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ABSTRACT the log-normal prior and a sparse prior. Then, we apply our

Lo . method on real data and compare the results with how state-

The matter density is an important knowledge for today cos- S :
. . _of-art alternatives in the literature.

mology as many phenomena are linked to matter fluctuations.

However, this density is not directly available, but estiada

through lensing maps or galaxy surveys. In this article, weNotation and terminology

focus on galaxy surveys which are incomplete and noisy ob- ) _ )

servations of the galaxy density. Incomplete, as part askye Ve denote byj.||, the norm associated with the inner product

is unobserved or unreliable. Noisy as they are count maps dél R”, andI is the identity operator oR™. A function f is

graded by Poisson noise. Using a data augmentation methdePercive, iflim s, o f (5_) = +o0. [o(R") is the class of

we propose a two-step method for recovering the density ma&,” proper lower semi-continuous convex functions fri&h

one step for inferring missing data and one for estimating of0] — 00, +o0].

the density. The results show that the missing areas are effi- Letd € R"™ be ann-pixel map. § can be written as the

ciently inferred and the statistical properties of the maygs ~ Superposition of elementary atoms parametrized by € 7

very well preserved. such thats = > ;a0 = ®a, [|I|] = L, L > n.

We denote by® the dictionary i.e. the: x L matrix whose

columns are the generating Wavefor(nsy)vez all normal-

ized to a unitl,-norm. The forward transform is the non-

necessarily square matrix = ®* ¢ RX*". A dictionary

1. INTRODUCTION matrix ® is said to be a frame with bounds andcs, 0 <

2
< ea < 400, if e1 0] < H@Tau < e |6))? . Aframe

Index Terms— Inpainting, Bayesian framework, Sparse
representation, Poisson noise, Data augmentation

&

Information about the origin of the Universe is encoded in- ' ] ] T
side the cosmological matter distribution. It is an impotta 1S tight whenc, = ¢; = ¢, i.e. #®" = cL. In the rest of the
challenge to be able to estimate such a distribution. HowevePaper.® will be an orthobasis or a tight frame with constant
the whole matter is not available, only a biased observatiofi
is possible using count maps estimator of massive objects.
These maps are degraded both by ghot noise and astrophysics 2 RECOVERING THE GALAXY DENSITY
phenomena (e.g. Milky Way, galactic dust).

Current methods for reconstructing the density maps arghe galaxy surveys are count maps degraded by Poisson noise
more focused on the denoising problem than on the missingind parts of the sky are not subject to interferences with as-

data. For example[][1] propose a Wiener filter for estimatingrophysical phenomena and objects (e.g. Milky Way, gatacti
the SDSS DR6 survey][2]. A maximum a posteriori was in-dust). The underlying image formation model is,

troduced in [B] with a Poisson data fidelity term (including

the mask operator) and a log-normal prior. y ~PMm(l+96)), (1)
This last prior comes from Hubble who found in 1934 that

the distribution of galaxy counts is well fitted by a log-n@m wherey is the observationj the density field/n the mean

distribution. It was later confirmed by others studies tha&t number of counts (e.g. galaxies) per pixel avidthe binary

statement is correct for a given interval of scales (mosty t mask operator (i.e. 0 where data are missing and 1 else).

medium scales[[{l 3. Estimatingd from y is an ill-posed problem, so priors are
In this paper, we propose both to estimate the density mapeeded to reduce the solution set. The density field is as-

and infer the missing data using a data augmentation procesesmed to follow a log-normal distributioﬂ[4], i€l +9) ~

[B]. First, we present how to generate realistic data with &' (u, £) ~ exp(N(u, X)), where the meap and the co-

random texture synthesis algorithm. Secondly, a maximumeariance matriX_ are the parameters of the underlying Gaus-

a posteriori estimator is proposed for the density using botsian field.



2.1. A data augmentation method where eaclg; represents a constraint set. In our case, we want
_ . . ) _ to constraint the mean and the covariance of the underlying
Inferring missing data is a longstanding and delicate bl G5yssian field (as log-normality is assumed), but the okserv
Most used methods in stafistics to handle missing data aigyts of the density field must be preserved. The solution is
the expectation-maximization (EM) algorithm and multiple hen computed by projecting the data onto the constraitss se

imputation (MI); see[é] for a comprehensive review. using the Von-Neumann alternating projections algorithm,
As the distribution ofy is known, the data augmentation
method [b] seems to be the most adapted. This is an EM 8141 = Pe, 0 Pe, 0 Pey(61) , A3)

scheme (described in Algorithfh 1) where, first, the missing
data are inferred using multiple imputations (i.e. sevee&  \\here(, is the convex constraint set pertaining to the ob-

observations are generated at each iteration). Then, the Mgryeq part preservatiod, is associated to the covariance
step consists in estimating the sought after parameteat&d  constraint (non-convex), ang; is the mean constraint set

on the complete formed data. (convex). Algorithn{2 summarizes the steps of this the syn-
thesis method for our problem. &% is not convex, sophisti-
Algorithm 1: The data augmentation scheme. cated arguments are needed to potentially prove conveggenc
Task: Data augmentation method for both inferring the of the sequencé; )+cn to a pointinn?_; C; (if non-empty).
missing data and estimating the parameters. This will be left to a future work. In practice, only a few
Parameters: The observatiomy, number of iterationVie, iterations were necessary to produce satisfactory results

and the number of imputation$yr.
Main iteration: - - -
Initialization: Compute estimates of the log-normal A'Qo”thm 2: Texture generating process for the impu-
parametersy and i, and of the mean number of counts tation step (E-step).

For t = 0t0 Niter — 1, Task: Generating realistic data to infer the missing data.
Parameters: The current estimate of the density fiélcthe
observationy, the binary mask operat®lI, the covariance
matrix 3, the mearnu, the mean number of coum, and the
number of iterationgVex.

Initialization: po = 4,

Replace the data in the missing areap ofith random data
using the log-normal distribution.

Main iteration:

Fort =010 Ntex — 1,

Get the Gaussian field: = log(1 + p:),

Estimate the meann; = E(z:),

Contraint the mearz; = z: — mj + u,

The multiple imputation is very useful when parameters Estimate the covariancé; = Cov(z:),

are updated, and the number of imputations is linked to the Constraint the covariance; — E%Sﬁzt,

amount of missing data (for example 5 imputations should e Update the estimater, = M + (I — M) (exp(z:) — 1).
be sufficient for0.5 ratio [E]). The tricky point remains the End main iteration

generation of realistic data. With prior information, orsnc Add Poisson noisep ~ P(m(1 + pa,., ).

advocate Markov Chain Monte Carlo (MCMC) methods, but  oytput: The imputed observatiop = My + (I — M)sp.

such methods are usually computationally very expensive.

e E-step createNy1 complete observations by filling the
missing area using the prior distribution of the densitydfiel
and the estimated parameters,

e M-step for each complete observation estimate the density
field, the log-normal parameters; andy; of the field and
the meann;,

e Update stepeach parameter is updated using the estimates
from the multiple imputationsy = (3=, p:)/Nwi,

5= (3, %4)/Nar, i = (3, M) /N
End main iteration

2.2. Generating realistic data (E-step)

) 2.3. Estimating the galaxy density (M-step)
As an alternative to MCMC methods, we propose a texture

synthesis-like method for creating realistic data inside t Now, we assume complete observations,

missing areas obeying the appropriate statistical prigsert

underlying the image formation model. Indeed, such data g~ P(m(l+9)) . (4)

should respect the model formaticﬂ1 (1) (wWiih = I) and the

density field has to follow a given log-normal distribution.  The density field estimation amounts now to a Poisson denois-
Inspired by the work ofl}7] in texture synthesis, our statis-ing problem. By adopting a Bayesian framework and using a

tical data generation can be cast as a hard feasibility pnopl standard maximum a posteriori (MAP) rule, we combine data

fidelity with both log-normal prior and sparsity prior.
find e, ¢, 2 The data fidelity term is directly constructed from the anti
=1 ty y



log-likelihood of the multivariate Poisson distribution,

— :neR" — proisson(nm)v ®)
i=1
if y[l] >0, fpoisson(n[i}) = {Iic[:] log(n[i]) i nm ZIZEEWTSS7

L . nli] if n[i] € [0, +00),
it yli] =0, Fpotsson (nli]) = {Jroo otherwise.

If the dictionary® is a tight frame, then the proximal op-

erator of its composition with a convex functigris,

Lemma 3([E]). If ® is a tight frame,i.e®®T = o1, thenf o ® €
Io(R™) and

(8)

We also need the proximity operator from the terms of

proxs,e = I+ v et o (prox; —TI)o &

both data fidelity and log-normal prior.

wheren =1+ 4.

The regularization term for the log-normal prior is given Lemma 4. The proximity operator associated t5 : z

by anti-log likelihood of the multivariate log-normal diktu-
tion for a covariance matriX. and a mean,

qun(d|p, X) = (6)

(log(1 +6) — 1) "5 " (log(1 + 6) — 1) + > log(1 + 5[] -

1
2 ‘
i=1

Notice thatgyx is not convex because theg function is
concave.

mexp(z) + (1 —y) "z + 7y [[& — pll5-1 s,

proxgp & = K™ proxg, e, (K™ (@ + 8 (y =71 +9657'n) )

With proxgy, ., © = log (W(Bmexp(z))/(Bm)) ,  (9)

whereW is the LambertW function [L§] andK = I + 55",

Then, we propose to use the generalization of the Douglas-

Rachford algorithm presented ii} [9] in order to sollje (7)eTh

solution is computed using the iterative scheme presented b

2.3.1. The optimization problem
The non-convexity ofj;x can be avoided using a change of

Algorithm[3.

variable,z = log(1 + ¢) and assuming that the underlying Algorithm 3: Density field estimation, SOlVE ;).

Gaussian field is sparse inside the dictionary domain. Then;
the new optimization problem, with= ®q, is,

(Pxy,p) + min J(a) @
J s mexp (®a) + (Y1 —y) T (Pa) + 7 [|®a — pl|3 1 + A¥(@),

wherel is the vector of ones;. andy the parameter of the
log-normal prior and its weighting parameter ¥ : o —
>-; ¥(ali]) the sparsity-penalty and the regularization pa-
rameter. Notice that, we implicitly assume that thig], 0 <
i < n are independent and identically distributed. Then the
solution is given byr = exp(z) — 1 = exp(®a) — 1.

From (P, . .,) we can characterize the solution,

Proposition 1.
1. ExistenceJ € I'o(R*), then(Py ) has at least one solu-
tion.
2. Uniqueness:(P, 4,4) has a unique solution if) is strictly
convey, i.e. if® is an orthobasis or i) is strictly convex.

2.3.2. Solving the optimization problem

We first define the notion of a proximity operator, which was

Task: Estimate the density field.
Parameters: The observed image counjsthe mean number
of countrm, the dictionary®, the number of iteration®/e:,
the proximal step:, the log-normal prior parameté&r and,
and the regularizations parametarand-.
Initialization:
vi € {0, 1},
Qo = @Ty.
Main iteration:
Fort =010 Nest — 1,
o Data fidelity with log-normal priotLemma[B anl]4):
f(z,o) = Ppu,0) + c oo (prOX,LF/z -I)o <I>(p(t,0))_
e Sparsity-penalty
(t.1) = Prox, g o P(t,1) = STpx/2(P(e,1))-
o Average the proximity operatorg; = (£:,0) + &(¢,1))/2.
e Choosél; €]0,2[.
e Update the components:
Vi € {O, 1}, P(t+1,i) = DP(t,i) + (913(2& — o — g(t,i))-
e Update the coefficients estimat@;i+1 = a: + 0:(& — ax)

P, = ‘I’Ty-

End main iteration
Output: Denoised field™ = exp(®an,.,) — 1.

introduced as a generalization of the notion of a convex pro-
jection operator.

Definition 2 ([E]). Letp € I'o(R™). Then, for everyr € R", the
functiony — o(y) + ||z — y||* /2 achieves its infimum at a unique
point denoted byrox, z. The operatorprox,, : R — R™ thus
defined is the proximity operator ¢f.

3. RESULTS ON THE 2MASS SURVEY

As an experiment, we apply our method on the 2MASS

galaxy survey |E|1]. As we are working on the sphere, the
Then, the proximity operator of the indicator function of a dictionary & contains the spherical harmonics transform,
convex set is merely its euclidean projector. With= |.|, the  which is an orthobasis. The manually tuned parameters were
proximity operatorprox, , is the popular soft-thresholding Niex = 15, Nest = 40 ,Niter = 6, Nyp = 10, v = 1074
(denoted3T) with threshold\. and )\ = 1073, that seems sufficient for recovering most of



the large scales. This method was compared with the inpaintf9] Patrick L. Combettes and Jean-Christophe Pesquet, t&ipral de-
ing method proposed iIHI]_Z] (denoted M2) which fills in the composition method for solving convex variational invepseblems,”

missing data area using both sparsity and a quadratic data '"é'se Problemsiol. 24, no. 6, 2008.
fidelity. [10] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knut@n the

Th It ict db F.E 1] der t Lambert W function,” Advances in Computational Mathematie®l.
€ results are picture y FIg. L. In oraer to compare 5, pp. 329-359, 1996, 10.1007/BF02124750.

efficiently the resul_ts, we remove all the spherical harraoni [11] T. Jarrett, “Large Scale Structure in the Local UnieersThe 2MASS
m_Odes beyon@00 _('-e- .g < 200) Qf the. maps. Method .Ml_ Galaxy Catalog, Publications of the Astronomical Society of Australia
gives a better estimation of the inpainted areas, as realist  vol. 21, pp. 396-403, 2004.
structures has been created inside these areas and the traps; p. Abrial, Y. Moudden, J.L. Starck, J. Bobin, M.J. FadB. Afeyan,
tion between missing and observed pixels are invisible.l&Vhi and M.K. Nguyen, “Morphological component analysis ancainfing
with method M2, transitions can be clearly seen and no struc- " the sphere: Application in physics and astrophysics, Folirier
- L . f Anal. Appl., vol. 13, no. 6, 2007, 729-748.

ture is infer inside the large missing area in the center. , _ _

For the denoised zones, both methods preserve the strés] Niayesh Afshordi, Yeong-Shang Loh, and Michael A. 86g "Cross-

. . correlation of the cosmic microwave background with the gsgalaxy

tures and the amplitude. In order to compare the behavior  gyney: signatures of dark energy, hot gas, and point ssfir&hys.
of the two methods, we also compare in Hib. 2 the second-  Rev, vol. D69, pp. 083524, 2004.
order statistics of the inpainted maps to the theprly [13]révio
precisely, we focus on the first modes of the harmonic power
spectrum of the density field. While at the beginning meth-
ods M1 and M2 provide similar results, they differ on higher
modes where the Poisson noise becomes more salient at the
profit of the M1 method.

4. CONCLUSION

An inpainting method is proposed using a data augmentation
procedure, where the observation is first completed with rea
istic data. For galaxy density field, we propose to use two pri
ors, first we assume that the density field follows a log-nérma
distribution and secondly, the underlying Gaussian fielsis
sumed to be sparse inside a wisely chosen dictionary. The
resulting algorithm is able to preserve the second ordéssta
tical properties which is an important feature for astragpby
application.
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2MASS noisy density map

2MASS inpainting with M1

1 10 100
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Fig. 2. The theoretical (green), M1 (black) and M2 (blue)
power spectra for the first 100 harmonics modes.

2MASS inpainting with M2

Fig. 1. Results on the inpainting methods on the 2MASS
count map. Top: The 2MASS noisy density map with the
missing data in gray. Middle and bottom: The inpainted den-
sity map using the method M1 (Middle) and M2 (bottom).



