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RESUME. Cet article présente un modéle géométrique & base de points et de segments de
droites utilisé pour représenter des mécanismes dans les phases de préconception. Ce
modele est traduit sous forme mathématique par une matrice d'incidence qui représente la
topologie et une matrice de Gram qui représente les informations métriques de I'objet. Il est
ensuite indiqué comment assembler deux objets représentés par ce modéle. Enfin, un
exemple permet de montrer I'intérét de ce modele pour réaliser le suivi d’une exigence
géométrique au cours du cycle de vie du produit.

ABSTRACT. This paper presents a geometrical model that uses points and line segments to
describe mechanisms at the early phases of the product design process. This model allows
the description of an object with a topological matrix and another matrix that contains the
metric information about the object. The paper also indicates how to associate two objects
represented using this model. Finally, the interest of this model for the mapping of a
geometrical requirement along the product life-cycle is shown on a case study.

MOTS-CLES : Exigence géométrique, Cycle de vie, Tenseur métrique, Matrices de Gram,
Géométrie non Cartésiennes.

KEYWORDS: Geometrical requirement; Life Cycle; Metric tensor; Gram matrices; coordinate
free geometry.




1. Introduction

During the design process of a mechanical product, functional requirements are
translated into geometrical requirements. For instance the functional requirement
saying that: “part A must follow a given face of part B along the movement” can be
translated as: “The clearance between the two surfaces of part A and B must
remain inferior to x mm”. This translation could also be applied to the definition of
kinematic joints. The technique developed by M’Henni [M'henni, 2010] allows the
accurate calculation of the geometrical parameters of the joint. Moreover, a
mechanical product is subjected to dimensional variations along its life cycle due to
mechanical strains. These variations affect the dimensions of parts that in turn
influence the value of the geometrical requirements. Generally there exist several
useful values of a requirement depending on the use-case or the user. For instance,
the manufacturer is interested in the value of the geometrical requirements at the
assembly stage of the life-cycle to perform the assembly of the parts and
components. From another point of view, the final user is interested in the values
of the same requirement but under operating conditions.

As a matter of fact, considering the designer’s point of view, it becomes
necessary to link (or to compare) the values of a geometrical requirement at
several stages of the product life-cycle. In particular, for the designer, several
problems appear: “Does the chosen dimension for manufacturing (or assembly)
allow the geometrical requirements under operating conditions to be met?” or
“Which dimensions must be specified on the drawing to ensure a given value of the
geometrical requirement in operation?”

In order to compare the geometric configuration of an object (or product) at
two distinct stages of its life-cycle, this paper proposes a technique to combine the
two mathematical representations of the same object under different use-cases in
a unique and common representation.

Authors noticed that there exist various tools to manage the detailed design of
a product. For instance the Computer Aided Design (CAD) tools help designers
define the detailed and nominal 3D geometry of a product. From this nominal
geometrical model it becomes possible to use a Finite Element Analysis (FEA) to
calculate the dimension variations due to mechanical strains [Pierre et al., 2009]
and to rebuild a geometrical model [Louhichi, 2008]. Form the nominal model,
there also exists several methods [Ghie, 2004], [Anselmetti, 2006], to deal with the
tolerancing problem. This addresses the issue of the real versus nominal
dimensions of the parts. These methods help the mechanical designer in the
specification of tolerances zones and the management and control of dimensional
uncertainties due to manufacturing.

On the other hand, there are few tools available for geometry management at
the early design phases. Consequently this work proposes a geometrical model
dedicated to preliminary design that allows the calculation of the evolution of
geometrical parameters or requirements along the product life-cycle. In
consequence, this work includes the proposition of a simplified coordinate free
representation to represent objects. Coordinate free approaches allow the direct
specification of intrinsic properties of geometrical objects that avoid the artificial
dependence with a reference frame induced by the coordinates.



The first part of this paper will detail the topological and vectorial model used
for representing the object. Then the second part will detail how to associate two
topological models. Finally, the third part of the paper will explicit the association
of two vectorial models.

2. Notations

This paper will use the following conventions:
Matrices will be noted with capital bold letters: M ;
Vectors will be noted with bold letters: u ;

Scalar number will be noted with italic letters: x.
Scalar product of vectors u and v is noted <u,v>

® represent the product of two matrices.

3. Models

The model used to represent objects is based on simplified geometries that
describe a skeleton of the object. It includes points and line segments (or pairs of
points). From the authors point of view, this representation is sufficient for the
description of geometrical objects during the preliminary design phase. The
example of an object that can be represented using this model is presented in
figure 1. In this example, points are noted P1, P2, P3 and P4. Segment lines are
noted SI1, SI2, SI3, Sl4, SI5 and Sl6.

In addition to this graphical and geometrical representation, the model is
composed of two matrices. The first one is used to represent the topology of the
object while the second gives the metric to measure the length and orientation of
the elements.

Sl

Figure 1: Example of object represented by the model.



3.1. Topological Model

The topological model contains the points and the line segments used to
describe the object. It also describes how points and segments are connected. This
information is represented in a topological graph constituted of oriented
simplexes. The points {P1, P2, P3, P4} of figure 1 are represented in the topological
graph (figure 2) by the vertices {V1, V2, V3, V4}. In the same way, the line segments
{ Sl1, sI2, SI3, Sl4, SI5, SI6} are represented by the arcs {E1, E2, E3, E4, E5, E6}.
Consequently, the topological model must contain the list of the vertices and arcs
that describes the object. This description is completed by the information on the
incidence of vertices on arcs. This information indicates from which vertex the arc
starts and at which vertex it ends. The topological graph associated to the object
drawn in figure 1 is represented in figure 2.

E5

E2

Figure 2: Topological graph associated to the example object.

3.2. Geometrical model.

The geometrical model is one realization of the topological oriented graph. To
perform this realization a vector is associated to each arc. The vector will take the
same orientation as the arc.

This geometrical or vectorial model provides the lengths of all the segments and
their relative orientation. It is coordinate free in the sense that the mathematical
representation used to store this information does not depend on any coordinate
system. In concrete terms, a given geometry described in two different coordinate
systems would have a common, unique description if a coordinate free system
were used. From there it becomes possible for the designer to describe the
intrinsic geometric properties of an object using a compact mathematical model
without paying attention to the coordinate system in which the object is defined.

During the preliminary design phase, the geometrical parameters are subjected
to a lot of changes. Consequently, a tool for the comparison of two representations
of an object at this stage of the design process should be based on a mathematical
model that allows the efficient solving of geometric constraints in order to quickly
rebuilt an object as some parameters are updated. From there, the choice of using
Gram Matrices as vectorial model has been motivated by the existence of generic



constraints specification techniques (as in [Serré et al., 2006]) and solvers (cf. in
[Moinet et al., 2010]).

For the example of figure 1 the set of vectors Su={u;, u,, us, U, Us, Ug} is
associated to the set of arcs {E1, E2, E3, E4, E5, E6} in the topological graph (figure
2).

3.3. Mathematical tools

3.3.1 Tools for the topological model

Topological informations are stored in a matrix that contains vertices in its
columns and arcs in its rows. For each line of the matrix (representing an arc) a -1
indicates from which vertex the arc starts, a +1 indicates at which vertex the arc
ends, all other terms of the line being equal to zero. For example the matrix
relative to figure 2 is shown in table 1.

ClVvl|V2]|V3| V4
E1] -1 1] 0] O
E2 0| -1 1 0
E3 o 0] -1 1
E4 | -1 0| O 1
ES | -1 0 1 0
E6| 0] -1] O 1

Table 1: Connection matrix C relative to the example object of figure 1.

3.3.2 Tools for the vectorial model

The following definition of a Gram matrix is found in [Gentle, 2007] : "the Gram
matrix G (or Gramian matrix or Gramian) of a set of vectors {u,, uy, ..., U} in an
inner product space is the Hermitian matrix of inner products, whose entries are
given by equation [1]”. G, represents the term of the row / and column m of the G
matrix. In this paper the names of all Gram matrices start with a capital “G”. Gram
matrices are positive semidefinite.

Gpg = <Up,ug> (1]

Remark: a metric tensor is a particular case of a Gram matrix which has its rank
equal to its dimension. For example, in the 3D Euclidian space, a 3 by 3 Gram
matrix which has a nonzero determinant (which is equivalent to being constituted
of 3 independent vectors) is called a metric tensor. In this paper, the names of all
the metric tensors start with a capital “M”.

For the example object of figure 1 the corresponding Gram matrix is shown in
table 2



G U; U, Uz Ug Us Ug

u; | <ujup < UyU;> < us,U;> < UgU;> < us,up> < ug,us>
u, <Ug,u,> < Up,Uu> < Uz, u,> < Ug,Up> < Us,U,> < Ug,Up>
u; | <ujuz> < Uy,Uz> < us,Uz> < Ug,Uz> < us,Uz> < ug,Uz>
u; | <ugug> < Uy,Ug> < us,Ug> < Ug,Ug> < us,ug> < Ug,Ug>
Ug < Uuus> < Up,Us> < Uz, us> < Ug,Us> < Us,Us> < Ug,Us>
Ue < Uy,Ug> < U,,Ug> < U3,Ug> < Ug,Us> < Us,Ug> < Ug,Us>

Table 2: Gram matrix relative to the example object.

From the Gram matrices it is immediately possible to obtain the scalar product
between two vectors. From there, it is easy to deduce the norm of a vector with
relation [2] and the angle between two vectors with relations [2] and [3].

||Up|| = <u,,u, >

lugll =, 2

CoS(Up, Ug) = <up, Ug> / (||upl_|luall))

cos(up, Ug) = Gaa/ (f6,, 4G, ) 3]

3.4. General discussion

Thanks to the connection matrix, the topological model describes the points,
line segments, and the way they are connected. The vectorial model provides the
lengths and the relative orientation of the line segments using the Gram matrix.
These two models contain all the necessary information for the description of an
object. Consequently, the specification of the list of points and line segments, along
with the connection matrix and the Gram matrix is sufficient to describe the
skeleton of the object. This model can either describe an elementary skeleton
object or the association of two objects.

4. Association of objects

As mentioned in the introduction (section 1), the aim of this work is the
association of the two mathematical representations of the same object (at two
stages of its life-cycle under different use-cases) in a unique and common
representation. To perform such an association it is necessary to aggregate the
topological connection matrices, and to associate the vectorial Gram matrix as
shown in figure 3.

For the two representations, it is crucial that the result of the association
remains describable with the connection and Gram matrices. To ensure this
condition, authors use a declarative approach. One declaration is available for each
association. The topology association is declared with the coincidence of two
vertices. The vectorial model association is declared by the coincidence of two
orthonormal reference frames. These reference frames are constituted by primary,
secondary and tertiary datum elements from tolerancing. Hence for tolerancing
applications no other constraints are needed. However, it is being envisioned to



add other constraints for the declaration of the association of two objects to
extend this approach to other fields of product design.

In any case, this paper considers that a complete representation of the
elementary objects to be associated already exists, thanks to a connection matrix
and a Gram matrix. For this application it is assumed that a model of the object
exists. This model is instanced at two distinct stages “&” and “B” of the life-cycle.
The reader is advised that the letters & and B always refer to the life cycle stages in
all the following variable names. For the stage “a” of the life cycle two matrices are
available : Gt and Cx. The elements of the GX Gram matrix are scalar products
between vectors from the set Su = {u®(;, uK,, ..., u,}. The CX connection matrix
indicates the relations between the arcs {Ex1, EX2, ..., EXq} and the vertices {Va1,
V&2, ..., Vas). The index g is used to count arcs and vectors and the index s is used
to count vertices. For the stage “B” of the life cycle, the matrix GP represents the
set SuP = {uBy, uP,, ..., uPy} and the matrix CP indicates the connection between
the arcs {EB1, EB2, ..., EBq} and the vertices {VB1, VB2, ..., VBs}.

In our case, there are no changes in the topology of the object; consequently
Cx = CB. Moreover, at the stage “0” of the life cycle, the Cot and Gt matrices can
be obtained with the technique developed by Moinet [Moinet, 2008]. The CP and
GP matrices are calculated using the same approach.
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Association of object & and object B

“ n

Figure 3: Association of two representations at phase “o” and “B” of the life-cycle.

4.1. Calculation of the global connection matrix

The calculation of the global connection matrix C (see figure 3) is based on the
declaration of the coincidence of two vertices. This calculation supposes that the
Cx and CP matrices relatives to each life-cycle stage are available. The generic
term of Cot is noted C«x, s and the generic term of CB is noted Cf, ;. Without loss of
generality, we also assume that the user has declared the coincidence of the first
vertices of each set Va1 and V1. If the user declares another constraint (i.e. V&2
coincident with VB4), it is possible to meet the previous hypothesis by renaming
vertices and rearranging the corresponding C matrices.

At the first stage of this procedure, the Cot and CB matrices are associated in a
global C matrix presented in table 3. Initially, the vertices of configuration “B” have
no relation with the arcs of configuration “®” ; consequently the up-right terms of
the global C matrix are all set to zero. In the same way, the bottom-left terms are
also set to zero because vertices of configuration “&” have no incidence on the arcs
of configuration “B”.



In the second stage, a new vertex noted VY is created and added in the last
column of C. Accordingly, the vertices V&1 and VB1 are removed from the global
connection matrix C. The incidence of vertex Vy on all the arcs is expressed in the
last column of table 3. The global C matrix obtained is presented in table 3.

V2| ... |Vas|VB2| ... |VBs| VY
Eal|Cay,yl ... |Cays O | .. | O |Cay,
EX2|Cay,| ... |COys| O | ... | O |Chyy

c= [EXq|CAgo| ... [COes| O | ... | 0 |COy,
EBL| O | .. | 0 [CBiJ - |CBLICBs
EBZ 0 “ee 0 CBZ,Z “ee CBZ,S CBZ[“I
EBal 0 | .. | 0 |CB,J - |CB,{CBy:

Table 3: Global connection matrix C

4.2. Calculation of the global Gram matrix

This calculation is based on the declaration of coincidence of two orthonormal
reference frames. In order to declare this coincidence, the user declares an ordered
list of 3 independent vectors for each of the two objects (or configurations) to be
assembled. These lists are noted {dot;,d0t,,dots} and {dB,,dB,,dPBs}. This declaration
ensures that after the association; vectors d&, and df, will first be collinear;
secondly vectors dot,,doX, and dPB,,dPB, will be coplanar; and finally the axis systems
{doty,dot,,doxs} and {dB,,dB,,dBs} will have the same orientation.

This kind of declaration fits the tolerancing problem. For tolerancing purposes,
the relative position of two parts or components is generally specified using some
primary, secondary, and tertiary datum elements defined by the standards ISO 286-
X. From these datum elements, it becomes possible to deduce the relevant vectors
and their order in the declared list.

The global matrix is noted G and presented in table 4.

G- Ga |Gap

Gap' | GB

Table 4: Global Gram matrix of the two configurations “a” and “B".

4.2.1 Principle

In order to calculate the relative orientation between vectors from these two
sets Suat and Sup (at stages “&” and “B”), the generic term of the Gap (see table 4)
matrix expressed in equation [4] has to be calculated. Note that Gaf is not a Gram
matrix because it is not symmetrical. As the approach is coordinate free, the
coordinates of the vectors included in the sets are not directly available.
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Consequently, the direct application of equation [4] is impossible. The following
paragraphs present a technique to perform this calculation.

GC(Bp,s = <UGp,UBs> [4]

Authors propose to use matrix factorization techniques to express any Ga and
GB as the product specified in equation [5]. It is supposed that the size of Ga and
Gp are g (the number of line segments) and their rank is 3 because the problem is
described in 3D Euclidian space. The calculation and the size of the Fa matrix will
be detailed later on.

Goa =Fa™ ® Fa and
GR=FR"® FB [5]

4.2.2 Calculation of the Gap Matrix

Equation [5] can be modified with the addition of the identity matrix Id as
presented in equation [6]

Ga=Fa"®ld ® Fa and
GR=Fp'®Id®FB [6]
In equation [6], Id matrices can be viewed as the metric tensors of two ortho-
normal reference frames {e,,e,,e3} (3 vectors in 3D Euclidian space). From there Fa
and FB can be viewed as the transformation matrix defined in [7]. The size of Fa

and FB is 3 by g. As Ga and GB are Gram matrices that are positive semidefinite,
the terms of Fa and FB remain real numbers.

uap = E Fanp en 1=n<3 and

UBS = % Fﬁq,s €q 1qu3 [7]

The application of relation [7] on the terms of relation [4] gives the expression
[8] that allows the calculation of Gap. In relation [8] &, , represents the Kronecker
symbol. The relation [9] gives the matrix expression of Gaf.

Gaﬁp,s = <qu,uBs>

= % <Fanp en, FBys €q>
= % Fan,p Fﬁq,s <én,eq>
= % Fan,p Fﬁq,s 6n,q

Gaﬁp,s = % Fan,p Fﬁn,s [8]

Gop =Fa™ ® Fp [9]

From there it becomes possible to calculate the global G matrix with the
relations [5] and [9] and to associate these results as presented in table 5.



Fo' ® Fa|Fa' ® FB

FB'® Fa | FB' @ FB

Table 5: Global Gram matrix

The previous paragraphs have shown that factorization is suitable for the
calculation of the global Gram matrix. The following subsections will detail the
technique used by the authors to factorize Gram matrices. It will be illustrated by
the calculation of Fa from the Ga Gram matrix. The same factorization technique is
to be applied for the calculation of FB from Gp.

Currently, authors have looked into the use of the Cholesky factorization. This
technique appears to be appropriate because it builds an orthonormal reference
frame from an ordered list of 3 independent vectors.

However, the Cholesky factorization has a limitation. This method is only
available for square matrices that have a non-zero determinant. This means that
the matrix to be factorized has to be a metric tensor and so its size has to be equal
to the dimension of the Euclidian space. In the general case, Gram matrices sizes
are bigger than the dimension of the Euclidian space. Consequently, for the
application of the Cholesky factorization, it first becomes necessary to be able to
obtain one metric tensor from the Gram matrix and secondly to rebuilt the original
Gram matrix from the metric tensor.

4.2.3 Mathematical tools

The first conversion is obvious: it is simply necessary to choose the subset of
independent vectors as declared by the user and extract the corresponding
columns and rows of the Gram matrix to obtain the resulting metric tensor. For the
“o” configuration, the metric tensor M is extracted from Ga.. Once the M metric
tensor is obtained, it is factorized with the Cholesky technique [Gentle, 2007] as

presented in equation [10].
Mo = L™ ® Lex [10]

The following paragraphs will present the two concepts of covariant and
contravariant coordinates used in the conversion from metric tensor to Gram
matrix [Lichnerowicz, 1956]. The covariant coordinates noted u«, of a vector ua
with respect to the reference frame {da,,da, das} are the scalar products of
equation [11]. These coordinates are those that are commonly used in engineering
and science. One can notice that Gram matrices are constituted of covariant
coordinates.

uok =<uet, dok > [11]

Moreover the covariant coordinates lead to the definition of the metric tensor
M« for the reference frame {da,, da,, das}. The term Ma,, of the row / and
column m of M is defined by [12]. By construction MX is symmetrical. M& is
invertible and its inverse matrix is noted M and remains symmetrical.
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Motm = < dai, dom > [12]

The contravariant coordinates define the ua coefficients used to obtain a
vector u as a unique linear combination of the vectors {da,, da,, das} defining the
reference frame [13].

uox = ; uor dete [13]

The conversion from covariant to contravariant coordinates is achieved through
a combination of relations [11], [12], [13]. From there, it is easy to deduce
equations [14] and [15].

U = g Uo® Matmp [14]

UoP= 2 Uom Mat'mp [15]

4.2.4 Factorization of Gram matrices

The calculation of < v&X,woX >, that leads to the calculation of any term of the
Gram matrix G, is given by equation [16]. The metric tensor M of the reference
frame {d&,, d&X,, dX3} is given with two vectors v&X and w& from the set Sua. The
contravariant coordinates of these vectors are defined with respect to relation
[13].

<VX,WQX > = > <vardot, wor detp>
rnp

= E var <dot,dotp> war
rnp

< VLW > =§ Vo Moty wor [16]

Using relation [15] it is possible to express equation [16] in its covariant form
such as presented in equation [17] that leads to the calculation of the terms of the
Ga gram matrix (defined by equation [4]). Reminding that M is symmetrical
(Mo(lm,,, = M(X'l,,,m), and 6, , represents the Kronecker symbol, we have:

<VX,WQX >= > var Moip wor
rp

= 2 (V(Xm MOHmr) Mo (W(Xn MO(‘1n,p)

r.p,mn

= E VCOm 6m,p MO('1n,p W&n
p,mn

<VOLWKX >= > VOm Mot "mn WO [17]
m,n

The covariant coordinates are directly extracted from Ga. They are stored in the
P& matrix that contains all the columns of Ga and only the 3 rows corresponding
to {doty, d,, dots}. The size of Pt is 3 by g. The inverse matrix of the M metric
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tensor is to be computed. From relations [17] it is possible to deduce expression
[18] of Ga.

Ga =Pa™® Mo'!' ® Pex
Ga =Po"®@ Mot' ® Mox ® Mot' ® Por  [18]

4.2.5 Conclusion.

The substitution of relation [10] in relation [18] gives the expression [19] for Ga.
Reminding that M " is symmetrical (Me™* = (Ma™)"):

Ga =Po™® Mor' ® Mo ® Mot' ® Pex
=PaT®Max' ® (Lo ® Lot) ® Mo! ® Pex
Ga = (L @ Mat' ® Po)T® (Lot ® Mox'' ® Px) [19]

The identification of the terms of relation [19] and relation [5] leads to the
definition of the factorization of the Gram matrices that are given by relation [20].

Fo=Lot® Mot' ® Pax [20]
FB=LB ®MB'® PR [21]

The GB matrix can be factorized using the same approach and FB is given by
relation [21]. From there the global matrix G representing the assembly of the two
configurations can be calculated such as described in table 5. The G Gram matrix
allows the mapping of the evolution of the geometrical parameters. This will be
briefly illustrated on the case study presented in the following section.

5. Case Study

This section presents the application of the method on a simple 3D case. The
proposed object for this case study is composed of three articulated bars arranged
as a tetrahedron on a wall, as presented in figure 4. This case is comprised of 4
points {A, B, C, D} and 6 line segments {AB, AC, BC, SA, SB, SC}. This object is
supposed to have a topological and geometrical (or vectorial) representation at
two stages “a” and “B” of its life-cycle. A* designate point A at stage “0(”. AP is used
for the stage “P”. Here it is assumed that the topology remains unchanged
between the two stages of the life-cycle. This means that the topological matrices

for the representation of the object are the same (Ca = CB).
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At stage “a” of the life cycle At stage “B” of the life cycle

Figure 4: Objects for the case study

The object of the case study has for topological model the Ca (=CB) connection
matrix presented in table 6.

Ca |A%[B%|C*|S* CB |AP|BF|CP|sP
A*B*| -1| 1| 0| © APBB| -1 1] o] O
B*C*| 0| -1| 1| ©O Bfc®| 0| -1| 1] O
A%C*| -1| o] 1| o ABCB| 1] o] 1] O
S*A%| 1| 0] 0f -1 sBaB| 1| 0| 0] -1
s*B*| 0| 1| 0| -1 seeB| 0| 1| 0] -1
sec*| o| of 1| -1 sBcB| o] o] 1] -1

Table 6: Connection matrices for the case study

Moreover, from the works of Serré [Serré, 2000] and Moinet [Moinet, 2008],
two Gram matrices are calculated with the specifications presented in table 7. The
two Gram matrices are presented in table 8 and table 9. Stage “&” and stage “B”
are two different states of the product life cycle. Stage “a” is for nominal values of
temperature and loads. Stage “B” is when temperature and loads have changed.
a®b* is the vector associated to line segment AB at stage “&”. aPb P is the vector
associated to line segment AB at stage “B”.

Length at stage Length at stage
AB 1.00000 1.1198
BC 1.00000 1.0898
AC 1.00000 1.2375
SA 1.41421 1.5836
SB 1.41421 1.5412
SC 1.41421 1.7501

Table 7: Length specification



Ga | a®*b* | b%* | a%c* | s*a* | s*b* | s%c*
a%b* 1 0 0 -1 -1 0
b%c® 0 1 0 1 0 -1
a%c®* | 0 0 1 0 1 1
s“a* | 1 1 0 2 1 -1
s*b* | -1 0 1 1 2 1
s%c® 0 -1 1 -1 1 2

Table 8: Gram matrix for the object at stage “oc”.

GB afb P bfc P afch sPa b sPb B sPc B
aPb® | 12539 | -0.0331 | 0.2050 | -1.2869 | -1.0489 | 0.2380
bfcP | 00331 | 1.1877 | -0.1719 | 1.2208 | -0.1388 | -1.3596
aPc® | 02050 | -0.1719 | 15315 | -0.3768 | 1.3265 | 1.7033
sPaf | -1.2869 | 1.22080 | -0.3768 | 2.5077 | 0.9101 | -1.5976
sPbP | -1.0489 | -0.1388 | 1.3265 | 0.9101 | 2.3754 | 1.4653
sPcP | 0.23800 | -1.3596 | 1.7033 | -1.5976 | 1.4653 | 3.0629

Table 9: Gram matrix for the object at stage “B”

In order to associate these two configurations, the following declarations are
made by the user. First, he declares that vertex A% and vertex AP are coincident.
Second, he also declares the following ordered lists of independent vectors for the
geometrical association: {a®b%,a%c%,s*a%} and {afb #,aPc?, sPa F}.

5.1. Topological association

In order to associate the Ca and CB connection matrices (see table 6) using the
coincidence of vertices A% and A, it is necessary to create a third vertex termed AY.
The application of the procedure of section 4.1 finally gives the global connection
matrix C presented in table 10.

C B | c* | s* | BP | P | P | A
Al 1 ]lo]lo]lolo|lo]-1
B*c* | 1 |1 ] 0]o0o]lo]o]lo
Ac|l o1 ]o]lo]o]o]
s°aA¥ | olo|-1]lo0]o0o] o011
s*B* | 1 o] 1]0]o0o]o]oO
sc ] o |l1]1]0]o0o]o]o
AB* | o |lo|lo]|]1]0]0]-"
Bf* | o |]o o |-1]1]0]0
Act|l o lolo|l o]l 1]o0]-1
Ay o lo |l o]lo]o]|-1]1
s |l 0o o | 0|10 ]|-1]0
sfcBl ool o]lo]1]l-1]0

Table 10: Global connection matrix for the case study
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5.2. Vectorial association

In accordance with the previous section the vertices A* and A® have been
replaced by vertex AY. Consequently, the ordered lists have been changed in the
same way. To perform the association of Gram matrices, the methodology of
section 4.2 is applied with the declaration of the following ordered lists:
{a¥b%,a¥c% s%a¥} and {a'bP,a¥cP sPa¥}. From these lists the metric tensors M and
M presented in table 11 are extracted.

M« | a'b* | a¥c® | s*aY MB a'b? a¥ch sfaY

a¥b® 1 0 -1 a¥b? | 1.2539 | 0.2050 | -1.2869
a'c® 0 1 0 a'c® | 0.2050 1.5315 | -0.3768
s“a¥ | -1 0 2 sPa¥ | -1.2869 | -0.3768 | 2.5077

Table 11: Metric tensors for the application case

The application of the Cholesky factorization technique on the Mot and Mf8
metric tensors gives the Lot and LB matrices presented in table 12.

Lx LB
1 0 -1 1.1198 | 0.1830 | -1.1493
0 1 0 0 1.2239 | -0.1360
0 0 1 0 0 1.0809

Table 12: Lot and L factorized matrices

In parallel, the covariant coordinates of the vectors are extracted from Ga and
GPB. The Px and PB matrices are presented in table 13 and table 14.

Px a'b® b*c* a'c® s®a¥ 38 s%c®
a'b* 1 0 0 -1 -1 0
a'e® 0 0 1 0 1 1

je -1 1 0 2 1 -1

Table 13: Covariant coordinates of vectors for configuration “o

PB | a'bP bPcP avch sfaY sPbP sPcP
a'b® | 1.2539 | -0.0331 | 0.2050 | -1.2869 | -1.0489 | 0.2380
a'b® | 02050 | -0.1719 | 1.5315 | -0.3768 | 1.3265 | 1.7033
sfa¥ | -1.2869 | 1.2208 | -0.3768 | 2.5077 | 0.9101 | -1.5976

Table 14: Covariant coordinates of vectors for configuration “p”

With the elements presented in table 11, table 12, table 13 and table 14 it now
becomes possible to calculate the Fa and FB matrices using relations [20] and [21].
The expression of Fa and FB are given in table 15 and table 16.



Fa

Table 15: Factorization of the Ga Gram matrix

FB

1.1198 | -0.0295 | 0.1830 | -1.1493 | -0.9367 | 0.2126
0 -0.1360 | 1.2239 | -0.1360 | 1.2239 | 1.3599
0 1.0809 0 1.0809 0 -1.0809

Table 16: Factorization of the GB Gram matrix

From there the global G matrix of the system is computable using Table 5. The
result of this computation is presented in table 17.

G |a'b* | b%c* | a¥c* | s*a¥ | s*b* | s%c* | a¥bP | bPcP | a¥cP | sPa¥ | sPbP | sPcP

a¥bh* 1 0 0 1 -1 0 1.1198 |-0.0295 | 0.1830 |-1.1493|-0.9367 | 0.2126
b*c® 0 1 0 1 0 1 0 1.0809 0 1.0809 0 [-1.0809
a¥e¥| 0 0 1 0 1 1 0 |-0.1360 1.2239 |-0.1360 | 1.2239 | 1.3599
s*a¥| -1 1 0 2 1 -1 1-1.1198|1.11040|-0.1830 | 2.2302 | 0.9367 |-1.2935
s*b® -1 0 1 1 2 1 |-1.1198-0.1065 | 1.0409 | 1.0133 | 2.1606 | 1.1474
s*c¥| 0 -1 1 -1 1 2 0 |-1.2169| 1.2239 |-1.2169 | 1.2239 | 2.4408
a¥bP| 1.1198 0 0 |-1.1198(-1.1198| 0 1.2539 |-0.0331| 0.2050 |-1.2869 | -1.0489 | 0.2380

bPBcB|-0.0295| 1.0809 |-0.1360 | 1.1104 |-0.1065 | -1.2169 | -0.0331 | 1.1877 |-0.1719 | 1.2208 |-0.1388 | -1.3596

a¥ch| 0.1830 0 1.2239 |-0.1830| 1.0409 | 1.2239 | 0.2050 |-0.1719| 1.5315 |-0.3768 | 1.3265 | 1.7033

sPaY|-1.1493| 1.0809 | -0.1360 | 2.2302 | 1.0133 |-1.2169 | -1.2869 | 1.22080/ -0.3768 | 2.5077 | 0.9101 |-1.5976

sPbP|-09367| 0 1.2239 | 0.9367 | 2.1606 | 1.2239 |-1.0489|-0.1388 | 1.3265 | 0.9101 | 2.3754 | 1.4653

sPcP| 0.2126 |-1.0809 | 1.3599 |-1.2935| 1.1474 | 2.4408 |0.23800-1.3596 | 1.7033 |-1.5976 | 1.4653 | 3.0629

Table 17: Global Gram matrix for the case study

5.3. Example of the mapping of the evolution of a geometrical parameter.

In this section, the interest of the global representation of the association of
two objects (or configurations) for the mapping of the evolution of a geometrical
parameter is briefly shown. To this end, it is proposed, first to measure the angle
between the vectors s*a¥ and sfa¥ and second to calculate the length of the vector
s%sP.

The application of relation [3] directly gives the value of
cos(s*a¥,sPa¥) = G, 10/ ( /G,s /G010 )= 0.995836 which correspond to an angle of
0.091287 radian.
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From matrix C (see table 10),a possible path to go from vertex S* to vertex SE is
deduced as going through vertex AY. Consequently the scalar product <s%s® s%s®> is
expressed by relation [22].

<s*sP s%sP> = <g*aY¥ s*a¥> + 2 <s™a¥,a'sP> + <a¥sP avsh>
<s*sP s%sP> = <g*aY, s¥a¥> - 2 < s%a¥,sPa¥> + <sPa¥ sPa¥>
<s*sP s%sP> = Gy4-2 G410 + Gro1o [22]

The combination of relations [2] and [22] allows the calculation of ||s%s®||
from the elements available in the global Gram matrix G presented in table 17.
After calculation, the result obtained is | |s*sB| | = 0.217565 length unit.

6. Conclusion and perspectives

This paper has first presented a generic model for representing objects using
points and line segments exclusively. That description proved to be suitable for the
representation of the skeleton of a mechanical product at the early stages of the
design process. Secondly a means for representing objects, thanks to two matrices,
was introduced. A connection matrix was used to indicate how points and line
segments were connected and a Gram matrix is used to provide the user with
lengths and orientation information about the line segments. In the third part, the
paper showed how to perform an assembly with two objects represented with
these two matrices. Finally, the interest of this model for the mapping of the
evolution of a geometrical parameter has been exhibited on a case study.

In terms of future work, the authors propose first to consider the addition of
surface elements such as triangles to enhance the possibilities for modelling
complex objects. Secondly, it is also envisaged to implement additional constraints,
such as topological coincidence between two lines segments, for the declaration of
the assembly of the two objects.
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