

may require truncation of the state space, making the corresponding results approximate.

The approach we take follows from the recognition that a system operating under a control policy

specified by a fixed base-stock level s and an admission threshold w can be modeled as a Markov chain. In

particular, the net inventory level, X(t), evolves as a continuous-time Markov chain with transition rates

from state j to state k, qjk, given by

qjk =


λ if k = j − 1, w < j ≤ s,

µ+ γj− if k = j + 1, w ≤ j < s,

0 otherwise,

where j− = −min[0, j]. This Markov chain is graphically illustrated in Figure 2.

Figure 2: The transition diagram for the Markov chain model

The stationary probabilities, πj = limt→∞ P (X(t) = j), for the Markov chain can be shown to be given by

the following:

πj =


ρs−jπs if 0 ≤ j ≤ s,(∏−j

k=1
λ

µ+γk

)
ρsπs if w ≤ j < 0,

0 otherwise,

(7)
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where ρ = λ
µ and

πs =

 s∑
j=0

ρj +

−1∑
j=w

( −j∏
k=1

λ

µ+ γk

)
ρs

−1

. (8)

For given s and w, the expected cost, which we denote by V (s, w), can now be obtained as:

V (s, w) = hE(X+) + cγE(X−) + rλπw = h

s∑
j=1

jπj + cγ

−1∑
j=w

−jπj + rλπw. (9)

The above expression involves the sum of finite terms and, therefore, can be computed efficiently. The

optimal values for s and w can be obtained via an exhaustive search over a large enough range of s and

w (unfortunately, the function V (s, w) is not jointly convex in s and w). The computational effort for

carrying out this search is generally modest. For example, a search over a 1,000 by 1,000 grid takes only

few seconds on a standard personal computer. The computations can be further expedited by noting that

the optimal base-stock level, s∗, has an upper bound given by the optimal base-stock level, ŝ∗, of a system

where backorders are never allowed and where items are always rejected when they cannot be fulfilled from

on-hand inventory. In the appendix, we show how an upper bound on ŝ∗ and, therefore, also on s∗ can be

obtained in closed form.

5 Some Numerical Results

In this section, we briefly provide some numerical results that illustrate the impact of customer impatience

on optimal average cost and that examine the sensitivity of the base-stock level and admission threshold to

system parameters. We also provide numerical results that compare the optimal policy to other commonly

used policies.

In Figure 3, we present results that show the impact of varying the patience time parameter γ on

optimal average cost. As we can see, customer impatience can have a significant impact on the cost.

Cost is increasing in a roughly concave fashion in the impatience parameter, γ. These results highlight

the importance of carefully accounting for customer impatience, as under or over-estimating customers’

willingness to wait can lead to significantly under or over-estimating the true cost. They can also lead to

significant errors in selecting values for the base-stock level and the admission thresholds (Figure 4).

In Figure 5, we compare the performance of the optimal policy with four other policies, that are perhaps

simpler to implement as they all involve a single control parameter, but that either ignore or do not fully

account for the impact of customer impatience. The policies are as follows:
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Figure 3: Impact of impatience rate on the average cost when λ = 0.9, µ = 1, r = 50, h = 1

Figure 4: Impact of impatience rate on s∗ and w∗ when λ = 0.9, µ = 1, r = 50, h = 1
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Policy H1: Orders are never rejected and are always backordered. Production is managed according to a

base-stock policy with a fixed base-stock level.

Policy H2: Orders that cannot be fulfilled from on-hand inventory are always rejected. Production is

managed according to a base-stock policy with a fixed base-stock level.

Policy H3: No inventory is held in anticipation of future demand and orders are always backordered as

long as the backorder level does not exceed a specified threshold.

Policy H4: No inventory is held in anticipation of future demand and orders are always backordered when

they arrive.

The above policies can all be viewed as special cases of an (s, w) policy, where production is managed

using a base-stock policy with base-stock level s and order fulfillment is managed using an admission policy

with an admission threshold w. In the case of H1, s ≥ 0 and w = −∞; for H2, s ≥ 0 and w = 0; for H3,

s = 0 and w ≤ 0; and for H4, s = 0 and w = −∞. To allow for a fair comparison against the optimal

policy, the parameters of the four policies are always chosen optimally. Figure 5 shows the percentage cost

difference between the cost of the optimal policy and the optimal cost of each policy. The percentage cost

difference, δi, for policy Hi is computed as δi = (C∗
i − C∗)/C∗ × 100%, where C∗

i is the optimal average

cost under policy Hi and C∗ is the average cost under the optimal policy.

As we can see from Figure 5, all four policies can perform poorly. In general, policies that do not allow

for rejection (w = −∞) perform poorly when customers are very impatient (γ is high), cancellation cost

is high (c is high), rejection cost is low (r is low), or when the utilization of the production facility is high

(the ratio λ/µ is high). On the other hand, policies that always reject orders when they cannot be fulfilled

from on-hand inventory (w = 0) perform poorly when customers are patient (γ is low), impatience cost is

low (c is low), rejection cost is high (r is high), or when the utilization of the production facility is low (the

ratio λ/µ is low). There are of course settings where each of the four policies performs reasonably well.

However, in most settings when impatience matters, either because of a low customer patience time or a

high cost of cancellation, there are significant benefits to using the optimal or, to a lesser degree, a policy

that limits the number of backorders, such as policy H2 or H3.
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Figure 5: Impact of system parameters on δi. Unless they are being varied, following parameter values are
used: γ = 0.1, λ = 0.9, µ = 1, c = 100, r = 50, h = 1
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6 Conclusions and Future Research

In this paper, we have analyzed a production-inventory system with impatient customers. We characterized

the structure of the optimal policy and studied the sensitivity of the optimal policy to various operating

parameters. Given the structure of the optimal policy, we described a performance evaluation model that

allows for computing control parameters of the optimal policy efficiently. From numerical results, we

investigated the impact of customer impatience on total system cost and compared the performance of the

optimal policy against the performance of alternative control policies that ignore or do not fully account

for customer impatience.

The results of the paper highlight the importance of incorporating customer impatience in the manage-

ment of inventory systems. The results also highlight the inadequacy of existing inventory models which

tend to assume that orders that cannot be immediately fulfilled from on-hand inventory are either all

backordered (pure backorder systems) or all rejected (pure lost sales systems) and illustrates the need for

models that allow for both backordering and rejection.

This paper is obviously only a first step toward a more comprehensive modeling and analysis of inventory

systems with impatience. Avenues for future research are many. It will be useful to consider systems with

different demand, production time, and patience time distributions. For example, it is possible to substitute

the exponential distribution by Phase-type distributions which can be constructed to approximate other

more general distributions. Phase-type distributions retains the Markovian property of the system and

continues to allow the formulation of the problem as an MDP. It will also be useful to extend the analysis

to systems with multiple demand classes with different patient time parameters and different rejection and

cancellation costs. This would give rise to new types of decisions regarding how on-hand inventory should

be allocated and how fulfillment priorities should be assigned to orders that are in backlog.

References

[1] M. Armony, E. Plambeck, and S. Seshadri. Sensitivity of optimal capacity to customer impatience in

an unobservable M/M/S queue (Why you shouldn’t shout at the DMV). Manufacturing and Service

Operations Management, 2007.

[2] J.A. Buzacott and G.J. Shanthikumar. Stochastic models of manufacturing systems. Prentice Hall,

1993.

[3] R. Cavazos-Cadena and LI Sennott. Comparing recent assumptions for the existence of average optimal

stationary policies. Operations research letters, 11(1):33–37, 1992.

14
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A Online Appendix

A.1 Proof of Lemma 1

Throughout this proof, we assume that the value function v belongs to U . In order to prove Lemma 1, we

will prove that Tv satisfies properties P1, P2, P3 and P4.

Preliminaries

As v satisfies Property P2, we can define the thresholds s and w:

s = min(x : ∆v(x) ≥ 0), (10)

w = max{−M,min(x : ∆v(x) + r ≥ 0)}, (11)

and for x ≥ −M , we have:

∆v(x) ≥ 0 if and only if x ≥ s, (12)

∆v(x) + r ≥ 0 if and only if x ≥ w. (13)

Using the definitions of s and w, we can rewrite operators Tarr and Tprod as follows:

Tarrv(x) =

 v(x− 1) if x > w

v(x) + r if x ≤ w,
(14)

Tprodv(x) =

 v(x+ 1) if x < s

v(x) if x ≥ s.
(15)

The first order differences for the operators Tarr, Tprod and Timp can be written as follows:
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∆Tarrv(x) =


∆v(x) if x ≤ w − 1

−r if x = w

∆v(x− 1) if x > w,

(16)

∆Tprodv(x) =


∆v(x+ 1) if x+ 1 < s

0 if x+ 1 = s

∆v(x) if x+ 1 > s,

(17)

∆Timpv(x) =

 −c− (x+ 1)∆v(x+ 1) + (M + x)∆v(x) if x ≤ −1

M∆v(x) if x ≥ 0,
(18)

and the second order differences are:

∆2Tarrv(x) =


∆2v(x− 1) if x > w

∆v(x) + r if x = w

−r −∆v(x) if x+ 1 = w

∆2v(x) if x+ 2 ≤ w,

(19)

∆2Tprodv(x) =


∆2v(x+ 1) if x < s− 2

−∆v(x+ 1) if x = s− 2

∆v(x+ 1) if x = s− 1

∆2v(x) if x ≥ s,

(20)

∆2Timpv(x) =


−(x+ 2)∆2v(x+ 1) + (M + x)∆2v(x) if −M ≤ x ≤ −2

M∆2v(x) + ∆v(x) + c if x = −1

M∆2v(x) if x ≥ 0.

(21)

Since we defined the first and second order differences, we are now ready to prove that properties P1-P4

hold for Tv.

Property P1

First of all, we have ∆v(x) ≥ −c for all x since v satisfies P1. Secondly, −r ≥ −c by assumption. Using

(12)-(13) and (16)-(18), we show that, for all x, ∆Tarrv(x) ≥ −c, ∆Tprodv(x) ≥ −c and ∆Tarrv(x) ≥ −Mc.

We can now conclude that Property P1 holds for Tv, since, for all x:

∆Tv(x) = h+ µ∆Tprodv(x) + λ∆Tarrv(x) + γ∆Timpv(x) ≥ −(µ+ λ+ γM)c ≥ −c.
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The last inequality results from the rescaling of time assumption given in Section 2 which implies that

µ+ λ+ γM < 1.

Property P2

Using (12)-(13), (19)-(21) and properties satisfied by v (in particular P1, P2 and P3), we show that

∆2Tarrv(x), ∆
2Tprodv(x) and ∆2Timpv(x) are non-negative, for all x. Therefore, for all x, we have the

following inequality:

∆2Tv(x) = µ∆2Tprodv(x) + λ∆2Tarrv(x) + γ∆2Timpv(x) ≥ 0,

and we conclude that Tv satisfies Property P2.

Property P3

We have ∆v(x) ≥ −r when x ≥ 0 since v satisfies P3. As a result, equations (16)-(18) imply that

∆Tarrv(x) ≥ −r, ∆Tprodv(x) ≥ −r and ∆Timpv(x) ≥ −Mr if x ≥ 0. Therefore, when x ≥ 0, we have the

following inequality:

∆Tv(x) = h+ µ∆Tprodv(x) + λ∆Tarrv(x) + γ∆Timpv(x) ≥ −(µ+ λ+ γM)r ≥ −r,

and Tv satisfies P3.

Property P4

We have ∆v(x) ≤ 0 when x < 0 since v satisfies P4. As a result, equations (16)-(18) imply that ∆Tarrv(x) ≤

0, ∆Tprodv(x) ≤ 0 and ∆Timpv(x) ≤ 0 if x < 0. Finally, when x < 0, we have the following inequality:

∆Tv(x) = µ∆Tprodv(x) + λ∆Tarrv(x) + γ∆Timpv(x) ≤ 0,

and Tv satisfies P4.

Conclusion

We have shown that v ∈ U implies that Tv ∈ U . The fixed point theorem (Puterman 1994) ensures that

the sequence of functions vn+1 = Tvn converges to v∗ for any v0. If we take v0(x) = 0 for all x, we have

v0 ∈ U and we conclude by induction that v∗ ∈ U .

19



A.2 Proof of Theorem 1

From Lemma 1, we know that v∗ ∈ U . Property P2 guarantees the existence of threshold levels s∗ and

w∗. Furthermore it implies that it is optimal to produce if x < s∗ and not to produce otherwise and to

accept an order if x > w∗ and to reject it otherwise. Property P3 states that it is optimal to accept orders

if there is on-hand inventory and implies that w∗ ≤ 0. Property P4 states that it is optimal to produce if

x < 0 and implies that s∗ ≥ 0.

A.3 Proof of Theorem 2

In order to show monotonicity properties for s∗ and w∗ with respect to various system parameters, we

adapt the following approach. We compare the optimal value functions of two systems that are identical

except for the value of one system parameter, denoted by p. For short, we write p = λ when demand rate

is varied, p = r when rejecting cost is varied and so on. The optimal base-stock level, admission threshold

and value function corresponding to a given system parameter p will be represented by s∗p, w
∗
p and v∗p(x)

respectively, where p belongs to the set of system parameters {λ, µ, h, c, r,M}.

We state that a function vp is submodular in x and p (denoted by SubM(x, p)), if and only if,

∆vp(x) ≥ ∆vp+ϵ(x),∀x ≥ −M, ∀p ̸= M, ∀ϵ ≥ 0.

The supermodularity in x and p , denoted by SuperM(x, p), is the opposite inequality (∆vp(x) ≤ ∆vp+ϵ(x)).

These definitions can be used when p ∈ {r, c, h, λ, µ}. However, when p = M , p is discrete and the state

space depends on M . In this case, we state that v is SubM(x,M) if and only if the following inequality

holds:

∆vM (x) ≥ ∆vM+1(x),∀x ≥ −M, ∀M ∈ IN.

SuperM(x,M) is the same inequality in opposite direction.

Let us start our proof by defining the necessary properties to be satisfied in order to show the results

given in Theorem 2. Firstly, we define V a set of real valued functions, with the following properties:

Definition 2 If v ∈ V, then:

Property Q1 v ∈ U ,

Property Q2 ∀p ∈ {µ, h,M}, v is SuperM(x, p) and ∀p ∈ {λ, r, c}, v is SubM(x, p),

Property Q3 ∆vr+ϵ(x) + ϵ ≥ ∆vr(x),∀r ≥ 0,∀ϵ ≥ 0.

If we prove that v∗ ∈ V, then, we obtain the monotonicity results for s∗ and w∗ as described in Theorem

2.
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The uniformization rate depends on {λ, µ,M} and needs to be constant for two systems to be compara-

ble. We rescale the time using a uniformization rate δ which is sufficiently larger than (α+λ+µ+Mγ) to

have the same uniformization rate with parameter values p or p+ϵ. Therefore, the optimality equations are

redefined by adding a new operator, Tunif , to maintain a constant uniformization rate. Tunif is a fictitious

event operator that transfers the system into the same state. Optimality equations can be rewritten as

follows:

v∗p(x) = Tv∗p(x),∀x,

with Tvp(x) =
1

δ

[
hx+ + λTarrvp(x) + µTprodvp(x) + γTimpvp(x) + Tunifvp(x)

]
,

and Tunifvp(x) = (δ − α− λ− µ−Mγ)vp(x).

Operators Tarr, Tprod and Timp are defined as previously. Note that all operators may depend on p. For

instance, if p = λ, we have the following optimal operator T when the arrival rate equals λ+ ϵ :

Tvλ+ϵ(x) =
1

δ
[hx+ + (λ+ ϵ)Tarrvλ+ϵ(x) + µTprodvλ+ϵ(x) + γTimpvλ+ϵ(x)

+ (δ − α− λ− ϵ− µ−Mγ)vλ+ϵ(x)].

In order to prove that T preserves properties of the set V, we are going to prove two lemmas. In Lemma

2, we show that individual operators Tprod, Timp, Tarr, Tunif preserve some monotonicity properties.

Lemma 2 If v ∈ V, then:
SuperM(x, p) SubM(x, p)

hx+ ∀p ∈ {µ, h,M} ∀p ∈ {λ, c, r}

Tprodv ∀p ∈ {µ, h,M} ∀p ∈ {λ, c, r}

Timpv ∀p ∈ {µ, h} ∀p ∈ {λ, c, r}

Tarrv ∀p ∈ {µ, h,M} ∀p ∈ {λ, c, r}

Tunifv ∀p ∈ {µ, h} ∀p ∈ {λ, c, r}

Table 1: Preservation of submodularity and supermodularity by the operators

Table 1 can be interpreted as follows. For instance, if v ∈ V then Timpv is SuperM(x, p) for all p ∈ {µ, h}

and SubM(x, p) for all p ∈ {λ, c, r}.

Proof: We assume in all this proof that v ∈ V. It is clear that hx+ is SuperM(x, p) for p ∈ {µ, h,M} and

SubM(x, p) for p ∈ {λ, c, r}.

If we adapt results from Çil et al. (2009), we have Tprodv is SuperM(x, p) for p ∈ {µ, h} and SubM(x, p)
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for p ∈ {λ, c, r}. When p = M , the state space depends on M . However, the argument used by Çil et al.

still holds, since there is no transition from state (−M) to state (−M − 1) associated with production.

For operator Timp, Equation (18) implies that Timpv is SuperM(x, p) for p ∈ {µ, h} and SubM(x, p)

for p ∈ {λ, c, r}.

For operator Tarr, Çil et al. (2009) show that Tarrv is SuperM(x, p) for p ∈ {µ, h} and SubM(x, p) for

p ∈ {λ, c}. Consider the case p = r, it is slightly more complex since operator Tarr depends on r. We have:

∆Tarrvr(x) =


∆vr(x) ≤ −r if x < wr

−r if x = wr

∆vr(x− 1) ≥ −r if x > wr.

(22)

Above equation implies that

∆Tarrvr(x) ≥ −r if and only if x ≥ wr. (23)

As v satisfies Q3, we have wr+ϵ ≤ wr and the following cases:

∆Tarrvr+ϵ(x)−∆Tarrvr(x)

=



∆vr+ϵ(x)−∆vr(x) ≤ 0 if x < wr+ϵ ≤ wr

−(r + ϵ)−∆vr(x) ≤ −(r + ϵ)−∆vr+ϵ(x) ≤ 0 if x = wr+ϵ < wr

∆vr+ϵ(x− 1)−∆vr(x) ≤ ∆vr+ϵ(x)−∆vr(x) ≤ 0 if wr+ϵ < x < wr

−ϵ ≤ 0 if x = wr+ϵ = wr

∆vr+ϵ(x− 1) + r ≤ ∆vr(x− 1) + r ≤ 0 if wr+ϵ < x = wr

∆vr+ϵ(x− 1)−∆vr(x− 1) ≤ 0 if wr+ϵ ≤ wr < x.

(24)

Inequalities in (24) are based on property P2 (i.e. ∆vr(x) ≤ ∆vr(x + 1)), on SubM(x, r) of v (i.e.

∆vr+ϵ(x) ≤ ∆vr(x)) and on definition of wr which ensures that ∆vr(x) + r ≥ 0 if and only if x ≥ wr.

Consider now the case where p = M . As v is SuperM(x,M), we have ∆vM (x) ≤ ∆vM+1(x) when

x ≥ −M . Moreover, wM+1 ≤ wM . We have:

∆TarrvM+1(x)−∆TarrvM (x)

=


∆vM+1(x)−∆vM (x) ≥ 0 if −M ≤ x < wM+1

∆TarrvM+1(x)︸ ︷︷ ︸
≥−r

−∆TarrvM (x)︸ ︷︷ ︸
≤−r

≥ 0 if wM+1 ≤ x ≤ wM , x ≥ −M

∆vM (x− 1)−∆vM+1(x− 1) ≥ 0 if x > wM ≥ −M.

(25)
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Therefore, we have ∆TarrvM+1(x)−∆TarrvM (x) ≥ 0 when x ≥ −M and Tarrv is SuperM(x,M).

Finally, it is clear that Tunifv is SuperM(x, p) for p = h and SubM(x, p) for p ∈ {c, r}. �

The following lemma will be used to prove that T preserves SuperM(x, µ) and SubM(x, λ). We have

omitted p since these results hold independent of p.

Lemma 3 If v ∈ U , then

1. ∆[Tprodv(x)− v(x)] ≥ 0, for all x ≥ −M

2. ∆[Tarrv(x)− v(x)] ≤ 0, for all x ≥ −M

Proof: Assume that v ∈ U . From Çil et al. (2009), we know that convexity of v in x implies that

(Tprodv − v) is non-decreasing in x.

We will now show that (Tarrv − v) is non-increasing in x.

∆[Tarrv(x)− v(x)] =


0 if x < w

−r −∆v(x) ≤ 0 if x = w

∆v(x− 1)−∆v(x) ≤ 0 if x > w.

(26)

Inequalities in (26) come from the definition of w and convexity of v ∈ U . �

The last lemma, based on lemmas 2 and 3, show that T preserves properties of V. It also implies, by

value iteration, that v∗ belongs to V and thus Theorem 2.

Lemma 4

If v ∈ V then Tv ∈ V.

Proof: Assume that v ∈ V.

Property Q1

By Lemma 1, Tv ∈ U and hence satisfies Q1.

Property Q2

When p belongs to {c, r, h}, Tv is a linear combination of hx+, Tarrv, Tprodv, Timpv, Tunifv where the

coefficients of the combination do not depend on h, c, r. Therefore, Lemma 2 implies that T preserves

SubM(x, p) for p ∈ {c, r} and preserves SuperM(x, p) for p = h.

When p belongs to {λ, µ,M}, the transition rates depend on λ, µ and M and we can not apply above ar-

gument. Çil et al. (2009) have shown how lemmas 2 and 3 imply that Tv is SubM(x, λ) and SuperM(x, µ).
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We remind their argument for p = λ. We have the following inequality:

∆Tvλ+ϵ(x) ≤ ∆Tvλ(x)

⇔



µ∆Tprodvλ+ϵ(x)

+λ∆Tarrvλ+ϵ(x)

+γ∆Timpvλ+ϵ(x)

+(δ − α− λ− µ−Mγ)∆vλ+ϵ(x)

+ϵ∆[Tarrvλ+ϵ(x)− vλ+ϵ(x)]


≤



µ∆Tprodvλ(x)

+λ∆Tarrvλ(x)

+γ∆Timpvλ(x)

+(δ − α− λ− µ−Mλ)∆vλ(x)


. (27)

The first four lines of (27) satisfy the inequality (≤) since Tprod, Tarr and Timp preserve SubM(x, λ)

(Lemma 2). Moreover, ∆[Tarrvλ+ϵ(x) − vλ+ϵ(x)] ≤ 0 by Lemma 3. Therefore, inequality (27) holds and

Tv is SubM(x, λ). The arguments are similar for proving supermodularity of Tv in (x, µ).

Now, consider SuperM(x,M). We have:

TvM (x) =
1

δ
[hx+ + µTprodvM (x) + λTarrvM (x) + γTimpvM (x)

+ (δ − α− λ− µ−Mγ)vM (x),

T vM+1(x) =
1

δ
[hx+ + µTprodvM+1(x) + λTarrvM+1(x) + γTimpvM+1(x)

+ (δ − α− λ− µ− (M + 1)γ)vM+1(x)],

and the following inequality, when x ≥ −M ,

∆TvM+1(x) ≥ ∆TvM (x)

⇔


µ∆TprodvM+1(x)

+λ∆TarrvM+1(x)

+γ[∆TimpvM+1(x)−∆vM+1(x)]

+(δ − α− λ− µ−Mγ)∆vM+1(x)

 ≥


µ∆TprodvM (x)

+λ∆TarrvM (x)

+γ∆TimpvM (x)

+(δ − α− λ− µ−Mγ)∆vM (x)

 . (28)

Inequalities in lines 1, 2 and 4 of Equation (28) hold from Lemma 2. Remains to prove that ∆TimpvM+1(x)−

∆vM+1(x) ≥ ∆TimpvM (x), for x ≥ −M . We have:

∆TimpvM (x) =

 −c− (x+ 1)∆vM (x+ 1) + (M + x)∆vM (x) if −M ≤ x ≤ −1

M∆vM (x) if x ≥ 0,
(29)
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and

∆TimpvM+1(x)−∆vM+1(x)

=

 −c− (x+ 1)∆vM+1(x+ 1) + (M + x)∆vM+1(x) if −M ≤ x ≤ −1

M∆vM+1(x) if x ≥ 0.
(30)

Since v is SuperM(x,M), we have ∆vM+1(x) ≥ ∆vM (x). If we compare equations (29)-(30), it follows

that [∆TimpvM+1(x) − ∆vM+1(x)] ≥ ∆TimpvM (x). We conclude that inequality (28) holds and Tv is

SuperM(x,M). Finally, Tv satisfies Q2.

Property Q3

Here, we have:

∆Tvr(x) + r =
1

δ
{h+ µ[∆Tprodvr(x) + r] + λ[∆Tarrvr(x) + r] + γ[∆Timpvr(x) + r] + [∆Tunifvr(x) + r]} .

(31)

We can use similar arguments to those used for property Q2 to show that (∆Tprodv+ r), (∆Timpv+ r) and

(∆Tunifv + r) are non-decreasing in r.

As v satisfies Property Q3, we have ∆vr+ϵ(x) + ϵ ≥ ∆vr(x) and wr+ϵ ≤ wr. Therefore,

∆Tarrvr+ϵ(x) + ϵ−∆Tarrvr(x)

=


∆vr+ϵ(x) + ϵ−∆vr(x) ≥ 0 if x < wr+ϵ ≤ wr

∆Tarrvr+ϵ(x)︸ ︷︷ ︸
≥−(r+ϵ)

+ϵ−∆Tarrvr(x)︸ ︷︷ ︸
≤−r

≥ 0 if wr+ϵ ≤ x ≤ wr

∆vr+ϵ(x− 1) + ϵ−∆vr(x− 1) ≥ 0 if wr+ϵ ≤ wr < x.

(32)

Inequalities (≤ −(r + ϵ)) and (≥ −r) in (32) come from (23). Finally, we conclude that ∆Tvr(x) + r is

non-decreasing in r and Tv satisfies Q3. �

A.4 Bounds on the Optimal Base-stock Level

Theorem 3

0 ≤ s∗ ≤ su with su =


√

2λr/h if ρ ≤ 1

(ρ− 1)/(h′ρ) + 1/ ln ρ if ρ > 1
and h′ = h/(λr)
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Proof: The lower bound 0 ≤ s∗ is a direct consequence of Theorem 2.

From Theorem 2, we know that s∗(M) is non-increasing in M and hence we have s∗(M) ≤ s∗(M = 0).

When ρ > 1, Ha (1997a) has established that s∗(M = 0) is bounded by the smallest nonnegative integer

larger than (ρ − 1)/(h′ρ) + 1/ ln ρ − 1 with h′ = h/(λr). When ρ ≤ 1, Ha shows that the average cost

V (s, 0) is convex in s.

We complete the analysis of Ha by providing a simple upper-bound on the optimal base-stock level when

ρ ≤ 1 (or λ ≤ µ). We consider the limiting case where µ = λ and M = 0 where the stationary probabilities

simplify to πi =
1

s+1 . The average cost has a simple expression: V (s, 0) = hs/2+ λr/(s+1). Since V (s, 0)

is convex in s, the optimal base-stock equals ⌊
√

2λr/h⌋. From Theorem 2, the optimal base-stock level is

non-increasing in µ and hence
√

2λr/h is an upper-bound on s∗ when λ ≤ µ. �
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